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Summary 

Members of the oomycete class include some of the most devastating pathogens of plants 

and animals. Oomycetes secrete large arsenals of effector proteins that perform a wide 

range of functions, including sequestering nutrients from hosts and the environment, 

degrading host cells to facilitate colonisation, and modulating host immune responses. 

Recent genome sequencing projects have generated large amounts of oomycete genomic 

data. Availability of which facilitated bioinformatic characterisation of the secretomes of 

diverse oomycete species. Using comparative genomic, network, and phylogenetic 

methods, this thesis reports the identification of lineage and species-specific expansions 

of effectors. Despite their ubiquity and the threat that oomycetes pose to global food 

security, there is a lack of dedicated tools to analyse oomycete genomes. To this end, the 

Oomycete Gene Order Browser (OGOB) was developed. OGOB is a database and novel 

tool that facilitates comparative genomic and syntenic analyses of oomycete genomes. 

Analyses using OGOB highlighted the high degree of syntenic conservation within 

oomycete genera. Furthermore, tandem gene duplication was shown to play a significant 

role in the expansion and evolution of effector proteins. The data presented in this thesis 

also describes the first large-scale genomic and proteomic investigations of the 

widespread phytopathogens Phytophthora chlamydospora, Phytophthora gonapodyides 

and Phytophthora pseudosyringae. Mass spectrometry analyses identified approximately 

300 extracellular proteins per species, many of which are putativly involved in infection 

or osmotrophy. The expression of approximately 3,000 proteins for each species was 

validated at the protein level. Comparative genomic analysis of CAZymes suggest that 

oomycete lifestyles may be linked to their CAZyme repertoires. Overall, the data 

presented in this thesis expands our knowledge of oomycete genome evolution.  
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Preface 

This thesis is presented in the “Thesis by Publication” format, comprising a published 

review chapter and three published research articles. Each chapter contains its own 

bibliography in the format used by the associated journals. Chapter 1 is a review chapter 

that introduces the oomycetes and discusses the latest findings in oomycete genomics 

research and mentions some of the results described in later chapters. The first results 

chapter, Chapter 2, comprises a comparative genomics publication that uses 

bioinformatics methods to study the evolution of effector proteins across a large dataset 

of oomycete genomes. Chapter 3 describes the Oomycete Gene Order Browser, a newly 

developed tool and database for oomycete genomes, that facilitates analyses of oomycete 

genes and genomes. Chapter 4 reports the genome sequencing of three widespread 

Phytophthora species – Ph. chlamydospora, Ph. gonapodyides and Ph. pseudosyringae. 

This chapter uses a combination of bioinformatics, comparative genomics and proteomics 

methods to comprehensively characterise their nuclear genomes, mitochondrial genomes, 

predicted proteomes, in silico secretomes, in vivo extracellular proteomes and in vivo 

mycelial proteomes. The thesis concludes with Chapter 5, which is a general discussion 

of the results described in chapters 2 – 4.



Chapter 1 
Introduction 

 

This chapter has been published in Advances in Genetics. 

 

McGowan, J., Fitzpatrick, D.A., 2020. Recent Advances in Oomycete Genomics. 

Advances in Genetics.
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Abstract 

The oomycetes are a class of ubiquitous, filamentous microorganisms that include some 

of the biggest threats to global food security and natural ecosystems. Within the oomycete 

class are highly diverse species that infect a broad range of animals and plants. Some of 

the most destructive plant pathogens are oomycetes, such as Phytophthora infestans, the 

agent of potato late blight and the cause of the Irish famine. Recent years have seen a 

dramatic increase in the number of sequenced oomycete genomes. Here we review the 

latest developments in oomycete genomics and some of the important insights that have 

been gained. Coupled with proteomic and transcriptomic analyses, oomycete genome 

sequences have revealed tremendous insights into oomycete biology, evolution, genome 

organization, mechanisms of infection, and metabolism. We also present an updated 

phylogeny of the oomycete class using a phylogenomic approach based on the 65 

oomycete genomes that are currently available.  
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1. The Oomycetes 

Oomycetes are filamentous, microbial eukaryotes that morphologically resemble fungi 

(Beakes et al., 2012), but belong to the species-rich group of stramenopiles (Burki et al., 

2020), which contains other diverse organisms such as diatoms and brown algae (Figure 

1). Oomycete species are highly diverse in terms of their lifestyles, pathogenicity and host 

ranges. More than 60% of known oomycete species are pathogens of plants (Thines and 

Kamoun, 2010). Together, they represent one of the biggest threats to global food security 

and natural ecosystems. Most notorious among oomycete species is Phytophthora 

infestans, a hemibiotrophic pathogen that causes late blight of tomato and potato (Haas 

et al., 2009), and was the causative agent of the Irish potato famine which resulted in the 

death of one million people and the displacement of another million. Phytophthora sojae 

is another highly destructive species that causes billions of dollars’ worth of soybean crop 

loss each year (Tyler, 2007). Phytophthora infestans and Ph. sojae are examples of 

species with narrow host ranges. In contrast, Phytophthora ramorum, the “sudden oak 

death” pathogen, has a wide host range that can infect more than 100 host species (Rizzo 

et al., 2005). Phytophthora cinnamomi has a very wide host range and is thought to be 

able to infect more than 3,000 host species (Hardham, 2005). Virtually all dicotyledon 

plants are susceptible to infection by one or more Phytophthora species (Kamoun, 2003). 

Other economically devastating oomycete species include the obligate biotrophic downy 

mildews, Bremia lactucae and Plasmopara viticola, some of the most important 

pathogens of lettuce and grapevine, respectively (Dussert et al., 2019; Fletcher et al., 

2019). 
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Figure 1. Simplified phylogeny of the eukaryotes showing the distant relationship 

between oomycetes and fungi. Adapted from Burki et al. (2020). 

While the majority of attention is typically placed on plant pathogenic oomycetes, 

many oomycete species cause infections in other economically and ecologically 

important organisms. For example, Saprolegnia species are pathogens of amphibians, 

crustaceans, fish, and insects (Jiang et al., 2013). In particular, Saprolegnia parasitica is 

a freshwater fish pathogen that is predominant in farmed salmon populations, resulting in 

losses of more than 10% (van den Berg et al., 2013). Pythium oligandrum and Pythium 

periplocum are pathogens of fungi and oomycetes, acting as powerful biocontrol agents 

that can combat plant-pathogenic fungi and oomycetes (Benhamou et al., 2012; 

Kushwaha et al., 2017a). Pythium guiyangense is a highly virulent pathogen of mosquitos 

and is a potential biocontrol agent to efficiently manage mosquito populations (Shen et 

al., 2019). Some oomycete species, such as Pythium insidiosum, can cause fatal infections 

in humans and other mammals typically resulting in amputations or even death (Gaastra 

et al., 2010). 
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The oomycete class is divided into four “crown” orders - the Peronosporales, 

Pythiales, Albuginales, and Saprolegniales. The Peronosporales order is the best studied 

order and includes the phytopathogenic Phytophthora, Nothophytophthora and 

Phytopythium genera as well as the downy mildew Bremia, Hyaloperonospora, 

Peronospora, Plasmopara, Pseudoperonospora and Sclerospora genera (Fletcher et al., 

2019; McCarthy and Fitzpatrick, 2017). The Pythiales order includes the Pythium genus 

and Pilasporangium (Adhikari et al., 2013). Within this order are a mix of animal, fungal, 

plant and oomycete pathogens. The Albuginales order includes the plant-parasitic Albugo 

genus which causes “white blister rust” on many valuable crop species (Kemen et al., 

2011; Links et al., 2011). The Saprolegniales order is the most basal of the four crown 

orders and includes animal and plant pathogens. Genera belonging to the Saprolegniales 

order include Achlya, Aphanomyces, Saprolegnia and Thraustotheca (Misner et al., 

2015). 

Oomycetes were previously thought to be fungi due to similar morphological 

characteristics, filamentous growth, osmotrophic uptake of nutrients and similar 

ecological roles (Leonard et al., 2018; Richards et al., 2006). Even today, oomycetes are 

commonly mistakenly referred to as fungi. Several key differences distinguish oomycetes 

(“pseudo-fungi”) from “true-fungi”, some of which are summarized in Table 1. 

Phylogenetically, fungi branch with animals within the Opisthokonta (Figure 1), whereas 

the oomycetes are stramenopiles within the SAR (Stramenopila, Alveolata, and Rhizaria) 

supergroup placing them more closely related to brown algae and diatoms (Figure 1) 

(Burki et al., 2020). 
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Table 1. Typical features that differ between oomycetes and fungi 

Character Oomycetes True Fungi 

Neighboring taxonomic 

groups 

Diatoms and brown algae Animals 

Hyphal structure Aseptate and 

multinucleate 

Either single cells or 

septate hyphae, with one 

or more nuclei per 

compartment 

Ploidy of vegetative 

hyphae 

Diploid Typically haploid or 

dikaryotic 

Cell wall composition Cellulose and β-1,3 and β-

1,6 glucans 

Chitin and β-1,3 and β-1,6 

glucans  

Pigmentation Usually unpigmented Hyphae and/or spores are 

commonly pigmented 

Secondary metabolites None described Common 

Motile asexual spores Biflagellated zoospores 

with two different types of 

flagella present – a tinsel 

anterior flagellum and a 

smooth posterior whiplash 

flagellum  

Rare but some exceptions 

such as chytrids, which 

have monoflagellated 

zoospores 

Sexual spores Oospores Various types 

 

Adapted from Judelson & Blanco (2005). 
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Oomycetes cause infection by secreting large arsenals of effector proteins that 

breakdown host cell components, modulate host immune responses and trigger host 

necrosis (Kamoun, 2006; McGowan and Fitzpatrick, 2017). Effector families can be 

divided into two broad categories based on where they localize – apoplastic effectors that 

act outside the host cell and cytoplasmic effectors that enter the host cell (Wawra et al., 

2012). Apoplastic effectors families include large families of hydrolytic enzymes such as 

glycoside hydrolases and proteases, as well as toxins including the necrosis-inducing 

proteins (NLPs) and phytotoxic protein family (PcF) proteins. Cytoplasmic oomycete 

effectors include the RxLR and Crinkler (CRN) family of effectors, which contain 

conserved translocation motifs that facilitate their delivery inside host cells (Haas et al., 

2009; Tyler et al., 2006). 

In recent years, in line with advancements in next-generation sequencing 

technologies, there has been an increased pace of oomycete genome sequencing. At the 

time of writing, 65 oomycete species (Table 2) have publicly available genome sequences 

deposited in databases such as the NCBI GenBank (Benson et al., 2012). Such genome 

sequencing projects have yielded tremendous insights into oomycete biology, evolution, 

effector arsenals, genome organization, metabolism and mechanisms of infection. Here 

we review recent developments in oomycete genomics and highlight some of the 

important findings that have been revealed.
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Table 2. List of the 65 oomycete genome assemblies that are available at the time of writing. 

Species Clade a Order Host Genome Size Mb b Reference c 

Albugo candida  Albuginales Plants 45.3 (Links et al., 2011) 

Albugo laibachii  Albuginales Plants 35.5 (Kemen et al., 2011) 

Lagenidium giganteum  Lagenidiales Insects 126.3 PRJNA433680 

Paralagenidium karlingii  Lagenidiales Mammals 49.4 PRJNA433826 

Bremia lactucae  Peronosporales Plants 115.9 (Fletcher et al., 2019) 

Hyaloperonospora arabidopsidis  Peronosporales Plants 81.6 (Baxter et al., 2010) 

Nothophytophthora valdiviana  Peronosporales Plants 84.4 (Studholme et al., 2019) 

Peronospora belbahrii  Peronosporales Plants 35.4 (Thines et al., 2019) 

Peronospora effusa  Peronosporales Plants 32.1 (Fletcher et al., 2018) 

Peronospora tabacina  Peronosporales Plants 63.1 (Derevnina et al., 2015) 

Phytophthora nicotianae 1 Peronosporales Plants 80.0 (Liu et al., 2016) 

Phytophthora parasitica 1 Peronosporales Plants 82.4 PRJNA259235 

Phytophthora cactorum 1a Peronosporales Plants 59.3 (Armitage et al., 2018) 
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Table 2. Continued. 

Species Clade a Order Host Genome Size Mb b Reference c 

Phytophthora infestans 1c Peronosporales Plants 240.0 (Haas et al., 2009) 

Phytophthora colocasiae 2a Peronosporales Plants 56.6 (Vetukuri, Kushwaha, et al., 2018) 

Phytophthora capsici 2b Peronosporales Plants 95.2 (Cui et al., 2019; Lamour et al., 2012) 

Phytophthora citricola 2c Peronosporales Plants 50.3 PRJNA555328 

Phytophthora multivora 2c Peronosporales Plants 40.1 (Studholme et al., 2015) 

Phytophthora plurivora 2c Peronosporales Plants 40.4 (Vetukuri, Tripathy, et al., 2018) 

Phytophthora pluvialis 3 Peronosporales Plants 53.6 (Studholme et al., 2015) 

Phytophthora litchii 4 Peronosporales Plants 38.2 (Ye et al., 2016) 

Phytophthora megakarya 4 Peronosporales Plants 101.2 (Ali et al., 2017) 

Phytophthora palmivora 4 Peronosporales Plants 107.4 (Ali et al., 2017) 

Phytophthora agathidicida 5 Peronosporales Plants 37.3 (Studholme et al., 2015) 

Phytophthora pinifolia 6b Peronosporales Plants 94.6 (Feau et al., 2016) 

Phytophthora alni var. alni 7a Peronosporales Plants 236.0 (Feau et al., 2016) 
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Table 2. Continued. 

Species Clade a Order Host Genome Size Mb b Reference c 

Phytophthora cambivora 7a Peronosporales Plants 230.6 (Feau et al., 2016) 

Phytophthora fragariae 7a Peronosporales Plants 73.68 (Gao et al., 2015) 

Phytophthora rubi 7a Peronosporales Plants 74.7 (Tabima et al., 2017) 

Phytophthora pisi 7b Peronosporales Plants 58.9 PRJEB6298 

Phytophthora sojae 7b Peronosporales Plants 95.0 (Tyler et al., 2006) 

Phytophthora cinnamomi 7c Peronosporales Plants 54.0 (Studholme et al., 2015) 

Phytophthora cryptogea 8a Peronosporales Plants 63.8 (Feau et al., 2016) 

Phytophthora lateralis 8c Peronosporales Plants 52.4 (Feau et al., 2016) 

Phytophthora ramorum 8c Peronosporales Plants 65.0 (Tyler et al., 2006) 

Phytophthora kernoviae 10 Peronosporales Plants 39.4 (Feau et al., 2016) 

Phytophthora taxon totara  Peronosporales Plants 55.6 (Studholme et al., 2015) 

Phytopythium vexans  Peronosporales Plants 33.9 (Adhikari et al., 2013) 

Plasmopara halstedii  Peronosporales Plants 75.3 (Sharma et al., 2015) 
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Table 2. Continued. 

Species Clade a Order Host Genome Size Mb b Reference c 

Plasmopara muralis  Peronosporales Plants 59.5 (Dussert et al., 2019) 

Plasmopara obducens  Peronosporales Plants 295.3 PRJNA287843 

Plasmopara viticola  Peronosporales Plants 101.3 (L. Yin et al., 2017) 

Pseudoperonospora cubensis  Peronosporales Plants 64.3 PRJNA80635 

Pseudoperonospora humuli  Peronosporales Plants 40.5 (Rahman et al., 2019) 

Sclerospora graminicola  Peronosporales Plants 253.7 (Nayaka et al., 2017) 

Pilasporangium apinafurcum  Pythiales Plants 37.4 (Uzuhashi, Endoh, Manabe, & Ohkuma, 

2017) 

Pythium aphanidermatum A Pythiales Plants 35.9 (Adhikari et al., 2013) 

Pythium arrhenomanes B Pythiales Plants 44.7 (Adhikari et al., 2013) 

Pythium guiyangense  Pythiales Insects 110.2 (Shen et al., 2019) 

Pythium insidiosum C Pythiales Mammals 53.2 (Rujirawat et al., 2015) 

Pythium irregulare F Pythiales Plants 42.9 (Adhikari et al., 2013) 
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Table 2. Continued. 

Species Clade a Order Host Genome Size Mb b Reference c 

Pythium iwayamai G Pythiales Plants 43.3 (Adhikari et al., 2013) 

Pythium oligandrum D Pythiales Fungi/Oomycetes 36.8 (Kushwaha et al., 2017a) 

Pythium periplocum D Pythiales Fungi/Oomycetes 35.9 (Kushwaha et al., 2017b) 

Pythium splendens I Pythiales Plants 53.4 PRJNA548776 

Pythium ultimum var. sporangium I Pythiales Plants 37.7 (Adhikari et al., 2013) 

Pythium ultimum var. ultimum I Pythiales Plants 42.8 (Lévesque et al., 2010) 

Achlya hypogyna  Saprolegniales Crustaceans 43.4 (Misner et al., 2015) 

Aphanomyces astaci  Saprolegniales Crustaceans 45.3 (Gaulin et al., 2018) 

Aphanomyces euteiches  Saprolegniales Plants 56.9 (Gaulin et al., 2018) 

Aphanomyces invadans  Saprolegniales Fish 71.4 PRJNA188082 

Aphanomyces stellatus  Saprolegniales Fish 62.1 (Gaulin et al., 2018) 

Saprolegnia diclina  Saprolegniales Fish 62.9 PRJNA86859 
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Table 2. Continued. 

Species Clade a Order Host Genome Size Mb b Reference c 

Saprolegnia parasitica  Saprolegniales Fish 42.3 (Jiang et al., 2013) 

Thraustotheca clavata  Saprolegniales Free living 39.1 (Misner et al., 2015) 

 

a Clade designation according to Blair et al., (2008) for Phytophthora and de Cock et al., (2015) for Pythium. 

b Genome size as reported in corresponding publications, otherwise the assembly size is shown 

c NCBI BioProject accessions are shown for genome assemblies that do not have an associated publication.
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2. Oomycete Genomes 

In 2006, the first oomycete genome sequences were published for Ph. ramorum and Ph. 

sojae (Tyler et al., 2006). Whole-genome shotgun sequencing produced a nine-fold 

coverage assembly of the 95 Mb Ph. sojae genome and a seven-fold coverage assembly 

of the 65 Mb Ph. ramorum genome (Table 2). Comparative genomic analysis identified 

rapid expansion/loss and diversification of secreted protein families associated with 

pathogenicity, including glycoside hydrolases, proteases and effector families such as 

elicitins, NLPs and the cytoplasmic RxLR and CRN families (Jiang et al., 2006a, 2006b; 

Tyler et al., 2006). These analyses showed that the secretome of both species has 

undergone rapid diversification and is evolving at a faster rate than the overall proteome, 

as 11% and 17% of the secreted proteins were found to be unique to Ph. ramorum and 

Ph. sojae, respectively, compared to 4% and 9% of the overall proteomes of each species 

respectively. Large multigene families in each species were also reported. The genome 

sequences show extensive collinearity/synteny of orthologs between the two species, with 

over 75% of exons aligning in a whole-genome alignment (Tyler et al., 2006).  

The Ph. infestans genome was published in 2009, revealing a much larger genome 

assembly size of 229 Mb (Table 2) and extremely high repeat content comprising 74% 

of the genome assembly, compared to 28% and 13% in Ph. sojae and Ph. ramorum 

respectively (Haas et al., 2009). The Ph. infestans genome also contains large expansions 

of effector proteins, in particular ~60% more putative RxLR effectors were identified in 

Ph. infestans than Ph. ramorum and Ph. sojae. Analyses of genome organization showed 

the existence of genomic regions with high gene density and low repeat content that are 

syntenically conserved in the three sequenced Phytophthora genomes. These blocks are 

separated by regions with low gene density and expansions of repeat content and mobile 

genetic elements. These regions are typically populated with rapidly evolving effector 
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proteins (Haas et al., 2009). This non-random distribution of effector genes in more 

rapidly evolving, gene-sparse regions of genomes gave rise to the model of “two-speed 

genomes” (Dong et al., 2015). 

The genome of Pythium ultimum var. ultimum was published in 2010, the first 

necrotrophic oomycete and first Pythium genome to be sequenced (Lévesque et al., 2010). 

Pythium ultimum is a cosmopolitan plant pathogen with a broad host range, infecting 

corn, soybean, wheat and other crops (Cheung et al., 2008). The Py. ultimum genome is 

smaller (43 Mb) (Table 2) than the Phytophthora species that had been sequenced at that 

time (Lévesque et al., 2010). Genome annotation revealed an expansion of genes involved 

in proteolysis but a reduction in the number of genes involved in carbohydrate 

metabolism as well as fewer CRN genes, and no RxLR effectors (Lévesque et al., 2010). 

These findings led the authors to suggest that Pythium spp. has differences in infection 

mechanisms. 

The genome of the obligate biotrophic downy mildew Hyaloperonospora 

arabidopsidis was also published in 2010 (Baxter et al., 2010). Compared to the 

sequenced Phytophthora species, the 78 Mb Hy. arabidopsidis (Table 2) genome 

assembly showed a reduction in the number of effector genes (such as RxLRs, Crinklers, 

elicitins, and NLPs) and secreted degradative enzymes. The Hyaloperonospora genome 

also exhibits losses of genes involved in metabolic pathways, such as genes required for 

nitrogen and sulfur assimilation (Baxter et al., 2010). Together, these findings suggest a 

change in infection strategy and signatures of obligate biotrophy evolution. 

Hyaloperonospora arabidopsidis, like most downy mildews, does not form zoospores. 

Comparative analysis revealed the loss of approximately 80% of Ph. infestans flagellar 

proteins in Hy. arabidopsidis. Gene remnants can be detected for the missing flagellar 
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proteins, suggesting that the loss of flagella from the downy mildews was a relatively 

recent event (Judelson et al., 2012). 

Two Albugo (white blister rust) genomes were published in 2011 - Albugo 

laibachii (Kemen et al., 2011) and Albugo candida (Links et al., 2011). Albugo species 

are obligate biotrophic plant pathogens that belong to the Albuginales order. They have 

evolved obligate biotrophy independently from the downy mildew pathogens within the 

Peronosporales order (Kemen et al., 2011). Albugo laibachii is a pathogen of Arabidopsis 

thaliana and Al. candida is a pathogen of important Brassica species, including canola, 

oilseed mustard, and cabbage family vegetables. Compared to Hy. arabidopsidis and the 

other sequenced oomycetes, the two Albugo genome assemblies are much smaller in size 

at 35 – 37 Mb (Table 2), contain a lower proportion of repetitive sequences and have 

higher gene density (Kemen et al., 2011; Links et al., 2011). A novel class of cytoplasmic 

effector proteins with an N-terminal “CHXC” motif was identified in A. laibachii (Kemen 

et al., 2011). Similar to Hy. arabidopsidis, both Albugo species lack a number of 

important metabolic enzymes, including genes required for nitrate and sulfate 

assimilation (Baxter et al., 2010; Kemen et al., 2011; Links et al., 2011). Moreover, both 

genome assemblies showed a reduction in the number of cell-wall degrading enzymes 

and effector proteins, and in particular, no NLPs were identified. These findings show 

convergent evolutionary signatures of obligate biotrophy between the Albugo species and 

Hy. arabidopsidis (Baxter et al., 2010; Kemen et al., 2011). 

The genome of the fish pathogen Sa. parasitica was published in 2013, 

representing the first animal pathogen oomycete genome (Jiang et al., 2013). Analysis of 

the 42 Mb assembly (Table 2) revealed a large divergence in gene content compared to 

plant pathogenic oomycetes. There was a lack of RxLRs, CRNs, and NLPs, as well as 

proteins involved in the breakdown of plant cell walls, such as cutinases and pectin 
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modifying enzymes. Saprolegnia parasitica was shown to possess a large arsenal of 270 

proteases, one of the largest of sequenced eukaryotes, that were shown to be expressed at 

different infection stages (Jiang et al., 2013). 

 The genome of the pepper and cucurbits pathogen Phytophthora capsici was 

published in 2012 (Lamour et al., 2012). The genome assembly is 64 Mb in length and is 

typical in terms of genome structure and gene content compared to previously sequenced 

Phytophthora genomes. However, the genome sequence revealed high levels of single 

nucleotide variation in addition to extensive loss of heterozygosity (LOH). LOH could be 

attributed to mating-type switches and loss of pathogenicity, contributing to the rapid 

adaption to fungicides and high levels of diversity within Ph. capsici populations 

(Lamour et al., 2012).  

 An additional five Pythium genomes (Py. aphanidermatum, Py. arrhenomanes, 

Py. irregulare, Py. iwayami, and Py. ultimum var. sporangiiferum) and Phytopythium 

vexans were published in 2013 and revealed compact genome sizes ranging from 34 Mb 

to 45 Mb (Table 2) (Adhikari et al., 2013). Similar to the genome sequence of Pythium 

ultimum var. ultimum (Lévesque et al., 2010), these Pythium/Phytopythium genomes 

were reported to lack RxLR effectors and possessed fewer numbers of genes involved in 

carbohydrate metabolism suggesting alternative virulence mechanisms (Adhikari et al., 

2013). Synteny analysis of nine oomycete genomes and the distantly related diatom 

Thalassiosira pseudonana (a stramenopile outgroup) revealed a high degree of 

conservation of gene order between oomycetes that also extended partially with T. 

pseudonana (Adhikari et al., 2013). The animal pathogenic Py. insidiosum, isolated from 

a patient with vascular pythiosis, was later sequenced producing a genome assembly of 

53 Mb (Table 2) (Rujirawat et al., 2015). This was followed by the genome sequencing 

of the mycoparasites Py. periplocum and Py. oligandrum (Kushwaha et al., 2017a, 
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2017b), which were assembled into 36 Mb and 37 Mb genome assemblies, respectively 

(Table 2). Compared to plant pathogenic Pythium species, the mycoparasitic Pythium 

species feature expansions of carbohydrate-active enzymes (CAZymes), including 

carbohydrate-binding modules, carbohydrate esterases, glycoside hydrolases, 

glycosyltransferases, polysaccharide lyases, and redox enzymes, that potentially play 

important roles during mycoparasitism (Kushwaha et al., 2017b). The genome sequence 

of the insect parasite Pythium guiyangense was sequenced using Illumina and PacBio 

platforms and resulted in a 110 Mb genome assembly (Table 2), more than double the 

size of previously sequenced Pythium species (Shen et al., 2019). The large genome size 

is thought to be the result of interspecies hybridization as most of the Pythium core genes 

are present in two copies, likely originating from two different parental species. Genomic 

and experimental evidence identified CRN effector proteins that are toxic to insect cells. 

Py. guiyangense CRNs are highly divergent as all showed sequence divergence of at least 

50% when compared to CRNs from plant pathogenic Pythium species (Shen et al., 2019). 

Reconstructing the ancestor of the last common ancestor of the Stramenopiles, 

using whole-genome data from six pathogenic oomycetes and four non-pathogenic 

Stramenochromes (diatoms and alga), revealed a large ancestral genome containing some 

~10,000 genes (Seidl et al., 2012). Analyses of gene family evolution showed that 

oomycete genome evolution is under constant flux, continuously gaining and losing 

genes, with gene duplication events outnumbering loss events. The branch leading to the 

last common ancestor of the Peronosporales and the Phytophthora genus, in particular, is 

characterized by an increased frequency of duplication events, including expansions of 

many gene families associated with pathogenicity including proteins with signal peptides, 

carbohydrate metabolizing enzymes, RxLRs and CRNs. Additionally, large numbers of 
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species-specific gene duplication events were detected, which further contributes to the 

large gene family sizes of extant oomycetes (Seidl et al., 2012). 

Genome sequencing of the two saprolegnian species Achlya hypogyna and 

Thraustotheca clavata and comparative genomic analysis of eight other oomycete 

genomes allowed for the reconstruction of an ancestral secretome (Misner et al., 2015). 

The reconstructed ancestral oomycete secretome consisted of at least 84 gene families 

encoding genes putatively involved in “carbohydrate metabolism and transport”, “post-

translational modification, protein turnover, chaperones”, “signal transduction 

mechanisms” and “amino acid transport and metabolism” (Misner et al., 2015). 

Genome sequences for the three Aphanomyces species – Ap. astaci, Ap. euteiches, 

and Ap. stellatus - revealed relatively consistent genome sizes ranging from 45 Mb for 

Ap. astaci to 62 Mb for Ap. stellatus (Table 2). This was in contrast to larger differences 

in the number of protein-coding genes which ranged from 16,479 for Ap. astaci to 25,573 

for Ap. stellatus (Gaulin et al., 2018). Comparative genomic analysis revealed that host 

specialization is correlated with specialized secretomes. The plant pathogen Ap. euteiches 

encodes a large arsenal of diverse cell wall degrading enzymes. In contrast, the crayfish 

pathogen Ap. astaci encodes a large number of secreted proteases and enzymes predicted 

to target chitin (Gaulin et al., 2018), a major component of crustacean shells. 

A highly contiguous, near chromosomal level genome assembly for the downy 

mildew Bremia lactucae was achieved by combining multiple sequencing technologies, 

resulting in a 91 Mb assembly (Table 2), 67.3% of which was identified as being 

repetitive (Fletcher et al., 2019). Resequencing and flow cytometry analysis of a large 

number of isolates identified a high prevalence of heterokaryosis (the state of having 

multiple genetically distinct nuclei within cells) which can lead to rapid changes in 

populations including differences in virulence levels and sporulation rates (Fletcher et al., 
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2019). Sequencing of Br. lactucae adds to the growing list of downy mildew genomes 

available - which includes Peronospora belbahrii, Peronospora effusa, Peronospora 

tabacina, Plasmopara halstedii, Plasmopara muralis, Plasmopara obducens, 

Plasmopara viticola, Pseudoperonospora cubensis, Pseudoperonospora humuli and 

Sclerospora graminicola (Table 2) (Derevnina et al., 2015; Dussert et al., 2019; Fletcher 

et al., 2018; Nayaka et al., 2017; Rahman et al., 2019; Sharma et al., 2015; Thines et al., 

2019; L. Yin et al., 2017). Comparative genomic and phylogenomic analysis of downy 

mildews and other Peronosporales lineages revealed Bremia and Plasmopara species to 

be more closely related to Phytophthora clade 1 (which includes Ph. cactorum, Ph. 

infestans, Ph. nicotianae and Ph. parasitica) than to the other downy mildew lineages, 

suggesting convergent evolution of biotrophy (Fletcher et al., 2019; McCarthy and 

Fitzpatrick, 2017; Sharma et al., 2015; L. Yin et al., 2017).  

Interestingly, based on hierarchical clustering of metabolic networks, oomycete 

species can be grouped according to their lifestyle regardless of their phylogenetic 

relationships (Thines et al., 2019). This includes the clustering of the distantly related 

Albugo species with the downy mildews Hy. arabidopsidis, Pe. effusa, Pe. tabacina, and 

Pl. halstedii. This further suggests the convergent evolution of biotrophic lifestyles. 

These downy mildew species were predicted to have fewer genes, enzymes, reactions, 

and metabolites in metabolic networks compared to other oomycete species (Thines et 

al., 2019). Furthermore, B. lactucae, Hy. arabidopsidis, Pe. belbahrii, Pe. effusa, Pe. 

tabacina were shown to have undergone an extensive reduction in the number of calcium-

binding and flagella associated domains. This reduction was not observed in Plasmopara 

species, which are known to produce zoospores, suggesting these missing genes are 

associated with the production and development zoospores (Fletcher et al., 2019, 2018; 

Thines et al., 2019). 
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The genome sequences for a large number of Phytophthora forest pathogens have 

been sequenced in recent years including Ph. agathidicida, Ph. cambivora, Ph. 

cinnamomi, Ph. cryptogea, Ph. kernoviae, Ph. lateralis, Ph. multivora, Ph. pinifolia, Ph. 

plurivora, Ph. pluvialis, Ph. taxon totara and the hybrid Ph. alni var. alni (Table 2) (Feau 

et al., 2016; Studholme et al., 2015; Vetukuri et al., 2018b). Additionally, a number of 

important Phytophthora crop pathogens have been sequenced including the cacao black 

pod rot pathogens Ph. megakarya and Ph. palmivora (Ali et al., 2017), the strawberry 

pathogens Ph. cactorum and Ph. fragariae (Armitage et al., 2018; Gao et al., 2015), the 

litchi pathogen Ph. litchii (Ye et al., 2016), the raspberry pathogen Ph. rubi (Tabima et 

al., 2017), and the taro crop pathogen Ph. colocasiae (Vetukuri et al., 2018a). The first 

Nothophytophthora genome, a sister genus of Phytophthora, was sequenced in 2019 and 

tentatively identified as Nothophytophthora valdiviana (Studholme et al., 2019). Such 

genome sequencing projects facilitate investigations into genome evolution and 

cataloging of effector arsenals of Phytophthora species with different host ranges.  
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3. Oomycete Phylogenomics 

Initial phylogenetic analyses of oomycete species were either based on single highly 

conserved genes, or on a small selection of highly conserved markers such as the internal 

transcribed spacer (ITS) region, nuclear genes (e.g. β-tubulin and translation elongation 

factor 1α) and mitochondrial genes (e.g. cox1 and nad1) (Martin et al., 2014). Performing 

phylogenetic analyses on highly conserved markers may be unable to accurately 

distinguish taxa at the species level. For example, some closely related Phytophthora 

species share identical ITS, tigA, β-tub, or cox1 genes (Yang and Hong, 2018). These 

genetic markers are phylogenetically uninformative in these scenarios. Furthermore, 

conflicts can occur between phylogenies depending on which markers are used. The 

availability of whole-genome sequences has made it possible to perform whole-genome 

phylogenetic or phylogenomic analyses of oomycete species. Phylogenomic analyses are 

based on larger number of genes using genome scale data and allow for other types of 

phylogenetic markers such as gene duplication events. 

A multi-locus phylogeny of 82 Phytophthora species divided the genus into 10 

well supported clades (Blair et al., 2008). A follow up analysis combining multiple 

nuclear and mitochondrial loci added further support for the 10 Phytophthora clades 

(Martin et al., 2014). However, the relationships between clades varied depending on 

which markers were used. The Pythium genus was divided into 10 clades (labelled A – J) 

based on ITS and ribosomal DNA sequences (LéVesque and De Cock, 2004). The 

Pythium genus itself is polyphyletic, separated into two monophyletic subgroupings of 

clades A – E and clades F – J (McCarthy and Fitzpatrick, 2017). Based on ITS sequences 

Phytopythium vexans (previously Pythium vexans) was initially categorized as belonging 

to Pythium clade K (LéVesque and De Cock, 2004) but later reclassified into its own 

genus Phytopythium belonging to the Peronosporales order based on a multi-locus 
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analysis of nuclear and mitochondrial genes (de Cock et al., 2015), placing this species 

as an intermediate between Phytophthora and Pythium.  

A recent phylogenomic analysis of the oomycete class used a variety of 

phylogenomic methods and multiple datasets including a supermatrix analysis of 352 

single-copy gene families (7,744 genes) ubiquitously present in 22 Peronosporales, and a 

supertree analysis of 2,280 ubiquitous single-copy gene families (35,622 genes) as well 

as 8,355 gene families (209,904 genes) present in at least 4 of 37 oomycete species 

investigated (McCarthy and Fitzpatrick, 2017). All methods resolved the four crown 

oomycete orders. Additionally, all methods suggested that Phytophthora is a paraphyletic 

genus, that gave rise to the downy mildews. Furthermore, these results show that the 

downy mildews are polyphyletic and that obligate biotrophy has evolved at least twice 

within the Peronosporales (McCarthy and Fitzpatrick, 2017). Further support for the 

polyphyly of downy mildews was reported in an analysis using six nuclear and 

mitochondrial loci of 118 taxa within the Peronosporales, including 13 downy mildews 

(Bourret et al., 2018). An additional phylogenomic analysis based on the concatenation 

of 49 conserved genes from 13 Peronosporales assemblies (3 Phytophthora and 10 downy 

mildew) provided further evidence for the polyphyly of this group (Fletcher et al., 2018). 

Complete genome sequences also allow for the identification of orthologous 

proteins that can be used in molecular clock analyses to estimate divergence times among 

species. Molecular clock analyses are particularly useful for taxa that have patchy 

evidence in the fossil records, such as microbial eukaryotes that are often 

indistinguishable due to a lack of discriminative morphological characteristics (Matari 

and Blair, 2014). The earliest fossil evidence for oomycetes comes from the Devonian 

period ~408 million years ago (MYA) (Krings et al., 2011). A molecular clock analysis 

of 12 oomycetes and 6 outgroups was performed using 40 orthologs involved in gene 
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expression regulation, that are highly conserved across 18 genomes (Matari and Blair, 

2014). Three molecular clock methods were employed (strict clock, UCLD relaxed clock 

and random local clock) and calibrated with fossil evidence from oomycetes and diatoms. 

The results suggest that the oomycetes arose some 430 – 400 MYA, with the two major 

branches leading to the Peronosporaleans and Saprolegnialeans diverging 225 – 190 

MYA (Matari and Blair, 2014). These findings indicate that the oomycetes arose later 

than their hosts and that the evolution of pathogenicity may have been influenced by 

environmental changes or facilitated by events such as HGT from pathogenic bacteria 

and fungi (Matari and Blair, 2014). A follow-up analysis was performed using the random 

local clock model with the same calibration points and same dataset except for the 

addition of three Aphanomyces genomes (Ap. astaci, Ap. euteiches and Ap. stellatus) 

(Gaulin et al., 2018). This analysis estimated that Aphanomyces diverged from other 

Saprolegniales species more than 100 MYA, and the three Aphanomyces species diverged 

from each other more than 50 MYA indicating relatively recent host specialization of 

animal and plant pathogenic Aphanomyces species (Gaulin et al., 2018). 

Here we present an updated phylogeny of the oomycete class based on the 

currently available genome sequences (Table 2) using a phylogenomic approach. We 

include the genome of the non-oomycete Stramenopile Hyphochytrium catenoides as an 

outgroup (Leonard et al., 2018). As the majority of genome sequences deposited in NCBI 

GenBank do not have associated gene models, we used Benchmarking Universal Single-

Copy Orthologs (BUSCOs) as phylogenetic markers (Waterhouse et al., 2018). BUSCOs 

are highly conserved genes that are expected to be found in a genome only as a single 

copy. BUSCO analysis using the “Alveolata-Stramenopiles” dataset revealed 102 

BUSCO families that are present and single-copy in 84% of the 66 genome assemblies, 

i.e. they are present and single-copy in at least 56 of the 66 species. Each BUSCO family 
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was individually aligned using MUSCLE (Edgar, 2004). Alignments were subsequently 

trimmed using trimAl with the parameter “-automated1” which uses a heuristic method 

to decide which trimming method is most appropriate (Capella-Gutierrez et al., 2009). 

Trimmed alignments were then concatenated, resulting in a supermatrix of 44,739 amino 

acid residues. Maximum-likelihood analysis was performed using IQ-TREE (Nguyen et 

al., 2015) under the JTT+F+R7 model, which was the best fit model according to 

ModelFinder (Kalyaanamoorthy et al., 2017). Support for each node was calculated based 

on 100 bootstrap replicates. The phylogeny was visualized and annotated using the 

Interactive Tree of Life (iTOL) (Letunic and Bork, 2007). 

Our phylogeny recovered all genera with generally high bootstrap support 

(Figure 2) and is in broad agreement with previous phylogenetic and phylogenomic 

studies. All Phytophthora species were recovered in their expected clades (Figure 2). The 

relationships within the Peronosporales order, including between individual 

Phytophthora clades, are in complete agreement with a smaller phylogenomic analysis of 

Peronosporales species based on 18 BUSCO proteins (Fletcher et al., 2019). Our 

phylogeny groups Phytophthora clades 6 (Ph. pinifolia) and 7, which is in agreement 

with a previous phylogeny based on seven nuclear loci and also a multispecies coalescent 

approach based on two nuclear and four mitochondrial loci (Martin et al., 2014), although 

we obtained a low bootstrap support value of 49% (Figure 2). The relationships between 

Phytophthora clades 2 - 5 in our phylogeny differ from previous nuclear and 

mitochondrial phylogenies (Blair et al., 2008; Martin et al., 2014). Our phylogeny groups 

Phytophthora clades 2 and 3 (Ph. pluvialis) together to the exclusion of clade 4 (Figure 

2). Although we obtained low bootstrap support (52%) for the grouping of clades 2 and 

3, it agrees with previous phylogenomic analyses (Fletcher et al., 2019; McCarthy and 

Fitzpatrick, 2017). Our results confirm that Phytophthora is a paraphyletic genus, 
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suggesting that clades 1 – 4 are more closely related to each other than to those in clades 

5 – 10 (Figure 2). Phytophthora clades 3, 5, and 6 currently only have one sequenced 

representative species each. Phytophthora clade 9 is currently the only Phytophthora 

clade lacking genomic data. Sequencing of multiple species from each Phytophthora 

clade will likely lead to increased resolution as to the relationships between clades. 

Based on the current genome sequences available, it appears that the downy 

mildews are a polyphyletic group that arose from Phytophthora species, with two 

phylogenetically distinct clades that convergently evolved obligate biotrophy (Figure 2). 

This is in agreement with previous studies (Bourret et al., 2018; Fletcher et al., 2019, 

2018; McCarthy and Fitzpatrick, 2017). The first clade consists of Bremia and 

Plasmopara which are closely related to Phytophthora clade 1 (100% bootstrap support) 

(Figure 2). The second clade contains Hyaloperonospora, Sclerospora, 

Pseudoperonospora, and Peronospora species, which groups with Ph. taxon totara 

(100% bootstrap support) (Figure 2). Therefore, obligate biotrophy has evolved at least 

twice within the Peronosporales order. Obligate biotrophy has evolved independently a 

third time in the Albuginales order (Figure 2). 

Nothophytophthora was placed as a sister to the Phytophthora genus (Figure 2). 

Phytopythium vexans is placed intermediate to the Peronosporales and Pythiales orders 

(Figure 2). As seen in previous studies, the Pythium genus is polyphyletic with clades A 

– D grouping together, and clades F – I grouping together (Figure 2). Genomic data is 

currently not available for Pythium clades E, H or J. The insect pathogen Py. guiyangense 

is grouped with the plant pathogenic Py. irregulare and Py. iwayamai (100% bootstrap 

support), while the mammal pathogen Py. insidiosum is grouped with the plant 

pathogenic Py. aphanidermatum and Py. arrhenomanes (77% bootstrap support) (Figure 
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2). This suggests that animal pathogenicity has evolved independently multiple times 

within the Pythium genus. 

Lagenidium giganteum is grouped with Pythium clades A – D and not 

Paralagenidium karlingii (Figure 2). This agrees with a six-gene phylogeny that groups 

La. giganteum with Pythium species to the exclusion of Pa. karlingii, indicating that 

Paralagenidium is phylogenetically unrelated to the main clades of the oomycetes (Spies 

et al., 2016). It also agrees with phylogenies based on ITS and cox2 sequences (Vilela et 

al., 2019). However, our phylogeny suggests that Pa. karlingii is even more distantly 

related as it places it intermediate to the Albuginales and Saprolegniales orders with 100% 

bootstrap support (Figure 2), this is in agreement with the phylogeny shown in (Beakes 

and Thines, 2016). The previous two phylogenetic analyses (Spies et al., 2016; Vilela et 

al., 2019) did not include Albuginales sequences. The availability of more genome 

sequences and whole gene sets will help to further clarify the relationships amongst 

contentious oomycete clades. 
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Figure 2. Maximum-likelihood phylogeny of the 65 oomycete species based on the 

concatenation of 102 conserved BUSCO sequences. The stramenopile Hyphochytrium 

catenoides is included as an outgroup. All nodes have 100% bootstrap support except 

where indicated. Species are colored according to order. 
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4. Oomycete Mitochondrial Genomes 

As discussed above, mitochondrial genes have been useful for understanding the 

evolutionary relationships between oomycete species. Several oomycete mitochondrial 

genomes have been sequenced in full and analyzed, revealing variation in mitochondrial 

structure and gene content across oomycete lineages. Sequencing of the Saprolegnia 

ferax mitochondrion revealed a densely packed ~ 47 kb circular genome (Figure 3A) that 

encodes 37 protein and rRNA coding genes (18 respiratory chain proteins, 16 ribosomal 

proteins, the import protein secY, and the large and small ribosomal subunits) and 25 

tRNA genes (Grayburn et al., 2004). An 8,618 kb inverted repeat was identified 

separating the genome into two single-copy regions (Figure 3A). The mitochondrion of 

Ph. infestans was determined to be a ~ 38 kb genome (Figure 3B) that is A+T rich (76%) 

and has high gene density with more than 95% of the genome coding (Paquin et al., 1997). 

The mitochondrial genome sequences of Ph. ramorum (Figure 3C) and Ph. sojae were 

determined to be ~ 39 kb and ~ 43 kb, respectively (Martin et al., 2007). Similar to Sa. 

ferax, both Phytophthora mitochondrial genomes encode 37 protein and rRNA coding 

genes and 26 (Ph. ramorum) or 25 (Ph. sojae) tRNA genes that specify 19 amino acids. 

Ph. ramorum possess a 1,150 bp inverted repeat encoding an additional tRNA that isn’t 

present in Ph. sojae. Otherwise, the gene order between the two mitochondrial genomes 

is conserved. Comparison with the Ph. infestans mitochondrial genome revealed high 

conservation of genome collinearity except for two inversions that include 3 and 19 

coding regions. Conservation of gene order also extended partially to that of Sa. ferax. 
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Figure 3. Structures of representative oomycete mitochondrial genomes. (A) Saprolegnia 

ferax (NC_005984.1), (B) Phytophthora infestans (NC_002387.1), (C) Phytophthora 

ramorum (NC_009384.1), and (D) Pythium ultimum (NC_014280.1). Mitochondrial 

genomes are not drawn to scale. Transcriptional orientation is indicated by arrows. GC 

content is shown in the inner circles. Inverted repeats are indicated with “IR”. The small 

inverted repeat (1,150 bp) in Ph. ramorum is not shown. 
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The mitochondrial genomes of several clade 1c Phytophthora species were 

sequenced to understand the relationships within the clade, including Ph. infestans, Ph. 

phaseoli, Ph. ipomoeae, Ph. mirabilis and two lineages of Ph. andina (Lassiter et al., 

2015). Mitochondrial genomes within clade 1c are highly conserved in terms of size, all 

mitochondrial assemblies are approximately 38 kb and only varied by 179 bp. Gene order 

is identical among all species and sequence identity of proteins is greater than 99% 

(Lassiter et al., 2015). The mitochondrial genome of Py. ultimum was shown to be larger 

at ~ 60 kb (Figure 3D). The increase in size is due to a large inverted repeat of ~ 22 kb 

(Figure 3D). The genome encodes the same set of protein and RNA encoding genes but 

many are duplicated in the inverted repeat region (Lévesque et al., 2010). The 

mitochondrial genome of Py. insidiosum was found to be similarly large at ~ 55 kb, 

containing 2 large inverted repeats (Tangphatsornruang et al., 2016). 

Genome sequencing of the Ph. nicotianae mitochondria revealed a ~ 37.5 kb 

sequence that is identical to the previously sequenced Phytophthora mitochondrial 

genomes in terms of gene content (Yuan et al., 2017). Comparative genomic analysis of 

the Ph. nicotianae mitochondrion and 13 other oomycete mitochondrial genomes showed 

that large inverted repeats are absent in the mitochondria of Phytophthora species. This 

analysis showed that a ~10 kb inversion, containing 8 tRNAs and 11 genes, is common 

to Ph. andina, Ph. impomoeae, Ph. infestans, Ph. mirabilis and Ph. phaseoli relative to 

Ph. nicotiana, Ph. polonica, Ph. ramorum and Ph. sojae. Furthermore, while overall gene 

content is similar between oomycetes, the overall mitochondrial genome size and gene 

copy number are higher in the Pythiales and Saprolegniales due to the presence of 

duplications in inverted repeat regions (Yuan et al., 2017). The mitochondrial genome of 

Pe. effusa was determined to be ~41 kb in length and shares the same organization with 

the Pe. tabacina mitochondrial genome, except for a small inverted repeat less than 900 
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bp that is present in Pe. effusa (Derevnina et al., 2015; Fletcher et al., 2018). Sequencing 

of Ps. humuli revealed a 39 kb mitochondrial genome that is AT-rich (77.8%) and gene 

dense with coding regions representing 90% of the genome. The gene order of the Ps. 

humuli mitochondria is identical to Ps. cubensis but the small ribosomal subunit is 

encoded in the opposite direction compared to Pe. tabacina and Phytophthora species 

(Rahman et al., 2019).  
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5. The Impact of Horizontal Gene Transfer on Oomycete Evolution 

Horizontal gene transfer (HGT), or lateral gene transfer (LGT), is the nonvertical transfer 

of genetic material between different species (Savory et al., 2015). HGT can have 

significant evolutionary consequences, such as facilitating recipient species to adapt to 

different ecosystems or exploit new hosts. Before oomycete genomes were first 

sequenced, it was known that HGT played an important role in the evolution of 

oomycetes. Phylogenetic analysis of Ph. infestans expressed sequence tag (EST) 

sequences identified an endopolygalacturonase gene (pipg1), encoding an enzyme 

involved in pectin breakdown, that’s most closely related homologs belonged to fungi 

suggesting a possible HGT event from fungi to Phytophthora (Torto et al., 2002). 

Sequencing of the Ph. ramorum and Ph. sojae genome (Tyler et al., 2006) facilitated more 

in-depth analyses of HGT which led to the identification of four HGT events from 

ascomycete fungi to Phytophthora with strong phylogenetic evidence (Richards et al., 

2006). Interestingly, each of the four genes are likely to be involved in osmotrophy-

related functions, implying that HGT may have played a role in the convergent evolution 

of osmotrophy and filamentous growth between fungi and oomycetes. There is also 

evidence of HGT events from bacteria to oomycetes, including secreted cutinases 

(important virulence factors involved in the breakdown of the plant cuticle) that appear 

to have been transferred from Actinobacteria to oomycetes and later duplicated, with 16 

copies being found in the Ph. sojae genome (Belbahri et al., 2008). Another analysis that 

examined metabolic enzymes from eukaryotic genomes showed that 2% of metabolic 

enzymes in the genomes of Ph. ramorum and Ph. sojae potentially originated via HGT 

(Whitaker et al., 2009). 

The availability of more oomycete genomes has allowed for more comprehensive, 

whole-genome scans to identify genes that may have been gained via HGT. Similarly, the 
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availability of more non-oomycete genomes has led to increased taxon sampling in 

databases adding further support for the validity of HGT events. Phylogenetic analysis of 

four oomycetes genomes (Hy. arabidopsidis, Ph. infestans, Ph. ramorum and Ph. sojae) 

using a database of 795 (173 eukaryotic and 622 prokaryotic) genomes identified 34 gene 

transfers between fungi and oomycetes (Richards et al., 2011). Interestingly, 62% to 76% 

of genes identified as originating via HGT from fungi in the four analyzed species possess 

a predicted secretion signal, representing between 2.7% and 7.6% of the total predicted 

secretomes of these species. Many of the identified genes have functions associated with 

the breakdown of plant cell walls and the uptake of nitrogen, nucleic acids, phosphate and 

sugars from the environment (Richards et al., 2011). This adds further support to the 

hypothesis that HGT events from fungi have played a part in the convergent evolution of 

osmotrophy and filamentous growth between fungi and oomycetes. Genome analysis of 

Sa. parasitica led to the identification of five gene families (four of which are secreted) 

that appear to have been gained by Sa. parasitica via HGT from bacteria or animals (Jiang 

et al., 2013). An additional six HGT events were reported from the genome sequences of 

Ac. hypogyna and Th. clavata, all of which are predicted to be secreted and involved in 

pathogenicity or carbohydrate metabolism (Misner et al., 2015).  

Reanalysis of 48 HGT gene families based on the 23 oomycetes genomes that 

were available in 2015 highlighted several important findings (Savory et al., 2015). For 

example, 33 (69%) of the 48 HGT families are predicted to be secreted and 40 (83%) of 

the 48 HGT families appear to have a fungal origin. Only seven cases of HGT could be 

mapped back to the ancestor of the four crown oomycete orders, suggesting that HGT 

played a limited role in early oomycete evolution. HGT appears to have had a greater 

impact on plant pathogenic oomycetes, with 33 HGT events identified within the 

Phytophthora, Hy. arabidopsidis and Pythium clade, compared to only five in the branch 
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leading to the Saprolegniales order (Savory et al., 2015). Interestingly, many of the HGT 

derived genes have not only become fixed in the recipient genomes but have been 

duplicated, sometimes multiple times. For example, Pythium and Phytopythium species 

have a mean of 2.1 copies of each HGT derived gene, whereas Phytophthora species have 

a mean of 4.4 (Savory et al., 2015). Acquisition of genes via HGT can potentially change 

the phenotype of the recipient and also provide genetic material that has the potential to 

evolve novel or expanded functions. Detailed functional analyses of transporter proteins 

that were transferred to oomycetes before the divergence of Peronosporales and 

Saprolegniales revealed an HGT derived paralogue belonging to Py. aphanidermatum 

that has evolved an expanded substrate range enabling it to uptake not only dicarboxylic 

acid (the ancestral function) but also tricarboxylic acid (Savory et al., 2018). 

Analysis of EST sequences from Py. oligandrum identified a homolog of a type 2 

NLP from bacteria (Horner et al., 2012). Type 2 NLPs were previously thought to be 

absent in oomycetes and only found in fungi and bacteria. A follow-up analysis of effector 

proteins in 37 oomycete genomes using network and phylogenetic methods identified 

type 2 NLPs in three oomycete species - Py. oligandrum, Pilasporangium apinafurcum 

and Pp. vexans (McGowan and Fitzpatrick, 2017). Phylogenetic analysis suggested that 

the genes were likely gained via HGT from a Proteobacterial source and later duplicated 

with 2 copies in Pp. vexans, 6 copies in Pi. apinafurcum and 17 copies present in Py. 

oligandrum. An additional five instances of HGT from bacteria to oomycetes were 

reported in another study focusing on 14 plant pathogenic oomycete genomes including 

a putative secreted protein, a class II fumarase, an oxidoreductase, an alcohol 

dehydrogenase, and a hydrolase (McCarthy and Fitzpatrick, 2016). 

Based on the genome analyses conducted to date, it is clear that HGT has played 

a significant role in oomycete genome evolution. In particular, HGT has had a major 
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impact on the secretomes of plant pathogenic oomycetes such as Phytophthora. 

Furthermore, convergent evolution between fungi and oomycetes was likely driven, in 

part, by HGT. As more genome sequences become available it will be possible to more 

accurately place the timing of putative HGT events, e.g. in an oomycete ancestor or 

specific to particular oomycete lineages, and also to rule out possible effects of poor taxon 

sampling. 
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6. Genome Mining for Oomycete Effectors 

Oomycete species are notorious for secreting large arsenals of effector proteins that 

perform a wide array of functions during infection. Genome sequencing of oomycete 

species has facilitated genome mining to identify effector proteins which has led to many 

studies comparing effector repertoires between species and evolutionary analyses of 

effector families. The first step in identifying effector proteins is usually predicting which 

proteins are secreted using tools such as SignalP (Almagro Armenteros et al., 2019) to 

identify putative signal peptides. Transmembrane domains are then annotated using 

TMHMM (Krogh et al., 2001). Proteins that contain predicted transmembrane helices 

downstream of the signal peptide are usually discarded. It is important to note, that 

unconventionally secreted proteins (i.e. secreted proteins that lack a signal peptide and 

are signaled for secretion by some other mechanism) will be overlooked using this 

approach. Additionally, false positives may be reported. Therefore, the gold standard 

method for identifying secreted proteins is coupling bioinformatics methods with 

experimental techniques such as mass spectrometry (Meijer et al., 2014) or the yeast 

secretion trap system (Lee et al., 2006). ApoplastP is a machine learning classifier that 

can be used to predict if effector proteins localize to the plant apoplast (Sperschneider et 

al., 2018b). Many effector families contain conserved domains that can be annotated 

using hidden Markov model (HMM) searches against databases such as InterPro (Finn et 

al., 2017) or Pfam (Finn et al., 2016), for example, elicitins (PF00964) and NLPs 

(PF05630). Other effector families may have conserved positionally constrained motifs 

that can be identified using string searches or regular expression searches. For example, 

the RxLR family contains an N-terminus “RxLR” motif (where “x” means any amino 

acid) downstream of the signal peptide cleavage site. Similarly the CRN family contains 

a conserved N-terminus “LxLFLAK” motif which is usually followed downstream by an 
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“HVLVxxP” motif (Haas et al., 2009). More robust searches can be carried out to identify 

effectors with divergent motifs by building HMMs based on the results from regular 

expression searches. Novel effector proteins have also been identified due to being 

located in gene-sparse, repeat-rich regions of the genome with close proximity to 

transposable elements (Raffaele et al., 2010). Additionally, many effector proteins are 

found in clusters of tandemly duplicated genes (McGowan et al., 2019). Effector-like 

proteins can also be identified by performing sequence similarity searches against 

databases of known effectors, for example, using BLAST (Altschul et al., 1997) to 

identify homologs of experimentally verified effectors in the Pathogen-Host Interaction 

database (PHI-base) (Urban et al., 2017). The physio-chemical properties of a protein can 

also be used to identify effectors, for example, many effectors are small (low molecular 

weight), and cysteine-rich (Sperschneider et al., 2018b, 2015). The cysteine residues 

might be involved in disulfide bridges, increasing the stability and lifespan of effector 

proteins in the plant apoplast which contains a large number of degradative proteases 

(Kamoun, 2006). Genome-wide cataloging of effector proteins has revealed differences 

in effector repertoires between species with different hosts, some of which are discussed 

below. 

 

6.1. Apoplastic Effectors 

Apoplastic effectors are secreted by the pathogen and exert their pathogenic activity 

outside of the host cell (Wawra et al., 2012). Oomycete genomes encode large arsenals 

of secreted degradative enzymes that breakdown host cell components facilitating hyphal 

penetration of host cells. These degradative enzymes include CAZymes which modify 

and breakdown carbohydrates. In addition to allowing entry into host cells, the breakdown 

of host carbohydrates also makes nutrients available for the pathogen to grow. 
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Phytopathogenic oomycetes encode large arsenals of secreted CAZymes to facilitate the 

breakdown of plant cell wall components, including cellulases to metabolize cellulose, 

cutinases to degrade cutin, pectinases to degrade pectin, endoglucanases and β-

glucosidases to degrade xyloglucan, and !-glucosidases, !-amylases, !-glucoamylases, 

and starch-binding modules to metabolize starch (Zerillo et al., 2013). As cellulose is also 

one of the main components of oomycete cell walls, it is thought that most oomycete 

cellulases are involved in oomycete cell wall metabolism and only few are involved in 

the breakdown of plant cell walls. However, they are still important for infection as a Ph. 

infestans cellulose synthase was shown to be involved in the formation of appressoria and 

required for infection (Grenville-Briggs et al., 2008). Furthermore, proteins with 

cellulose-binding domains are enriched in the secretome of many Phytophthora species 

suggesting a role in infection (McGowan and Fitzpatrick, 2017). Chitinases and chitin-

binding proteins are also expanded in some oomycete genomes including Ap. astaci, Py. 

oligandrum, Sa. diclina and Sa. parasitica (Jiang et al., 2013; McGowan and Fitzpatrick, 

2017). As oomycete cell walls contain very little to no chitin, this suggests that oomycete 

chitin modifying enzymes are involved in the breakdown of exogenous chitin. This is 

particularly significant for the expansion of chitinases in species such as Py. oligandrum 

and Ap. astaci, which parasitize fungi and crayfish respectively. Other types of 

degradative enzymes include proteases which are also thought to be involved with host 

cell degradation (Haas et al., 2009). For example, proteases are highly expanded in the 

animal pathogens Sa. parasitica and Py. guiyangense and may facilitate cuticle 

penetration (Jiang et al., 2013; Shen et al., 2019). Interestingly, oomycetes also secrete 

protease inhibitors to counteract defense proteases produced by the host in response to 

infection (Tian et al., 2006), highlighting the co-evolutionary arms race between 

pathogens and their hosts. 
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Many secreted oomycete proteins or oomycete cell wall/membrane constituents 

are recognized by the host and trigger a host defense response upon recognition (Oome 

et al., 2014). Such molecules are referred to as microbe-associated molecular patterns 

(MAMPs). Well-characterized oomycete MAMPs include elicitins, transglutaminases, 

and cellulose-binding elicitor lectins (CBELs). Elicitins are known to bind lipids and 

sequester sterols from host plants, allowing some pathogenic oomycetes to overcome 

their inability to synthesize their own sterols (Kamoun, 2006). Transglutaminases 

facilitates the cross-linking of protein-bound glutamine and lysine residues, strengthening 

structures such as cell walls and conferring resistance to proteolysis (Raaymakers and 

Van den Ackerveken, 2016). CBEL proteins are known to activate expressions of host 

defense genes and elicit necrosis and are important for cell wall structure (Raaymakers 

and Van den Ackerveken, 2016).  

 Other well studied apoplastic effectors include NLPs and the PcFs. NLPs have a 

broad taxonomic distribution across the tree of life with homologs found in bacteria, 

fungi, and oomycetes (Seidl and Van den Ackerveken, 2019). NLPs are known to induce 

ethylene accumulation leading to rapid tissue necrosis and are associated with the switch 

to necrotrophy in Phytophthora species. Some NLPs have been reported to be 

noncytotoxic but instead, act as MAMPs (Oome et al., 2014). NLPs are highly expanded 

in some oomycete species, in particular, some Phytophthora species have up to 80 copies 

(McGowan and Fitzpatrick, 2017). NLPs are completely absent in some species such as 

Albugo, Aphanomyces and Saprolegnia (Kemen et al., 2011; Links et al., 2011; 

McGowan and Fitzpatrick, 2017). In contrast to NLPs, PcF proteins are present in lower 

copy numbers, with 16 identified in Ph. infestans, 8 in Ph. sojae and only one in Ph. 

ramorum (Haas et al., 2009).  
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Pcf proteins are small, cysteine-rich proteins that are known to induce plant cell necrosis 

(Orsomando et al., 2001). Pcf proteins appear to be unique to Peronosporales species 

based on the currently available genome sequences. 

 

6.2. Cytoplasmic Effectors 

Oomycete cytoplasmic effectors differ from apoplastic effectors in that they are secreted 

and translocated into host cells. Three main classes of oomycete cytoplasmic effectors 

have been identified – RxLRs, CRNs and CHXC effectors. RxLR effectors are so named 

because they contain a highly conserved “RxLR” motif in their N-terminal domain. This 

is often followed downstream by an “EER” motif in many RxLRs (Whisson et al., 2007). 

RxLR C-terminal domains are typically highly divergent although many contain 

conserved structural folds caused by the presence of one or more “WY” domains (Win et 

al., 2012). RxLRs are highly expanded in the Peronosporales order but were not detected 

at all in Aphanomyces, Pythium or Saprolegniales species (Adhikari et al., 2013; Gaulin 

et al., 2018; Jiang et al., 2013; Lévesque et al., 2010). However small numbers of RxLR 

and RxLR-like effectors have been detected in the two Albugo genomes (Kemen et al., 

2011; Links et al., 2011), making their origin unclear. RxLR effectors are particularly 

abundant in the genomes of Phytophthora species, for example, Ph. infestans is predicted 

to encode 563 RxLRs (Haas et al., 2009), while Ph. palmivora and Ph. megakarya are 

predicted to encode 991 and 1,181 RxLRs, respectively (Ali et al., 2017). Many 

Phytophthora RxLRs are expressed in early infection stages and play a role in modulating 

and suppressing the host immune response (J. Yin et al., 2017). However, the function 

and molecular mechanisms for most RxLRs are unknown. While the function of most 

RxLRs is unknown, the subcellular location of a large number of Ph. infestans RxLRs 

was recently determined. Ph. infestans RxLRs were shown to localize to diverse 
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subcellular locations when they enter plant cells, with most localizing to the host 

cytoplasm, nucleus or plasma membrane (Wang et al., 2019). Furthermore, most of the 

RxLRs under consideration were shown to enhance colonization. The mechanism of 

translocation into host cells is unclear but some RxLRs have been shown to enter host 

cells independent of additional pathogen encoded machinery (Dou et al., 2008). Recent 

work has shown that the haustorium is involved in the delivery of apoplastic and 

cytoplasmic effectors both by conventional and nonconventional secretory pathways 

(Wang et al., 2018, 2017). 

 The origin of oomycete RxLR effectors is unclear. Interestingly, comparative 

genomic and syntenic analysis using the Oomycete Gene Order Browser (OGOB) 

(McGowan et al., 2019) reveals a conserved Ph. infestans RxLR effector (SFI4 or 

PITG_09585) that appears to have been present in the ancestor of the four crown 

oomycete orders. SFI4 localizes to the host nucleus-cytoplasm and reduces flg22-induced 

pFRK1-Luc activation in tomato protoplasts, enhancing Ph. infestans colonization 

(Zheng et al., 2014). SFI4 is also highly expressed during infection of potato (J. Yin et 

al., 2017). In OGOB, SFI4 is in a pillar with orthologs from 17 other species (Figure 4A). 

An ortholog was not identified in Al. candida or Al. laibachii, suggesting that it may have 

been lost by these species. As orthologs are found in Peronosporales, Pythiales and 

Saprolegniales orders, it suggests that this is an ancient RxLR gene locus that was present 

in an ancestral oomycete species. All protein sequences in this pillar show a high degree 

of sequence similarity (Figure 4B) and are reciprocal best hits to each other in a BLASTp 

search. Furthermore, all orthologs in this pillar show evidence of microsyntenic 

conservation (Figure 4C), adding further evidence that they are legitimate orthologs. 

SignalP analysis predicts that 17 out of the 18 proteins in this pillar contain a signal 

peptide. Multiple sequence alignment reveals the presence of a conserved RxLR motif in 



 43 

all orthologs in this pillar (Figure 4B). All orthologs contain a KDEL or KDEL-like motif 

at the C-terminus, a motif usually involved in endoplasmic reticulum (ER) retention (i.e. 

non-secretion), however it is possible that it is masked. A homolog of PITG_09585 was 

previously detected in Py. oligandrum (Horner et al., 2012) but was not considered a bona 

fide RxLR effector due to the presence of the KDEL C-terminal motif. In addition to Ph. 

infestans SFI4, a number of the orthologs have evidence of transcription during infection. 

The ortholog in Hy. arabidopsidis (HYAP_13904 or RxLR5) was identified during EST 

sequencing of infected Arabidopsis tissue (Cabral et al., 2011). The Ph. capsici ortholog 

(PHYCA_101423) has evidence of expression during infection of Nicotiana benthamiana 

in RNA-Seq experiments (Chen et al., 2013) and during infection of tomato in microarray 

experiments (Jupe et al., 2013). Additionally, the Pl. halstedii ortholog (PHALS_05912) 

was identified in an RNA-Seq analysis of infected sunflower (Sharma et al., 2015). 

Interestingly, comparative RNA-seq analysis of Ph. infestans and Py. ultimum has shown 

that the two orthologs (PITG_09585 and PYU1_G013121) have similar expression 

patterns during potato tuber colonization (Ah-Fong et al., 2017b). Whether the conserved 

orthologs in Pythium, Aphanomyces and Saprolegnia function as effectors warrants 

further investigation to understand their importance. Together, these data suggest that the 

RxLR class of effectors is more ancient than previously thought and may have evolved 

in an ancestral oomycete species prior to their proliferation in Peronosporales species. 
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Figure 4. An ancient conserved oomycete RxLR locus. (A) Ph. infestans SFI4 (PITG_09585) has orthologs in other Phytophthora, 

Hyaloperonospora, Phytopythium, Pythium, Saprolegnia and Aphanomyces species. (B) Multiple sequence alignment of PITG_09585 and its 

orthologs show extensive sequence similarity and the presence of a “RxLR” motif. (C) Genomic context of SFI4 and its orthologs visualized in 

OGOB showing that it is microsyntenically conserved. For illustrative purposes, only PITG_09585 and its Pythium orthologs are shown. Full 

microsynteny of other orthologs can be examined on OGOB. 
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 CRNs are named after their crinkling and necrosis-inducing activity. CRN 

proteins have highly conserved N-terminal domains containing a signal peptide and a 

“LxLFLAK” motif that mediates translocation into host cells (Schornack et al., 2010). 

The end of the N-terminus is marked by a highly conserved “HVLVxxP” motif. CRNs 

are modular proteins that have highly diverse C-terminal domains (Haas et al., 2009). In 

contrast to RxLRs, CRNs are thought to be a more ancient class of effectors as they have 

been detected across a wide range of oomycetes including Albugo, Aphanomyces, downy 

mildews, Phytophthora and Pythium (Gaulin et al., 2018; Kemen et al., 2011; Links et 

al., 2011; Schornack et al., 2010). CRNs were not detected in the genome of Sa. parasitica 

(Jiang et al., 2013). CRNs are also highly expanded in the genomes of some Phytophthora 

species, with 196 CRNs annotated in Ph. infestans and 100 in Ph. sojae (Haas et al., 

2009). CRNs include some of the most highly expressed effector genes before and during 

infection (Haas et al., 2009). Several CRNs have been reported to target the host nucleus 

(Schornack et al., 2010). Interestingly, highly divergent CRNs were identified in the 

genome of the insect pathogenic Py. guiyangense and some were shown to be toxic in 

insect cells (Shen et al., 2019). Similar to RxLRs, CRNs have undergone rapid evolution, 

expansion, and diversification. For example, the genomes of Ph. megakarya and Ph. 

palmivora were where shown to encode 152 and 137 CRNs respectively, but only 30 of 

these are core-orthologues shared between these two closely related pathogens (Ali et al., 

2017). Many annotated CRNs lack conventional N-terminal signal peptides. For example, 

only 58% of annotated Ph. cactorum CRNs possess a canonical signal peptide and only 

60 out of the predicted 139 (43%) CRN proteins in Ph. plurivora have a signal peptide 

(Armitage et al., 2018; Vetukuri et al., 2018b). A large number of CRN and RxLR 

pseudogenes were annotated in the genome of Ph. infestans suggesting the prevalence of 
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rapid gene birth and death, possibly driven by the co-evolutionary arms race between 

pathogen and host, and an effort to evade host recognition (Haas et al., 2009). 

 Sequencing of the Al. laibachii genome led to the identification of a novel class 

of CHXC effectors (Kemen et al., 2011). Similar to the other characterized cytoplasmic 

effectors, the Albugo CHXC effectors contain a conserved “CHxC” motif within 50 

amino acids of the signal peptide cleavage site that was shown to facilitate effector 

translocation into host cells (Kemen et al., 2011). A total of 29 CHXC effector candidates 

were annotated in the Al. laibachii genome. The “CHxC” motif was also significantly 

enriched in the secretome of Al. candida where a total of 40 CHXC effector candidates 

were identified, none of which had homologs in Phytophthora or Hyaloperonospora 

(Links et al., 2011).  
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7. Oomycete OMICS Studies 

Genome sequencing of oomycete species has also facilitated other high throughput 

“OMICs” analyses such as proteomics and transcriptomics. Such analyses have revealed 

insights into oomycete infection mechanisms, secretome content, cell structure, 

metabolism, and nutritional strategies. Additionally, proteomic and transcriptomic data 

have been invaluable for improving the quality of oomycete genomes via the annotation 

and validation of predicted genes. 

 

7.1. Oomycete Proteomics Studies 

The majority of proteomics studies to date have focused on Phytophthora species. 

Comparative proteomic analysis between mycelium and germinating cysts of Ph. 

ramorum and Ph. sojae was carried out to identify proteins involved in vegetative and 

infection stages (Savidor et al., 2008). In total, 3,897 proteins were identified from Ph. 

ramorum and 2,970 from Ph. sojae. An average of 14% of identified proteins contained 

a signal peptide, 42 of which from Ph. sojae and 46 from Ph. ramorum contained an 

RxLR motif within the first 30 – 60 residues suggesting they belong to the RxLR effector 

family. 686 proteins were identified as being differentially expressed between 

germinating cysts and mycelium in Ph. ramorum. This number was 513 for Ph. sojae 

(Savidor et al., 2008). Proteins upregulated in germinating cysts were involved in 

functions related to cytoskeleton, protein synthesis and the transport and metabolism of 

lipids (including many proteins involved in the β-oxidation pathway). Proteins 

upregulated in mycelium were involved in functions related to the transport and 

metabolism of amino acids, carbohydrates, and other small molecules. These findings 

revealed insights into infection, growth and nutritional strategies of Phytophthora 
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species. They suggested that germinating cysts catabolize lipids (via the β-oxidation 

pathway), generating the energy required for protein synthesis for germ tube formation 

used in infection initiation. Upon entry into the host, Phytophthora switches to vegetative 

mycelial growth, generating energy via glycolysis to synthesize amino acids and other 

molecules required for survival inside host tissues (Savidor et al., 2008). Comparative 

proteomic analysis of Ph. pisi and Ph. sojae revealed proteomic differences that may 

contribute to host specificity between these two closely related pathogens (Hosseini et 

al., 2015). A total of 2,775 proteins from Ph. pisi and 2,891 proteins from Ph. sojae were 

identified. Similar findings were reported with regards to nutritional strategy differences 

between hyphae and germinating cysts (Hosseini et al., 2015; Savidor et al., 2008). 

Proteomic profiling of Ph. capsici identified 599 proteins with significantly altered 

expression in response to the fungicide SYP-14288 (Cai et al., 2019). The majority of 

affected proteins had functions related to carbohydrate metabolism, energy metabolism, 

metabolism of other amino acids, amino acid metabolism, transport, and catabolism. 

 The Ph. infestans genome encodes 372 genes predicted to be protein kinases, 

comprising 2% of the total gene set, suggesting that phosphorylation plays an important 

role in the lifecycle of Ph. infestans (Resjö et al., 2014). A large scale phosphoproteomics 

analysis of six life stages of Ph. infestans (hyphae, sporangia, zoospores, cysts, 

germinated cysts, and appressoria) was performed to identify phosphorylated peptides 

(Resjö et al., 2014). A total of 2,922 phosphopeptides were identified. Among the 

phosphorylated peptides were 35 CRN-derived phosphopeptides. Many CRNs were 

phosphorylated at multiple sites, across several life stages indicating a potential role 

beyond inducing necrosis (Resjö et al., 2014). Quantitative proteomic analysis of the 

same six life stages identified over 10,000 peptides corresponding to 2,061 proteins 

(Resjö et al., 2017). In particular, 59 proteins were significantly more abundant in 
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appressoria and germinating cysts, i.e. pre-infection stages of the life cycle. The majority 

of these proteins are involved in transport, energy and amino acid metabolism, redox 

maintenance and signaling (Resjö et al., 2017). Interestingly, this set of proteins with 

increased abundance in pre-infection stages also included many proteins involved in cell 

wall synthesis, maintenance, and adhesion. Transient silencing of three putative cell wall 

proteins resulted in abnormal phenotypes and an impaired ability to infect potato leaves, 

suggesting an important role in the infection process (Resjö et al., 2017). Ph. infestans 

cell-wall associated proteins from three life stages (germinating cysts with appressoria, 

sporulating mycelium, and non-sporulating mycelium) were also identified using a mass 

spectrometry approach, resulting in the identification of 31 proteins (Grenville-Briggs et 

al., 2010). All of the cell-wall associated proteins of germinating cysts with appressoria 

and some from mycelia were classified as effectors or MAMPs which could potentially 

trigger a host immune response. 

Mass spectrometric analysis of Ph. infestans grown in seven different growth 

media was performed to characterize and validate proteins belonging to the secretome 

and extracellular proteome of Ph. infestans (Meijer et al., 2014). In total, 283 proteins 

were identified in the extracellular media confirming they are bona fide extracellular 

proteins, of which 227 contained a signal peptide. Among the identified proteins were 20 

RxLRs, 13 CRNs, 11 elicitins, and 5 necrosis-inducing proteins (Meijer et al., 2014). 

Thirty one proteins were found to contain a signal peptide and a single transmembrane 

domain (most of which were located in the C-terminus), suggesting that they are 

membrane proteins that are proteolytically shed via sheddases, explaining their presence 

in the extracellular medium (Meijer et al., 2014). The proteomics approach facilitated the 

reannotation and correction of many gene models, the N-terminus of many were extended 

revealing signal peptides that weren’t previously annotated. A similar approach was 
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carried out to characterize the secretome of Ph. plurivora when stimulated with root 

exudate from Fagus sylvatica resulting in the identification of 272 proteins, 60% of which 

contained signal peptides (Severino et al., 2014). The secretome was enriched with 

functions related to enzymatic activity such as hydrolases, oxidoreductases, and 

transferases. 21 proteins were found to be differentially abundant following treatment 

with root exudate (Severino et al., 2014). 

While the majority of oomycete proteomic analyses have focused on 

Phytophthora species, several analyses have been performed for other taxa. For example, 

comparative proteomic analysis of Py. insidiosum revealed 212 proteins and 124 proteins 

that were found in higher or lower abundance, respectively, when grown at 37℃ 

compared to 25℃ (Rujirawat et al., 2018). The majority of highly upregulated proteins 

were predicted to be involved in transport and metabolism of amino acids, carbohydrates, 

lipids and nucleotides, post-translational modification, protein turnover, and chaperones. 

These proteins may facilitate the high-temperature tolerance of Py. insidiosum during 

infection of mammals (Rujirawat et al., 2018). Quantitative proteomic analysis of four 

life stages (mycelium, primary cysts, secondary cysts, and germinated cysts) of Sa. 

parasitica grown in vitro identified a total of 2,423 unique proteins across the four life 

stages (Srivastava et al., 2018). Compared to the three cyst stages, 133 proteins were 

found in increased abundance in the mycelium with functions related to amino acid and 

carbohydrate metabolism enriched. Conversely, 110 proteins were found in increased 

abundance in the three cyst stages compared to the mycelium with an enrichment of 

functions related to signal transduction, translation, ribosomal structure and biogenesis 

(Srivastava et al., 2018).  
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7.2. Oomycete Transcriptomics Studies 

Transcriptomic analyses (i.e. RNA-seq) are now routinely performed alongside genome 

sequencing as the sequenced transcripts can be incorporated during gene calling steps and 

to validate existing gene models. Many transcriptomics studies have been carried out for 

oomycete species to identify transcriptional remodeling during infection or after exposure 

to chemical treatment. Comparative transcriptomics analyses between different species 

have also been performed to identify differences or similarities between species. 

RNA-seq analysis of various life stages in two Ph. infestans isolates led to the 

mapping and validation of approximately 16,000 genes (90%) (Ah-Fong et al., 2017a). 

Large-scale transcriptome remodeling was detected at each life stage with the biggest 

differences observed during the transition from hyphae to sporangia where more than 

4,200 genes were upregulated, more than 1,350 of which were detected at greater than 

100-fold increased abundance. Genes encoding calcium-binding proteins, flagellar 

proteins, ion channels, and signaling proteins were upregulated in sporangia. Most 

metabolic pathways were downregulated after sporulation but later reactivated upon the 

germination of cysts (Ah-Fong et al., 2017a). Similarly, RNA-seq analysis of Ph. capsici 

identified a large number of stage-specific genes including effector families and 

metabolic pathways, revealing proteins that are important during pre-infection (Chen et 

al., 2013). Transcriptome analysis of Ph. litchii mycelia, sporangia, and zoospores 

identified 19,267 unigenes, of which 490 were predicted to be pathogenicity-related 

proteins, including 128 RxLRs, 35 elicitins, 29 NLPs and 22 CRNs (Sun et al., 2017). 

The Ph. litchii unigenes were clustered into 9,685 orthologous groups, 105 gene families 

did not have orthologs in the other four oomycete species under consideration in the 

study, suggesting that they may be novel genes. 
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Comparative transcriptomic analysis was performed to identify transcriptional 

differences between Ph. infestans and Py. ultimum during infection of potato tubers (Ah-

Fong et al., 2017b). This is an interesting pair of species for comparison, as they both 

infect potato and have different lifestyles. Ph. infestans is a hemibiotroph that begins 

infection with a biotrophic phase whereby it requires a living host for colonization. Later 

in the infection process, Ph. infestans switches to a highly destructive necrotrophic phase. 

In comparison, Py. ultimum is a necrotroph that immediately induces host cell death upon 

infection. Ph. infestans was found to have a higher number of stage-specific genes. In 

particular, a much larger proportion of Ph. infestans genes were shown to have ≥ 4-fold 

expression change between early and late infection (45% in Ph. infestans compared to 

only 9% in Py. ultimum), this could be attributed to the switch from biotrophy to 

necrotrophy that Ph. infestans undergoes during late infection. The evolution of 

necrotrophy and hemibiotrophy could be ascribed to species-specific genes, expansion 

and contraction of orthologous gene families, and differences between the timing and 

level of expression of orthologs (Ah-Fong et al., 2017b). RNA-seq analysis of the 

saprotroph Salisapilia sapeloensis was performed in comparison to eight other plant 

pathogenic oomycetes with different lifestyles (biotrophic, hemibiotrophic and 

necrotrophic) (Vries et al., 2019). Results show that the saprotrophic and pathogenic 

oomycetes possess similar repertoires for colonization but exhibit different expression 

patterns. Furthermore, Salisapilia sapeloensis was shown to possess a smaller effector 

arsenal. These findings indicate that the evolution of oomycete lifestyles is influenced not 

only by gene content but also shifts in gene regulatory networks (Vries et al., 2019). 

Transcriptomic methods have also proven useful in understanding how oomycetes 

respond to chemical treatments and biocontrol agents. RNA-seq of Ph. infestans in 

response to the phenazine-1-carboxylic acid (PCA) producing Pseudomonas fluorescens 
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showed that more than 200 genes were significantly differentially expressed with more 

than a 3-fold change following PCA treatment (Roquigny et al., 2018). Differentially 

expressed genes were predicted to be involved in many processes, including 

oxidoreduction activity, phosphorylation mechanisms and transmembrane transport 

activity. Transcriptional changes were also identified in effector genes even in the 

absence of a host plant. These findings suggest that PCA exposure results in growth 

repression which leads to transcriptomic changes in Ph. infestans (Roquigny et al., 2018). 

RNA-seq analysis of Ph. parasitica in response to the fungicide dimethomorph identified 

significant differential expression of 832 genes, of which 365 were up-regulated and 467 

down-regulated, including many genes associated with the cell membrane and wall 

synthesis (Hao et al., 2019). RNA-seq of Sa. parasitica following treatment with copper 

sulfate showed than 310 genes were upregulated and 556 genes were downregulated (Hu 

et al., 2016). Functional annotation of differentially expressed genes indicates that copper 

sulfate inhibits the growth of Sa. parasitica by affecting multiple biological processes 

including energy biogenesis, metabolism and protein synthesis (Hu et al., 2016). 

Tissue-specific and host induced genes from Sa. parasitica were identified via 

RNA-seq of multiple life stages as well as infected fish cell lines (Jiang et al., 2013). In 

particular, the results suggested that kinases play an important role during the infection 

process, as of the large kinome (543 kinases) of Sa. parasitica, 10% were upregulated 

greater than 4-fold in germinating cysts compared to mycelia. Similarly, the large arsenal 

of proteases (270) was shown to be expressed in waves at different stages during 

infection, indicating an important role in the infection process (Jiang et al., 2013). RNA-

seq of Ap. euteiches infecting Medicago truncatula showed that adaption to plant hosts is 

correlated with the expression of specialized secretomes (Gaulin et al., 2018). Genes 

involved in carbohydrate metabolism and proteolysis were upregulated during infection. 
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Furthermore, three times as many secreted protein-encoding genes were upregulated 

during infection, the majority of which encode proteases, glycoside hydrolases and 

polysaccharide lyases (Gaulin et al., 2018). 

Dual transcriptomic analyses can be employed to characterize the infection 

process of a pathogen and the response of the host to that pathogen. Dual transcriptomic 

time-course analysis of Ph. palmivora infecting Nicotiana benthamiana identified 2,441 

differentially expressed Ph. palmivora genes and 6,950 differentially expressed Ni. 

benthamiana genes in response to the pathogen (Evangelisti et al., 2017). The pathogen 

was shown to undergo sharper transcriptional remodeling in comparison to the host plant 

which was characterized by steady up or downregulation. A large number of putative Ph. 

palmivora effectors were identified including 143 cell wall degrading enzymes, 140 

RxLRs, 59 proteases, 42 elicitins, 28 small cysteine-rich proteins, 24 NLPs and 15 CRNs 

(Evangelisti et al., 2017). Genes linked to abiotic stress, biosynthesis, defense, hormone 

metabolism, protein modification, and transcriptional regulation were upregulated in Ni. 

benthamiana. Genes associated with cell division, cellulose biosynthesis and 

photosynthesis were downregulated during infection. These results suggest that Ni. 

benthamiana responds to Ph. palmivora infection by transcriptional remodeling and post-

translational reprogramming which activates defense and stress responses (Evangelisti et 

al., 2017).  
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8. Tools for Oomycete Genomics 

Compared to other taxonomic groups, there are few dedicated tools available to study 

oomycete genomes. However, there have been several recent developments, including 

EumicrobeDB (http://www.eumicrobedb.org; last accessed December 1, 2019), a 

database that hosts 26 oomycete genome sequences and a large number of bioinformatics 

tools (Panda et al., 2018). FungiDB (https://fungidb.org; last accessed December 1, 2019) 

also hosts genomic data for 21 oomycete species (Basenko et al., 2018). The Oomycete 

Gene Order Browser (OGOB) (https://ogob.ie; last accessed December 1, 2019) was 

recently published and hosts genomic data for 20 oomycete species, including 

syntenically curated orthology inferences and bioinformatics tools that facilitate 

comparative genomic analyses and a browser for examining syntenic conservation of 

protein-coding genes between multiple species (McGowan et al., 2019). Additional 

databases dedicated to oomycetes include Phytophthora-ID (http://phytophthora-id.org; 

last accessed December 1, 2019) (Grünwald et al., 2011) and OomyceteDB 

(http://oomycetedb.cgrb.oregonstate.edu; last accessed December 1, 2019), which are 

curated databases that host genetic marker sequences for identifying oomycete species. 

There are also few dedicated tools to functionally annotate oomycete genes. For example, 

EffectorP is a tool that can be used to predict effector proteins from fungal secretomes 

using a machine learning classifier (Sperschneider et al., 2018a). With the growing 

number of experimentally verified oomycete effectors, similar approaches could be used 

to build machine learning classifiers for oomycete effectors. 

Identifying BUSCOs is one of the most commonly used methods for assessing 

genome assembly completeness (Waterhouse et al., 2018). Currently, the most 

specialized BUSCO dataset available for oomycete genomes is the “Alveolata-

Stramenopiles” dataset. An issue with this is that it only contains 234 BUSCO proteins 
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based on a highly diverse set of 24 species, only seven of which are oomycetes. Other 

species in this dataset include the Alveolates - Plasmodium falciparum and Toxoplasma 

gondii. Including distantly related lineages when identifying orthologs reduces the 

number of universally present single copy orthologs. This may result in an inaccurate 

assessment of genome assembly completeness. A dedicated dataset for the oomycetes, or 

better, for individual oomycete lineages/genera, would provide a more accurate 

representation of genome and gene space completeness. For example, analysis of the 20 

oomycete genomes hosted on OGOB (McGowan et al., 2019) using OrthoFinder (Emms 

and Kelly, 2019) identifies 643 ubiquitously conserved single-copy orthologs. 

Furthermore, taxonomically restricting this dataset to the genomes of 8 more closely 

related Peronosporales species (Hy. arabidopsidis, Ph. capsici, Ph. infestans, Ph. 

kernoviae, Ph. parasitica, Ph. ramorum, Ph. sojae, and Pl. halstedii) identifies 2,231 

ubiquitously conserved single copy orthologs. Additional highly conserved markers can 

also be considered when assessing genome completeness. For example, the Fungal 

Genome Mapping Pipeline (FGMP) was recently developed to assess genome 

completeness of fungal genome assemblies, taking into account not only ubiquitous 

single-copy gene families but also ubiquitous multi-copy gene families and highly 

conserved non-coding regions (Cissé and Stajich, 2019). Using the OrthoFinder analysis 

above, there are 53 gene families that are ubiquitously multi-copy (i.e. all genomes 

contain more than one copy) across the 20 oomycete genomes hosted on OGOB, and 83 

across the 8 Peronosporales genomes. Including ubiquitously duplicated genes in genome 

assembly assessment can potentially identify genome misassemblies such as collapsed 

duplications or repetitive regions. Similar sophisticated methods could be developed to 

assess genome assembly quality and completeness of oomycete genomes.  
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9. Oomycetes in the Post-Genomic Era 

The quality of the 65 genomes reviewed herein varies greatly. Oomycete genomes can be 

difficult to assemble due to their relatively large size, high proportions of repeat content 

and high levels of heterozygosity in certain species. Genome completeness of the 65 

genome assemblies, assessed using BUSCO v3 (Waterhouse et al., 2018) with the 

Stramenopiles/Alveolata BUSCO dataset, ranges from 99.10% to 42.80% (mean = 

89.32%; median = 94.00%) (Figure 5), showing that most oomycete genomes are highly 

complete in terms of expected gene content. The percentage of single-copy BUSCOs 

present ranges from 98.70% to 16.70% percent (mean = 80.83%; median = 90.6%) 

(Figure 5), indicating that several genomes have a large number of BUSCOs that are 

present in multiple copies. While this may represent legitimate multiple copies and 

duplication events, such is the case in the hybrid Py. guiyangense which contains 

duplicates for 81.6% of BUSCOs (Figure 5), it also likely represents haplotypes that 

weren’t fully collapsed or misassemblies of repetitive sequences that cannot be assembled 

fully. Most oomycete genomes have very low fragmented BUSCO scores, ranging from 

0% to 4.5% (mean = 1.3%; median=0.9%) (Figure 5), suggesting that gene fragmentation 

isn’t a problem. Many of the currently available oomycete genome assemblies are highly 

fragmented, with sequences split across thousands or even tens of thousands of short 

contigs or scaffolds. 
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Figure 5. Distribution of BUSCO completeness scores across the 65 Oomycete genomes, 

assessed using the 234 BUSCOs from the “Alveolata-Stramenopiles” dataset. 
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The majority of oomycete genomes have been sequenced using short-read 

Illumina sequencing only. Illumina sequencing produces high yields of high-quality 

reads. However, the reads are short with a length range between 50 and 250 nucleotides. 

Short reads cannot span the length of repetitive regions of the genome as the repetitive 

regions are typically longer than the reads, resulting in highly fragmented genome 

assemblies with many short contigs. Long-read sequencing technologies such as PacBio 

and Oxford Nanopore Technologies (ONT) have the potential to generate higher-quality 

assemblies in terms of contiguity and completeness of repetitive regions. PacBio 

sequencing produces sequencing reads with average read lengths of over 10,000 bp and 

maximum read lengths of over 60,000 bp (Rhoads and Au, 2015). ONT can sequence 

full-length fragments of DNA, detecting bases as they pass through a nanopore. Long-

reads from PacBio and ONT platforms are more likely to span repetitive regions leading 

to more contiguous oomycete genome assemblies that have longer and fewer contigs. 

Long-read sequencing also facilitates more comprehensive comparative genomic and 

syntenic analyses as larger structural variants, such as large inversions or translocations, 

can be detected. Long-read sequencing presents a trade-off as generated reads have a 

higher error rate compared to Illumina reads, and library construction and sequencing are 

more expensive with a higher cost per-base. Hybrid sequencing approaches can be 

undertaken in which long-reads or long-read assemblies are corrected and polished with 

high coverage, high-quality short-reads. This approach combines the benefits of long-

read and short-read sequencing, producing high-quality, more complete and more 

contiguous assemblies. 

Several oomycete genome sequencing projects have already taken advantage of 

long-read sequencing technologies. Sequencing of a highly virulent Ph. ramorum isolate 

(ND886) using PacBio long-read sequencing generated a haplotype-phased assembly that 
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is much more contagious than the reference (Pr102) assembly (302 contigs versus 2,576 

contigs) (Malar C et al., 2019a). Additionally, the PacBio assembly contains a much 

higher proportion of repeat content than the reference assembly (48% versus 29%) 

showing the ability of long-read sequences to span and assemble repetitive sequences. 

The average read length was 10,570 bp and the longest read was 50,801 bp. The reference 

Ph. ramorum genome (Pr102) was also re-sequenced using the PacBio platform to a total 

of 80X coverage with an average read length of 14,000 bp, in combination with Illumina 

short-reads (Malar C et al., 2019b). The updated assembly is 5 Mb larger than the previous 

reference assembly (Tyler et al., 2006), is more contiguous (1,512 scaffolds versus 2,576 

scaffolds), contains a higher proportion of repetitive content (54.4% versus 29.08%) and 

an additional 3,360 genes were reported (Malar C et al., 2019b). Resequencing of Ph. 

capsici using ONT MinION long-reads resulted in a more contiguous assembly (424 

scaffolds) that was 95 Mb in length (~ 30 Mb larger than the reference assembly) (Cui et 

al., 2019). The increased assembly size corresponds to an increase in repeat content that 

was captured using long-read sequencing. A single MinION flow-cell produced ~10 Gb 

of data corresponding to 70X coverage. The N50 of the unassembled reads was 11,507 

bp, the average read length was 7,114 bp and the longest read was 99,577 bp. Interestingly 

the authors noted that the improved assembly was generated in only nine days (Cui et al., 

2019). The ONT MinION sequencing platform brings us closer to real-time field 

sequencing during pathogen outbreaks, allowing for rapid identification and tracking of 

pathogens as infection occurs. 

Recent long-read sequencing efforts have also revealed novel insights into 

oomycete biology and genetics. Resequencing of Ph. sojae using ONT and PacBio long-

read sequencing coupled with chromatin immunoprecipitation sequencing (ChIP-Seq) led 

to the identification of centromeres (Fang et al., 2020). The identified Phytophthora 
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centromeres were large, transposon rich and without nucleotide bias, showing divergence 

from other organisms in the SAR supergroup that have relatively short and simple 

centromeric sequences. Copia-like transposon (CoLT) elements that are highly enriched 

in the Ph. sojae centromeres were identified and shown to be conserved in Ph. citricola 

and Br. lactucae, presenting a novel feature that may be used to predict centromeres in 

other oomycete species (Fang et al., 2020). Telomeres were identified at single ends of 

13 contigs in the long-read assembly. It is not yet accurately known how many 

chromosomes are present in Ph. sojae, due to difficulties in resolving karyotypes using 

pulse-field gel electrophoresis caused by large genome size and potentially similar 

chromosome sizes. Based on the identification of centromeres and telomeres in the 

updated Ph. sojae assembly, it is estimated that Ph. sojae has 12 – 14 chromosomes (Fang 

et al., 2020). 

Resequencing multiple diverse strains of the same species followed by de novo 

genome assembly will allow for future pan-genomic analyses of oomycete species. Large 

numbers of isolates have already been re-sequenced for a number of oomycete species. 

For example, resequencing of 107 Ph. ramorum isolates revealed rapid evolution within 

lineages (Dale et al., 2019). Novel genotypic diversity within lineages was caused by 

mitotic recombination leading to loss of heterozygosity affecting 2,698 genes. 

Accelerated evolution was detected in non-core regions which are enriched in effector 

genes and transposons. Furthermore, positive selection was observed in 8.0% of RxLRs 

and 18.8% of CRNs. It is estimated that of the four lineages (EU1, EU2, NA1, and NA2), 

EU1 and NA1 diverged 0.75 MYA, NA2 diverged from EU1 and NA1 1.06 MYA, and 

EU2 diverged from the other lineages some 1.3 MYA (Dale et al., 2019). Future 

resequencing studies of diverse strains of individual oomycete species will facilitate pan-

genomic analyses which can provide insights into strain-level variation of gene content, 
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genetic differences in pathogenicity aggressiveness, mechanisms of fungicide resistance 

and differences in host ranges. This will enable oomycete research to transition from the 

genomics era to the pan-genomics era.  
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10. Conclusions and Future Outlook 

In line with recent advances in next-generation sequencing technologies and drastic 

decreases in the cost of whole-genome sequencing, there has been an increased pace of 

oomycete genome sequencing. Oomycete genomics has revealed fundamental insights 

into the biology and evolution of oomycetes. Based on the available genomic data, it is 

clear that HGT has played a significant role in shaping oomycete genome evolution, in 

particular, it has had a major impact in the evolution of plant pathogenicity and the 

convergent evolution of similar traits between oomycetes and fungi. Phylogenomic 

studies have helped to better understand the evolutionary relationships between oomycete 

species. Genome-wide cataloguing of oomycete effectors has led to the identification of 

large, diverse apoplastic and cytoplasmic effector families which facilitates 

experimentation to better understand the disease process and identify future targets for 

treatment. 

With the increasing number of oomycete genomes there is a need for more 

dedicated tools to be developed to study oomycete genomics. While many genome 

assemblies are available for the crown oomycete orders, there is a dearth of genomic data 

available for more basal oomycete species. Furthermore, there is a lack of genomic data 

for non-pathogenic oomycetes or saprotrophic oomycetes that play key ecological roles 

in natural environments. Future sequencing of basal oomycetes will reveal further 

insights into oomycete genome evolution and the origin of oomycetes and the evolution 

of pathogenicity.  
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Abstract 

The oomycetes are a class of microscopic, filamentous eukaryotes within the 

Stramenopiles-Alveolate-Rhizaria (SAR) supergroup and include ecologically significant 

animal and plant pathogens. Oomycetes secrete large arsenals of effector proteins that 

degrade host cell components, manipulate host immune responses and induce necrosis, 

enabling parasitic colonization. This study investigates the expansion and evolution of 

effectors in 37 oomycete species, from 4 oomycete orders including Albuginales, 

Peronosporales, Pythiales and Saprolegniales species. Our results highlight the large 

expansions of effector protein families in Phytophthora species, including glycoside 

hydrolases, pectinases and necrosis-inducing proteins. Species specific expansions were 

detected, including expansions of chitinases in Aphanomyces astaci and Pythium 

oligandrum. Novel effectors which may be involved in suppressing animal immune 

responses were also identified in Aphanomyces astaci and Pythium insidiosum. Type 2 

necrosis-inducing proteins with an unusual phylogenetic history were also located in a 

number of oomycete species. We also investigated the RxLR effector complement of all 

37 species and as expected observed large expansions in Phytophthora species. Our 

results provide in depth sequence information on all putative RxLR effectors from all 37 

species. This work is an up to date in silico catalogue of the effector arsenal of the 

oomycetes based on the 37 genomes currently available. 
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Introduction 

The oomycetes are a class of diverse eukaryotic microorganisms which includes some of 

the most devastating pathogens of plants, mammals, fish and fungi (1). Previously they 

were thought to be fungi, due to similar morphology, ecological roles, modes of nutrition 

and filamentous growth (2). Molecular analyses has placed the oomycetes into the 

Stramenopiles-Alveolata-Rhizaria (SAR) Eukaryotic Supergroup with close relationships 

to the diatoms and brown algae (3). Within the oomycete class, there are a number of 

highly diverse orders including the Saprolegniales, Peronosporales, Albuginales and 

Pythiales, that exhibit different lifestyles and can have either very specific or very broad 

host ranges. 

More than 60% of known oomycetes are pathogens of plants (4) and have a 

devastating effect on many agriculturally important crops and ornamental plants. 

Members of the Saprolegniales order predominantly exhibit saprotrophic lifestyles and 

include the animal and plant pathogens Aphanomyces (5) as well as the fish pathogenic 

Saprolegnia genus, known as “cotton moulds” (6, 7). The Peronosporales order consists 

largely of phytopathogens and includes the hemibiotrophic genus Phytophthora (the 

“plant destroyers”). Phytophthora species include the notorious phytopathogen 

Phytophthora infestans which is the causative agent of late potato blight, a disease 

reported to cause billions of dollars’ worth of damage worldwide annually (8). Also 

included in the Peronosporales are the genera Hyaloperonospora and Plasmopara which 

are closely related to Phytophthora species (11) (Figure 1). These two genera contain 

species that cause downy mildew in a number of economically important plants (12–14). 

In contrast to Phytophthora species, they are obligate biotrophs that are completely 

dependent on their host for survival. Other obligate oomycete biotrophs include the 

Albugo species (“white blister rusts”) which are members of the Albuginales order (15, 
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16) (Figure 1). The Pythiales order includes the genus Pythium, members of which are 

necrotrophs that cause root rot in many terrestrial plants. Exceptions include Pythium 

insidiosum, a pathogen causing pythiosis in mammals (17) and Pythium oligandrum, a 

pathogen of other oomycetes and fungi (18). Pythium species are divided into 10 clades 

(A – J) (19) (Figure 1).  

Oomycetes are notorious for secreting a large arsenal of effector proteins (20). 

Effectors facilitate infection by manipulating host cell components, exploiting host 

nutrients, triggering defence responses and inducing necrosis (21). Oomycete effectors 

can be categorized into two classes (apoplastic or cytoplasmic) depending on where they 

localize. Apoplastic effectors are secreted by the pathogens and exert their pathogenic 

activity in the host’s extracellular environment (22). Oomycete apoplastic effectors 

include a large number of hydrolytic enzymes, which are involved in the degradation of 

host cell components, enabling penetration of host cells. These include cutinases, 

glycoside hydrolases, pectinases and proteases among others. Some oomycete species, 

such as Phytophthora, also encode extracellular toxin families such as necrosis-inducing 

proteins and Pcf family toxins (23). Host species are known to secrete protective proteases 

in an effort to degrade pathogen effectors, for example P69B and P69C are subtilisin-like 

serine proteases secreted by tomatoes in response to Phytophthora species protease (24). 

To counteract this, Phytophthora species secrete protease inhibitors to block the host 

defence (25).  
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Figure 1. Phylogeny of the 37 oomycete species from 4 oomycete orders considered in this 

study. Phytophthora clades as designated by Blair et al. (2008) and Pythium clades as 

designated by de Cock et al. (2015) in red and blue, respectively. Adapted from reference 11. 
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In contrast to apoplastic effectors, cytoplasmic effectors are secreted and 

translocated into the host cell where they exhibit their pathogenic activity. Two types of 

cytoplasmic effectors dominate the oomycete secretome - RxLR effectors and Crinklers. 

RxLR effectors (RxLRs) are so named because they contain a highly conserved “RxLR” 

motif in their N-terminal domain (8, 26). This motif is followed by a downstream ‘EER’ 

motif in many RxLRs. Studies have shown that the ‘RxLR’ motif acts as a translocation 

signal, marking the protein for trafficking into the host cell (27). The mechanisms of the 

RxLR motif are thought to be similar to that of the ‘Pexel’ translocation motif found in 

effectors of the malaria parasite Plasmodium falciparum (27–29). Some RxLRs can enter 

host cells independent of any additional pathogen encoded machinery (30). RxLRs have 

been described as a rapidly evolving superfamily whereby each member is related and 

shares a common ancestor (31). They have very conserved N-terminals and divergent C-

terminals although conserved WY folds are observed in some (8, 32). Genes encoding 

RxLR effectors are mainly found in gene-sparse regions of the genome which contains a 

high frequency of transposons (33). This could account for the rapid evolution of RxLR 

effectors. Large expansions of RxLR effectors have been observed in Phytophthora 

species, with some species reportedly encoding several hundred putative RxLRs (8, 26).  

Other well characterised oomycete effectors include Crinkler proteins (CRNs), 

named for their crinkling and necrosis-inducing activity, are composed of a highly 

conserved N-terminal domain containing a signal peptide and a “LxLFLAK” motif which 

mediates translocation into the host cell (34). The end of the N-terminal is marked by a 

highly conserved “HVLVxxP” motif, which separates the N-terminal and C-terminal. 

They are modular, rapidly evolving proteins that consist of a diverse collection of C-

terminal domains (8, 23). The CRNs of some oomycetes carry a modified version of the 

“LxLFLAK” motif (15). CRNs have been reported to localise to, target and accumulate 
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in host nuclear components (34, 35). In comparison to RxLRs, CRNs are thought to be a 

more ancient class of cytoplasmic effectors as they have been found to be distributed 

across a wide range of oomycete orders (23) including Albuginales (15, 16), 

Peronosporales (8, 26, 36) and Pythiales (37, 38). 

In this study, we catalogue the effector repertoire amongst 590,896 protein coding 

genes from 37 publicly available genome sequences for the oomycete class, including 

Albugo, Aphanomyces, Hyaloperonospora, Phytophthora, Phytopythium, 

Pilasporangium, Plasmopara, Pythium and Saprolegnia species (Table 1). Numerous 

bioinformatic techniques were employed to identify and catalogue putative proteins 

which may be involved in pathogenesis. A mix of network and phylogenetic methods 

were utilised to analyse their evolutionary history. Our results have identified novel 

effector families that appear to be unique to particular oomycete lineages, including Ap. 

astaci proteins which might have the potential to cleave immunoglobulin. Consistent with 

previous studies, we have identified a significant expansion of effectors in Phytophthora 

species, including glycoside hydrolases and necrosis-inducing proteins. We have detected 

expansions of chitin degrading enzymes in Ap. astaci and Py. oligandrum. We have also 

identified multiple type 2 necrosis-inducing proteins in a number of oomycete species.
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Table 1. Taxonomic and genomic information for the 37 oomycete species analysed herea 

Species Clade Order Host Size (Mb) Genes Candidate 

Effectors 

References 

Al. candida n/a Albuginales Plants 34.40 13,310 162 (15) 

Al. laibachii n/a Albuginales Plants 32.76 13,804 143 (16) 

H. arabidopsidis n/a Peronosporales Plants 78.89 14,321 292 (36) 

Ph. agathidicida Clade 5 Peronosporales Plants 37.23 14,110* 573 (39) 

Ph. capsici Clade 2 Peronosporales Plants 64.00 19,805 755 (40) 

Ph. cinnamomi Clade 7 Peronosporales Plants 53.96 12,942* 459 (39) 

Ph. cryptogea Clade 8 Peronosporales Plants 63.80 11,876* 430 (41) 

Ph. fragariae Clade 7 Peronosporales Plants 73.68 13,361* 268 (42) 

Ph. infestans Clade 1 Peronosporales Plants 228.50 17,797 1,249 (8) 

Ph. kernoviae Clade 10 Peronosporales Plants 43.00 10,650 329 (43) 

Ph. lateralis Clade 8 Peronosporales Plants 43.17 11,635 400 (44) 

Ph. multivora Clade 2 Peronosporales Plants 40.32 15,006 637 (39) 
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Table 1. Continued. 

Species Clade Order Host Size (Mb) Genes Candidate 

Effectors 

References 

Ph. nicotianae Clade 1 Peronosporales Plants 76.50 10,521 559 (45) 

Ph. parasitica Clade 1 Peronosporales Plants 82.39 27,942 983 INRA-310 

Ph. pinifolia Clade 6 Peronosporales Plants 94.60 19,533* 358 (41) 

Ph. pluvialis Clade 3 Peronosporales Plants 53.62 18,426* 632 (39) 

Ph. pisi Clade 7 Peronosporales Plants 58.81 15,495* 596 PRJEB6298 

Ph. ramorum Clade 8 Peronosporales Plants 65.00 15,743 762 (26) 

Ph. rubi Clade 7 Peronosporales Plants 74.65 15,462* 311 PRJNA244739 

Ph. sojae Clade 7 Peronosporales Plants 82.60 26,584 1,181 (26) 

Ph. taxon totara Clade 3 Peronosporales Plants 55.58 16,691 585 (39) 

Pl. halstedii n/a Peronosporales Plants 75.32 15,469 435 (14) 

Pl. viticola n/a Peronosporales Plants 74.73 12,048* 331 PRJNA329579 

P. vexans n/a Peronosporales Plants 33.90 11,958 265 (38) 
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Table 1. Continued. 

Species Clade Order Host Size (Mb) Genes Candidate 

Effectors 

References 

Pi. apinafurcum n/a Pythiales Plants 37.58 13,184* 388 PRJDB3797 

Py. aphanidermatum Clade A Pythiales Plants 34.26 12,312 348 (38) 

Py. arrhenomanes Clade B Pythiales Plants 44.67 13,805 354 (38) 

Py. insidiosum Clade C Pythiales Animals 53.23 19,290 558 (46) 

Py. irregulare Clade F Pythiales Plants 42.97 13,805 357 (38) 

Py. iwayamai Clade G Pythiales Plants 43.20 14,875 330 (38) 

Py. oligandrum Clade D Pythiales Fungi 35.90 14,292* 413 (47) 

Py. ultimum var. 

sporangiiferum 

Clade I Pythiales Plants 37.70 14,096 255 (38) 
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Table 1. Continued. 

Species Clade Order Host Size (Mb) Genes Candidate 

Effectors 

References 

Py. ultimum var. 

ultimum 

Clade I Pythiales Plants 42.80 15,323 386 (37) 

Ap. astaci n/a Saprolegniales Animals 75.84 26,259 582 APO3 

Ap. invadans n/a Saprolegniales Animals 71.40 20,816 290 9901 

S. diclina n/a Saprolegniales Animals 62.88 18,229 378 PRJNA168273 

S. parasitica n/a Saprolegniales Animals 53.13 20,121 385 (48) 

 

 

aProtein counts manually generated from assembly data are marked with an asterisk. References are to the genome publications where possible 

or otherwise to NCBI BioProject identifiers or the Broad Institute strain identifier. Adapted from reference 11.
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Results and Discussion 

The Oomycete Secretome 

Oomycete pathogens secrete effector proteins and degradative enzymes to facilitate host 

colonisation through altered physiology (38). Using the proteome data available we 

undertook an in-silico prediction analyses to determine the number of proteins in each 

species that may be secreted. Our dataset consisted of the predicted proteomes of 37 

oomycete species. This included 18 Phytophthora, 8 Pythium, 2 Albugo, 2 Aphanomyces, 

2 Plasmopara, 2 Saprolegnia, 1 Hyaloperonospora, 1 Pilasporangium and 1 

Phytopythium species (Table 1).  

Proteins predicted to contain signal peptides were located using SignalP v3. 

SignalP v3 was chosen over earlier and later versions of the software as previous studies 

have found v3 the most sensitive in detecting oomycete signal peptides (49). Proteins that 

contained a transmembrane domain after the signal peptide cleavage site were discarded 

as these proteins are not likely to be secreted and instead retained in the plasma 

membrane. 

A previous analysis of 13 stramenopiles (including 11 species in our dataset) by 

Adhikari et al , found that between 6.19% to 10.34% of the proteins in each species were 

secreted (38). Our analysis showed that of the 590,896 proteins tested, 5.25% (30,996) 

are predicted to be secreted, from a relative low of 2.11% (291) in the obligate biotroph 

Al. labiachii to a relative high of 7.93% (834) in the necrotroph Ph. nicotianae 

(SupplTable_1). We observed that in all cases, the percentages of secreted proteins in 

our analysis differs from what was observed in the analysis of Adhikari et al. These 

differences cannot be accounted for by differences in the number of proteins per species 

as these were consistent between both analyses as was the methodology used. For 

example, Adhikari et al predict that 10.34% of the Ph. ramorum genome is secreted 
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compared to 7.65% in our analysis (SupplTable_1). Similarly, there are large 

discrepancies between the percentages of secreted proteins for Ph. sojae (10.24 % vs. 

6.24%), Py. irregular (6.95% vs. 5.03%) and the largest discrepancy was seen between 

the comparisons for H. arabidopsidis (8.81% vs. 3.68%). For transparency all scripts used 

to annotate secreted proteins are publicly available (see methods). 

Our results show there is significant difference (chi-square test p < 0.01) in the 

number of predicted proteins between two of the closely related Saprolegniales species 

(Ap. astaci and Ap. invadans) where 4.26% (1,119) of the Ap. astaci proteome is predicted 

to be secreted compared to 2.93% (609) in Ap. invadans (SupplTable_1). The predicted 

proteome for both of these species differs in size (26,529 vs. 20,816 predicted proteins) 

indicating that an expansion in secreted proteins is partially responsible for the difference 

observed in the size of the proteome.  

Overall, the correlation between the number of predicted secreted proteins and the 

overall number of proteins per species shows a moderate (R2 = 0.455) and significant 

correlation (p < 0.00001, Pearson correlation test). The correlation between predicted 

secreted proteins and genome size is weak however (R2 = 0.1065) and not significant  

(p > 0.05).  

 

Secretome Enrichment Analysis 

We have documented which biological functions are enriched in the predicted secretomes 

of individual species (Figure 2). This was achieved by comparing the frequency of GO 

terms and Pfam domains in the secretome compared to the non-secreted proportion of the 

proteome using Fisher’s exact test corrected for false discovery rate (FDR) (50). 

InterProScan was used to functionally annotate all proteins with GO terms and Pfam 

domains (51).
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Figure 2. Heatmap of enriched Pfam terms in oomycete secretomes. Terms are ordered on the number of the times they are observed. Only terms enriched in 

the secretome of two or more species are shown. Terms that are statistically enriched are coloured blue in the heatmap. Grey colouring indicates the term is not 

enriched. 
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Comparing the putative secretomes of the 37 species in this analysis we see that 

the number of Pfam domains enriched in the secretome relative to the non-secreted 

portion of the proteome varies from a low of 2 domains in Al. candida to a high of 56 in 

Ap. astaci (SupplTable_2). The enrichment analysis shows that in all 37 species, the 

Elicitin Pfam domain (PF000964) is enriched (Figure 2 and SupplTable_2). Elicitins are 

structurally conserved extracellular proteins in Phytophthora and Pythium species (37). 

They are known to bind lipids and sequester sterols from plants, thereby overcoming the 

inability of Phytophthora and Pythium species to synthesize sterols (52). Similarly, the 

serine protease inhibitor, Kazal-like domain (PF07648) is enriched in 33 of the 37 species 

(Figure 2 and SupplTable_2). The Kazal-like domain has been implicated in the 

infection process of Phytophthora species and act as apoplastic effectors (24). Another 

widely distributed domain that is enriched in a large number of oomycete secretomes (33 

of 37) is the cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 

proteins (CAP) (Figure 2 and SupplTable_2). CAP-domain-containing secreted proteins 

are produced by non-vertebrate eukaryotes and prokaryotes and have been implicated in 

both virulence and immunity functions (53, 54), however currently little is known about 

the molecular mode of action of such proteins. Of the 37 species analysed, 31 show 

enrichment for chymotrypsin (PF00089) which most probably has a role to play in 

extracellular proteolysis. Similarly, 30 of the 37 species show enrichment for the 

PAN/Apple domain (PF14295). Previous analyses have shown that carbohydrate-binding 

module (CBM) containing proteins that recognise and bind saccharide ligands from Ph. 

parasitica are associated with two PAN/Apple domains. The PAN/Apple domain is 

known to interact with both protein and carbohydrates (55). Knockdown of Ph. parasitica 

CBM affects adhesion to cellulose substrates including plant cell walls (56). Domains 

involved in the possible degradation of plant cell walls were also found to be enriched in 



 97 

the secretomes of many of the species investigated. For example, pectin degradation 

(PF00544, PF03283 and PF03211), Glycoside hydrolases (PF00933, PF00915, PF00295, 

PF17189, PF02055) and Cellulose binding (PF00374) are all enriched across a range of 

species (Figure 2 and SupplTable_2). Well known effectors including necrosis inducing 

protein (PF05630) is found to be enriched in Phytophthora and Pythiales species while 

the RxLR phytopathogen domain (PF16810) is enriched in the secretome of the majority 

of Phytophthora species (Figure 2 and SupplTable_2). 

 With respect to GO term secretome enrichment within our dataset, we observe 

results that corroborate our Pfam enrichment analysis. For example enriched GO terms 

associated with plant cell wall degradation such as pectin activity (GO:0030570 & 

GO:0030599), cellulose activity (GO:0030248 & GO:0008810), polygalacturonase 

activity (GO:004650), glucan catabolism (GO:0009251), cellulose catabolism 

(GO:0030245), cellulose metabolism (GO:0030243) and carbohydrate binding 

(GO:0030246) are widely distributed. Cell wall organisation (GO:0071555), 

modification (GO:0042545) and biogenesis (GO:0071554) are all enriched in the 

majority of Phytophthora species (SupplTable_2 and Suppl_Figure1). Hydrolase 

activity acting on glycosyl bond (GO:0004553, GO:0016787 and GO:0016798) are found 

to be enriched in all 37 species (SupplTable_2 and Suppl_Figure1). Other terms that 

are ubiquitously enriched include defence response (GO:0006952), pathogenesis 

(GO:0009405), interspecies interactions (GO:0044419) and multiorganism process 

(GO:0051704) (SupplTable_2 and SupplFigure_1). 

Previous researchers have undertaken similar analyses on some of the species 

within our dataset including Ph. infestans (57) and six Pythium species (38). We found 

broad agreement between our results and those previously reported for the Ph. infestans 

analysis. For example, we also observed enrichment in GO terms associated with 
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carbohydrate metabolic processes (GO:0005975 and GO:0016052), sugar metabolism 

(GO:0006040), sugar binding (GO:0030246), sugar modification (GO:0008810, 

GO:0004650, GO:0030570 and others), pathogenesis (GO:0009405), defence response 

(GO:0006952), proteolysis (GO:0006508) and serine peptidase activity (GO:0004252 

and GO:0008236) (SupplTable_2). Similarly, we also observed Pfam domains 

associated with pectin degradation (PF03283, PF00544 & PF03211), elicitins (PF00964), 

Kazal-type domains (PF07648) and necrosis inducing protein (PF05630) 

(SupplTable_2). With respect to our results and those previously reported for Pythium 

species the level of agreement is not as strong. We did observe enrichment in GO terms 

associated with pathogenesis, proteolysis, carbohydrate metabolic process 

(GO:0006508), hydrolyase activity (GO:0004553) and glycosyl hydrolyase activity 

(GO:16798) but failed to detect enrichment in terms such a nucleotide binding 

(GO:000166), integral to membrane (GO:0016021), transmembrane transport 

(GO:0055085) and RNA processing (GO:0006396) as previously reported (38). 

 

The Oomycete Effector Arsenal 

We set out to investigate the abundance of effectors in oomycete species. The list of 

effectors considered in our analysis (SupplTable_3) is based on a number of previous 

studies which describe pathogenic proteins from oomycete species, including 

Plasmopara (14), Phytophthora (26) and Pythium (37) species. Any protein identified as 

having a pathogenicity related domain was classified as a putative effector. These were 

combined with our secretome analysis to determine if the effector was predicted to be 

secreted or not. The overall effector content of each species was quantified to detect 

expansions. The following counts exclude RxLR effectors as they are treated in more 

depth in a following section. 
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In total 13,751 proteins were identified as having domains that could be 

implicated in pathogenicity (SupplTable_3). Overall 6,250 (~45%) of these were 

predicted to be secreted by SignalP (SupplTable_3). Our results show that Phytophthora 

proteomes generally contain the highest frequency of effectors, with Ph. sojae (766) and 

Ph. infestans (673) possessing the largest arsenals of effectors representing 2.9%, 3.8% 

of their total proteome respectively (SupplTable_3). Albugo species were found to 

contain the smallest number of effectors. A trend was identified whereby hemibiotrophic 

species, such as Phytophthora, typically possess more effectors than saprotrophic species 

(members of the Saprolegniales order) and necrotrophs, such as Pythium species. 

Obligate biotrophs, including Al. candida, Al. laibachii and H. arabidopsidis, feature the 

fewest number of effectors, 183, 166 and 215 respectively (SupplTable_3). Exceptions 

to this trend exist, most notably Ap. astaci (636), Py. insidiosum (534) and Py. oligandrum 

(405) all of which contain large repertoires of effectors compared to other closely related 

oomycete species with similar lifestyles. For example, Ap. astaci was found to contain 

635 effectors in comparison to the closely related Ap. invadans which contains 311 

(SupplTable_3). A number of oomycete effectors are discussed in more detail in the 

following sections. 

 

Necrosis-Inducing Proteins (NLPs) 

Necrosis-inducing proteins (NLPs) are apoplastic effectors found in bacteria, fungi and 

oomycetes (58). The mechanisms by which NLPs act are not fully understood but they 

are known to induce necrosis, trigger ethylene accumulation and elicit immune responses 

in dicotyledons (59). A number of NLPs have previously been reported to be non-

cytotoxic but instead act as microbe associated molecular patterns (MAMPs) which are 

recognised by the plant hosts and result in the activation of the plant immune system (60). 
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Our InterProScan analysis detected 771 proteins with signatures of NLPs, 499 

(67%) of these NLPs were predicted to contain signal peptides by SignalP 

(SupplTable_3). Our results show that NLPs are absent from Albugo, Aphanomyces and 

Saprolegnia species but are present in all Peronosporales and Pythiales species. Most 

Pythium species have less than seven copies. Py. insidiosum is the only Pythium species 

in our dataset to lack NLPs. NLPs are highly expanded in Phytophthora species. In 

particular, Ph. ramorum has 69 copies, Ph. parasitica has 74 copies and Ph. sojae has 80 

copies (SupplTable_3).  

NLPs can be divided into two types: type 1 NLPs and type 2 NLPs (61). Both 

types share a conserved amino acid motif “GHRHDWE”. They are distinguished by the 

presence of pairs of cysteine residues. Type 1 NLPs have one pair of conserved cysteines, 

while type 2 NLPs have two pairs of conserved cysteine residues (59). Each pair of 

cysteines could potentially form disulphide bridges, providing additional stability. Type 

1 NLPs are found in bacteria, fungi and oomycetes. Type 2 NLPs have been located in 

bacteria and fungi but were originally thought to be absent from oomycetes (59, 61). 

However, work by Horner et al has shown that Py. oligandrum contains a Type 2 NLP 

with similarity to a homolog from the proteobacterial plant pathogen Pectobacterium 

atrosepticum (62). 

To further investigate the oomycete NLPs in our dataset, we constructed a 

homology network of all 771 NLPs in our dataset (Figure 3A). An interactive version of 

the network is available online at https://oomycetes.github.io. In the network, the degree 

of a node is the number of edges it has connecting it to other nodes, therefore the degree 

is the number of homologs the protein has in our network. The overall NLP network 

(Figure 3A) has an average degree of 522.5, revealing that many of these NLPs are 

homologous to each other. 740 NLPs are grouped in a large, dense cluster (Figure 3A). 
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Figure 3. Analysis of oomycete necrosis-inducing proteins (NLP). (A) Homology network of 771 oomycete NIPs. Identified type 2 NIPs are arranged in a 

small, strongly connected cluster of 25 proteins from Phytopythium vexans, Pilasporangium apinafurcum and Pythium oligandrum. (B) Multiple sequence 

alignment of five type 1 NLPs and five type 2 NLPs. Both types share a conversed “GHRHDWE” NIP motif. Type 2 NLPs have an additional pair of cysteine 

residues. (C) Maximum-likelihood phylogeny of 87 NLPs containing 29 bacterial proteins, 33 fungal proteins and 25 oomycete proteins. Bootstrap values 

greater than 50% are shown. 
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The network included six singletons that did not share significant sequence 

similarity with any other protein in the network (Figure 3A). They included one H. 

arabidopsidis, one Ph. cryptogea, one Ph. kernoviae and three Ph. parasitica proteins. 

Interestingly, a smaller cluster of 25 NLPs was identified (Figure 3A). Only five of these 

proteins were homologous to other proteins outside of this cluster, this lack of homology 

is illustrated by few edges between both clusters (Figure 3A). The 25 proteins included 

17 Py. oligandrum, 6 Pilasporangium apinafurcum and 2 Phytopythium vexans putative 

NLPs. One of the Py. oligandrum proteins is an ortholog of the Type 2 NLP (GenBank: 

EV243877) previously reported by Horner et al (62). A multiple sequence alignment of 

a selection of proteins from both clusters was carried out (Figure 3B). Inspection of this 

alignment revealed no significant sequence similarity between the two clusters except for 

the presence of the conserved “GHRHDWE” motif and conserved cysteine residues 

(Figure 3B). The NLPs from the large cluster contained two conserved cysteine residues 

indicating that they are type 1 NLPs. Proteins from the smaller cluster of 25 proteins 

contained four conserved cysteine residues indicating that they are type 2 NLPs. Apart 

from the shared NLP motif and conserved cysteine residues, there is no significant 

sequence similarity between the two types of NLPs. 

We set out to further investigate the evolutionary history of the putative oomycete 

Type 2 NLPs. BLASTp searches of the 25 type 2 NLPs against the NCBI databases 

revealed top hits with proteobacterial species. To reconstruct the evolutionary history of 

these proteins we used the 25 Type 2 NLPs as bait sequences in a BLASTp homology 

search (E value cut-off of 10-20) against a local database of 8,805,033 proteins, with broad 

taxon sampling across prokaryotes and eukaryotes (63). This search identified 87 

homologous proteins, including 25 oomycete proteins (included in our dataset), 33 fungal 

proteins and 29 bacterial proteins. We aligned and manually edited the resulting 
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homologs to give a final alignment of 460 amino acids and generated a maximum-

likelihood phylogeny with PhyML using the WAG model of substitution (Figure 3C). 

This phylogeny places all fungal proteins into a single clan (41% Bootstrap support). All 

oomycete proteins are located in a single clan with 100% bootstrap support (Figure 3C). 

Within this large oomycete containing clan there is also a sister clan of Proteobacteria 

proteins with 70% bootstrap support (Figure 3C). There is also a completely separate 

Actinobacterial clan with 93% bootstrap support (Figure 3C). 

The phylogenetic distribution of these Type 2 NLPs is interesting. All of the 

fungal homologs are from the subphylum Pezizomycotina. Two bacterial phyla are 

represented, the Actinobacteria and the Proteobacteria. However, the Proteobacterial 

proteins are inferred to be more closely related to their oomycete homologs than to the 

Actinobacterial homologs (Figure 3C). One possible scenario is that horizontal gene 

transfer (HGT) has occurred during the evolutionary history of these proteins. However, 

due to patch phyletic distribution we cannot confidently infer the direction of gene 

transfer or indeed if HGT has definitely occurred.
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Immunoglobulin A Peptidases 

Immunoglobulin A peptidases are a family of hydrolytic enzymes that cleave 

immunoglobulin A (IgA) and have been implicated to be important virulence factors in 

bacterial infections of humans (64). InterProScan analysis revealed 40 oomycete proteins 

containing ‘IgA peptidase M64’ domains (SupplTable_3), 21 (53%) of which were 

predicted to contain signal peptides (SupplTable_3). Expansions of these proteins are 

present in the genomes of both Ap. astaci and Py. insidiosum. 10 proteins containing this 

domain were found in Ap. astaci (6 with signal peptides) and 6 in Py. insidiosum (4 with 

signal peptides) (SupplTable_3). Other Pythium species in our dataset contained between 

one and five copies of the protein. No proteins with this domain were found in any 

Albugo, Phytophthora, Plasmopara or Saprolegnia species (SupplTable_3). Therefore, 

within our dataset, IgA peptidases are unique to Aphanomyces species and the Pythiales 

order.  

We aligned and manually curated all 40 IgA peptidase containing proteins using 

MUSCLE and JalView respectively to give a final alignment of 770 amino acids. A 

maximum-likelihood phylogeny of all IgA peptidase containing proteins was generated 

using a WAG substitution model and 100 bootstrap replicates (Figure 4). Our 

phylogenetic reconstruction shows multiple species-specific duplication events which 

have led to the expansion of IgA peptidases in Ap. astaci and Py. insidiosum (Figure 4). 

The IgA peptidases are grouped into two separate monophyletic clades. The first contains 

all Pythiales homologs while the second contains all Aphanomyces homologs (Figure 4).  

Ap. astaci and Py. insidiosum are pathogens of crayfish and mammals respectively 

(17, 65). It is tempting to speculate that these proteins possibly provide a defence 

mechanism for these species, allowing them to suppress the immune response of their 

animal hosts. However, it should be noted that a number of Pythium species with plant 
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hosts were also shown to contain multiple copies of IgA peptidases, including five in Py. 

iwayami and four in both Py. arrhenomanes and Py. ultimum var. sporangiiferum 

(SupplTable_3). 

 

 
 
 

 

Figure 4. Maximum-likelihood phylogenetic reconstruction of oomycete IgA peptidases. 

Bootstrap values greater than 50% are shown. 
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Glycoside Hydrolases 

Glycoside hydrolases (GH), or glycosyl hydrolases, are hydrolytic proteins that cleave 

glycosidic bonds in complex sugars. They may be involved in the breakdown of cellular 

components, for example, the cell membrane and cell wall. We set out to investigate the 

extent of expansions within GH families across oomycete species. A total of 4521 

proteins with GH domains were located in our InterProScan analysis (SupplTable_3 & 

SupplTable_4). Expansions of GHs have been observed in oomycetes previously (38, 

48). Identified GHs were distributed across 47 different GH families. SignalP predicted 

1928 (42.6%) GHs to be secreted. Phytophthora species possess the highest number of 

GH proteins, with an average of 162, followed by Aphanomyces and Saprolegnia species, 

with averages of 106 and 98 respectively (SupplTable_4). Al. candida and Al. laibachii 

feature smaller sets of GH proteins with less than 60 each. 

A number of GH families were found to be species or genus specific. For example, 

GH families 4, 26, 29, 42 and 48 are restricted to Ph. kernoviae while GH families 8, 24 

and 44 are unique to Ph. rubi. Similarly, GH family 36 is found only in Ph. kernoviae 

and Ph. rubi. GH families 20 and 27 are found only in members of the Saprolegniales 

order. GH families 18, 19 and 48 have known chitinase activity (66). Expansions of these 

families were revealed in Ap. astaci, Py. oligandrum and Saprolegnia species. They are 

investigated in more detail below (SupplTable_4). 

 

Chitinases 

Chitin is the second most abundant biopolymer in nature and is an important structural 

component of invertebrate exoskeletons and fungal cell walls (67). Chitinases are 

enzymes that degrade chitin. In fungi, chitinases play an important role in hyphal growth, 

spore germination and cell wall remodelling (68). Oomycete cell walls, however, contain 
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no or very small amounts of chitin (69). Thus, it would appear that chitinases encoded by 

oomycete species play roles primarily in the degradation of exogenous chitin, for 

example, the breakdown of chitin in host cell walls. 

Several GH families are known to have chitinase activity (66). These include GH 

families 18, 19, 23 and 48. A total of 281 proteins in our dataset were reported to have 

putative chitinase activity in our InterProScan analysis, 112 (40%) of these are predicted 

to be secreted (SupplTable_3). The chitinases identified were spread across three GH 

families, 18, 19 and 48. No members of GH family 23 were located in our dataset. Only 

one protein was identified as a member of GH family 48, this belonged to Ph. kernoviae. 

However, it was not predicted to be secreted. 

A large expansion of 50 chitinases were detected in Ap. astaci (SupplTable_3), 

this is significantly more than any other oomycete, 38 of these proteins belong to GH 

family 18 and the remaining 12 belong to GH family 19 (SupplTable_4). Ap. astaci is a 

pathogen of crayfish, growing on and within the crayfish cuticle (65), which is composed 

of chitin. This expansion of chitinases may reveal a successful adaption of Ap. astaci to 

its crayfish host, allowing the pathogen to penetrate through the chitin layers of crayfish 

cuticles. In agreement with previous work (48), our analysis also revealed a large number 

of chitinases in the genome of S. diclina and S. parasitica (25 and 23 respectively) 

(SupplTable_3). Additionally, large numbers of chitinases were located in Al. laibachii 

and Py. oligandrum. 16 chitinases were identified in Al. laibachii and 15 in Py. 

oligandrum (SupplTable_3). This is particularly significant for Py. oligandrum which is 

a pathogen of fungi (18). Some fungal cell walls are composed of up to 20% chitin (70). 

Possessing a large repertoire of chitinase enzymes may facilitate the pathogen to 

breakdown host fungal cells. Other oomycetes in the dataset typically had less than 10 

chitinases. 
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We constructed a homology network of all 281 oomycete chitinases in our dataset 

to investigate their evolutionary history (SupplFigure_2). An interactive version of the 

network is available online at https://oomycetes.github.io. In the networks, nodes 

represent proteins and edges represent sequence similarity between two proteins. Our 

network consists of a number of disconnected clusters (no edges/homology to other 

clusters). We identified one singleton (a node with no edges, i.e. a protein with no 

homologs) which was the GH family 48 protein belonging to Ph. kernoviae. All GH 

family 19 proteins were placed into a single, strongly connected cluster (SupplFigure_2). 

No Albugo proteins were found in this cluster. GH family 18 proteins were divided into 

five clusters. Saprolegnia proteins dominate the network, in particular Ap. astaci whose 

proteins make up almost 18% of the network. Thus, our network analysis shows that 

oomycete chitinases are divided into a number of subclasses that are not homologous. 

This is consistent with the division of chitinases into 5 classes (71). 

Our analysis also revealed 31 Ap. astaci proteins with N-terminal chitin-binding 

domains (SupplTable_3), 25 (81%) of these were predicted to be secreted 

(SupplTable_3). Other oomycetes contained less than 10 of these proteins, with Al. 

candida, Al. laibachii, Ap. invadans and Ph. rubi containing no proteins with this domain. 

BLAST searches of these proteins against the NCBI databases did not reveal any hits with 

annotated proteins, therefore their function is unknown, it is possible that the N-terminal 

domain facilitates attachment to the chitin exoskeleton of its crayfish host. 

 

Proteases 

A large number of proteins with hydrolytic activity were reported, including glycoside 

hydrolases, proteases and pectin modifying proteins (SupplTable_3). These are thought 

to be involved in the degradation of host cells (8). Several protease families were found 
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to make up a large part of oomycete secretomes including aspartyl proteases, papain 

family cysteine proteases, subtilases, trypsins and trypsin-like proteases. Members of the 

Saprolegniales order contained the most proteases, with each member possessing over 

150 proteins with predicted protease activity (SupplTable_3). Pythium species also had 

a large number of proteases, with an average of 139 proteases, higher than the 

Phytophthora average of 88 (SupplTable_3). A large number of these proteases were 

reported to be secreted in our SignalP analysis, indicating that they may be involved in 

the breakdown of host cells. For example, Saprolegnia species have an average of 86 

secreted proteases, Pythium species have an average of 55 and Phytophthora have an 

average of 24 (SupplTable_3). Obligate biotrophs such as Al. laibachii, Al. candida and 

H. arabidopsidis feature the fewest proteases, with each species possessing less than 60 

proteases each. Expansions of aspartyl proteases were detected in Py. insidiosum (95), 

Ph. ramorum (70) and Ph. sojae (68). Ap. astaci contains 161 proteins with predicted 

trypsin or trypsin-like activity, the largest number of any species in our dataset. SignalP 

predicted 93 (58%) of these to be secreted (SupplTable_3). Every other oomycete had 

less than 61 copies. Our analysis also identified an expansion of proteins with subtilase 

domains in Aphanomyces, Pythium and Saprolegnia species. Again, Ap. astaci contains 

a large repertoire of 94 proteins with subtilase domains compared to Phytophthora 

species, all of which has less than 15 subtilases (SupplTable_3). Our results show that 

the Ap. astaci proteome harbours a vast number of proteases, significantly more so than 

any other oomycete. The large arsenal of hydrolytic enzymes in Ap. astaci, and other 

Saprolegniales members, may play an important role in the degradation host cells. 
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Oomycete Pectin Modifying Proteins 

Pectin is a major component of plant cell walls, making up to 35% of primary walls in 

higher plants, and plays important roles in plant defence, development and growth (72). 

A total of 1048 oomycete proteins were found to contain domains that are involved in the 

modification or degradation of pectin, including 693 pectate lyases, 226 pectin esterases 

and 129 pectin acetylesterases (SupplTable_3). Pectate lyases are involved in the 

cleavage of pectin and result in fruit softening and rot via degradation of the plant cell 

wall (73). Proteins with pectate lyase domains were abundant in Phytophthora and 

Pythium species (SupplTable_3). They are completely absent in Al. laibachii, Ap. astaci 

and Ap. invadans. One copy was found in each of Al. candida, S. diclina and S. parasitica 

but the S. diclina copy was not predicted to be secreted. Pectinesterases, or pectin 

methylesterases, catalyse the de-esterification of pectin and are used by plants in a wide 

range of biological processes including cell wall remodelling, fruit ripening, pollen 

growth and root development (74). However, they can also be exploited by pathogens to 

invade plant tissues (75). Our results show that pectin esterases are present only in 

members of the Peronosporales order in our dataset (SupplTable_3). The majority of 

these proteins contain signal peptides (SupplTable_3), indicating that they are effectors 

that potentially cause damage to the cell walls of their hosts. Similarly, pectin 

acetylesterases can be exploited by pathogens to catalyse the deacetylation of pectin, 

making the pectin backbone more accessible to pectin-degrading enzymes such as pectate 

lyases (76). Proteins with the pectin acetylesterase domain were found in Phytophthora, 

Phytopythium, Pilasporangium, Plasmopara and Pythium species (SupplTable_3). 

Species with more pectate lyases typically had more pectin acetylesterases this correlation 

is strong and significant (R2 = 0.600, p < 0.00001, Pearson correlation test).  
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Cutinases 

Cutin is one of the main components of plant cuticles (77). The plant cuticle acts as a 

physical barrier, allowing plant cells to tolerate external environmental stresses and also 

protect interior plant tissues from invading pathogens (78). Cutinases are extracellular 

enzymes that hydrolyse cutin and have been identified in bacteria, fungi and oomycetes 

(79). They can be used by plant pathogens to compromise the structural integrity of the 

plant cuticle, allowing them to penetrate and infect inner plant tissues. Enzymatic 

digestion of cutin has been proven to be an essential initial step in the infection process 

of plant pathogens (80).  

Overall, we have identified 122 proteins with cutinase domains in our dataset, 79 

(65%) of which were predicted to be secreted (SupplTable_3). Cutinases were 

completely absent in Aphanomyces and Saprolegnia species. Pythium species have 

previously been reported to lack cutinases (81). We found this to be true for the majority 

of Pythium species in our dataset, however we identified nine cutinases in Py. 

aphanidermatum and seven cutinases in Py. arrhenomanes (SupplTable_3). Both 

Albugo species in our dataset also contained multiple copies. Phytophthora pinifolia was 

the only Peronosporales member to lack cutinases. 

 

Toxin Families 

We identified a number of toxin families in our dataset including necrosis-inducing 

proteins (see previous section) and the phytotoxic protein family (PcF). Relative to other 

effectors, the overall number of PcFs detected in our dataset was low. PcFs are known to 

induce necrosis (82). In total 31 proteins with signatures of PcF proteins were identified 

and were unique to several members of the Peronosporales, 19 (61%) of these were 

predicted to be secreted (SupplTable_3). Phytophthora infestans contains 14 PcF 
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proteins, 5 of which are predicted to be secreted (SupplTable_3). Ph. capsici contains 

six PcF proteins, Ph. sojae has four, Ph. parasitica has two and Ph. multivora, Ph. pisi 

and Ph. ramorum have one copy each. All of these are predicted to be secreted 

(SupplTable_3). The proteome of Ph. lateralis was also reported to have one PcF protein 

but it is not predicted to be secreted. Hyaloperonospora arabidopsidis was the only non-

Phytophthora species reported to have a PcF protein (SupplTable_3). However, it was 

not predicted to be secreted. This finding suggests that PcF proteins are unique to 

Phytophthora and closely related species, suggesting that they may have arisen in the last 

common ancestor of the Peronosporales order.  

 

Crinklers 

A combination of regular expression searches and hidden Markov models were utilised 

to identify Crinkler effectors (CRNs). After manual inspection and removal of suspected 

false positives, a total of 899 CRNs were identified in our dataset. Our results highlight 

that Phytophthora species possess large expansions of CRNs, more so than other genera. 

In particular, we found 91, 92 and 167 CRNs in Ph. capsici, Ph. sojae and Ph. infestans, 

respectively (SupplTable_3). Pilasporangium apinafurcum and Pl. viticola also feature 

large numbers of CRNs relative to other species, having 52 and 65 CRNs each 

respectively. CRN numbers were sparse in the Albuginales and Saprolegniales orders, 

with some species only possessing one copy (Ap. invadans, S. diclina and S. parasitica) 

(SupplTable_3). Thus, it would appear that CRNs play an important role in plant 

infection for Phytophthora species. Only 177 CRNs were predicted to be secreted in our 

SignalP analysis (SupplTable_3). However, previous reports have indicated that a large 

number of CRNs may be secreted via unconventional protein secretion systems that can’t 

be predicted in silico (83). 
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Oomycete Protease Inhibitors 

Plants and plant pathogens are constantly undergoing an evolutionary arms race with one 

another (84). One such example of this is the production and secretion of proteases by 

plants to degrade pathogen effectors. To counteract this, plant pathogens, including 

oomycetes, have coevolved to secrete protease inhibitors (4). These protease inhibitors 

block the defensive mechanism of plant proteases. We have identified a number of 

secreted oomycete protease inhibitors. The most abundant were Kazal-type protease 

inhibitors (507 in total, 355 were predicted to be secreted) and cathepsin propeptide 

inhibitors (155 in total, 95 were predicted to be secreted) (SupplTable_3). Counts of 

cathepsin propeptide inhibitors were consistent across our oomycete dataset with most 

species possessing less than 5 copies (SupplTable_3). Kazal-type protease inhibitors 

were more abundant and not evenly distributed, for example expansions were recorded 

in several species, including Py. insidiosum (43 copies), Ph. sojae (39 copies) and Ph. 

infestans (33 copies). Most other species contained less than 15 Kazal-type protease 

inhibitors. Albugo species have less than five copies each (SupplTable_3). 

 

RxLR Effectors 

Numerous in silico analyses using varying bioinformatics strategies have been employed 

in previous analyses to identify candidate RxLR effectors in oomycetes. The most liberal 

was first described by Win et al, where all possible open reading frames are examined for 

the presence of a signal peptide within the first 30 amino acid residues followed by an 

RxLR motif between residues 30 and 60 (Win method) (85). Extensions to this method 

have been developed (27, 85) with searches for a downstream EER motif (or a loose 

match), the EER motif is present in numerous validated RxLR effectors (regular 

expression or regex) (27). Hidden Markov Model (HMM) profiles derived from 
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alignments of RxLR-EER effectors have also been implemented successfully (27). The 

initial genome analyses that described the Ph. infestans RxLR complement utilised all 

three approaches above as well as additional criteria such as exhibiting sequence 

homology to previously known RxLRs or belonging to protein families where the 

majority of proteins are deemed putative RxLRs based on Win, regex or HMM criteria. 

Depending on the method or combination of methods utilised it is possible to detect a 

broad range of potential RxLR effectors (8). As RxLR effectors are most abundant and 

well characterised in Phytophthora species (8), a strict Phytophthora biased approach was 

taken to identify candidate oomycete RxLR effectors. To be classified as a putative RxLR 

effector, proteins or ORFs had to meet one of the following RxLR criteria, Win method, 

HMMsearch, Regex or Homologous (see methods). 

The four RxLR criteria were tested on the predicted proteomes of each of the 37 

oomycete species in our dataset. Utilising predicted proteins adds an additional criteria 

layer but may potentially miss open reading frames that were missed by gene callers 

during annotation. It is obvious some of the criteria above may detect a large number of 

false positives. For example, a number of the 563 ORFS counted as putative RxLRs in 

Ph. infestans were found by Blast homology alone and do not contain a RxLR domain, 

using these as “bait” in a BlastP search against other oomycetes will locate non RxLR 

domain containing homologs. However, we have noticed that when the RxLR repertoire 

of model genomes such as Ph. infestans, Ph. sojae and Ph. ramorum are referenced in the 

literature they normally consider homologs of known RxLRs located via BlastP alone as 

putative RxLRs. Our analysis extends this as we use all proteins from these model 

genomes as bait sequences in our analysis. We also searched for the presence of repeating 

sequence motifs termed “W”, “Y” and “L” that are found towards the C-terminus of a 

number of Phytophthora cytoplasmic effectors (31). These domains form an alpha-helical 
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fold known as the WY fold that may provide structural flexibility (32). However, due to 

the sequence divergence observed in Phytophthora RxLRs it seems likely alternative 

folds most likely exist (86).  

Putative RxLRs along with sequence information and the criteria that were satisfied 

in classifying the proteins as putative RxLRs are listed in SupplTable_6. For 

completeness and to allow comparisons to previous analyses we also searched all putative 

ORFs that were non-overlapping and longer than 70 amino acids with the criteria above 

(SupplTable_7). We do not discuss the results of these counts here and instead 

concentrate on counts related to predicted protein coding genes. The reason for this is to 

maintain consistency, as our secretome analysis also considered putative protein coding 

genes and did not look at all possible open reading frames.  

In total, 4131 proteins in our dataset matched one or more of the RxLR criteria, 

ranging from a low of 6 proteins in Al. candida to a high of 603 in Ph. infestans 

(SupplTable_5). Unsurprisingly, the vast majority (3,600 or 87%) of the 4,131 proteins 

are located in Peronosporales species (SupplTable_5). A homology network of the 

RxLRs like proteins was generated to investigate the evolutionary relationships within 

the putative RxLRs (Figure 5). An interactive and searchable version of the network is 

available online at https://oomycetes.github.io. The online version of the network permits 

users to query the network based on protein ID and retrieve sequence information as well 

as performing BlastP search against the NCBI database. Furthermore, users can filter 

proteins based on genus or the RxLR criteria used (Win, regex, HMM or BLAST). 

Proteins can also be viewed based on the presence or absence of the WY fold.  
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Figure 5. Homology network of 4,131 putative RxLR effectors. Each protein is represented by a 

node. An edge joining two nodes represents shared sequence similarity between the two proteins 

(E value cut off of 10-10). Many disconnected clusters of RxLR effectors are present, indicating no 

significant homology between clusters. Nodes are coloured by genus. Clusters discussed in text 

are labelled. An interactive version of this network is available online at 

https://oomycetes.github.io/rxlrs.html. 
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The RxLR network is composed of 4131 nodes, each node corresponds to an 

individual protein and 184,302 edges, edges link nodes if they are homologous. The 

putative RxLRs were clustered into 357 connected components (Figure 5). Nodes had an 

average degree of 89 (i.e. on average, each protein in the network has 89 homologs). The 

fact that the network is comprised of a number of disconnected clusters (individual 

clusters of connected nodes that are not connected to other clusters) shows there are no 

significant sequence similarities between some clusters (Figure 5). 

A significant proportion (1,852 or 44.8%) of the 4,131 proteins only have one line 

of evidence labelling them as RxLRs. For example, 1,045 (25.3%) are located based on 

BlastP homology alone (therefore the RxLR domain is absent), 683 (16.5%) based on the 

Win method alone, 25 (0.6%) based on the HMM alone and 99 (2.4%) on Regex alone 

(Figure 6 & SupplFigure_3). Of the 1045 proteins that were located by sequence 

homology exclusively (no evidence of RxLR motif), 981 of these are found in species 

from the Peronosporales order and may not be functional RxLRs, although 287 of these 

homologs were found to contain the WY fold (SupplTable_6). Conversely 967 (23.4%) 

of all proteins met the four RxLR criteria and all of these were Phytophthora proteins 

(Figure 6, SupplFigure_3 & SupplTable_6). Furthermore 401 of these 967 proteins also 

contained the WY fold. Overall of the 4131 proteins, 1123 were found to contain the WY 

fold and all proteins are from Peronosporales species (SupplTable_6). 

On closer examination of the similarity network and the criteria responsible for 

labelling proteins as putative RxLRs, it is obvious that a number of clusters are potentially 

false positives. For example, C1, contains a number of Peronosporales and Pythiales 

proteins, excluding a single edge to a large Phytophthora cluster, it forms a distinct cluster 

which shares no similarity to any other cluster in the network. The vast majority of 
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proteins in this cluster have been labelled putative RxLRs based on BlastP alone 

(SupplFigure_3 and SupplTable_6). 

 

 
  

Figure 6. Venn diagram showing the overlap between the 4 RxLR criteria (Win, regex, HMM 

and Blast) used in this analysis. 967 Phytophthora proteins are labelled as putative RxLRs based 

on all 4 criteria. 
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Similarly, C2 is composed of proteins that are also mostly from Pythium species 

(SupplFigure_3). All of these proteins have been labelled as RxLR based on the Win 

method exclusively. C3 is composed of Peronosporales proteins only but all of these have 

been detected using BlastP alone (SupplFigure_3). There are many other examples of 

potential false positive RxLR clusters including C4 (detected using Win and BlastP) and 

C5 (detected using Win exclusively) (SupplFigure_3 and SupplTable_6). It is important 

to note however that the RxLR search performed here, labelled a S. parasitica protein 

(SAPA|10778) as being a putative RxLR. This putative RxLR effector protein (SPHTP1) 

has been shown to be translocated into fish cells and may play an important role in 

Saprolegniosis (87). The uptake of SPHTP1is mediated by an interaction with tyrosine-

O-sulfate–modified cell-surface molecules (88) and not via phospholipids, as is the case 

for RxLR-effectors from oomycete plant pathogens (89). Examining our RxLR network 

we see that SPHTP1 lies in a cluster which is composed primarily of Saprolegnia proteins 

with some of these proteins having homology to Plasmopara and Pythium proteins 

(Figure 5). S. parasitica contains 5 homologs of this protein while S. diclina contains 3. 

Similarly, our RxLR analysis labelled a H. arabidopsidis protein (HYAP|12966 or 

ATR13) as being a putative RxLR again based on the Win method alone. ATR13 is found 

as a singleton with no homology to any other putative RxLR in our network which is 

unsurprising as high levels of polymorphism have been reported for this protein. It has 

been shown that ATR13 has the ability to translocate into host cells (90). Similarly, 

another previously described RxLR effector from H. arabidopsidis, ATR1 

(HYAP|01864) was also labelled as a putative RxLR based on Win and Regex criteria 

(SupplTable_6).  

C6 contains 33 RxLRs, with proteins from every genus in our dataset except 

Albugo. All of these proteins have homology to reference RxLRs (SupplTable_6) and 



 121 

are classified RxLRs based on the Win or regex criteria. The group forms a clique (a 

subnetwork where each member is connected to every other member), showing that every 

protein in the group is homologous to every other protein. On average these proteins have 

sequence similarity of 52%. The position of the RxLR motif is ubiquitously conserved 

(not shown). However, the majority of these proteins contain a KDEL endoplasmic 

retention (ER) motif at the C-terminal as previously reported for the Py. oligandrum 

protein represented in this cluster (62). Proteins with this ER motif are not predicted to 

be secreted and are therefore likely false positives (62). Overall 75 putative of the 4131 

putative RxLRs contain the KDEL motif (or a variation) (SupplTable_6). 

Of the 4131 putative RxLRs, 3011 were located based on Win, regex or HMM 

meaning 1120 have been labelled due to homology to a reference RxLR alone or they 

may also contain a KDEL retention motif so may not be secreted. Ignoring these 1120 

proteins we observe that Ph. infestans is predicted to contain 470 RxLRs a figure that is 

consistent with the 563 putative RxLR figure reported based on ORFs (8). Furthermore 

95 of these 563 ORFs were labelled based on homology alone therefore giving an overall 

number of 468 if non-RxLR containing homologs are excluded. Similarly, the 

comparison between our Ph. sojae RxLR prediction and previous studies is consistent 

(338 vs. 312).  
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Conclusion 

The first oomycete genome sequences were published in 2006 (26) and at the time of 

writing there are 37 oomycete genome assemblies publicly available. Due to their 

importance as pathogens of economically important crops and animals, along with the 

ongoing advances and reductions in costs associated with next generation sequencing 

technologies, this number is expected to increase dramatically over the coming years. In 

this analysis we have performed an inventory of known oomycete effectors in all 

available genome sequences. As well as quantifying their occurrences we have in a 

number of cases also investigated their evolutionary history. 

This genome wide survey provides an up to date inventory of previously described 

effectors in the Class Oomycota. It is by no means a complete list and we are cognisant 

that many additional effectors will be characterised in the coming years especially with 

improved host/pathogen interaction omics studies. However, it does provide the current 

overview of the arsenal of known effectors in this economically important class of animal 

and plant pathogens. 

We have also examined the presence and absence of glycoside hydrolases and 

found a diverse range of families across the oomycote class. The majority (54%) of these 

are secreted. Glycoside hydrolase families 18, 19 and 48 all have chitinase activity. A 

homology network (SupplFigure_2) showed that there is no sequence homology 

between family members 18 and 19. Interestingly, family 18 can be subdivided into 4 

distinct clusters indicating that while family members have the same enzymatic function 

they do not share sequence similarity and confirm that family 18 has different subclasses. 

Our analysis has also detected the presence of Immunoglobulin A peptidases in Pythiales 

species and Aphanomyces species (Figure 4). Some of these species are animal pathogens 
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and it is possible that their presence may be important in suppressing the immune 

response of their animal hosts. 

We have also catalogued the putative RxLR repertoire of all 37 oomycete species. 

Our results are consistent with others in showing that Phytophthora species have 

undergone expansions in these proteins. We are aware that this analysis may be reporting 

false positives particularly for species outside the Peronosporales order. However, a 

number of previously described RxLR effectors such as H. arabidopsidis ATR1 & 

ATR13 were detected as was SPHTP1 S. parasitica. We are also aware that we may be 

underreporting the number of RxLRs as we do not analyse all possible open reading 

frames and instead concentrate on predicted protein coding genes, this decision was taken 

as our secretome analysis also used protein coding genes. Furthermore, using open 

reading frames could in itself lead to the reporting of false positives by reporting 

pseudogenes or non-coding regions of the genome. The confirmation of all putative 

RxLRs is beyond the scope of this in silico catalogue however detailed sequence 

information on all proteins is provided in supplementary information. 
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Materials and Methods 

Dataset Assembly 

The predicted proteomes for 23 oomycete species were obtained from public databases 

(Table 1). Predicted proteomes for another 14 oomycete species (10 Phytophthora 

species, Pl. viticola, Pi. apinafurcum, Py. insidiosum and Py. oligandrum) were generated 

from publicly available data using AUGUSTUS (91) (Table 1). Templates for ab initio 

protein prediction were generated for AUGUSTUS using assembly and EST data from a 

number of reference oomycete species. Ph. capsici was used as a reference for Ph. 

agathidicida, Ph. multivora, Ph. pluvialis and Ph. taxon totara. Ph. sojae was used as a 

reference for Ph. cinnamomi, Ph. cryptogea, Ph. fragariae, Ph. pinifolia, Ph. pisi, and 

Ph. rubi. Pl. halstedii was used as a reference for Pl. viticola. Py. ultimum var. ultimum 

was used as a reference for the two Pythium species. GeneMark-ES (92) was used in 

addition to AUGUSTUS for predicting proteins of Pi. apinafurcum. The final dataset 

contained 590,896 proteins from 37 predicted oomycete proteomes (Table 1). All 

proteomes used in this analysis as well as pipelines and scripts for identification of 

effectors, secretome and RxLRs are available at 

https://github.com/oomycetes/oomycetes.github.io/tree/master/SupplementaryMaterial. 

 

Identification of Putative Effectors 

InterProScan 5 (51) was run on all 590,896 predicted oomycete proteins in our dataset. 

Any proteins reported by InterProScan as having a Pfam domain that could be implicated 

in pathogenesis were classified as potential effectors (SupplTable_3). The list of 

pathogenic Pfam domains considered were based on a number of previous analyses (14, 

26, 37).  
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Identification of Putatively Secreted Proteins 

For all 590,896 proteins, transmembrane domain prediction was carried out using THMM 

(93) and signal peptides were predicted using SignalP v3 (94). Proteins that had HMM S 

probability ³ 0.9, NN Ymax score ³ 0.5, NN D-score ³ 0.5 with predicted localization 

“Secreted” and no transmembrane domain after signal peptide cleavage site were 

considered to be putatively secreted. 

 

Enrichment Analyses 

Enrichment for particular Pfam and GO terms was undertaken in Blast2GO (95) by 

comparing the frequency of GO terms and Pfam domains in the secretome compared to 

the non-secreted proportion of the proteome using Fisher’s exact test corrected for false 

discovery rate (FDR) (50). Only Pfam domains or GO terms with enrichment p-value   

< 0.05 are reported.  

 

Identification of Putative RxLR Effectors 

Proteins were classified as putative RxLR effectors if they passed one of the following 

four criteria: 

1) Win method: The protein contained a signal peptide in residues 1-30 followed 

by an RxLR motif within residues 30-60 (85). 

2) HMMsearch: A Hidden Markov Model was run on all proteins predicted to be 

secreted to detect the RxLR motif using the ‘cropped.hmm’ HMM profile 

constructed by Whisson et al (27). This accounts for variations in the RxLR and 

EER motifs. Matches with a bit score > 0 were retained.  

3) Regex: The protein must contain a signal peptide between residues 10-40, an 

RxLR motif within the following 100 residues followed by the EER motif within 
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40 residues downstream of the RxLR (allowing replacements of E to D and R to 

K) (27). The regular expression used was 

‘^.{10,40}.{1,96}R.LR.{1,40}[ED][ED][KR]’. 

4) Homologous: The set of 1,207 putative Phytophthora RxLRs effectors were 

downloaded for Ph. infestans, Ph. ramorum and Ph. sojae (8). These were used 

as reference RxLRs in the RxLR homology search. Proteins located via a BlastP 

search (E value cut off 10-20) to a reference Phytophthora RxLR were considered 

putative RxLRs. 

A HMM search was run on all candidate RxLRs to determine if they contain the WY fold 

using the HMM developed by Boutemy et al. (86). 

 

Identification of Crinkler Effectors 

String searches were performed to account for variations in the Crinkler “LxLFLAK” 

motif. First, a search was carried out with the regular expression ‘^.{30,70}LFLA[RK]’. 

All hits were aligned using MUSCLE (v3.8.31) (96). A hidden Markov model (HMM) 

was built for the alignment using HMMER (3.1) (97). The HMM was searched against 

our entire dataset using HMMsearch to identify homologs. A second string search was 

carried out using the regular expression ‘^.{30,70}LYLA[RK]’. Again, hits from this 

search were aligned using MUSCLE and a HMM was built and searched against our 

dataset. The two results were merged as our candidate Crinkler effector set. These 

candidates were manually inspected and any proteins that did not contain obvious an 

“LxLFLAK-like” motif were excluded.  
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Generation of Homology Networks 

Homology networks were generated for a number of protein families. In each instance, 

an all-vs-all BLASTp search (98) was run against each member of the family with an E 

value cut-off of 10-10 for the chitinase and NLP networks and 10-5 for the RxLR network. 

Each protein was represented by a node in the network. Two proteins were connected by 

an undirected edge if they were identified as homologous in our all-vs-all BLASTp 

search. The network was visualised and annotated in Gephi (99) and arranged using the 

Fruchterman Reingold layout (100). Network statistics were calculated within Gephi. 

Online interactive versions of all networks are available at https://oomycetes.github.io. 

Protein/node information is available to view in the network. The networks can be filtered 

to hide/show particular proteins by protein ID, species, genus or order. 

 

Maximum-likelihood Phylogenetic Reconstruction of Effector Families 

For the NLP phylogeny, the 25 Type 2 NLPs were used as bait sequences in a BLASTp 

(98) homology search (E value cut-off of 10-20) against a local database of 8,805,033 

proteins (63). All homologs were aligned using MUSCLE (96) and manually edited 

giving a final alignment of 460 amino acids. Molelgenerator inferred that the optimum 

model of substitution was the WAG model of substitution (101). A maximum likelihood 

phylogeny was reconstructed in PhyML using this model and 100 bootstrap replicates 

were undertaken (102). The final tree was visualised and annotated with iTOL (103). 

For the IgA peptidase containing proteins, all 40 were aligned using MUSCLE 

and edited with to give a final alignment of 770 amino acids. Molelgenerator inferred that 

the optimum model of substitution was the WAG model of substitution. A maximum-

likelihood phylogeny of all IgA peptidase containing proteins was generated using a 

WAG substitution model in PhyML and 100 bootstrap replicates were undertaken. The 

final tree was visualised and annotated with iTOL (103). 
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Supplementary Data 

Supplementary data for this chapter is available from the publisher website: 

https://msphere.asm.org/content/2/6/e00408-17/figures-only. 

Supplementary data is also available at the following GitHub repository: 

https://github.com/jamiemcg/ThesisSupplementaryMaterial 

 

Supplementary Figures 

Suppl_Figure1: Heatmap of enriched GO terms in oomycete secretomes. Terms are 

ordered on the number of the times they are observed. A) corresponds to biological 

process and B) corresponds to molecular function. 

Suppl_Figure2: Homology network of 281 oomycete chitinases. Each protein is 

represented by a node. An edge joining two nodes represents shared sequence similarity 

between the two proteins (E value cut off of 10-10). All members of GH family 19 are 

contained in a single cluster. Members of GH family 18 are separated into five clusters. 

One singleton is present in the network, a GH 48 family protein belonging to Ph. 

kernoviae. Nodes are coloured by order. An interactive version of this network is 

available online at https://oomycetes.github.io/chitinases.html.  

Suppl_Figure3: Homology network of 4131 putative oomycete RxLR effectors. 

Identical to Figure 5 except Nodes are coloured by the number of RxLR criteria that 

labelled a particular node as being a putative RxLR. An interactive version of this network 

is available online at https://oomycetes.github.io/rxlrs.html. 

 

Supplementary Tables 

SupplTable_1: Overall counts of predicted secreted oomycetes proteins per species. 

Signal peptides were predicted using SignalP 3. 



 130 

SupplTable_2: Pfam domains and GO terms enriched in the secretome of cognate 

oomycete genomes. Only domains or terms significantly enriched are shown. 

SupplTable_3: Overall counts of oomycetes proteins with pathogenicity related 

domains. Proteins were functionally annotated using InterProScan 5. Counts of secreted 

oomycete proteins with pathogenicity related domains are also given.  

SupplTable_4: Counts of oomycete glycoside hydrolase family proteins. InterProScan 5 

was used to functionally annotate proteins and identify glycoside hydrolases. In total 4521 

glycoside hydrolases were identified, distributed across 47 glycoside hydrolase families. 

Corresponding Pfam IDs are marked. 

SupplTable_5: Overall counts (4131) of putative RxLR proteins detected per species. 

Proteins detected by Win, regex, HMM or BLAST are given. Column G gives counts for 

proteins per species that have been detected by Win, regex or HMM therefore proteins 

found by homology searches alone. This count also omits proteins that were reported to 

contain a putative retention motif. 

SupplTable_6: List of all putative RxLR proteins detected in this analysis. Sequence 

information, RxLR position and cleavage site is also included. The methodology used for 

labelling the protein as a putative RxLR is given in columns E-H. 

SupplTable_7: List of all putative RxLR ORFs detected in this analysis. Sequence 

information, RxLR position and cleavage site is also included. The methodology used for 

labelling the ORF as a putative RxLR is given in columns C-G. 
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Abstract 

The oomycetes are a class of microscopic, filamentous eukaryotes within the 

stramenopiles-alveolates-rhizaria (SAR) eukaryotic supergroup. They include some of 

the most destructive pathogens of animals and plants, such as Phytophthora infestans, the 

causative agent of late potato blight. Despite the threat they pose to worldwide food 

security and natural ecosystems, there is a lack of tools and databases available to study 

oomycete genetics and evolution. To this end, we have developed the Oomycete Gene 

Order Browser (OGOB), a curated database that facilitates comparative genomic and 

syntenic analyses of oomycete species. OGOB incorporates genomic data for 20 

oomycete species including functional annotations and a number of bioinformatics tools. 

OGOB hosts a robust set of orthologous oomycete genes for evolutionary analyses. Here 

we present the structure and function of OGOB as well as a number of comparative 

genomic analyses we have performed to better understand oomycete genome evolution. 

We analyse the extent of oomycete gene duplication and identify tandem gene duplication 

as a driving force of the evolution and expansion of secreted oomycete genes. We use 

phylostratigraphy to compare the composition of oomycete genomes. We identify core 

genes that are present and microsyntenically conserved in oomycete lineages and identify 

the degree of microsynteny between each pair of 20 species housed in OGOB. Consistent 

with previous comparative synteny analyses between a small number of oomycete 

species, our results reveal an extensive degree of microsyntenic conservation amongst 

genes with housekeeping functions within the oomycetes. OGOB is available at 

https://ogob.ie. 
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Introduction 

The oomycetes are a class of filamentous, eukaryotic microorganisms that include some 

of the most devastating plant and animal pathogens (Beakes et al. 2012). They represent 

one of the biggest threats to worldwide food security and natural ecosystems (Fisher et 

al. 2012). Oomycetes resemble fungi in terms of their morphology, filamentous growth, 

ecological niches and modes of nutrition (Richards et al. 2006). Despite their extensive 

similarities, the evolutionary relationship between oomycetes and fungi represent one of 

the most distantly related evolutionary groupings within the eukaryotes (Burki 2014). 

Oomycetes are members of the stramenopiles lineage of the Stramenopiles-Alveolata-

Rhizaria eukaryotic supergroup, with close relationships to the diatoms and brown algae 

(Burki 2014). Within the oomycete class, there are a number of highly diverse orders, 

including the Peronosporales, Pythiales, Albuginales and Saprolegniales orders (Figure 

1). There is significant diversity both between and within these orders in terms of lifestyle, 

pathogenicity and host range. The Peronosporales order is the most extensively studied 

order, consisting largely of phytopathogens, including the hemibiotrophic genus 

Phytophthora (the “plant destroyers”) (Figure 1). The most notorious of which is 

Phytophthora infestans, the causative agent of late potato blight and causative agent of 

the Irish potato famine which resulted in the death of one million people in Ireland and 

the emigration of another million (Haas et al. 2009). Phytophthora infestans is reported 

to cause billions of euros’ worth of worldwide potato crop loss annually (Haverkort et al. 

2008). Other highly destructive Phytophthora species include Ph. sojae and Ph. 

ramorum. Ph. sojae has a narrow host range, infecting soybean and costs between one 

and two billion dollars in crop loss per year (Tyler 2006; Tyler 2007). Phytophthora 

ramorum, in contrast, has a very wide host range with more than 100 host species reported 

and is destroying forest ecosystems worldwide (Rizzo et al. 2005; Tyler 2006). Other 
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members of the Peronosporales order include the obligate biotrophic genera 

Hyaloperonospora and Plasmopara (Figure 1), which cause downy mildew in a number 

of economically important crops (Coates and Beynon 2010; Gascuel et al. 2015; Sharma 

et al. 2015). The Pythiales order includes the cosmopolitan genus Pythium (Figure 1), 

which are generalist necrotrophs with broad host ranges that cause root rot in many 

important crops and ornamental plants that mainly inhabit soils (Lévesque et al. 2010; 

Adhikari et al. 2013). Pythium ultimum var. ultimum (hereafter referred to as Py. ultimum) 

is one of the most pathogenic Pythium species, with a broad host range including corn, 

soybean, wheat and ornamental plants (Cheung et al. 2008). The Albuginales order is a 

more basal order (Figure 1) that includes the obligate biotrophic genus Albugo which 

causes “white blister rust” disease in various Brassicaceae species, including mustard and 

cabbage family plants (Kemen et al. 2011; Links et al. 2011). The Saprolegniales order 

(Figure 1) include animal and plant pathogens from the Aphanomyces genus (Diéguez-

Uribeondo et al. 2009; Makkonen et al. 2016), and the Saprolegnia genus which causes 

severe infection of animals, in particular they cause “cotton mould” disease in many fish 

that are important in the global aquaculture industry (van den Berg et al. 2013; Jiang et 

al. 2013).
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Figure 1. Matrix representation with parsimony (MRP) supertree of the 17,738 OGOB pillars that contain at least 4 genes. The supertree was generated 

in CLANN and is rooted at the Saprolegniales order. All nodes have 100% bootstrap support. Species are coloured by order as follows: green, 

Albuginales; red, Peronosporales; blue, Pythiales; orange, Saprolegniales. 
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The genomes of a number of oomycete species have been sequenced in recent 

years and have revealed substantial differences in terms of genome size, gene content and 

organisation. Assembly sizes of sequenced oomycetes range from 33 Mb for Al. laibachii 

(Kemen et al. 2011), to 229 Mb for Ph. infestans (Haas et al. 2009) (Table 1). Differences 

in genome size are largely accounted for by proliferations of repetitive DNA and 

transposable elements as opposed to increases in the number of genes. For example, 

repetitive DNA accounts for 74% of the Ph. infestans genome (Haas et al. 2009). Where 

differences in gene content do occur, they may be due to expansions of large arsenals of 

secreted effector proteins that facilitate pathogenicity (Kamoun 2006; McGowan and 

Fitzpatrick 2017). Effector genes mediate infection by degrading host cell components, 

dampening host immune responses and inducing necrosis. Previous analyses have 

detected a high degree of synteny (conserved gene order) between Phytophthora species 

(Jiang et al. 2006; Haas et al. 2009; Ospina-Giraldo et al. 2010). Conservation of synteny 

also extends to Hy. arabidopsidis (Baxter et al. 2010), however when compared to more 

distantly related species such as Pythium (Lévesque et al. 2010) or Albugo (Kemen et al. 

2011) species, a lesser degree of syntenic conservation is observed. Syntenically 

conserved regions of the genome are typically gene-dense and contain housekeeping 

genes whereas effector proteins are found at synteny breakpoints in gene-sparse, repeat-

rich regions of the genome (Tyler 2006; Haas et al. 2009; Jiang and Tyler 2012). 



 148 

Table 1. Genome statistics and references for oomycete species hosted on OGOB. 

Species Assembly 
Size (Mb) 

Scaffolds N50 L50 % GC % Gaps Genes Orfansa G50 G90 BUSCOb Reference 

Phytophthora 
infestans 

228.5 4,921  1588.6 38 51.0 16.8 17,797  793  18  103  95.8% Haas et al. 2009 

Phytophthora 
parasitica 

82.4 708  888.3 25 49.5 34.6 23,121  3,130  20  87  94.1% Broad Institute 

Plasmopara 
halstedii 

75.3 3,162  1546.2 16 45.3 11.3 15,469  4,830  16  52  93.2% Sharma et al. 2015 

Phytophthora 
capsici 

64.0 917  705.7 29 50.4 12.5 19,805  390  27  89  91.0% Lamour et al. 2012 

Hyaloperonospora 
arabidopsidis 

78.9 3,044  332.4 70 47.2 10.2 14,321  4,132  59  242  91.8% Baxter et al. 2010 

Phytophthora 
sojae 

82.6 83  7609.2 4 54.6 4.0 26,584  1,725  4  13  97.9% Tyler et al. 2006 

Phytophthora 
ramorum 

66.7 2,576  308.0 63 53.9 18.3 15,743  150  47  548  97.4% Tyler et al. 2006 

Phytophthora 
kernoviae 

43.2 1,805  73.0 162 49.7 0.4 9,923  492  163  603  96.2% Sambles et al. 2015 

Phytopythium 
vexans 

33.8 3,685  29.2 340 58.9 0.8 11,958  251  338  1,365  93.2% Adhikari et al. 
2013 

Pythium 
iwayamai 

43.2 11,541  11.0 1107 55.1 3.6 14,869  336  1,086  4,351  80.3% Adhikari et al. 
2013 

Pythium 
irregulare  

43.0 5,887  23.2 494 53.8 0.7 13,805  167  473  2,343  94.0% Adhikari et al. 
2013 

 

  



 149 

Table 1. Continued. 

Species Assembly 
Size (Mb) 

Scaffolds N50 L50 % 
GC 

% 
Gaps 

Genes Orfansa G50 G90 BUSCOb Reference 

Pythium 
ultimum 

44.9 975  837.8 19 52.3 4.7 15,290  557  19  54  97.0% Lévesque et al. 
2010 

Pythium 
arrhenomanes 

44.7 10,972  9.8 1195 56.9 4.2 13,805  299  1,010  4,252  81.2% Adhikari et al. 
2013 

Pythium 
aphanidermatum 

35.9 1,774  37.4 270 53.8 4.5 12,312  189  244  873  90.6% Adhikari et al. 
2013 

Albugo 
laibachii 

32.8 3,827  69.4 130 44.3 0.0 12,567  2,238  106  391  80.3% Kemen et al. 2011 

Albugo 
candida 

34.5 5,216  51.4 171 43.2 0.0 10,698  2,334  108  443  79.9% Links et al. 2011 

Saprolegnia 
diclina 

62.9 390  602.6 34 58.6 35.7 17,359  361  26  95  93.2% Broad Institute 

Saprolegnia 
parasitica 

53.1 1,442  280.9 46 58.5 9.3 20,088  603  41  371  87.2% Jiang et al. 2013 

Aphanomyces 
invadans 

71.4 481  1130.2 19 54.2 41.9 15,248  986  14  56  90.6% Broad Institute 

Aphanomyces 
astaci 

75.8 835  657.5 31 49.8 22.8 19,119  2,127  24  109  87.2% Broad Institute 

 

aOrphans were identified as species-specific in our phylostratigraphy analysis.   

bPercentage completeness as determined by BUSCO v3 against the Alveolata/Stramenopile BUSCO data set.



 150 

Despite their economic impact and the threat that they pose to worldwide food 

security, there is a lack of tools and databases available to study oomycete genes and 

genomes. This is particularly striking when compared with other taxonomic groups such 

as fungi. Databases such as Pythium Genome Database and the Comprehensive 

Phytopathogen Genomics Resource (Hamilton et al. 2011) have been retired. FungiDB 

contains genome data for 16 oomycete species including information pertaining to 

orthology and synteny (Basenko et al. 2018), however the genome browser in FungiDB 

displays a to-scale representation of chromosomal regions making it unsuitable for the 

analysis of gene order and evolution. EumicrobeDB (Panda et al. 2018) was recently 

published and contains the genomes of several oomycete species and a large number of 

bioinformatics tools. EumicrobeDB has a tool for comparing syntenic regions between 

species, however, it is limited to comparing two species and displays a to-scale 

representation of chromosomal regions. Furthermore, it is not immediately obvious if an 

ortholog is absent in a species or if it is present in another area of the genome. These 

issues make EumicrobeDB unsuitable for detailed analysis of gene order and evolution 

across multiple species. To overcome this, we have developed the Oomycete Gene Order 

Browser (OGOB). 

OGOB is a curated database that currently hosts genomic data for 20 oomycete 

species. Species included in OGOB were selected to include a broad range of 

representatives from the oomycete class and also based on the availability of gene sets. A 

recent review carried out a survey to rank the “top 10” oomycetes in terms of their 

economic and scientific importance (Kamoun et al. 2015). OGOB hosts eight of these 

species. OGOB also hosts a number of useful bioinformatics tools that allow users to 

carry out bioinformatic analyses in the web browser without installing local command 

line tools. This makes OGOB useful for comparative genomic, syntenic and evolutionary 
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analyses of oomycete genomes as well as for the analysis of individual genes and gene 

families. OGOB is based on the original engine developed for the Yeast Gene Order 

Browser (YGOB) (Byrne and Wolfe 2005; Byrne and Wolfe 2006), to which we have 

made a number of functional and visual upgrades. 

Here we describe the structure and functionality of OGOB. We have also 

undertaken a number of comparative genomic analyses using the genome data housed in 

OGOB. These analyses yield insights into the evolution of oomycete genomes and the 

effect that gene duplication has had in shaping the gene repertoire of individual species. 

Using OGOB, we have investigated the overall conserved core of oomycete genes as well 

as individual orders. Furthermore, we have also completed a comprehensive analysis of 

the 190 possible pairwise synteny comparisons between the 20 species hosted in OGOB. 

OGOB is available at https://ogob.ie.  
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Results and Discussion 

OGOB Structure and Functions 

OGOB includes 20 oomycete species (Table 1) that were selected to include a broad 

range of representatives from the oomycete class and based on the availability of gene 

sets. The database hosts six Phytophthora species (Ph. infestans, Ph. parasitica, Ph. 

capsici, Ph. sojae, Ph. ramorum and Ph. kernoviae), two downy mildews (Pl. halstedii 

and Hy. arabidopsidis), five Pythium species (Py. iwayamai, Py. irregulare, Py. ultimum 

var. ultimum, Py. arrhenomanes and Py. aphanidermatum), Phytopythium vexans, two 

Albugo species (Al. candida and Al. laibachii), two Saprolegnia species (Sa. diclina and 

Sa. parasitica) and two Aphanomyces species (Ap. invadans and Ap. astaci). A total of 

319,881 putative protein coding genes are hosted by OGOB. 

Similar to YGOB (Byrne and Wolfe 2005), OGOB’s visual browser contains two 

key structures: horizontal tracks and vertical orthology pillars (Figure 2A). The 

horizontal tracks represent chromosomal (scaffold) segments, with the species name 

shown to the right. The colours of gene boxes correspond to genes on the same scaffold. 

Vertical orthology pillars list orthologous genes across species. In OGOB, orthologs can 

be present and syntenically conserved, present and not syntenically conserved or absent. 

Gene boxes are coloured grey when there is no evidence of syntenic conservation. A pillar 

contains a vacant slot when an ortholog could not be found in that particular species. 

Links below each pillar (Figure 2A) allow users to retrieve the corresponding 

amino acid and nucleotide sequences for that pillar. Clicking the “i” button on any gene 

launches an information page for that gene showing any functional annotations (Figure 

2B). Clicking on any annotation will link the user to the relevant annotation database (e.g. 

Pfam and InterPro). The information page for each gene also has a BLAST facility that 

permits users to search the corresponding nucleotide/protein sequence against OGOB’s 
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gene/protein data sets. Users can also search against the full genome sequences or 

intergenic regions only. This facility allows users to confirm that a gene is missing from 

an assembly for example and in part helps overcome any of the shortfalls associated with 

genes that may have been missed during gene calling. Links at the top of each pillar 

(Figure 2A) allow users to construct phylogenetic trees (“Tree”), perform multiple 

sequence alignments (“Align”) and calculate evolutionary rates (“Rates”). Maximum 

likelihood phylogenies are generated using PhyML (Guindon et al. 2010) and displayed 

in an interactive interface that allows users to manipulate and root trees, implemented 

using phylotree.js (Figure 2C). Furthermore, users can also download phylogenies in 

Newick format for further processing. The rate of non-synonymous (dN) and synonymous 

substitutions (dS) are calculated using yn00 (Yang and Nielsen 2000). A dN/ds ratio > 1 is 

indicative of positive selection and is highlighted in OGOB (Figure 2D). Multiple 

sequence alignments are performed using MUSCLE (Edgar 2004) and displayed in an 

interactive interface implemented using MSAViewer (Yachdav et al. 2016), the 

consensus sequence for the pillar is also shown (Figure 2E). Clicking the “b” button on 

any gene in OGOB launches a BLAST search of that gene against the entire OGOB 

database. BLAST results are coloured to highlight orthologs, paralogs, tandem duplicates, 

singletons and syntenically conserved hits. Users can select hits from the BLAST search 

and perform the above functions. This allows users to quickly analyse BLAST hits 

without having to manually obtain their sequences. We have also integrated a search 

interface into OGOB that makes it easier to study particular genes or gene families 

without the need to know individual gene identifiers. For example, users can search for 

genes that contain specific Gene Ontology terms or Pfam domains and easily compare 

the presence or absence of gene families across species and investigate their syntenic 

context. In addition, we have incorporated BLAST search support allowing users to 
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search protein or nucleotide sequences against the OGOB database. The BLAST results 

page provides links to view hits in OGOB. 

Figure 2. The Oomycete Gene Order Browser. (A) OGOB Screenshot. Each horizontal track 

represents a chromosomal segment from one species, with species labels on the right. 
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Figure 2 (continued). Each box represents a protein coding gene, with the gene ID 

shown. Genes that are in the same pillar are orthologous. Each colour represents a 

chromosome/scaffold. A change in colour represents a breakdown in synteny. Genes 

coloured grey indicate a non-syntenic ortholog. Arrows under gene boxes represent the 

relative transcriptional orientation. Adjacent genes are connected by a sloid black 

connector. Connector are coloured grey if there is a gap in that genome. Double small 

bars connect non-adjacent genes that are < 5 genes apart and single small bars connect 

genes that are < 20 genes apart. Connectors are coloured orange if there is an inversion. 

In this screenshot, the browser is focused on PITG_00472, an mRNA splicing factor 

SYF2 gene. This gene is in a genomic segment that is syntenically conserved in the 

Peronosporales and Pythiales, as shown by the coloured blocks. (B) Gene info page 

showing functional annotations carried out by InterProScan, accessed by clicking the “i" 

button on gene boxes in OGOB. (C) Interactive maximum likelihood phylogeny of the 

genes in the same pillar as PITG_00472, accessed by clicking the “Tree” button at the top 

of pillars. (D) Pairwise yn00 evolutionary rates of genes in OGOB accessed by clicking 

the “Rates” button at the top of pillars. Genes highlighted green show evidence of positive 

selection, i.e. a dN/dS ratio ³ 1. (E) MUSCLE multiple sequence alignment of all genes in 

the same pillar as PITG_00472, accessed by clicking the “Align” button at the top of 

pillars. The consensus sequence of the pillar is also shown. 

 
 
 

A recent evaluation of synteny analysis methods has highlighted the negative 

effect that poor assembly contiguity has, resulting in an underestimation of syntenic 

conservation and the authors have recommend that a minimum N50 score of 1 Mb is 

required for robust synteny analysis (Liu et al. 2018). Many of the oomycete genome 

assemblies are highly fragmented for example Py. arrhenomanes has an N50 score of 



 156 

only 9.8 Kb and Py. iwayamai has an N50 score of 11.5 Kb (Table 1). We have decided 

to include such assemblies in OGOB and in our synteny analyses regardless of their 

fragmented nature, to ensure that a broad set of oomycete species are represented. 

Completeness of each genome assembly was assessed using BUSCO v3 (Waterhouse et 

al. 2018) based on the alveolata/stramenopiles set of common BUSCOs (benchmarking 

universal single-copy orthologs). This analysis revealed genome completeness ranging 

from 79.9% in Al. candida to 97.9% in Ph. sojae, with an overall average completeness 

of 90.6% (Table 1; Figure S1). This indicates that the genomes included in OGOB are 

of high completeness in terms of gene content despite their fragmented nature. Also, by 

anchoring OGOB on genomes with higher quality assemblies (e.g. Ph. sojae, Ph. 

infestans or Ap. invadans), we alleviate some of the negative effects that poor assembly 

quality has on synteny estimates. OGOB also uses a microsyntenic approach to determine 

syntenic conservation, focusing on local gene order and does not take into account 

intergenic distance, rather than whole genome alignments which succumb more severely 

to the effects of fragmented assemblies. 

N50 scores are the most common score used to assess the quality of genome 

assemblies. However, it is well known that the metric suffers many problems. N50 scores 

can be artificially inflated in assemblies with large proportions of gaps or misassemblies. 

Furthermore, it can be difficult to determine how fragmented an assembly is based on 

N50 score alone without knowing the number of contigs/scaffolds or predicted genome 

size and they do not take into account gene models. Here we report an alternative metric 

which we call a “G50 score”. An assembly’s G50 score is the minimum number of 

scaffolds that contain at least 50% percent of genes. More generally, Gx is the minimum 

number of contigs/scaffolds that contain at least x % of genes. G50 scores make it more 

immediately obvious how fragmented an assembly is and is better suited for synteny 
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analyses than N50 scores. G50 scores are roughly proportional to L50 scores (Table 1), 

except they do not take into account scaffolds that do not contain genes. For example, Ph. 

sojae has a G50 score of 4 (Table 1) indicating a very high quality, contiguous assembly 

whereby 4 scaffolds contain at least 50% of the total genes. In comparison, Py. iwayami 

has a G50 score of 1,086 (Table 1) indicating that this is a very fragmented assembly 

where 50% of the genes are distributed across 1,086 scaffolds. Without knowing any 

other metrics of the assembly we can tell that many scaffolds have only 1 gene therefore 

it is not possible to determine the syntenic context of these genes. Due to the fragmented 

nature, low N50 scores and poor G50 scores of some assemblies in OGOB, the levels of 

global synteny reported herein may be underestimates. 

 

Orthology Curation and Syntenolog Search 

Identification of orthologous genes is an important first step in many evolutionary and 

comparative genomic analyses and is essential for the functional annotation of newly 

sequenced genomes. Most orthology prediction methods rely on sequence similarity 

searches however events such as gene duplications, gene losses and rapid evolution can 

have a significant negative effect on the accuracy of orthology prediction. In OGOB, we 

use a combination of sequence similarity and syntenic conservation to identify and host 

a robust set of oomycete orthologs. 

Genes were initially added to orthology pillars in OGOB using a reciprocal best 

BLAST hits strategy. Genes that are each other’s best hits in a BLASTp search (E-value 

cut-off 1e-10) are considered orthologs and added to the same pillar. This strategy initially 

placed the 319,881 oomycete genes into 146,768 pillars. A large number of pillars were 

singleton pillars (pillars with only 1 gene) that had significant BLAST hits to genes in 

other pillars but not reciprocal best hits. Using a similar approach to Synteno-BLAST 
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which was used in CGOB (Maguire et al. 2013) and SearchDOGS (OhEigeartaigh et al. 

2014), we have developed an automated strategy called “Syntenolog Search” that 

combines results from BLAST searches with synteny information to identify 

microsyntenically conserved orthologs that cannot be identified using reciprocal best 

BLAST hits searches alone. We use the term “syntenolog” to describe syntenically 

conserved orthologs. Syntenolog Search systematically examines all singleton pillars to 

check if they can be merged with another pillar based on homology and microsyntenic 

context. Compared to Synteno-BLAST, we use a stricter E-value cut-off and a more 

permissive definition of microsynteny. Briefly, each singleton is searched against the 

OGOB database using BLASTp (E-value cut-off 1e-10). Hits are then examined for 

microsyntenic conservation to determine if there exists a pair of neighbouring orthologs, 

within a distance of 20 genes that serve as anchor points, i.e. the query gene and hit gene 

are in a conserved genomic neighbourhood. If such a hit exists, the two genes are 

considered syntenologs and the pillars are merged. For example, consider the two genes 

PITG_00248 and PPTG_10928, both of which are Papain family cysteine proteases 

(PF00112). These genes do not have reciprocal best hits in a BLASTp search, likely 

because they are both members of large paralogous families. However, they were 

identified as syntenologs by Syntenolog Search and as a result both genes were moved to 

the same pillar (Figure S2A). Upon manual inspection in OGOB, they are obvious 

orthologs. They share significant sequence similarity (1e-125) (Figure S2B, Figure S2C) 

to each other and are syntenically conserved, co-occurring at the same loci (i.e. distance 

= 0) (Figure S2A). This highlights the power of Syntenolog Search in identifying reliable 

orthologous relationships that cannot be identified using BLAST alone. Syntenolog 

Search inferred orthologous relationships for a further 22,708 oomycete genes, resulting 

in a final pillar count of 124,060. Thus, on average each pillar in OGOB has 2.58 genes. 
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Tandem Gene Duplications 

Gene duplication is a very common occurrence in eukaryotic species and is one of the 

main mechanisms by which species acquire new genes and potentially new functions 

(Kaessmann 2010). Tandem gene duplication occurs when duplicated genes are located 

adjacent to each other in the genome. Genes that arose via tandem duplication can 

subsequently undergo chromosomal rearrangement and become dispersed throughout the 

genome. Such occurrences are more difficult to identify. We set out to identify clusters 

of tandemly duplicated genes in each oomycete genome. We defined a tandem cluster as 

two or more adjacent genes that hit each other in a BLASTp search with an E-value cut-

off of 1e-10 and a highest scoring pair (HSP) length greater than half the length of the 

shortest sequence. 

In total 12,541 tandem clusters, corresponding to 29,717 genes, were identified 

across the 20 oomycete species (Table 2, Supplementary Table 1). The overall average 

number of genes per tandem cluster is 2.3 (Table 2, Supplementary Table 1). Ph. sojae 

has the highest number of tandem clusters with 1,389 tandemly duplicated clusters, which 

corresponds to 3,411 genes or 12.83% of the total genes (Table 2). The obligate 

biotrophic species Pl. halstedii, Al. laibachii and Al. candida have the smallest number 

of tandem clusters (149, 135, 195 clusters respectively) and also have the smallest 

proportions of their proteome belonging to tandem clusters (2.02%, 2.19% and 3.91% 

respectively) (Table 2). Tandemly duplicated genes in Sa. diclina represent the highest 

proportion of the proteome (15.35% corresponding to 2,664 genes) (Table 2) compared 

to the other species. 
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Table 2. Oomycete tandem duplication analysis 
 

Species Total 
Genes 

Tandem 
Clusters 

Genes in 
Tandem 
Clusters 

% Total 
Genes 

Avg. # of 
Genes per 
Cluster 

Ph. infestans 17,797 802 2,002 11.25% 2.50 

Ph. parasitica 23,121 925 2,294 9.92% 2.48 

Pl. halstedii 15,469 149 312 2.02% 2.09 

Ph. capsici 19,805 852 2,095 10.58% 2.46 

Hy. arabidopsidis 14,321 876 1,781 12.44% 2.03 

Ph. sojae 26,584 1,389 3,411 12.83% 2.46 

Ph. ramorum 15,743 885 2,210 14.04% 2.50 

Ph. kernoviae 9,923 267 600 6.05% 2.25 

Pp. vexans 11,958 369 814 6.81% 2.21 

Py. iwayamai 14,869 284 624 4.20% 2.20 

Py. irregulare 13,805 363 829 6.01% 2.28 

Py. ultimum 15,290 735 1,871 12.24% 2.55 

Py. arrhenomanes 13,805 332 716 5.19% 2.16 

Py. aphanidermatum 12,312 443 1,003 8.15% 2.26 

Al. laibachii 12,567 135 275 2.19% 2.04 

Al. candida 10,698 195 418 3.91% 2.14 

Sa. diclina 17,359 1,080 2,664 15.35% 2.47 

Sa. parasitica 20,088 1,103 2,717 13.53% 2.46 

Ap. invadans 15,248 589 1,318 8.64% 2.24 

Ap. astaci 19,119 768 1,763 9.22% 2.30 

 
 

We set out to identify biological functions that are enriched or under-represented 

in tandemly duplicated clusters for each species. This was achieved by comparing the 

frequency of Gene Ontology (GO) Slim terms in tandem clusters relative to the non-

tandemly duplicated proportion of the proteome using the Fisher exact test, corrected for 

false discovery rate (FDR) using the Benjamini-Hochberg procedure. Here we report 

corrected P-values < 0.05 as significant. Our results show enrichment in tandem clusters 
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for a number of GO Slim terms in each species (Supplementary Table 2), except for the 

two Albugo species, where no GO term was detected as being enriched or purified. We 

detected enrichment for terms related to transport, including establishment of localization 

(GO:0051234; 12 species), transmembrane transport (GO:0051234; 16 species) and 

transmembrane transporter activity (GO:0022857; 14 species) (Supplementary Table 

2). As with previous analyses (Martens and Van de Peer 2010), we also detected 

enrichment for terms that are potentially involved in pathogenicity such as extracellular 

region (GO:0005576; 15 species), hydrolase activity, acting on glycosyl bonds 

(GO:0016798; 13 species), carbohydrate metabolic process (GO:0005975; 9 species), 

catalytic activity, acting on a protein (GO:0140096; 8 species), hydrolase activity 

(GO:0016787; 8 species) and peptidase activity (GO:0008233; 8 species) 

(Supplementary Table 2). Significantly, we also detected enrichment of proteins that 

contain signal peptides in tandem clusters for all species (Supplementary Table 2) 

suggesting that tandem duplication events may be a major driving force for the evolution 

and expansion of secreted oomycete effectors. 

Our analysis detected a number of terms related to housekeeping functions that 

are significantly under-represented in tandem clusters (Supplementary Table 2), 

including intracellular part (GO:0044424; 17 species), nucleic acid metabolic process 

(GO:0090304; 16 species), intracellular organelle (GO:0043229; 15 species), nucleic acid 

binding (GO:0003676; 15 species), biosynthetic process (GO:0009058; 15 species), 

translation (GO:0006412; 14 species), ribosome (GO:0005840; 14 species), DNA 

metabolic process (GO:0006259; 13 species), RNA metabolic process (GO:0016070; 12 

species), tRNA metabolic process (GO:0006399; 10 species), ncRNA metabolic process 

(GO:0034660; 10 species) and RNA binding (GO:0003723; 10 species). The majority of 

these terms describe cellular “housekeeping” genes that are usually members of large 
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protein interaction networks. In yeast, these categories of genes have been shown to be 

recalcitrant to gene duplication as they interfere with highly constrained cellular systems 

and the dosage-balance hypothesis predicts that selection will remove these from 

populations (Papp et al. 2003; He and Zhang 2006; Li et al. 2006). Similarly in 

angiosperms single-copy genes are often involved in essential housekeeping functions 

that are highly conserved across all eukaryotes and are also resistant to duplication (De 

Smet et al. 2013). 

Sequence similarity searches are not sufficient to identify highly divergent tandem 

duplicates. Using synteny information hosted by OGOB, it is possible to use slowly 

evolving tandem duplicates in one species to identify rapidly evolving tandems in other 

species that are so divergent that they cannot be identified by BLAST homology searches. 

For example, consider the tandem cluster of 4 Ph. infestans genes (PITG_01020, 

PITG_01022, PITG_01023 and PITG_01024) which have the elicitin Pfam domain 

(PF00964). This tandem cluster is conserved in Ph. parasitica and Ph. sojae but in Ph. 

capsici only two members were identified as tandemly duplicated (Figure S4A). Upon 

manual inspection in OGOB we see orthologs in Ph. capsici to the two remaining tandem 

duplicates. These were not defined as tandemly duplicated as they did not meet our initial 

BLAST criteria, both genes are considerably longer that the orthologs in the other three 

species so violated the HSP cut-off. Furthermore, by comparing tandem duplicates 

between species, we can use OGOB to identify genes that arose via tandem duplication 

and later dispersed elsewhere in the genome. For example, Ph. infestans contains a cluster 

of 5 tandemly duplicated sugar efflux transporters (PITG_04998 – PITG_05002). This 

cluster is syntenically conserved in Ph. parasitica, Ph. capsici, Ph. ramorum and Ph. 

sojae (Figure S4B). However, 2 members of the Ph. sojae tandem cluster have relocated 

to another area on the same scaffold (Figure S4B). 
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It should be noted that it is well known that short read genome assemblers are 

prone to collapse tandemly repeat regions of the genome, therefore the assembler 

incorrectly joins reads from distinct chromosomal regions into a single unit (Phillippy et 

al. 2008). This in turn may result in an underestimation of the number of tandemly 

repeated genes. Long read sequencing technologies have the potential to overcome these 

issues and can produce gold-standard de novo genome assemblies. Until these gold-

standard oomycete genomes become available the numbers presented above should be 

viewed as a conservative estimate.  

 

The Oomycete Paranome 

We also identified the paranome for each oomycete species, that is the set of all 

paralogous multigene families. Saprolegnia parasitica has the highest number of 

multigene families (3,010), whereas Ph. kernoviae (757) has the lowest number (Table 

3). Phytophthora ramorum has the lowest number (5,827) of genes that do not belong to 

multigene families, whereas Ph. parasitica has the highest (11,922) (Table 3). The 

proportion of genes that belong to multigene families varies greatly between oomycete 

species. In Pl. halstedii, only 28% of genes belong to a multigene family, whereas 63% 

of Ph. sojae genes belong to multigene families (Table 3). On average, approximately 

45.5% of oomycete genes belong to a multigene family. The average number of genes in 

each family ranges from 3.3 to 6.2, with an overall average of 4.6 genes per family (Table 

3). 

 We also carried out a GO enrichment analysis to determine if any GO terms are 

over or under-represented in the paranome of each species. This identified enrichment of 

terms including ion binding (GO:0043167; 20 species), ATPase activity (GO:0016887; 

20 species), cellular proteins modification process (GO:0006464; 20 species), and 



 164 

regulation of cellular process (GO:0050794; 9 species) (Supplementary Table 2). 

Similar to our tandem duplication analysis, we see enrichment of terms related to 

transport (GO:0006810; 17 species) and establishment of localization (GO:0051234; 17 

species) (Supplementary Table 2). We also see enrichment of terms potentially involved 

in pathogenicity including carbohydrate metabolic process (GO:0005975; 20 species) and 

extracellular region (GO:0005576; 6 species) (Supplementary Table 2). In terms of 

underrepresented GO terms in the oomycete paranome, our results largely match that of 

tandem clusters. We see GO terms related to housekeeping functions underrepresented in 

the paranome of most species, including cytoplasmic part (GO:0044444; 20 species), 

RNA processing (GO:0006396; 20 species), cellular component organisation 

(GO:0016043; 20 species), nucleus (GO:0016043; 20 species), RNA binding 

(GO:0003723; 20 species), translation (GO:0006412; 19 species), ribosome 

(GO:0005840; 19 species), ribosome biogenesis (GO:0042254; 18 species), nuclease 

activity (GO:0004518; 17 species) and cell cycle (GO:0007049; 14 species) 

(Supplementary Table 2). Our results above are in line with previous analyses of 

Phytophthora and Pythium species that have shown that pathogenicity related genes are 

typically expanded relative to genes not directly linked to pathogenicity (Tyler 2006; 

Haas et al. 2009; Lévesque et al. 2010).



 165 

Table 3. Oomycete paranome analysis 

 Multigene Family Size 

Species Genes 
Single 
Copy 
Genes 

% 
Single 
Copy 
Genes 

Genes in 
Multigene 
Families 

% Genes 
in 
Multigene 
Families 

Multigene 
Families 

Avg # 
Genes Per 
Family 

2 
members 

3 
members 

4 
members 

≥5 
members 

Ph. infestans 17,797 8,097 45.50% 9,700 54.50% 2,167 4.48 12.16% 6.39% 4.81% 31.15% 

Ph. parasitica 23,121 11,922 51.56% 11,199 48.44% 2,162 5.18 9.42% 4.90% 2.99% 31.12% 

Pl. halstedii 15,469 11,139 72.01% 4,330 27.99% 1,054 4.11 7.01% 4.09% 2.33% 14.56% 

Ph. capsici 19,805 8,310 41.96% 11,495 58.04% 2,007 5.73 8.95% 5.12% 4.20% 39.77% 

Hy. arabidopsidis 14,321 8,743 61.05% 5,578 38.95% 1,645 3.39 15.57% 5.36% 2.32% 15.70% 

Ph. sojae 26,584 9,776 36.77% 16,808 63.23% 2,723 6.17 9.25% 4.83% 3.64% 45.50% 

Ph. ramorum 15,743 5,827 37.01% 9,916 62.99% 1,755 5.65 11.13% 5.68% 3.96% 42.22% 

Ph. kernoviae 9,923 6,730 67.82% 3,193 32.18% 757 4.22 8.00% 3.60% 2.82% 17.76% 

Pp. vexans 11,958 7,025 58.75% 4,933 41.25% 1,163 4.24 9.82% 5.75% 3.38% 22.31% 

Py. iwayamai 14,869 8,876 59.69% 5,993 40.31% 1,318 4.55 9.24% 4.50% 2.74% 23.82% 
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Table 3. Continued. 

 Multigene Family Size 

Species Genes 
Single 
Copy 
Genes 

% 
Single 
Copy 
Genes 

Genes in 
Multigene 
Families 

% Genes 
in 
Multigene 
Families 

Multigene 
Families 

Avg # 
Genes Per 
Family 

2 
members 

3 
members 

4 
members 

≥5 
members 

Py. irregulare 13,805 7,966 57.70% 5,839 42.30% 1,240 4.71 8.68% 4.89% 3.13% 25.60% 

Py. ultimum 15,290 8,761 57.30% 6,529 42.70% 1,313 4.97 7.89% 4.53% 3.22% 27.06% 

Py. arrhenomanes 13,805 8,231 59.62% 5,574 40.38% 1,260 4.42 9.03% 4.67% 3.53% 23.14% 

Py. aphanidermatum 12,312 7,360 59.78% 4,952 40.22% 1,173 4.22 9.36% 5.48% 3.02% 22.36% 

Al. laibachii 12,567 6,842 54.44% 5,725 45.56% 1,536 3.73 16.95% 4.92% 2.96% 20.73% 

Al. candida 10,698 7,203 67.33% 3,495 32.67% 1,049 3.33 12.68% 4.43% 2.99% 12.57% 

Sa. diclina 17,359 8,711 50.18% 8,648 49.82% 1,700 5.09 9.76% 4.96% 3.39% 31.71% 

Sa. parasitica 20,088 7,966 39.66% 12,122 60.34% 3,010 4.03 18.66% 6.54% 3.94% 31.20% 

Ap. invadans 15,248 8,955 58.73% 6,293 41.27% 1,389 4.53 9.80% 4.19% 3.46% 23.82% 

Ap. astaci 19,119 9,875 51.65% 9,244 48.35% 1,700 5.44 8.65% 4.53% 3.54% 31.63% 
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Phylostratigraphy Analysis 

To further elucidate oomycete genome evolution we carried out a phylostratigraphic 

analysis of each oomycete species housed in OGOB. Phylostratigraphy is a statistical 

approach for reconstructing macroevolutionary transitions by identifying the 

evolutionary emergence of founder genes across the tree of life (Domazet-Lošo et al. 

2007; Tautz and Domazet-Lošo 2011; Sestak and Domazet-Loso 2015). Here we apply 

phylostratigraphy to compare the composition of the 20 oomycete genomes hosted on 

OGOB. We estimate the age and emergence of all 319,881 oomycete genes by identifying 

their founder genes in a database containing species across the tree of life. We generated 

our database by merging all sequences hosted on OGOB with those from a previous 

analysis with broad phyletic distribution (Drost et al. 2015), resulting in final database of 

17,826,795 amino acid sequences. Each oomycete gene was searched against the database 

using BLASTp (E-value cut-off 1e-5) and genes were assigned to a phylostratum based 

on their most ancient hit.  

In total for the 20 species, 104,662 genes (32.7%) were placed at the origin of 

cellular organisms (i.e. homologs were identified in bacteria or archaea), 92,218 genes 

(28.8%) were eukaryotic in origin, 5,355 genes (1.7%) arose in the stramenopiles and 

65,015 (20.3%) arose in the oomycetes (Figure 3A – D). The remaining genes were 

assigned as unique to particular oomycete lineages, 26,090 (8.2%) of which were 

determined to be unique to individual species (orphan genes). By comparing 

phylostratigraphic maps for each species we can identify macroevolutionary trends. The 

overall trends identified for each oomycete order are largely similar. With few exceptions, 

genes of ancient Prokaryotic origin represent the largest proportion of each oomycete 

genome (Figure 3A – D). A slightly smaller proportion arose in the evolution of 

Eukaryotes (Figure 3A – D). Ph. capsici and Al. laibachii are exceptions, whereby more 
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genes were identified as Eukaryotic in origin than Prokaryotic (Figure 3A, Figure 3C). 

Very few genes (between 159 and 382 genes in each species) were detected to have arisen 

during the evolution of stramenopiles (Figure 3A – D). Our results suggest that either 

very few genes were gained during the evolution of stramenopiles or else a large number 

of genes of stramenopiles origin were later lost. Following this, in each species we see a 

large burst of oomycete genes being formed (Figure 3A – D). On average, genes of 

oomycete origin correspond to 21.34% of Peronosporales genomes (Figure 3A), 26.24% 

of Pythium genomes (Figure 3B), 14.68% of Albugo genomes (Figure 3C) and only 

12.53% of Saprolegniales genomes (Figure 3D). Ph. sojae has more genes of oomycete 

origin than any other species, making up the largest proportion of its total genes (27.62%), 

suggesting large scale duplication of genes of oomycete origin (Figure 3A). For species 

in the Peronosporales order (Figure 3A) we see that genes of Peronosporales origin 

correspond to very few genes (between 163 genes in Py. vexans to 1,052 genes in Ph. 

sojae). Additionally, genes of Phytophthora origin represents only a small proportion of 

Phytophthora genomes, corresponding to an average of only 6.15% of genes (Figure 3A). 

We see bursts of emerging orphans in the downy-mildews (Hy. arabidopsidis and Pl. 

halstedii) and also in some Phytophthora species (Ph. parasitica and Ph. sojae) (Figure 

3A). 793 genes (4.46%) in Ph. infestans were identified as unique to Ph. infestans. The 

same is true for Pythium species as very few genes were assigned to the Pythium 

phylostratum (between 124 and 490 genes) (Figure 3B). Furthermore, we see very few 

orphan genes in each Pythium species (between 167 and 557 genes) (Figure 3B), 

suggesting there is not a great deal of gene content diversity. This is in contrast to the 

Albuginales and Saprolegniales species were larger numbers of genus specific and 

species specific genes were detected (Figure 3C, Figure 3D). 
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Perhaps most interesting are orphan genes as these do not have homologs in any 

other species (at least within our dataset) and may represent evolutionary novelty. Ph. 

ramorum has the lowest number of orphans (150 genes; < 1% total genes), whereas Pl. 

halstedii has the most (4,830 genes; 31% total genes) (Figure 3A). Hy. arabidopsidis also 

has a very high number of orphans (4,132 genes; 29% total genes). On average, each 

oomycete genome in our dataset has 1,305 orphan genes. In general, the Peronosporales 

and the Albuginales tend to have more orphan genes (typically more than 1,700 orphans) 

(Figure 3A, Figure 3D) which may correspond to greater functional diversity in terms 

of gene content and in turn, greater diversity between species in terms of pathogenicity 

and host range. 

Our phylostratigraphy approach allows us to account for differences in the number 

of genes each species has. For example, Al. laibachii has more genes than its closest 

relative Al. candida (12,567 vs 10,698 genes). Albugo laibachii has 4,077 genes that were 

assigned to the eukaryotic node, these genes are distributed across 2,549 gene families. 

Similarly, Al. candida has 2,923 eukaryotic genes located across 2,378 families. 

Furthermore, at the oomycete node, Al. laibachii has 2,000 genes that are grouped into 

1,400 families while Al. candida has 1,440 grouped into 1,250 families. The number of 

orphan genes found in both species is very similar (2,334 vs 2,238). Therefore, Al. 

laibachii has more genes than Al. candida not because of the de novo formation of orphan 

genes but, rather, it has more copies of genes that can be mapped back to the eukaryotic 

and oomycete nodes (Figure 3C). These differences are due to retention and expansion 

of gene families from these nodes in Al. laibachii. 
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Figure 3. Phylostratigraphic analysis of 20 oomycete species to determine the number 

of founder genes that have arisen in each phylostratum in Peronosporales (A), Pythiales 

(B), Albuginales (C) and Saprolegniales (D). 
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A similar trend can be seen when we compare the gene content of Ph. sojae and 

Ph. kernoviae (26,548 vs 9,923 genes). Ph. sojae has 6,543 genes of eukaryotic origin 

distributed across 3,752 families, while Ph. kernoviae only has 2,757 genes of eukaryotic 

origin belonging to 2,331 families. Furthermore, Ph. sojae has 7,342 genes of oomycete 

origin distributed across 3,416 families whereas Ph. kernoviae only has 1,915 genes of 

oomycete origin distributed across 1,664 families. It should be noted however that Ph. 

sojae has an additional 1,233 orphan genes relative to Ph. kernoviae (1,725 vs 492). 

Comparisons of average protein length across phylostrata in Ph. infestans reveals 

that the length of proteins increases with evolutionary age (Figure 3E). Proteins found at 

the youngest phylostratum (i.e. orphan genes) are the shortest, and protein length 

increases across each older phylostrata, with the longest proteins being found at the oldest 

phylostratum (Cellular Organisms) (Figure 3E). A similar trend was identified in all 

species in our dataset (Figure S3). This has also been observed in other species such as 

yeast (Carvunis et al. 2012), Arabidopsis thaliana (Guo 2013) and metazoa (Neme and 

Tautz 2013), suggesting that similar evolutionary pressures are influencing genome and 

molecular evolution across distantly related eukaryotic species. 

 

Figure 3 (continued). * 20 Hy. arabidopsidis and 18 Pl. halstedii genes were identified 

as unique to the Peronosporaceae family, for visualisation purposes we have moved these 

hits to the Peronosporales phylostratum. ** genes that were identified as specific to either 

the Aphanomyces genus or the Saprolegnia genus. (E) Distribution of protein lengths in 

Ph. infestans across phylostrata shows a continuous increase in length with evolutionary 

age. 
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The Core Oomycete Ortholog Gene Set 

We used OGOB’s orthology pillars to identify core oomycete genes. We define core 

genes as the set of orthologs that are present in all species (i.e. pillars with 20 genes). We 

also define syntenologs as core orthologs that are microsyntenically conserved in all 

species (i.e. pillars with 20 core orthologs whereby each gene is microsyntenically 

conserved with every other gene). Our analysis revealed 1,835 core oomycete pillars. 

Thus, on average 12% of all oomycete genes have an ortholog in every other species 

(Supplementary Table 3). Only 37 syntenolog pillars (2% or core pillars) were identified 

(Supplementary Table 3). Oomycete syntenologs correspond to an average of only 

0.25% of total genes in a genome. However, this is a very strict approach as each ortholog 

must be microsyntenically conserved with every other gene. Furthermore, the fragmented 

nature of some of the assemblies in OGOB may contribute to this low number. We 

repeated this analysis to identify core orthologs and syntenologs individually in the 

Peronosporales order, the Saprolegniales order, the Pythium genus and the Albugo genus. 

Overall we identified 4,063 core pillars in the 8 Peronosporales species, of which 

2,279 (56%) belong to the syntenolog category, corresponding to between 8.57% and 

22.97% of total genes in Peronosporales species (Supplementary Table 3). Core pillars 

(6,483) were identified for the five species in the Pythium genus, of which 2,863 (44.16%) 

belong to the syntenolog category (Supplementary Table 3). This corresponds to 

between 18.72% and 23.25% of total genes in Pythium species. Analysis of the four 

species in the Saprolegniales order revealed an even more extensive degree of syntenic 

conservation, 8,910 core pillars were identified, of which 7,718 (86.62%) belong to the 

syntenolog category (Supplementary Table 3). This corresponds to between 38.42% and 

50.62% of total genes in Saprolegniales genomes being both ubiquitous and 

microsyntenically conserved. The highest degree of synteny was detected in the Albugo 
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genus where 6,719 core pillars and 6,313 syntenolog pillars were detected 

(Supplementary Table 3). This means that 93.96% of orthologs within Albugo are 

microsyntenically conserved. This corresponds to between 50.23% and 59% of total 

Albugo genes. This result may be biased, however, as there are only two closely related 

Albugo genomes in OGOB. 

For each group of species (Peronosporales, Saprolegniales, Pythium and Albugo) 

we carried out an enrichment analysis of syntenically conserved core orthologs by 

comparing the frequency of GO terms associated with genes found in syntenolog pillars 

relative to non-syntenolog pillars. As expected, our results show that syntenically 

conserved genes are enriched for housekeeping functions including GO terms such as 

ribosome (GO:0005840), translation (GO:0006412), cellular macromolecule biosynthetic 

process (GO:0034645), amide biosynthetic process (GO:0043604), RNA binding 

(GO:0003723), nucleus (GO:0005634), nucleolus (GO:0005730) (Supplementary 

Table 2). These findings are consistent with the hypothesis that oomycete genomes 

contain “gated communities” where conserved and housekeeping genes reside 

(Bhowmick and Tripathy 2014). Terms underrepresented in syntenic orthologs include 

establishment of localization (GO:0051234), carbohydrate metabolic process 

(GO:0005975), transmembrane transport (GO:0055085), extracellular region 

(GO:0005576) and ATPase activity (GO:0016887) (Supplementary Table 2). 

 To fine tune our analysis even further, we also investigated the degree of 

microsynteny in each possible pair of the 20 oomycete species. For each pair of species, 

we identify orthologs and quantify the proportion that are microsyntenically conserved. 

We consider a pair of orthologs to be microsyntenically conserved if there exists another 

pair of orthologs within a distance of 20 genes. Unsurprisingly, our results reveal very 

high levels of microsynteny between closely related species within oomycete orders, and 
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a breakdown in synteny between more distantly related species across orders 

(Supplementary Table 4). We use the proportion of microsyntenically conserved genes 

to generate a distance matrix and use this to cluster species based on microsyntenic 

conservation (Figure 4). As expected, more closely related organisms share a higher 

degree of microsynteny and are clustered together into their orders and genera (Figure 

4). When comparing any two oomycete species the proportion of orthologs that are 

microsyntenically conserved is between 27.57% and 96.39% (Supplementary Table 4). 

Sa. diclina and Sa. parasitica share the highest degree of microsynteny (82.41% of genes 

or 96.35% of orthologs), followed by Ap. astaci and Ap. invadans (75.55% of genes of 

96.39% of orthologs) (Figure 4, Supplementary Table 4). The two species showing the 

lowest level of microsynteny are Ap. astaci and Py. arrhenomanes (10.34% of genes or 

28.01% of orthologs) (Figure 4, Supplementary Table 4). On average 33.90% of total 

genes or 64.91% of orthologs are microsyntenic when comparing any two oomycete 

species in OGOB (Supplementary Table 4). It is worth noting that we also performed 

the above analysis with more restrictive window sizes (i.e., a window size of 5 instead of 

20) and results were largely congruent (not shown). 

Our results are largely in agreement with previous analyses. For example, a 

previous study determined that over 75% of exons in Ph. ramorum and Ph. sojae aligned 

in a whole genome alignment (Tyler 2006). Here, we find that 11,070 orthologs are shared 

between Ph. ramorum and Ph. sojae, of which 10,158 (91.76%) were detected to be 

microsyntenic. This corresponds to approximately 65% of genes in Ph ramorum. The Ph. 

infestans genome paper reports that 90% of orthologs shared by Ph. infestans, Ph. 

ramorum and Ph. sojae are found in blocks of conserved gene order (Haas et al. 2009). 

Our results are in agreement with this. We identified 9,219 orthologs that are present in 

all 3 species, of which 8,322 are microsyntenically conserved (90%). Another analysis 
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reported extensive synteny between Py. ultimum and Phytophthora species (Lévesque et 

al. 2010). We detect that up to 94% of orthologs between Py. ultimum and any 

Phytophthora species are syntenologs (Supplementary Table 4). Surprisingly, our 

results suggest that there is a greater degree of microsyntenic conservation between 

Phytophthora species and Py. ultimum than between Phytophthora species and Hy. 

arabidopsidis or Pl. halstedii (Figure 4). This may be due to gene loss events or extensive 

genome rearrangements in the evolution of obligate biotrophy in these downy mildew 

species (Baxter et al. 2010). 

 When comparing microsynteny between orders, the Saprolegniales species are 

most divergent from other species. On average only 40.70% of orthologs or 16.05% of 

total genes are microsyntenically conserved when compared to species outside of the 

order (Figure 4, Supplementary Table 4). This is not surprising as the Saprolegniales 

are thought to have diverged from other oomycetes approximately 200 million years ago 

(Matari and Blair 2014). However, species within the Saprolegniales order have the 

highest degree of microsyntenic conservation, on average 91.68% of their orthologs are 

microsyntenically conserved or 61% of total genes. When comparing any two 

Peronosporales species, between 73.79% and 94.9% of orthologs are syntenically 

conserved. This corresponds to between 34.8% and 68.03% of total genes 

(Supplementary Table 4). In Pythium species this range is 54.72% to 91.23% of 

orthologs or 28.82 to 68.63% of total genes (Supplementary Table 4). 
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Figure 4. Pairwise microsyntenic analysis of oomycete species. Heatmap values 

represent the total proportion of genes in the smallest genome that were identified as 

syntenologs. These values are used to cluster the species based on microsynteny. 
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Using OGOB to Visualise Expansions of Necrosis-Inducing Proteins 

Necrosis-inducing proteins (NLPs) are apoplastic effectors found in bacteria, fungi, and 

oomycetes (Feng et al. 2014). NLPs are known to induce necrosis, elicit immune 

responses, and trigger ethylene accumulation in dicotyledons (Oome and Van den 

Ackerveken 2014). Proteins containing the NLP PFAM domain (PF05630) are 

significantly overrepresented in numerous Phytophthora and Pythiales species but are 

completely absent from Albugo, Aphanomyces, and Saprolegnia species (McGowan and 

Fitzpatrick 2017). NLPs are highly expanded in Phytophthora species. In particular, Ph. 

capsici, Ph. ramorum, Ph. parasitica, and Ph. sojae have 65, 69, 74 and 80 putative 

proteins with NLP domains (McGowan and Fitzpatrick 2017). 

 Using OGOB it is possible to visualise the mechanisms that are partly responsible 

for the expansions of NLPs in these Phytophthora species (Figure 5). There are numerous 

genomic loci where tandem duplications have given rise to clusters of NLP paralogs in 

selected Phytophthora species. For example, Ph. parasitica has five NLP paralogs 

(PPTG_07660, PPTG_07661, PPTG_07664, PPTG_07667, and PPTG_07668) clustered 

together on scaffold 12 in a window of 10 genes (Figure 5A). Closer examination shows 

that PPTG_07660 & PPTG_07661 and PPTG_07667 & PPTG_07668 are tandem 

duplicates as all have an orange coloured BLAST (“b”) button associated with them. 

Orthologs for these five genes are present in Ph. sojae and Ph. ramorum and high levels 

of synteny are observed (Figure 5A). Orthologs are absent in all Pythiales species (not 

shown). Similarly, Ph. parasitica contains a tandem array of five NLP paralogs 

(PPTG_15230, PPTG_15231, PPTG_15233, PPTG_15234, and PPTG_15235) on 

scaffold 48 (Figure 5B). A number of orthologs are present in other Phytophthora species 

and synteny around this array is generally well conserved (Figure 5B). Orthologs for 

PPTG_15230 and PPTG_15231 are observed in the majority of Pythiales species but 

levels of synteny are generally low (not shown).
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Figure 5. Two loci with multiple NLPs. Orthologs that contain a PFAM NLP domain (PF05630) are indicated with a red box. For display purposes only Ph. infestans, Ph. 
parasitica, Ph. capsici, Ph. sojae, and Ph. ramorum are shown. Albugo, Aphanomyces, and Saprolegnia species lack proteins with this domain. (A) Screenshot from OGOB, 
browser centred around Ph. parasitica NLP domain containing ortholog (PPTG_07664). PPTG_07660 and PPTG_07661 are tandem duplicates (signified by yellow “b” 
button) as are PPTG_07667 and PPTG_07668. Orthologs for PPTG_07667 and PPTG_07668 are observed in all species displayed and synteny is relatively conserved except 
for the ortholog of PPTG_07668 in Ph. sojae (PHYSO_255972). Phytophthora capsici is missing PPTG_07660 and PPTG_07661 orthologs while Ph. infestans is missing 
the PPTG_07661 ortholog. Orthologs are missing in all Pythiales species (not shown). (B) Screenshot from OGOB, browser centred around a Ph. parasitica NLP domain 
containing ortholog (PHYCA_576423). Phytophthora parasitica contains a tandem array of five NLP paralogs (PPTG_15230, PPTG_15231, PPTG_15233, PPTG_15234, 
and PPTG_15235). Orthologs of PPTG_15230 and PPTG_15231 are present in the majority of Pythiales species (not shown). 
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Conclusion 

We report here the development of OGOB, a database and tool for performing 

comparative genomic and synteny analyses of oomycete species. We highlight the 

usefulness of synteny information in identifying orthologs and use synteny to identify 

orthologous relationships for 22,708 genes that could not be identified using BLAST 

searches alone. Phylostratigraphy was used to determine the composition of 20 oomycete 

genomes and estimate the evolutionary age and emergence of 319,881 oomycete genes. 

The extent of gene duplication was determined and tandem duplication events were 

identified as a driving force for the expansion of secreted effector arsenals. Core 

conserved genes for each oomycete order were identified. Synteny analysis of the 20 

oomycete species hosted by OGOB revealed a high degree of syntenic conservation. Our 

results suggest that conserved genes with housekeeping functions are more likely to be 

syntenically conserved. Going forward, it is our goal to include additional gold standard 

genomes from diverse clades in OGOB. For example, currently of the ten recognized 

Phytophthora clades, only data for five clades (clades 1, 2, 7, 8, and 10) are represented. 

Furthermore, we will also investigate the possibility of implementing robust automated 

pipelines to locate putative genes that may have been missed at the gene calling stage of 

annotating genomes. OGOB is a valuable, central resource that will be of interest to plant 

pathologists and the oomycete community. OGOB is available at https://ogob.ie.   
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Materials and Methods 

OGOB Database Construction 

Genomic data for the 20 oomycete species were retrieved from the sources listed in Table 

1, including genome assemblies and gene sets. Gene sets were manually inspected and 

dubious gene calls were removed. For genes with alternative transcripts, the longest 

transcript was retained. The final dataset contains 319,881 protein coding genes. BUSCO 

v3 (Waterhouse et al. 2018) was used to assess the gene space completeness of each 

assembly with the alveolata/stramenopiles dataset of BUSCOs. InterProScan 5 (Jones et 

al. 2014) was run on all 319,881 oomycete proteins in the OGOB database. Proteins were 

annotated for functional domains using the InterPro (Finn et al. 2017), Pfam (Finn et al. 

2016) and PANTHER (Mi et al. 2017) databases, as well as for Gene Ontology terms 

(Ashburner et al. 2000). Signal peptides were predicted using SignalP (Bendtsen et al. 

2004) and transmembrane domains were predicted with TMHMM (Krogh et al. 2001). 

Functional annotations are displayed on OGOB gene information pages and link back to 

the original annotation databases. Metabolic pathways were also annotated using the 

KEGG (Ogata et al. 1999), MetaCyc (Caspi et al. 2018) and Reactome (Fabregat et al. 

2018) databases. All annotations can be downloaded from the OGOB data page 

(https://ogob.ie/gob/data.html). 

 

Phylogenetic Analysis 

A maximum-parsimony supertree approach was carried out to generate the oomycete 

species phylogeny (Figure 1). All pillars containing at least 4 genes (17,738 pillars) were 

retrieved and individually aligned using MUSCLE (Edgar 2004). Individual phylogenies 

for each of the 17,738 pillars were generated using FastTree v2.1.9 (Price et al. 2010). A 

supertree was constructed using the Matrix Representation with Parsimony (MRP) 
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method implemented in Clann (Creevey et al. 2004; Creevey and McInerney 2005) with 

100 bootstrap replicates. The phylogeny was visualised and annotated using the 

Interactive Tree of Life (iTOL)(Letunic and Bork 2007).  

 

Phylostratigraphy Analysis 

Individual phylostratigraphic maps for each of the 20 oomycetes were constructed 

following previously published methods (Quint et al. 2012; Drost et al. 2015). The data 

set used by Drost et al. (2015) was retrieved. This data set contains amino acid sequences 

for 4,557 species including 1,787 eukaryotes (883 animals, 364 plants, 344 fungi and 196 

other eukaryotes) and 2,770 prokaryotes (2,511 bacteria and 259 archaea). We added all 

sequences hosted by OGOB to this database, resulting in a final database of 17,826,795 

amino acid sequences. Each oomycete protein was searched against this database using 

BLASTp (Altschul et al. 1997). Each protein is assigned to the oldest phylostrata that 

contains at least one BLAST hit with an E-value cut-off of 1e-5. A gene is assigned to the 

youngest phylostratum (i.e. species-specific orphan) if it does not have any such BLAST 

hit. 

 

Gene Duplications 

Tandemly duplicated genes were identified using BLAST (Altschul et al. 1997). In each 

genome, every gene was aligned to its adjacent genes. Alignments with an E-value below 

1e-10 and a highest scoring pair (HSP) length greater than half the length of the shortest 

sequence were considered tandemly duplicated. 

Multigene families were identified for each species by performing all-versus-all 

BLASTp searches (Altschul et al. 1997) of each gene against every other gene in its 
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genome with an E-value cut-off of 1e-30, followed by Markov clustering using MCL 

(Enright et al. 2002) with an inflation value of 1.5.  

 

Gene Enrichment Analyses 

Gene enrichment analysis were performed using Fisher’s exact test. SignalP v3 (Bendtsen 

et al. 2004) was used to predict signal peptides for enrichment analyses of secreted 

proteins. We used SignalP v3 instead of later versions of the software as previous studies 

have found v3 to be the most sensitive in identifying oomycete signal peptides 

(Sperschneider et al. 2015). Transmembrane domains were predicted using TMHMM 

(Krogh et al. 2001). Proteins were considered secreted if they had an HMM S probability 

value ³ 0.9, an NN Ymax score of ³ 0.5, and an NN D score of ³ 0.5 with predicted 

localization “Secreted” and no transmembrane domain after the signal peptide cleavage 

site. Enrichment tests of GO Slim terms were carried out using goatools (Klopfenstein et 

al. 2018) with Benjamini-Hochberg correction for FDR. Corrected P-values < 0.05 were 

considered significant.  



 183 

Acknowledgements 

We acknowledge the DJEI/DES/SFI/HEA Irish Centre for High-End Computing 

(ICHEC) for the provision of computational facilities and support. J.M. is funded by a 

postgraduate scholarship from the Irish Research Council, Government of Ireland (grant 

number GOIPG/2016/1112). 

  



 184 

Supplementary Data 

Supplementary data for this chapter is available from the publisher website: 

https://academic.oup.com/gbe/article/11/1/189/5238079 

Supplementary data is also available at the following GitHub repository: 

https://github.com/jamiemcg/ThesisSupplementaryMaterial 

 

Supplementary Figures 

Supplementary Figure 1. Genome completeness assessment of oomycete genomes 

using BUSCO with the Alveolata-Stramenopile set (234 BUSCOs in total). 

Supplementary Figure 2. PITG_00248 and PPTG_10928 (labelled with asterisks) were 

identified as orthologous using Syntenolog Search. (A) Screenshot of OGOB showing 

that PITG_00248 and PPTG_10928 are syntenically conserved. (B) BLAST search 

results of PPTG_10928 against the OGOB databases. PPTG_10928 has a significant (1e-

125) but not reciprocal best hit to PITG_00248. (C) MUSCLE multiple sequence 

alignment of PITG_00248 and PPTG_10928. 

Supplementary Figure 3. Distribution of oomycete protein lengths across phylostrata. 

Supplementary Figure 4. Synteny information hosted by OGOB can be used to identify 

rapidly evolving tandem duplications and tandem duplicates that have undergone 

chromosomal rearrangement. (A) A cluster of 4 tandemly duplicated elicitin proteins that 

are syntenically conserved in Ph. infestans, Ph. parasitica, Ph. capsici and Ph. sojae. 2 

of the Ph. capsici proteins (PHYCA_529852 and PHYCA_509798) did not meet our 

initial BLAST criteria, however, they are obvious tandem duplicates when syntenic 

conservation is considered. (B) A cluster of 5 tandemly duplicated sugar efflux 

transporters that are syntenically conserved in Ph. infestans, Ph. parasitica, Ph. capsici, 
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Ph. sojae and Ph. ramorum. However, 2 members of the Ph. sojae tandem cluster have 

relocated to another area on the same scaffold. 
 

Supplementary Tables 

Supplementary Table 1. Clusters of tandemly duplicated genes in oomycete species. 

Supplementary Table 2. Enrichment analysis of secreted proteins and GO terms in 

oomycete tandem clusters, the oomycete paranome and core oomycete pillars. 

Supplementary Table 3. Analysis of the number of core and syntenolog oomycete, 

Peronosporales, Pythium, Albugo and Saprolegniales pillars. For the Peronosporales 

analysis we excluded Py. vexans, despite it being a member of the Peronosporales, it is 

thought to be an intermediate between Phytophthora and Pythium species in terms of its 

gene content and genome organisation. 

Supplementary Table 4. Pairwise microsyntenic analysis of oomycete species. Counts 

of the number of orthologs and syntenologs shared by each possible pair of 20 oomycete 

species is shown. Also shown is the proportion of orthologs that were identified as 

syntenologs as well as the proportion of total genes identified as syntenologs.  
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Abstract 

The Phytophthora genus includes some of the most devastating plant pathogens. Here we 

report draft genome sequences for three ubiquitous Phytophthora species—Phytophthora 

chlamydospora, Phytophthora gonapodyides, and Phytophthora pseudosyringae. 

Phytophthora pseudosyringae is an important forest pathogen that is abundant in Europe 

and North America. Phytophthora chlamydospora and Ph. gonapodyides are globally 

widespread species often associated with aquatic habitats. They are both regarded as 

opportunistic plant pathogens. The three sequenced genomes range in size from 45 Mb to 

61 Mb. Similar to other oomycete species, tandem gene duplication appears to have 

played an important role in the expansion of effector arsenals. Comparative analysis of 

carbohydrate-active enzymes (CAZymes) across 44 oomycete genomes indicates that 

oomycete lifestyles may be linked to CAZyme repertoires. The mitochondrial genome 

sequence of each species was also determined, and their gene content and genome 

structure were compared. Using mass spectrometry, we characterised the extracellular 

proteome of each species and identified large numbers of proteins putatively involved in 

pathogenicity and osmotrophy. The mycelial proteome of each species was also 

characterised using mass spectrometry. In total, the expression of approximately 3000 

genes per species was validated at the protein level. These genome resources will be 

valuable for future studies to understand the behaviour of these three widespread 

Phytophthora species. 
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Introduction 

Phytophthora are filamentous, osmotrophic eukaryotes that morphologically resemble 

fungi but belong to the Oomycota class within the Stramenopila [1]. Phytophthora species 

include some of the most destructive plant pathogens, including devastating pathogens of 

important crops, ornamental plants, and forests. The number of identified Phytophthora 

species is rapidly increasing and currently includes more than 180 provisionally named 

species [2]. In recent years, the genomes of several Phytophthora species have been 

sequenced which has increased our understanding of Phytophthora evolution and 

pathology [3–9]. 

As osmotrophs, Phytophthora species secrete numerous classes of hydrolytic 

enzymes including carbohydrate-active enzymes (CAZymes) and proteases that digest 

complex extracellular substrates into simpler subunits for nutritional sources [10]. 

Phytophthora genomes also encode large arsenals of effector proteins that facilitate 

infection [11,12]. Effectors are divided into two broad classes based on where they 

localise. Apoplastic effectors are secreted by the pathogen and act in the host’s 

extracellular environment [13]. Apoplastic effector proteins encompass a broad range of 

functions, including hydrolytic enzymes that degrade plant cell walls, facilitating hyphal 

penetration. Other apoplastic effector families include elicitins, necrosis-inducing 

proteins (NLPs), and Pcf phytotoxins that play roles in inducing host cell death [14]. 

Phytophthora also secrete cytoplasmic effectors that are translocated into host cells, 

namely the RxLR and Crinkler (CRN) families of effectors [13]. 

To date, most large-scale analyses of oomycete secretomes or effector arsenals 

have used in silico bioinformatics-based approaches applied to genome sequences to 

predict protein sequences bearing signal peptides. However, mass spectrometry is a 

powerful technique that can be used to characterise the extracellular proteomes of 

filamentous plant pathogens. It can also be used to validate the secretion of proteins that 
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have been computationally predicted to be secreted as well as identifying extracellular 

proteins that lack conventional signal peptides, which would otherwise be overlooked. 

To date, proteomic studies of oomycete extracellular proteins are limited. Liquid 

chromatography tandem mass spectrometry (LC-MS/MS) analysis of the potato late 

blight pathogen Ph. infestans led to the identification of 283 extracellular proteins, many 

of which are members of known effector families such as RxLRs, CRNs, elicitins and 

NLPs [15]. Similarly, LC-MS/MS analysis of Ph. plurivora, an important forest 

pathogen, led to the detection of 272 secreted proteins, including important effectors and 

cell-wall degrading enzymes [16]. Proteomic studies of oomycete hyphae have also 

revealed important insights into metabolism, pathogenicity, and species-specific proteins 

[17–19]. 

Here, we report draft genome sequences for three globally widespread 

Phytophthora species—Phytophthora chlamydospora, Phytophthora gonapodyides and 

Phytophthora pseudosyringae. We selected these species because they are (i) widespread 

Phytophthora species in western Europe, (ii) have broadly different lifestyles, and (iii) 

are not regulated organisms under plant health legislation in Europe. Furthermore, all 

three species belong to clades that are generally underrepresented in terms of the amount 

of genomic data available for those clades. Phytophthora pseudosyringae belongs to 

clade 3 and is an important forest pathogen with a broad host range that is widespread 

across Europe and America [20–22]. Phytophthora pseudosyringae has been reported to 

cause collar, root or stem rot in a wide range of host species including European beech 

(Fagus sylvatica), southern beech (Nothofagus spp.), oak (Quercus spp.), alder (Alnus 

spp.), Japanese larch (Larix kaempferi), sweet chestnut (Castanea sativa), horse chestnut 

(Aesculus hippocastanum), and shrubs (Vaccinium myrtillus) [23–27]. In a recent 

metabarcoding study, Ph. pseudosyringae was the most abundant Phytophthora species 

detected in Britain [28]. 
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Phytophthora chlamydospora and Ph. gonapodyides both belong to clade 6, 

which contains species that are primarily associated with streams and riparian 

ecosystems, and have evolved to tolerate higher temperatures, facilitating survival 

throughout seasonal changes [29,30]. Phytophthora gonapodyides is reported to be the 

most widely distributed Phytophthora species in natural habitats worldwide, followed by 

Ph. chlamydospora [23,31]. Phytophthora gonapodyides was the third most abundant 

Phytophthora species detected via metabarcoding in Britain [28]. Phytophthora 

chlamydospora was also frequently detected. Phytophthora chlamydospora, previously 

informally known as Phytophthora taxon Pgchlamydo, was formally designated as a 

species in 2015 [31]. Similar to other clade 6 Phytophthora species, both Ph. 

chlamydospora and Ph. gonapodyides are thought to exhibit primarily saprophytic 

lifestyles, maintaining their populations in natural ecosystems by colonising plant litter 

or through pathogenesis of fine-roots [30]. However, both species are known to act as 

opportunistic pathogens, with reports of Ph. chlamydospora causing disease on 

Rhododendron, Viburnum tinus, sour cherry (Prunus cerasus), almond (Prunus dulcis), 

walnut (Juglans regia), and evergreen nursery stock [22,32–36]. Similarly, Ph. 

gonapodyides has been detected causing disease on European beech (F. sylvatica), 

Rhododendron, oak (Quercus spp.), apple (Malus spp.), walnut (J. regia) and tanoak 

(Notholithocarpus spp.) [23,37–40]. 

Using a combination of bioinformatics, comparative genomics and mass 

spectrometry-based approaches, we provide a comprehensive characterisation of the 

nuclear genomes, mitochondrial genomes, putative effector arsenals, extracellular 

proteomes, and mycelial proteomes of Ph. chlamydospora, Ph. gonapodyides, and Ph. 

pseudosyringae. The genomic and proteomic data reported herein represent valuable new 

resources to study the pathogenicity mechanisms of these widespread phytopathogens 

and further elucidate Phytophthora genome evolution. 
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Materials and Methods 

Isolation and Culturing 

The details of the isolates used in this study are provided in Table 1. Methods for the 

isolation of the isolates and tentative morphological identification have been reported 

previously [41,42]. Briefly, this involved plating the samples onto P5ARP[H] agar 

(Cornmeal agar with antibiotics [43]) and incubating at room temperature for two weeks. 

These agar plates were checked at least every three days for Phytophthora like structures 

(e.g., sporangia, coenocytic hyphae, oospores). Mycelia from the edge of Phytophthora 

like cultures was then transferred to Carrot Piece Agar (CPA) [44] plates and incubated 

at room temperature, studied morphologically and compared to Phytophthora taxonomy 

reference text [45,46] (www.phytophthoradb.org). Identification of the isolates based on 

BLAST [47] searches of the ITS region was carried out by O’Hanlon et al. (2016). 

Isolates were stored on CPA agar slopes under sterile mineral oil at room temperature 

between 2016 and 2018. From 2018 onwards, isolates were routinely cultured on 10% 

clarified V8 juice (cV8) agar in the dark at 20 °C for Ph. pseudosyringae and 25 °C for 

Ph. chlamydospora and Ph. gonapodyides. Species identities were confirmed based on a 

combination of β-tub, COX1, COX2, ITS, and Rps10 markers retrieved from the whole 

genome sequences and compared to reference sequences from PhytophthoraDB 

(http://www.phytophthoradb.org) and NCBI GenBank using BLASTn [47]. 
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Table 1. Details of the isolates used in this study. 

Species Isolate 

Number 

Source Date 

Collected 

Location 

(Latitude, 

Longitude) 

BioProject 

Accession 

Phytophthora 

chlamydospora 

P17-99 Rhododendron 

ponticum leaf 

baiting of a 

stream 

08/08/2017 Tollymore 

forest, Co. 

Down, Northern 

Ireland, UK  

(54°13’16.9”N, 

5°55’49.3”W) 

PRJNA599565 

Phytophthora 

gonapodyides  

P17-128 Rhododendron 

ponticum leaf 

baiting of a 

stream 

28/08/2017 Rostrevor forest, 

Co. Louth, 

Ireland 

(54°07’43.4”N, 

6°09’24.2”W) 

PRJNA599567 

Phytophthora 

pseudosyringae 

PR13-731 Bleeding bark 

canker of 

Fagus 

sylvatica 

31/07/2015 Mullaghreelan 

forest, Co. 

Kildare, Ireland 

(52°56’00.4”N, 

6°52’41.0”W) 

PRJNA599564 

 

 

 

DNA Extraction and Sequencing 

To prepare mycelium for DNA extraction, Phytophthora cultures were grown in 10% 

cV8 liquid medium for 5 days. Mycelia were harvested using Miracloth, washed with 

sterile distilled water, flash-frozen in liquid nitrogen, lyophilized and stored at −80 °C 

until used for DNA extraction. Lyophilized mycelium was ground to a fine powder with 

a mortar and pestle under liquid nitrogen. DNA was extracted by transferring 20–40 mg 

of ground mycelia to a tube containing 800 µL of extraction buffer (0.2 M Tris-HCl, 0.25 

M NaCl, 25 mM EDTA and 0.5% SDS) and 2 µL Proteinase K (20 mg/mL; Qiagen, 
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Redwood City, CA, USA). Samples were incubated at 55 °C for 30 min. Samples were 

then treated with 3 µl RNase A (10 mg/mL; Thermo Fisher Scientific, Waltham, MA, 

USA) and incubated at 37 °C for 30 min. 800 µL of 24:1 chloroform:isoamyl alcohol was 

added to samples, mixed by inversion and centrifuged for 10 min at 13,000× g. The upper 

phase was transferred to a new tube and the chloroform step was repeated. DNA was 

precipitated by the addition of ½ volume of 5 M ammonium acetate and 2 volumes of 

100% ethanol, followed by overnight incubation at −20 °C. Precipitated DNA was 

pelleted by centrifugation for 15 min at 13,000× g. The DNA pellet was washed twice, 

first with 70% ethanol and then with 100% ethanol. DNA was air-dried and resuspended 

in 70 µL TE buffer (10 mM Tris-HCl, 0.5 mM EDTA). DNA purity was assessed using 

a Nanodrop spectrophotometer (Thermo Fisher Scientific) based on the 260/280 and 

260/230 absorbance ratios. DNA concentration was determined using a Qubit fluorometer 

with the dsDNA BR kit (Invitrogen, Carlsbad, CA). DNA quality was assessed via 

agarose gel electrophoresis on a 1% agarose gel. DNA library construction and paired-

end sequencing were carried out by BGI Tech Solutions Co., Ltd. (Hong Kong, China) 

on the Illumina HiSeq X Ten platform. Sequenced reads were deposited on the NCBI 

Sequence Read Archive (accessions: SRR10849951 for Ph. chlamydospora, 

SRR10849950 for Ph. gonapodyides and SRR10849937 for Ph. pseudosyringae). 

 

Genome Assembly 

Genome sizes and heterozygosity levels were estimated by generating k-mer count 

histograms of sequence reads with Jellyfish [48], which were used as input for 

GenomeScope [49]. De novo genome assembly was performed using SPAdes (v3.13.1) 

[50]. Assemblies were further scaffolded using SSPACE (v3.0) [51] and gaps were closed 

with GapFiller (v1.10) [52]. Scaffolds with low coverage (less than 30×) were manually 
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assessed for contamination by BLAST searches against the NCBI database and removed 

if they had a top hit outside the Oomycota. Assembly metrics were calculated using Quast 

(v5.0.2) [53]. BUSCO (v3) [54] was used to assess the gene space completeness of 

assemblies with the alveolata–stramenopiles dataset of BUSCOs. De novo repeat family 

identification and repeat masking were performed using RepeatModeler (v2.0) [55] and 

RepeatMasker (v4.1.0). Mitochondrial genomes were de novo assembled separately 

using NOVOPlasty (v3.7) [56] and visualised using OGDRAW (v1.3.1) [57]. 

 

Gene Annotation 

Gene models were predicted using BRAKER2 [58] with the ProtHint pipeline [59]. In 

brief, initial gene sets were predicted using GeneMark-ES (v4.46) [60]. Homologs of the 

initial gene predictions were identified using Diamond [61] searches against a database 

of 14 Peronosporales proteomes containing 267,298 proteins (Supplementary Table 

S1). Intron hints were generated by performing spliced alignments using Spaln2 [62] with 

the ProtHint pipeline [59]. GeneMark-EP [59] was trained with the intron hints and used 

to generate another gene set. The GeneMark-EP predictions, along with the intron hints, 

were then used to train Augustus [63] to generate the final gene sets. Completeness of 

gene sets were assessed using BUSCO v3. 

Genes were functionally annotated using InterProScan (v5.39-77.0) [64] and 

eggNOG-mapper (v2) [65]. Secreted proteins and transmembrane proteins were predicted 

using SignalP v3 [66] and TMHMM (v2.0) [67], respectively. SignalP v3 was 

implemented instead of earlier or later versions of the software as previous studies have 

found v3 to be more sensitive in predicting oomycete signal peptides [68]. For a protein 

to be considered secreted, it had to have a positive prediction from SignalP, an HMM S 

probability value ≥0.9, an NN Ymax score of ≥0.5, an NN D score of ≥ 0.5, and no 
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transmembrane domains downstream of the predicted signal peptide cleavage site. These 

criteria permitted comparisons to previous studies [12,68,69]. Proteins predicted to be 

secreted were submitted to ApoplastP [70] to predict if they are localised to the plant 

apoplast. CAZymes were annotated using dbCAN2 [71]. Homologs of experimentally 

verified effector proteins were identified by performing BLASTp searches [47] against 

the pathogen-host interaction database (PHI-Base Release 4.8) [72] with an E value cut-

off of 1e−20. 

Gene families were identified by performing all-versus-all BLASTp [47] searches 

with an E value cut-off of 1e−10, followed by Markov clustering using MCL [73] with an 

inflation value of 1.5. Tandemly duplicated genes were identified using BLASTp [47]. 

Tandem clusters were defined as two or more adjacent genes that hit each other in a 

BLASTp search with an E value cut-off of 1e−10 and highest-scoring pair (HSP) length 

greater than half the length of the shortest sequence. Enrichment analyses were preformed 

using Fisher’s exact test. Gene Ontology enrichment analyses were performed using 

Fisher’s exact test with Benjamini–Hochberg correction for multiple testing using 

GOATOOLS [74]. Corrected p-values < 0.05 were considered significant. 

 

Identification of Cytoplasmic Effectors 

RxLRs were classified using four methods as in McGowan and Fitzpatrick (2017) [12]. 

(i) The Win method - proteins must contain a signal peptide with a predicted cleavage 

site within the first 30 amino acids and an RxLR motif within residues 30–60 [75]. (ii) 

HMM method - hidden Markov model (HMM) searches were performed with HMMER 

(v3.2.1) [76] against all proteins predicted to be secreted using the “cropped.hmm” HMM 

profile constructed by Whisson et al. (2007) [77]. Hits with a bit score > 0 were retained. 

(iii) Regex method - proteins must contain a signal peptide between residues 10 to 40 
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and an RxLR motif within the following 100 residues followed by the EER motif within 

40 residues downstream of the RxLR motif, allowing for replacements of E to D and R 

to K [77]. This search was performed using the regular expression 

“^.{10,40}.{1,96}R.LR.{1,40}[ED][ED][KR]”. (iv) Homology method - proteins with 

a positive SignalP prediction were searched using BLASTp against a set of 1207 putative 

Phytophthora RxLRs from Ph. infestans, Ph. ramorum and Ph. sojae [3]. An E value cut-

off of 1e−20 was applied. Secreted proteins that met at least one of these four criteria were 

considered to be putative RxLRs. Additionally, an HMM search was performed on all 

putative RxLRs to determine if they have WY-domains, using the HMM described by 

Boutemy et al. (2011) [78]. 

CRNs were identified using the regular expression “^.{30,70}L[FY]LA[RK]”. 

Proteins with a positive hit from the regular expression search were aligned and an HMM 

model was constructed. The CRN HMM was then searched against the predicted 

proteomes using HMMER [76] and all proteins with a bit score >0 were considered the 

final set of putative CRNs. 

 

Phylogenomics 

A dataset of 33 Peronosporales genomes (Supplementary Table S1) was used for 

phylogenomic analysis. We also included Pythium ultimum as an outgroup. BUSCO 

analysis revealed 208 BUSCO families that are present and single copy in at least 90% 

of the species (i.e., at least 31 of the 34 species). Each BUSCO family was individually 

aligned with MUSCLE (v3.8.31) [79] and trimmed using trimAl (v1.4) [80] with the 

parameter “-automated1” to remove poorly aligned regions. Trimmed alignments were 

concatenated together resulting in a final supermatrix alignment of 106,315 amino acids. 

Maximum-likelihood (ML) phylogenetic reconstruction was performed using IQ-TREE 
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(v1.6.12) [81] with the JTT+F+R5 model, which was the best fit model according to 

ModelFinder [82], and 100 bootstrap replicates were undertaken to infer branch support 

values. Bayesian analysis was also performed using PhyloBayes MPI (v1.8) [83] with the 

CAT model. Two independent chains were run for 10,000 cycles and convergence was 

assessed using bpcomp and tracecomp. A consensus Bayesian phylogeny was generated 

with a burn-in of 10%. The phylogeny was visualised and annotated using the Interactive 

Tree of Life (iTOL) [84]. 

 

Phylostratigraphy 

Phylostratigraphic maps were determined for each species following previously 

published methods [85,86]. The database constructed by Drost et al. (2015) was retrieved 

which contains amino acid sequences from 4557 species, including 1787 eukaryotes (883 

animals, 364 plants, 344 fungi and 193 other eukaryotes) and 2770 prokaryotes (2511 

bacteria and 259 archaea) [85]. Protein sequences from the three Phytophthora species 

sequenced in this study and any publicly available oomycete proteomes were added to 

the database. The final database comprised 18,084,866 proteins, including 578,493 

proteins from 38 oomycete genomes. Each Phytophthora protein was then searched 

against this database using BLASTp [47]. Proteins were assigned to the oldest 

phylostratum that contained at least one BLAST hit with an E value cut-off < 1e−5. Genes 

that did not have a BLAST hit to any other species were considered species-specific 

(orphans). 
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Culturing Conditions and Extraction of Phytophthora Extracellular Proteins 

Petri dishes containing 15 mL of liquid medium (either 10% V8 broth or 10% cV8 broth) 

were inoculated with a 10 mm agar plug of Phytophthora mycelium cut from the edge of 

a growing Phytophthora colony. Cultures were incubated in the dark, non-shaking for 10 

days at their optimum temperatures (20 °C for Ph. pseudosyringae and 25 °C for Ph. 

chlamydospora and Ph. gonapodyides). Spent growth medium was harvested using a 

syringe without disturbing the mycelium. Supernatant from four petri dishes were pooled 

to make up one replicate. Collected supernatant was passed through a 0.2 μm syringe 

filter, frozen overnight at −20 °C and lyophilized. Lyophilized supernatant was 

resuspended in minimal volumes of PBS, desalted and concentrated using Amicon Ultra 

centrifugal filters (Millipore, Billerica, MA, USA) with a 3 kDa cut-off. Samples were 

clarified by centrifugation at 12,000× g for 5 min and brought to 15% (v/v) trichloroacetic 

acid (TCA) using 100% TCA. Precipitated proteins were washed twice with ice-cold 

acetone. Dried protein pellets were resuspended in 6 M Urea, 2 M Thiourea and 0.1 M 

Tris-HCl pH 8.0. Protein concentration was determined using a Qubit fluorometer 

(Invitrogen). 

 

Culturing Conditions and Extraction of Phytophthora Mycelial Proteins 

Phytophthora mycelium was cultured under three growth conditions. (i) Normal - 

cultures were grown for ten days at their optimum temperatures. (ii) Heat - cultures were 

grown for 7 days at their optimum temperatures, followed by incubation at 30 °C for three 

days. (iii) Oxidative stress - cultures were grown for ten days at their optimum 

temperatures, then exposed to 1 mM H2O2 for three hours. All cultures were grown in 50 

mL of 10% cV8, non-shaking. Mycelia were harvested using Miracloth, washed with 
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sterile distilled water, flash-frozen in liquid nitrogen and stored at −80 °C until used for 

protein extraction. 

To extract proteins, mycelium was ground to a fine powder with a mortar and 

pestle under liquid nitrogen. 200–300 mg of ground mycelium was resuspended in 400 

µL of lysis buffer followed by sonication (Bandelin Sonopuls HD2200 sonicator, Cycle 

6, Berlin, Germany, 3 × 10 s, Power 20%). Protein concentration was determined using a 

Qubit fluorometer (Invitrogen). Protein lysates (0.25 mg/mL) were incubated at 95 °C for 

5 min. 

 

Protein Digestion and LC-MS/MS Identification of Phytophthora Proteins 

Three independent biological replicates were analysed for each condition. Proteins were 

reduced and alkylated prior to overnight trypsin digestion as described previously [87,88]. 

Digestion was terminated by the addition of 1 µL of 100% trifluoroacetic acid (TFA). 

Sample clean-up was performed using C18 ZipTips® (Millipore), following the 

manufacturer’s instructions. Shotgun proteomics was performed using an Ultimate 3000 

RSLC from Dionex, coupled to a Thermo Scientific Q-Exactive mass spectrometer. 

Peptide mixtures were separated on a 50 cm EASY-Spray PepMap C18 column with 75 

µm diameter (2 µm particle size) using a 10–40 % B gradient (A: 0.1% (v/v) formic acid, 

3% (v/v) acetonitrile; B: 0.1% (v/v) formic acid, 80% (v/v) acetonitrile). Data were 

acquired for 105 min, at 70,000 resolution for MS and a Top 15 method for MS2 

collection. 

Protein identification from the data was performed using the Andromeda search 

engine [89] in MaxQuant [90] with the predicted proteomes for each species as a search 

database. To account for possible protein contamination from V8 juice medium, we 

appended the tomato proteome to the default MaxQuant contaminants database. Search 
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parameters were as described in Delgado et al. (2019) [91]. Identified protein groups were 

filtered using Perseus [92], to remove protein groups that were identified only by site, or 

had hits to either the contaminants database or the reverse database. Proteins were 

considered present in a condition if they were identified by 2 or more peptides and 

detected in at least 2 out of 3 replicates. Proteins were considered unique to a condition 

if they were not detected in any replicate of any other condition. 

 

Data Deposition 

This project has been deposited at DDBJ/EMBL/GenBank as individual WGS 

BioProjects, with the following BioProject accession numbers: PRJNA599565 (Ph. 

chlamydospora), PRJNA599567 (Ph. gonapodyides) and PRJNA599564 (Ph. 

pseudosyringae). 
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Results and Discussion 

Genome Sequencing and Assembly 

Paired-end Illumina sequencing generated approximately 5.2 Gb of sequencing data for 

each of the three species. Genome sizes and heterozygosity levels were estimated based 

on K-mer analysis of sequence reads using Jellyfish [48] and GenomeScope [49], which 

estimated genome sizes of 51.1 Mb, 65.2 Mb and 51.0 Mb (Table 2) for Ph. 

chlamydospora, Ph. gonapodyides, and Ph. pseudosyringae, respectively. The 

heterozygosity of Ph. gonapodyides was estimated to be 1.88% (Table 2), which was 

much higher than Ph. chlamydospora (0.68%) and Ph. pseudosyringae (0.15%) (Table 

2), and high compared to other oomycetes which typically have heterozygosity levels less 

than 1% [93]. De novo genome assembly using SPAdes [50] generated draft genome 

assemblies with assembly sizes of 45.3 Mb for Ph. chlamydospora, 61.1 Mb for Ph. 

gonapodyides and 47.9 Mb for Ph. pseudosyringae (Table 2), which compares 

favourably to the genome sizes estimated by GenomeScope. The Ph. gonapodyides 

assembly was much more fragmented (16,449 scaffolds) than Ph. chlamydospora (4077 

scaffolds) and Ph. pseudosyringae (3627 scaffolds) (Table 2). We expect that this is due 

to higher levels of heterozygosity found in the Ph. gonapodyides genome assembly and 

due to expansions of repetitive elements (Supplementary Table S2). BUSCO analysis 

[54] was performed using the Alveolata-Stramenopiles dataset which contains 234 target 

BUSCO proteins that are expected to be present and single-copy. BUSCO results suggests 

that the assemblies are of high gene space completeness with BUSCO completeness 

values of 97.8% for Ph. chlamydospora, 87.2% for Ph. gonapodyides, and 94.1% for Ph. 

pseudosyringae) (Table 2 and Figure 1). Furthermore, the low number of duplicated 

BUSCOs suggest that haplotypes were correctly collapsed (Figure 1). De novo repeat 
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annotation using RepeatModeler2 [55] and RepeatMasker led to the identification of 4.1 

Mb (9.0%) of repetitive elements in Ph. chlamydospora, 9.8 Mb (16.1%) in Ph. 

gonapodyides and 6.4 Mb (13.3%) in Ph. pseudosyringae (Table 2). The majority of 

identified repeats were unclassified or were classified as long terminal repeat (LTR) 

retroelements (Supplementary Table S2). Overall, the proportions of repetitive elements 

identified are similar to that of Ph. parasitica (8%), Ph. plurivora (15%), Ph. cactorum 

(18%) and Ph. capsici (21%) [5,6] but less than that of Ph. sojae (31%), Ph. ramorum 

(54%) and Ph. infestans (74%) [3,94,95]. 

 

Figure 1. BUSCO analysis of Ph. chlamydospora, Ph. gonapodyides, and Ph. 

pseudosyringae using the Alveolata-Stramenopiles dataset. BUSCO completeness in all 

three species is high (97.8%, 87.2% and 94.1%) indicating that the genome assemblies 

are of high gene space completeness. The lower level of BUSCO completeness in Ph. 

gonapodyides is most likely the result of a fragmented assembly due to high levels of 

heterozygosity. 

 

C:220 [S:218, D:2], F:2, M:12, n:234Phytophthora pseudosyringae
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Table 2. Genome assembly statistics. 

Genome Assembly Phytophthora 

chlamydospora 

Phytophthora 

gonapodyides 

Phytophthora 

pseudosyringae 

Estimated Genome 

Size (bp) 

51,100,498 65,211,327 51,026,880 

Assembly Size (bp) 45,264,984 61,088,431 47,882,184 

Number of Scaffolds 4077 16,449 3627 

N50 (bp) 26,559 5455 26,492 

L50 466 2927 526 

GC Content 55.7% 55.7% 54.8% 

Sequencing 

Coverage 

98x 76x 102x 

Repeat Masked 9.0% 16.1% 13.3% 

Estimated 

Heterozygosity 

0.68% 1.88% 0.15% 

Gene Models  17,872 23,348 17,439 

CDS density 56.3% 43.3% 49.2% 

Genome BUSCO 

Completeness 

97.8% 87.2% 94.1% 

Gene Set BUSCO 

Completeness 

97.5% 88.1% 94.4% 

Proteins with Pfam 

domains 

10,759 (60.2%) 12,181 (52.2%) 10,130 (58.1%) 
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Gene prediction led to the annotation of 17,872 gene models for Ph. 

chlamydospora, 23,348 for Ph. gonapodyides and 17,439 for Ph. pseudosyringae (Table 

2), with BUSCO completeness scores of 97.5%, 87.2% and 94.4% (Table 2), suggesting 

high quality gene model annotation. Between 52.5% and 60.2% of proteins were 

annotated with one or more Pfam domains (Table 2 and Supplementary Table S3). The 

percentage of the genome assemblies covered by coding sequences were 56.3%, 43.3% 

and 49.2 % for Ph. chlamydospora, Ph. gonapodyides and Ph. pseudosyringae, 

respectively, which are similar to Ph. cinnamomi (43.7%), Ph. parasitica (43.0%) and 

Ph. sojae (45.6%) but higher than what is observed in Ph. ramorum (33.7%), Ph. capsici 

(38.8%) and Ph. infestans (12.36%) [93]. 

 

Phylogenomics Analysis 

A phylogenomic analysis was carried out to determine the phylogenetic relationships of 

the three Phytophthora species using the genome sequences of 33 Peronosporales species 

and Py. ultimum as an outgroup (Supplementary Table S1). A supermatrix alignment 

was constructed from 208 highly conserved BUSCO families. Maximum Likelihood 

(ML) and Bayesian phylogenetic reconstruction was undertaken on the supermatrix. Both 

ML and Bayesian methods resulted in phylogenies with identical topologies and most 

nodes had maximum Bootstrap Support (BP) or maximum Bayesian Posterior 

Probabilities (BPP) (Figure 2). All species were placed into their expected clades, and 

overall the placement of each species is in broad agreement with previous studies 

[93,96,97]. We also recovered the polyphyly of the downy mildews (Figure 2). 

Interestingly, the branch lengths of the Downy Mildew species are longer relative to the 

other Peronosporales species presented indicating higher levels of genetic divergence 

(Figure 2). Ph. pseudosyringae was placed as sister to Ph. pluvialis, which is also a clade 
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3 species, with maximum support from both ML and Bayesian methods (Figure 2). 

Phytophthora gonapodyides was placed as sister to Ph. pinifolia, to the exclusion of Ph. 

chlamydospora, with 87% BP from the ML phylogeny and maximum support from the 

Bayesian phylogeny (Figure 2). We note that this disagrees with previous phylogenies 

based on ITS sequences [31] and four concatenated mitochondrial loci [98], both of which 

group Ph. chlamydospora and Ph. pinifolia as being more closely related. Some markers, 

including the ITS sequence, are known to be identical or nearly identical between 

members of Phytophthora clade 6b, which Ph. chlamydospora, Ph. gonapodyides, and 

Ph. pinifolia belong to [99]. Due to the highly conserved nature of these markers, they 

may not reflect the true phylogenetic relationships between species. Furthermore, 

phylogenomic approaches are generally considered to be more informative than single 

gene phylogenies or phylogenies derived from small numbers of genes, as they utilise 

substantially greater amounts of phylogenetically informative genomic data [100]. 

Our phylogeny groups Ph. cinnamomi with Ph. sojae and Ph. pisi, to the exclusion 

of Ph. fragariae and Ph. rubi, with 92% BP from the ML phylogeny and maximum 

support in the Bayesian phylogeny (Figure 2). This is in disagreement with a phylogeny 

based on seven nuclear genetic markers which groups Ph. sojae, Ph. pisi, Ph. fragariae, 

and Ph. rubi together to the exclusion of Ph. cinnamomi [2]. However, our phylogeny is 

in agreement with two separate studies based on seven nuclear loci which group Ph. 

cinnamomi more closely related to Ph. sojae [97,98]. We anticipate that differences in 

topology are due to the inclusion or exclusion of different species in datasets. 
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Figure 2. Supermatrix phylogeny of 33 Peronosporales species (208 BUSCO families, 

106,315 amino acids). Py. ultimum is included as an outgroup. Phylogenomic analyses 

were performed using both maximum likelihood (IQ-TREE with JTT+F+R5 model) and 

Bayesian inference (PhyloBayes MPI with the CAT model). Both methods inferred 

phylogenies with identical topologies. Branch lengths are shown. Maximum likelihood 

bootstrap supports are indicated at all nodes. Bayesian posterior probabilities were 100 

for all nodes and are not shown. 
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Phytophthora Mitochondrial Genomes 

Mitochondrial genomes were assembled and circularised using NOVOPlasty, resulting in 

mitochondrial genome assemblies sizes of 38.33 Kb for Ph. chlamydospora, 43.97 Kb 

for Ph. gonapodyides and 39.14 Kb for Ph. pseudosyringae in length (Figure 3), which 

are similar in size to previously sequenced Phytophthora mitochondrial genomes [101]. 

The overall mitochondrial GC content is also highly similar to other Phytophthora 

species, with 22.5% for Ph. chlamydospora, 23.7% for Ph. gonapodyides and 22.0% for 

Ph. pseudosyringae. We did not detect any inverted repeats. The gene content of each 

mitochondrion is similar to that of other Phytophthora mitochondrial genomes, including 

35 known protein-coding genes (18 respiratory chain proteins, 16 ribosomal proteins, and 

the import protein secY), two ribosomal RNA genes (rns and rnl) and 25 (Ph. 

chlamydospora and Ph. pseudosyringae) or 26 (Ph. gonapodyides) transfer RNA genes 

that specify 19 amino acids (Figure 3 and Supplementary Table S4). As with other 

oomycetes the tRNA gene for threonine was not located in the mitochondrial genomes of 

the three species presented here. Unlike animals and fungi, oomycete mitochondria use 

the standard genetic code [102]. The majority of mitochondrial genes had the TAA stop 

codon except for nad11 which has the TGA stop codon in all three species. Other 

exceptions include ORF24 (TAG) in Ph. chlamydospora, ORFS 13, 23, 40 (TGA) and 

ORF4 (TAG) in Ph. gonapodyides as well as ORFS8&25 in Ph. pseudosyringae. Coding 

regions account for 87.55%, 81.95% and 87.55% of the genomes of Ph. chlamydospora, 

Ph. gonapodyides and Ph. pseudosyringae respectively. 
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Figure 3. Circular maps of the mitochondrial genomes of Ph. chlamydospora, Ph. 

gonapodyides and Ph. pseudosyringae. The inner ring shows % GC content. Arrows 

indicate relative transcriptional orientation. The outer ring shows the predicted genes 

which are encoded on both strands. All three species are missing the tRNA gene for 

threonine.  
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Nucleotide alignment of the mitochondrial assemblies revealed that the Ph. 

chlamydospora and Ph. gonapodyides mitochondria are collinear (Figure 3 and 

Supplementary Figure S1). Two inversions are present in the Ph. pseudosyringae 

mitochondrial genome relative to Ph. chlamydospora and Ph. gonapodyides (Figure 3 

and Supplementary Figure S1). We identified a number of open reading frames (ORFs) 

that are conserved between all three mitochondrial genomes and other Phytophthora 

mitochondrial genomes, including orf64, orf100, orf142 and orf217 (Figure 3 and 

Supplementary Table S4). The functions of these ORFs are unknown. Phytophthora 

pseudosyringae also shares an additional ORF that is homologous with Ph. sojae orf206 

[103] (Figure 3). A large number of unique unannotated ORFs were identified in Ph. 

gonapodyides (ORF4, ORF13, ORF14, ORF15, ORF16, ORF23, ORF25, ORF40, 

ORF44, and ORF50), compared to two in Ph. pseudosyringae (ORF8 and ORF25) and 

only one in Ph. chlamydospora (ORF26) (Figure 3). 

 

Bioinformatic Characterisation of Phytophthora Effector Arsenals 

Bioinformatic annotation of Phytophthora secretomes was performed using SignalP. This 

analysis predicted 1140, 1291 and 1131 secreted proteins for Ph. chlamydospora, Ph. 

gonapodyides, and Ph. pseudosyringae respectively (Table 3), accounting for 6.38%, 

5.53% and 6.49% of their total genome complement, similar to the number of secreted 

proteins reported for other Phytophthora genomes [12]. ApoplastP predicted that 47.1% 

to 48.8% of putative secreted proteins localise to the plant apoplast (Table 3). 

Approximately 20% of all putatively secreted proteins are homologous to experimentally 

verified effectors in PHI-Base (Table 3). InterProScan [64] was used to annotate putative 

effector proteins based on conserved Pfam domains known to be implicated in plant 

pathogenicity. Some of these effectors are discussed below. 
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Table 3. Counts of putative effector proteins. 

 Phytophthora 
chlamydospora 

Phytophthora 
gonapodyides 

Phytophthora 
pseudosyringae 

Secreted Proteins 1140 (6.38%) 1291 (5.53%) 1131 (6.49%) 

ApoplastP Hits 554 (48.5%) 630 (48.8%) 533 (47.1%) 

PHI-Base homologs 249 (21.8%) 234 (18.1%) 243 (21.5%) 

Apoplastic effectors  

Berberine-like proteins 1 (1) 2 (1) 3 (1) 

Cysteine-rich secretory proteins(CAP) 34 (22) 34 (25) 31 (22) 

Elicitins 57 (45) 59 (47) 45 (34) 

Necrosis-inducing proteins 25 (19) 33 (22) 22 (19) 

PAN/Apple domain 25 (21) 32 (20) 20 (15) 

PcF phytotoxins 1 (0) 1 (1) 1 (1) 

Transglutaminase elicitors 14 (11) 16 (11) 17 (11) 
Proteases and protease inhibitors  
Aspartyl proteases 59 (4) 53 (3) 26 (2) 
Papain family cysteine proteases 19 (8) 22 (6) 20 (8) 
Serine proteases 13 (6) 12 (4) 18 (9) 
Kazal-type protease inhibitors 13 (12) 15 (11) 16 (10) 
Cathepsin propeptide inhibitors 4 (2) 4 (1) 4 (3) 
Cytoplasmic effectors  
Crinklers 77 (28) 80 (18) 90 (37) 
RxLRs 132 (132) 132 (132) 186 (186) 
Polysaccharide modifying enzymes  
Cellulases 30 (7) 35 (4) 22 (5) 
Lytic polysaccharide mono-oxygenases 6 (5) 4 (2) 5 (5) 
Cutinases 3 (2) 4 (2) 5 (5) 
Chitinases 1 (1) 2 (0) 2 (1) 
Fungal cellulose binding domains 8 (6) 10 (7) 8 (8) 
Pectate lyases 34 (23) 25 (14) 31 (23) 
Pectin acetylesterases 6 (4) 6 (3) 6 (5) 
Pectinesterases 7 (6) 7 (5) 15 (9) 

 
Putative effectors were annotated based on Pfam domains or manually curated (CRNs and 

RxLRs). Numbers in brackets represent proteins belonging to the predicted secretome.  
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Elicitins are secreted proteins that bind sterols and lipids, allowing Phytophthora 

spp. to overcome their inability to synthesise sterols by sequestering sterols from their 

hosts or environments [104]. Elicitins also act as microbe-associated molecular patterns 

(MAMPs), triggering host cell death upon recognition by the host plant. Elicitin proteins 

are usually members of large multi-copy gene families in oomycete genomes [105]. Here, 

we have identified between 45 and 59 proteins with an elicitin domain (PF00964) for 

each Phytophthora species, of which approximately 78% are predicted to be secreted 

(Table 3). In contrast to elicitins, necrosis-inducing proteins (NLPs) have a broad 

taxonomic distribution having been identified in bacteria, fungi and oomycetes [106]. 

NLPs are known to induce ethylene accumulation and trigger necrosis in dicots [106]. 

Here, we identified 25, 33 and 22 proteins containing the NLP domain (PF05630) in Ph. 

chlamydospora, Ph. gonapodyides and Ph. pseudosyringae, respectively, of which 19 

(76%), 22 (67%) and 19 (86%) were predicted to be secreted (Table 3). Multiple 

sequence alignment (not shown) of identified NLPs confirm they are all type 1 NLPs, 

characterised by the presence of two conserved cysteine residues. Other effectors of 

interest include the PcF phytotoxins, these are small cysteine-rich proteins that induce 

plant cell necrosis [107]. PcF phytotoxins appear to be unique to Peronosporales species 

based on available genomic data. We identified only one protein with the PcF phytotoxin 

domain (PF09461) in each of the three genomes, however, only the Ph. gonapodyides 

and Ph. pseudosyringae copies were predicted to be secreted (Table 3). 

Transglutaminases are proteins that strengthen structures such as cell walls by facilitating 

cross-linking between glutamine and lysine residues, conferring resistance to proteolysis 

[108]. Transglutaminases, such as Ph. sojae GP42, can elicit a host immune response 

upon recognition [109]. We identified 14, 16, and 17 proteins containing the 

transglutaminase elicitor domain (PF16683) in Ph. chlamydospora, Ph. gonapodyides 
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and Ph. pseudosyringae, respectively (Table 3). Each of the three genomes encode 11 

transglutaminase elicitors that are predicted to be secreted (Table 3), which is similar to 

the number predicted to be secreted by Ph. cactorum (15) [6]. 

The PAN/Apple domain (PF00024, PF14295) is enriched in the secretomes of 

most oomycete species [12]. This domain is associated with carbohydrate-binding 

modules, for example, cellulose-binding elicitor lectins (CBEL). Knockdown of a Ph. 

parasitica CBEL with two PAN/Apple domains affected its ability to adhere to cellulosic 

substrates, such as plant cell walls [110]. We identified 25 proteins with PAN/Apple 

domains in Ph. chlamydospora, 32 in Ph. gonapodyides and 20 in Ph. pseudosyringae 

(Table 3), of which 21 (84%), 20 (62.5%) and 15 (75%) were predicted to be secreted 

(Table 3). 47% of all identified PAN/Apple domain-containing proteins had two or more 

PAN/Apple domains. Proteins belonging to the cysteine-rich secretory proteins, antigen 

5, and pathogenesis-related 1 proteins (CAP) family (PF00188) are also enriched in most 

oomycete secretomes [12]. Saccharomyces cerevisiae CAP family proteins function in 

sterol binding and export, and are linked to fungal virulence [111]. However, little is 

known about their involvement in oomycete infection. We identified 34 CAP proteins in 

Ph. chlamydospora, and Ph. gonapodyides individually and 31 in Ph. pseudosyringae 

(Table 3), of which 22 (64.7%), 25 (73.5%) and 22 (71.0%) were predicted to be secreted. 

In total, we annotated 18, 13 and 19 proteases bearing signal peptides (aspartyl 

proteases, papain family cysteine proteases or serine proteases) in Ph. chlamydospora, 

Ph. gonapodyides and Ph. pseudosyringae, respectively (Table 3). While these proteins 

are annotated as proteases, they may not be proteolytically active. For example, two Ph. 

sojae proteins GIP1 and GIP2 share significant similarity with trypsin but are 

proteolytically non-functional and instead inhibit an endo-β-1,3 glucanase from soybean 

[11]. In a classic example of a co-evolutionary arms race, plant hosts secrete apoplastic 
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proteases to degrade pathogen effectors. To counteract these plant defenses, pathogens 

secrete protease inhibitors to inhibit the host proteases. A total of 13, 15, and 16 proteins 

were annotated with Kazal-type serine protease inhibitors domains (PF00050) in Ph. 

chlamydospora, Ph. gonapodyides, and Ph. pseudosyringae, of which 12 (92.3%), 11 

(73.3%) and 10 (62.5%) were predicted to be secreted (Table 3). We also identified 4 

Cathepsin propeptide inhibitors (PF08246) in each genome (Table 3), 2 were predicted 

to be secreted in Ph. chlamydospora, 1 in Ph. gonapodyides and 3 in Ph. pseudosyringae 

(Table 3). 

We also annotated a large number of proteins putatively involved in the 

breakdown or binding of exogenous carbohydrates, such as plant cell walls, including 

cellulases, cellulose-binding proteins, cutinases, lytic polysaccharide mono-oxygenases, 

and pectin modifying enzymes (Table 3). Pectin modifying enzymes were the most 

numerous and include pectate lyases, pectinesterases and pectin acetylesterases. Pectate 

lyases cleave pectin, a major component of plant cell walls. Pectinesterases catalyse the 

de-esterification of pectin, while pectin acetylesterases deacetylate pectin, making the 

pectin backbone more accessible to pectate lyases [112,113]. In total, we identified 47 

pectin modifying enzymes in Ph. chlamydospora, 38 in Ph. gonapodyides, and 52 in Ph. 

pseudosyringae (Table 3), of which 33 (70.2%), 22 (57.9%) and 37 (71.2%) are predicted 

to be secreted, suggesting a putative role in the breakdown of plant cells. 

RxLR effectors are named due to the highly conserved RxLR motif found in their 

N-terminus which act as a trafficking motif, signaling the effectors to be delivered into 

plant cells [77]. The RxLR motif is followed by an EER motif in many RxLR effectors 

[77]. RxLR C-terminal domains are typically highly divergent although many contain one 

or more “WY” domains [114]. Many RxLRs are expressed early in infection and play 

roles in the suppression of host immune responses [115]. However, the function of most 
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RxLRs is unknown and many have been shown to localise to diverse subcellular locations 

within plant host cells [116]. RxLRs were identified using a combination of four 

independent criteria (see methods). For Ph. chlamydospora, 93 proteins had a hit 

according to the Win method, 68 with the Regex method, 64 with the HMM method and 

81 with the homology method (Supplementary Table S5). In total, across the four 

methods, 132 unique putative RxLRs were identified for Ph. chlamydospora (Table 3), 

of which 34 had hits to the WY-fold HMM (Supplementary Table S5). For Ph. 

gonapodyides, 96 putative RxLRs were identified according to the Win method, 63 with 

the Regex method, 68 with the HMM method and 74 with the homology method 

(Supplementary Table S5). In total, 132 unique putative RxLRs were identified using 

the four methods (Table 3), 39 of which had hits to the WY-fold HMM (Supplementary 

Table S5). For Ph. pseudosyringae, 125 proteins were designated as putative RxLR 

effectors based on the Win method, 99 with the Regex method, 101 with the HMM 

method and 124 with the homology method (Supplementary Table S5). In total, across 

the four methods, 186 unique proteins were annotated as putative RxLRs (Table 3), of 

which 61 had hits from the WY-fold HMM (Supplementary Table S5). The number of 

putative RxLRs identified in Ph. pseudosyringae is similar to its clade 3 relative Ph. 

pluvialis (181) [8,12]. 

CRNs are modular proteins that contain highly conserved N-terminal domains 

containing a signal peptide and an “LxLFLAK” motif that mediates translocation into 

host cells [117]. CRNs are named after their crinkling and necrosis-inducing activity in 

leaves [118]. CRNs were identified using a combination of regular expression searches 

and HMM searches. The number of CRNs identified for each species is similar. In total, 

77 putative CRNs were identified in Ph. chlamydospora, 80 in Ph. gonapodyides and 90 

in Ph. pseudosyringae (Table 3). Similar to what has been observed for other oomycetes 



 223 

[5,6,12], only a small proportion of identified CRNs have a positive SignalP prediction, 

with 28 (36.4%) in Ph. chlamydospora, 18 (22.5%) in Ph. gonapodyides and 37 (41.1%) 

in Ph. pseudosyringae (Table 3). 

 

Carbohydrate Active Enzymes 

Supplemental to the InterProScan analysis above, a more detailed analysis of CAZymes 

was performed using dbCAN2 [71]. This led to the identification of 483 putative 

CAZymes in Ph. chlamydospora, 487 in Ph. gonapodyides and 453 in Ph. 

pseudosyringae (Table 4 and Supplementary Table S6), of which, 213 (44.1%), 179 

(36.8%) and 194 (42.8%) are predicted to be secreted (Table 4 and Supplementary 

Table S6). Of the identified CAZymes, glycoside hydrolases are the most numerous. 

Each species encodes between 210 and 243 glycoside hydrolases, of which 51 to 62% are 

predicted to be secreted (Table 4). Identified glycoside hydrolases belonged to 44 

families/subfamilies (Supplementary Table S6). In total 33 to 38 polysaccharide lyases 

were identified for each species (Table 4), belonging to three families, PL1_4 (pectate 

lyase), PL3_2 (pectate lyase) and PL4_1 (rhamnogalacturonan endolyase) 

(Supplementary Table S6). Approximately 73% of all identified polysaccharide lyases 

are predicted to be secreted (Table 4). 
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Table 4. Counts of carbohydrate-active enzymes (CAZymes) in Phytophthora 

genomes 

 Phytophthora 

chlamydospora 

Phytophthora 

gonapodyides 

Phytophthora 

pseudosyringae 

Glycoside 

Hydrolases 

234 (144) 243 (123) 210 (121) 

Glycosyl 

Transferases 

125 (11) 118 (10) 120 (12) 

Polysaccharide 

Lyases 

38 (27) 33 (22) 33 (27) 

Carbohydrate 

Esterases 

46 (16) 46 (12) 53 (22) 

Auxiliary Activities 33 (14) 41 (11) 29 (11) 

Carbohydrate-

Binding Modules 

10 (2) 12 (4) 10 (1) 

Total CAZymes 483 (213) 487 (179) 453 (194) 

Numbers in brackets represent proteins belonging to the predicted secretome. Full list of 

annotations per gene is available in Supplementary Table S6. 

 

We extended this analysis by comparing the CAZyme repertoires of 44 oomycete 

species with different host ranges and broad lifestyles (Figure 4 and Supplementary 

Table S1). In agreement with previous studies [119], our results show that Phytophthora 

species tend to have larger numbers of CAZymes compared to other oomycete taxa 

(Figure 4). Specifically examining 24 Phytophthora species, the average number of 

CAZymes is 450. On average, each Phytophthora genome encodes 215 glycoside 

hydrolases, 111 glycoside transferases, 38 polysaccharide lyases, 34 proteins involved in 

auxiliary activities, 46 carbohydrate esterases and 9 proteins with carbohydrate-binding 

modules. The number of CAZymes identified in Ph. pseudosyringae is close to the 

average Phytophthora (Figure 4). 
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Figure 4. Distribution of CAZymes across 44 oomycete genomes. The arsenal of carbohydrate active enzymes in Phytophthora species 
is larger than what is observed in other oomycete species. In particular the difference in glycoside hydrolase repertoire is noticeable. 
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Figure 5. PCA clustering of oomycete species based on copy numbers of glycoside hydrolase families. Genus abbreviations are as follows: 

Albugo (Al.), Aphanomyces (Ap.), Bremia (Br.), Hyaloperonospora (Hy.), Peronospora (Pe.), Phytophthora (Ph.), Phytopythium (Pp.), 

Pilasporangium (Pi.), Plasmopara (Pl.), Pythium (Py.), Saprolegnia (Sp.). Colored dots relate to lifestyle. Species with similar lifestyles 

are clustered together suggesting oomycete lifestyles may be linked to their glycoside hydrolase repertoires. 
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The two clade 6 aquatic Phytophthora species have an expanded repertoire of 

CAZymes relative to the average Phytophthora, with 483 CAZymes in Ph. 

chlamydospora and 487 CAZymes for Ph. gonapodyides (Figure 4). In particular, they 

have a higher than average number of glycoside hydrolases, with 234 in Ph. 

chlamydospora and 243 in Ph. gonapodyides (Figure 4 and Table 4). All three genomes 

have a higher than average number of glycoside transferases, with 125 in Ph. 

chlamydospora, 118 in Ph. gonapodyides and 120 in Ph. pseudosyringae (Figure 4 and 

Table 4). Ph. gonapodyides also has a higher than average number of proteins involved 

in auxiliary activities with 41 proteins (Figure 4 and Table 4). 

Interestingly, principal component analysis (PCA) of glycoside hydrolase family 

copy numbers clusters species with similar lifestyles together (Figure 5). All downy 

mildew species (Albugo, Bremia, Hyaloperonospora, Peronospora, and Plasmopara) 

cluster tightly together (Figure 5), despite evolving obligate biotrophism independently 

(Figure 2) [96,120]. Plant pathogenic Pythium species are also more distantly clustered 

(Figure 5). The mycoparasite Pythium oligandrum is placed distantly to all other Pythium 

species (Figure 5), suggesting it may have a specialised repertoire of glycoside 

hydrolases involved in infection of fungi and oomycetes [121]. The animal pathogens 

Aphanomyces astaci, Saprolegnia diclina and Saprolegnia parasitica are clustered 

together (Figure 5). Aphanomyces invadans is clustered with the mammalian pathogen 

Pythium insidiosum (Figure 5). The intermediate genera, Pilasporangium and 

Phytopythium, are clustered together between Phytophthora and Pythium (Figure 5). All 

Phytophthora species are clustered together, over a wide area (Figure 5). Phytophthora 

chlamydospora and Ph. gonapodyides are clustered together but relatively distant to all 

other Phytophthora species (Figure 5). This suggests that these opportunistic aquatic 

Phytophthora species may have distinctive glycoside hydrolase arsenals. Furthermore, 
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they are placed distantly from their closest relative in the dataset Ph. pinifolia (Figure 2 

and Figure 5). Examining individual glycoside hydrolase families, both Ph. 

chlamydospora and Ph. gonapodyides have expansions of glycoside hydrolase families 

1, 3, 5, 10, 13 and 43 (Supplementary Figure S2). These results suggest that oomycete 

lifestyles may be linked to their CAZyme repertoires, in particular glycoside hydrolase 

families. These findings are similar to recent analyses showing clustering of oomycete 

species with similar lifestyles based on metabolic networks [122,123]. 

 

Tandemly Duplicated Genes 

Tandemly duplicated genes are duplicated genes that are located adjacent to each other 

in the genome. Analysis of tandemly duplicated genes using BLASTp led to the 

identification of 2513 (14.1%) tandemly duplicated genes in Ph. chlamydospora, 1863 

(8.0%) in Ph gonapodyides and 2225 (12.8%) in Ph. pseudosyringae (Table 5). The 

tandemly duplicated genes are located in 833 to 979 tandem clusters (Table 5 and 

Supplementary Table S7). On average, each cluster has between 2.24 and 2.57 tandemly 

duplicated genes (Table 5). Fewer tandemly duplicated genes were identified in Ph. 

gonapodyides compared to Ph. chlamydospora and Ph. pseudosyringae (Table 5), 

however, this analysis may have been limited by the poor assembly contiguity of Ph. 

gonapodyides. Overall, counts of tandemly duplicated genes are similar to those observed 

in other Phytophthora genomes [124]. Proteins predicted to be secreted are significantly 

overrepresented in tandemly duplicated clusters (p < 0.05 (Fisher’s exact test)), with 354 

Ph. chlamydospora secreted proteins found in tandem clusters, 265 from Ph. 

gonapodyides and 328 from Ph. pseudosyringae (Table 5). This adds further evidence 

that tandem gene duplication has played a role in the expansion of oomycete secretomes 

[124]. Our results show that putative effector proteins are numerous in tandem clusters. 
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For example, in Ph. chlamydospora, 33 elicitins out of a total of 57 (58%) are located in 

12 tandem clusters (Supplementary Table S7). Clusters of elicitins genes have also been 

reported in other Phytophthora species [6,105]. Similarly, 20 out of a total 34 CAP 

proteins (59%) are found in eight tandem clusters (Supplementary Table S7). Tandem 

gene duplication has also played a role in the expansion of Phytophthora CAZyme 

arsenals. For example, in Ph. chlamydospora 175 out of a total of 483 proteins (36%) 

annotated as putative CAZymes (Table 4) are found in tandem clusters. We observed 

similar trends in all three genome assemblies. 

 

Table 5. Tandem gene duplication. 

 Phytophthora 

chlamydospora 

Phytophthora 

gonapodyides 

Phytophthora 

pseudosyringae 

Tandem Clusters 979 833 874 

Genes in Tandem 

Clusters 

2513 (14.1%) 1863 (8.0%) 2225 (12.8%) 

Average Number of 

Genes Per Tandem 

Cluster 

2.57 2.24 2.55 

Secreted Proteins in 

Tandem Clusters 

354 (31.1%) 265 (20.5%) 328 (29.0%) 

 

LC-MS/MS Characterisation of Phytophthora Extracellular Proteomes 

Here we used a mass spectrometry-based approach to characterise the in vivo secretomes 

and extracellular proteomes of Ph. chlamydospora, Ph. gonapodyides and Ph. 

pseudosyringae. Each species was cultured under two conditions with different media 

types –10% V8 juice or 10% cV8 juice. Extracellular medium was harvested 10 days after 

inoculation. To minimise the possibility of hyphal lysis, extracellular medium was 
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carefully harvested using a syringe without disrupting the Phytophthora hyphae. Proteins 

were extracted from extracellular medium and subjected to LC-MS/MS to identify 

extracellular proteins. Proteins were identified by searching spectra against the predicted 

proteome of each species. Protein groups (a group of indistinguishable proteins based on 

identified peptides) were considered present in a condition if they were identified based 

on at least two peptides and present in at least two out of three independent biological 

replicates. Protein groups were considered unique to a condition if they were not detected 

in any replicate of other conditions. 

Examining Ph. chlamydospora, 302 protein groups (327 proteins) were identified 

in the cV8 samples and 251 protein groups (274 proteins) were identified in the V8 

samples (Supplementary Table S8). 20 protein groups (20 proteins) were unique to the 

cV8 samples and 14 protein groups (17 proteins) were unique to the V8 samples 

(Supplementary Table S8). In total across the two conditions, 321 protein groups (351 

proteins) were identified (Table 6 and Supplementary Table S8), of which 149 proteins 

(42%) overlap with the predicted secretome of Ph. chlamydospora. Reducing the 

strictness of the SignalP 3 analysis by considering all positive HMM predictions without 

applying additional constraints, 196 proteins (56%) are predicted to be secreted. This 

compares favourably to Ph. plurivora, where 60% of extracellular proteins identified by 

LC-MS/MS contained predicted N-terminal signal peptides [16]. The proteins lacking 

signal peptides may be present in the extracellular medium due to contamination of 

intracellular proteins caused by hyphal lysis during protein extraction. Additionally, these 

proteins may have legitimate signal peptides that cannot be detected due to inaccurate 

gene annotation, i.e. gene models with a truncated N-terminus will lack N-terminal signal 

peptides [15]. It is also possible that they are leaderless secretory proteins (LSPs), lacking 

signal peptides that enter non-classical secretory pathways. Extracellular proteins that 
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lack signal peptides were submitted to SecretomeP 2.0, an ab initio predictor of non-

classically secreted proteins [125]. A total 78 proteins (22.2%) had a SecretomeP NN-

score greater than 0.5, suggesting that they may be non-classically secreted proteins. It is 

important to note that SecretomeP has only been trained on mammalian LSPs, therefore 

its accuracy at predicting oomycete LSPs is unclear. 

Table 6. Extracellular Phytophthora proteins identified by LC-MS/MS that are 

putatively involved in osmotrophy or virulence. 

 Phytophthora 
chlamydospora 

Phytophthora 
gonapodyides 

Phytophthora 
pseudosyringae 

Total protein groups 

identified  

321 246 313 

Total proteins identified 351 283 331 

PAN/Apple domain 10 8 5 

Transglutaminase elicitor 6 6 8 

Elicitin 5 8 4 

Cysteine-rich secretory 

protein family (CAP) 

4 4 4 

Necrosis inducing protein 2 4 2 

PcF phytotoxin 0 0 1 

Ribonuclease 1 1 3 

Berberine-like protein 1 1 0 

Glycoside hydrolases 60 68 61 

Polysaccharide lyases 7 9 5 

Carbohydrate esterases 4 4 2 

Auxiliary activities 8 5 4 

Carbohydrate-binding 

modules 

3 4 3 

PHI-Base homologs 140 96 109 

Apoplastic proteins 99 90 92 

Single transmembrane 

proteins 

33 25 29 
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Figure 6. eggNOG functional annotation of the genome and LC-MS/MS extracellular proteome of (A) 
Phytophthora chlamydospora, (B) Phytophthora gonapodyides and (C) Phytophthora pseudosyringae. Note 
that counts for extracellular proteins are shown on a secondary axis (right) with a different scale. 
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eggNOG assigned 298 extracellular proteins (84.9%) to one or more functional 

COG groups. The most numerous functional categories were carbohydrate transport and 

metabolism (96 proteins, 32.2%), function unknown (63 proteins, 21.1%), 

posttranslational modification, protein turnover and chaperones (33 proteins, 11.1%), 

energy production and conversion (19 proteins, 6.4%), translation, ribosomal structure 

and biogenesis (18 proteins, 6.0%), amino acid transport and metabolism (17 proteins, 

5.7%), and lipid transport and metabolism (17 proteins, 5.7%) (Figure 6A). The high 

number of extracellular proteins involved in transport and metabolism is to be expected 

for osmotrophs which obtain their nutrients externally from the environment or from their 

hosts. The proportion of extracellular proteins classified as carbohydrate transport and 

metabolism (96 proteins; 32.2%) is particularly enriched relative to the total genome (746 

proteins; 6.2%) (Figure 6A). These proteins may be involved in the breakdown of host 

plant cells as well in the acquisition and uptake of nutrients. No extracellular proteins (for 

any species) were annotated as being involved in “cell cycle control, cell division, 

chromosome partitioning”, “transcription”, “replication, recombination and repair”, “cell 

motility”, “defense mechanisms”, “extracellular structures” or “ nuclear structure” 

(Figure 6A–C). This suggests that hyphal lysis is unlikely to have occurred during protein 

extraction as these annotations are associated with intracellular processes or cell 

structures. A large number of known effector families were also detected, including 

proteins with PAN/Apple domains (10), transglutaminase elicitors (6), elicitins (5), 

proteins belonging to the cysteine-rich secretory protein family (4), and NLPs (2) (Table 

6). An extracellular berberine-like protein was also detected (Table 6). Berberine-like 

proteins were previously reported as putative virulence factors in Ph. infestans [69] and 

are thought to be involved in infection by the biosynthesis of alkaloids and the production 

of reactive oxygen species. Berberine-like proteins were also detected in the extracellular 
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proteomes of Ph. infestans and Ph. plurivora [15,16,69]. Additionally, an extracellular 

ribonuclease was detected (Table 6). Secreted ribonucleases have been reported as 

effectors in the fungal plant pathogen Blumeria graminis [126]. Ribonucleases were also 

detected in the Ph. infestans extracellular proteome [15]. In total, 140 extracellular 

proteins (40%) have homologs in PHI-Base (Table 6). A large number of extracellular 

CAZymes were also identified including glycoside hydrolases (60), polysaccharide 

lyases (7), carbohydrate esterases (4), auxiliary activities (8) and proteins with 

carbohydrate-binding modules (3) (Table 6). 

Examining Ph. gonapodyides, 237 protein groups (268 proteins) were identified 

in the cV8 samples and 196 protein groups (230 proteins) were identified in the V8 

samples (Supplementary Table S8). 17 protein groups (19 proteins) were unique to the 

cV8 samples and 9 protein groups (15 proteins) were unique to the V8 samples 

(Supplementary Table S8). In total across the two conditions, 246 protein groups (283 

proteins) were identified (Table 6 and Supplementary Table S8), of which 133 proteins 

(47%) overlap with the predicted secretome of Ph. gonapodyides. 167 proteins (59%) 

have positive SignalP 3 HMM predictions, ignoring additional cut-offs. An additional 76 

proteins (26.9%) have a positive prediction from SecretomeP, suggesting non-classical 

secretion. Functional annotation using eggNOG assigned 238 extracellular proteins 

(84.1%) to one or more COG categories. Overall the functional profile was similar to that 

of Ph. chlamydospora, with the most numerous functional categories being carbohydrate 

transport and metabolism (95 proteins, 39.9%), function unknown (69 proteins, 29.0%), 

posttranslational modification, protein turnover, chaperones (29 proteins, 12.2%), amino 

acid transport and metabolism (9 proteins, 3.8%), lipid transport and metabolism (8 

proteins, 3.4%) and energy production and conversion (7 proteins, 2.9%) (Figure 6B). 

Identified effector families include proteins with PAN/Apple domains (8), 
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transglutaminase elicitors (6), elicitins (8), members of the cysteine-rich secretory protein 

family (4), NLPs (4), a berberine-like protein and a ribonuclease (Table 6). Some 96 

(34%) extracellular proteins have homologs in PHI-Base (Table 6). A similar number of 

extracellular CAZymes were detected including glycoside hydrolases (68), 

polysaccharide lyases (9), carbohydrate esterases (4), auxiliary activities (5) and proteins 

with carbohydrate-binding modules (4) (Table 6). 

Examining Ph. pseudosyringae, 280 protein groups (296 proteins) were identified 

in the cV8 samples and 247 protein groups (259 proteins) were identified in the V8 

samples (Supplementary Table S8). 18 protein groups (22 proteins) were unique to the 

cV8 samples and 6 protein groups (6 proteins) were unique to the V8 samples 

(Supplementary Table S8). In total across the two conditions, 313 protein groups (331 

proteins) were identified (Table 6 and Supplementary Table S8), of which 145 proteins 

(44%) overlap with the predicted secretome of Ph. pseudosyringae. 188 proteins (56.8%) 

proteins have positive SignalP 3 HMM predictions without applying cut offs. An 

additional 67 proteins (20.2%) have a positive prediction from SecretomeP. eggNOG 

functional annotation assigned 279 extracellular proteins (84.3%) to one or more COG 

functional categories. The high-level functional annotation of the Ph. pseudosyringae is 

similar to that of Ph. chlamydospora and Ph. gonapodyides (Figure 6C). The most 

numerous functional categories are carbohydrate transport and metabolism (93 proteins, 

33.3%), function unknown (70 proteins, 25.1%), posttranslational modification, protein 

turnover, chaperones (42 proteins, 15.1%), energy production and conversion (13 

proteins, 4.7%), amino acid transport and metabolism (10 proteins, 3.6%), translation, 

ribosomal structure and biogenesis (9 proteins, 3.2%) and lipid transport and metabolism 

(8 proteins, 2.9%) (Figure 6C). The number of effector families is also similar and 

includes proteins with PAN/Apple domains (5), transglutaminase elicitors (8), elicitins 
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(4), members of the cysteine-rich secretory protein family (4), NLPs (4) and ribonucleases 

(3) (Table 6). We also detected an extracellular PcF phytotoxin from Ph. pseudosyringae, 

which was absent in the extracellular proteomes of both Ph. chlamydospora and Ph. 

gonapodyides (Table 6). Unlike Ph. chlamydospora and Ph. gonapodyides, we did not 

identify any berberine-like extracellular proteins from Ph. pseudosyringae, although its 

predicted secretome encodes a copy (Table 3). Some 109 extracellular proteins (33%) 

have homologs in PHI-Base (Table 6). Overall the CAZyme content of the Ph. 

pseudosyringae extracellular proteome is also similar with glycoside hydrolases (61), 

polysaccharide lyases (5), carbohydrate esterases (2), auxiliary activities (4) and proteins 

with carbohydrate-binding modules (3) (Table 6). 

Very few cytoplasmic effectors were detected in our analyses of all three species. 

CRNs were absent from the extracellular proteomes of all three species. No putative 

RxLRs were identified in the extracellular proteome of Ph. chlamydospora or Ph. 

gonapodyides. Only two putative RxLRs were identified in the extracellular proteome of 

Ph. pseudosyringae PHPS_09091 and PHPS_15662. PHPS_09091 was detected in all 

replicates of both V8 and cV8 media with 4 unique peptides (Supplementary Table S8) 

and was identified as an RxLR based on the Win, Regex and HMM methods 

(Supplementary Table S5). Similarly, PHPS_15662 was identified in all replicates of 

both V8 and cV8 media with 4 unique peptides (Supplementary Table S8). 

PHPS_15662 was identified only using the homology method and does not contain a 

RxLR-like motif (Supplementary Table S5), therefore it is not likely to be a legitimate 

RxLR effector. It is not surprising that so few cytoplasmic effectors were identified as it 

is possible that most cytoplasmic effectors are secreted from haustoria [127,128]. 

However, Meijer et al. (2014) report the detection of several Ph. infestans RxLRs and 

CRNs being released from hyphae in the absence of haustoria. 
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Previously, LC-MS/MS analysis of Ph. infestans identified 31 extracellular 

proteins that contained a single transmembrane domain [15]. These proteins are thought 

to be membrane proteins that are found in the extracellular medium due to proteolytic 

ectodomain shedding by sheddases. We also detected a large number of extracellular 

proteins that contain a single transmembrane domain. This included 33 proteins in Ph. 

chlamydospora, 25 in Ph. gonapodyides and 29 in Ph. pseudosyringae (Table 6). Of 

these, 17, 14 and 17 are homologous to the 31 Ph. infestans proteins. Similar to what was 

observed in Ph. infestans, the majority of identified transmembrane domains are found in 

the protein C-terminus. 

Interestingly, we detected a number of extracellular proteins with KDEL or 

KDEL-like (HDEL or SDEL) C-terminal motifs. These are endoplasmic retention (ER) 

motifs that are usually associated with preventing protein secretion, signalling proteins to 

be retained in the ER lumen [129]. Proteins with KDEL motifs are usually excluded from 

in silico secretome studies. In Ph. chlamydospora we identified three such proteins 

PHCH_06832, PHCH_07252, and PHCH_15931. Both PHCH_06832 and PHCH_07252 

are paralogs belonging to the same protein group. They were identified in all replicates 

of both V8 and cV8 media with four unique peptides (Supplementary Table S8). Both 

proteins contain a C-terminal HDEL motif and were annotated as belonging to heat shock 

protein (Hsp) 70 family. PHCH_15931 was identified in a total of five out of six replicates 

across the two conditions with five unique peptides and has a C-terminal KDEL motif 

(Supplementary Table S8). It was annotated as a calreticulin, which is an ER associated 

calcium-binding protein [130]. In Ph. gonapodyides, only one such protein was identified, 

PHGO_06390, which was detected in two out of three replicates of the cV8 samples and 

has a C-terminal SDEL motif (Supplementary Table S8). In Ph. pseudosyringae, three 

proteins were identified PHPS_03476, PHPS_04861, and PHPS_06172. PHPS_04861 is 
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orthologous to PHGO_06390, has a C-terminal SDEL motif and was identified in all 

replicates of both conditions with 3 unique peptides (Supplementary Table S8). 

PHPS_03476 has a C-terminal KDEL motif and is orthologous to PHCH_15931 and was 

identified in all replicates of both conditions, with a total of seven unique peptides 

(Supplementary Table S8). PHPS_06172, a Hsp90 protein, contains a C-terminal KDEL 

motif and was identified in a total of four replicates across the two conditions, with two 

peptides, only one of which was unique (Supplementary Table S8). Inspecting the Ph. 

infestans extracellular proteins identified by Meijer et al. (2014)[15], there were six 

extracellular proteins identified that contain C-terminal KDEL/HDEL/SDEL motifs, five 

of which are orthologous to those identified above. As we detected these KDEL/KDEL-

like motif-containing proteins in the extracellular medium, it suggests that their ER 

retention motifs are masked or perhaps they escape ER retrieval due to saturation of 

KDEL receptors [130]. 

 

LC-MS/MS Identification of Mycelial Proteins 

We used mass-spectrometry to characterise the mycelial proteomes of Ph. 

chlamydospora, Ph. gonapodyides and Ph. pseudosyringae, and to understand how they 

change in response to oxidative stress and high temperatures. Proteins were extracted 

from mycelia grown under three conditions: “normal”—mycelia grown for 10 days at 

optimum temperatures—“heat”—mycelia grown for 7 days at optimum temperatures 

then switched to 30 °C for 3 days—and “oxidative stress”—mycelia grown for 10 days 

at optimum temperatures followed by exposure to 1 mM H2O2 for 3 h.  

Examining Ph. chlamydospora, a total of 2592 protein groups (2635 proteins) 

were identified across the three conditions (Supplementary Table S9). Under the normal 

condition, 2418 protein groups (2461 proteins) were identified (Supplementary Table 
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S9). 123 protein groups (130 proteins) were uniquely detected under the normal 

conditions (Supplementary Table S9) and were significantly enriched for 

oxidoreductase activity (GO:0016491). Only three protein groups (three proteins) were 

uniquely detected in the heat-treated samples. These included a protein with an FHA 

domain (PHCH_03368) and a histidine phosphatase (PHCH_17500) (Supplementary 

Table S9). Only 5 protein groups (5 proteins) were uniquely detected in the oxidative 

stress samples (Supplementary Table S9). These included a CAF1 ribonuclease 

(PHCH_05536), an integrator complex subunit (PHCH_09875), a protein kinase 

(PHCH_13661), a DNA photolyase (PHCH_14550) and a methyltransferase 

(PHCH_16784) (Supplementary Table S9). 328 (12.4%) of all identified proteins have 

one or more predicted transmembrane helices. Furthermore, 131 (5.0%) of all identified 

proteins belong to the predicted secretome, while 213 (8.1%) proteins were also were also 

identified in the extracellular proteome. Amongst the identified proteins were several 

effector families, including NLPs (1), transglutaminase elicitors (3), elicitins (5), PAN 

domain containing proteins (5), CAP family proteins (5), RxLRs (6), and CRNs (14) 

(Supplementary Table S9). Additionally, 81 CAZymes were identified from Ph. 

chlamydospora mycelium (Supplementary Table S9). 

Examining Ph. gonapodyides, a total of 2745 protein groups (2,840 proteins) were 

identified across the three conditions (Supplementary Table S9). Under the normal 

condition, 2360 protein groups (2436 proteins) were detected (Supplementary Table S9). 

Only one protein was uniquely detected in this condition, a member of glycoside 

hydrolase family 31 (PHGO_11274). Under heat treatment 12 protein groups (12 

proteins) were uniquely detected, 3 of these contain predicted transmembrane helices and 

2 are predicted to be secreted. Included amongst these proteins, were an acetyltransferase 

(PHGO_14090), an ABC transporter (PHGO_22460), an auto-transporter adhesin 
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(PHGO_20954), a metallopeptidase (PHGO_13577), a starch-binding protein 

(PHGO_10964), an exoribonuclease (PHGO_00249), a Maf like protein (PHGO_22144) 

and an Arf GTPase activating protein (PHGO_17826) (Supplementary Table S9). In 

response to oxidative stress, 34 protein groups (37 proteins) were uniquely detected. 

Amongst these, 12 proteins (32.4%) have one or more predicted transmembrane helices 

and three belong to the predicted secretome. These proteins include two peroxidases 

(PHGO_01245 and PHGO_22132), both of which are predicted to be secreted. Similar to 

Ph. chlamydospora, 346 (12.2%) of all identified Ph. gonapodyides mycelial proteins 

have one or more predicted transmembrane helices. Furthermore, 131 (4.6%) of identified 

mycelial proteins also belong to the predicted secretome and 144 (5.1%) were also 

identified in the extracellular proteome (Supplementary Table S9). We also detected a 

number of effector families, including CRNs (2), RxLRs (2), transglutaminase elicitors 

(4), PAN domain-containing proteins (5), and elicitins (7) (Supplementary Table S9). 

Additionally, 89 CAZymes were identified from Ph. gonapodyides mycelium 

(Supplementary Table S9). 

Examining Ph. pseudosyringae, a total of 3195 protein groups (3245 proteins) 

were identified across the three conditions (Supplementary Table S9). Under the normal 

condition, 2223 protein groups (2248 proteins) were detected, 22 protein groups (22 

proteins) of which were uniquely detected in this condition (Supplementary Table S9). 

32 protein groups (33 proteins) were uniquely detected in the heat-treated samples which 

included three proteins predicted to be secreted and four proteins with predicted 

transmembrane helices. Heat-treated samples were significantly enriched for chaperone 

binding (GO:0051087). We detected 103 unique protein groups (106 proteins) in 

response to H2O2 treatment, including three proteins predicted to be secreted and 30 

proteins with at least one predicted transmembrane helix. Of the proteins identified across 
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all conditions, 445 (13.7%) of mycelial proteins contain one or more predicted 

transmembrane helices. Furthermore, 160 (4.9%) belong to the predicted secretome, and 

204 (6.3%) were also identified in the extracellular proteome (Supplementary Table 

S9). We also detected effector families, including NLPs (2), CAP family proteins (3), 

elicitins (4), transglutaminase elicitors (5), PAN domain-containing proteins (5), RxLRs 

(8) and CRNs (18) (Supplementary Table S9). Additionally, 103 CAZymes were 

identified from Ph. pseudosyringae mycelium (Supplementary Table S9). 

Overall, the functional annotation of all identified mycelial proteins is similar 

between each of the three species (Figure 7A). Clustering with MCL grouped identified 

mycelial proteins from the three species into 2577 protein families, of which 1554 

families were shared by all three species (Figure 7B). More proteins were common 

between Ph. chlamydospora and Ph. pseudosyringae (205) and between Ph. 

gonapodyides and Ph. pseudosyringae (185) than between Ph. chlamydospora and Ph. 

gonapodyides (103) (Figure 7B). 93 mycelial protein families were unique to Ph. 

chlamydospora, 84 to Ph. gonapodyides and 353 to Ph. pseudosyringae (Figure 7B), 

indicating increased variation across Phytophthora clades. 
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Figure 7. Functional annotation of identified mycelial proteins. (A) Identified mycelial 

proteins were functionally annotated using eggNOG-Mapper. (B) Venn diagram showing 

the number of identified mycelial protein families shared between each species.   
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Phylostratigraphy Analysis 

Taxonomically restricted genes were identified using phylostratigraphy. Homologs were 

identified for each Phytophthora protein-coding gene by performing BLAST searches 

against a large protein database (18,084,866 proteins) with broad phyletic distribution 

[85]. Genes were assigned to one of seven phylostrata (cellular organisms, eukaryotes, 

Stramenopiles, oomycetes, Peronosporales, Phytophthora or species-specific orphans) 

based on their conservation in other taxonomic lineages. 

Overall the proportion of genes assigned to each phylostrata are similar between 

the three Phytophthora genomes (Figure 8). On average, 33.4% of genes were assigned 

to the phylostratum cellular organisms (i.e., homologs are present in eukaryotes and 

prokaryotes), 29.9% are unique to eukaryotes, 1.6% are unique to stramenopiles, 23.6% 

are unique to oomycetes, 3.9% are unique to Peronosporales, 5.9% are unique to 

Phytophthora and 1.7% are orphans unique to one Phytophthora species (Figure 8). 

Individually, 194 orphans (1.1%) were identified for Ph. chlamydospora, 520 (2.2%) for 

Ph. gonapodyides and 312 (1.8%) for Ph. pseudosyringae (Figure 8). Ph. gonapodyides 

had a smaller proportion of genes identified as originating in cellular organisms (30.4%), 

compared to Ph. chlamydospora (35.8%) and Ph. pseudosyringae (34.1%) (Figure 8B). 

In addition, Ph. gonapodyides had a higher proportion of genes identified as being unique 

to oomycetes (25.1%), unique to Phytophthora (7.4%) and species-specific (2.2%) 

(Figure 8B). This suggests that the increased gene repertoire of Ph. gonapodyides is due 

to expansions of more recently evolved gene families, i.e., genes unique to oomycetes, 

Phytophthora, and Ph. gonapodyides, as opposed to expansions of more ancient genes 

that are conserved in other eukaryotes or prokaryotes. Overall the proportion of genes per 

phylostratum is similar to previous phylostratigraphic analyses for other Phytophthora 

genomes [124]. 



 245 

 
Figure 8. Phylostratigraphy analysis of Ph. chlamydospora (A), Ph. gonapodyides (B), 
and Ph. pseudosyringae (C), showing the proportion of genes assigned to each 
phylostratum for both the genome and the LC-MS/MS proteome. 
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We coupled our phylostratigraphy analysis with the mass spectrometry data. 

Compared to the overall genome, a much larger proportion (approximately 61.5%) of 

identified proteins belongs to the phylostratum “cellular organisms” (Figure 8). This 

suggests that the majority of identified proteins are evolutionarily conserved proteins that 

possibly play roles in conserved housekeeping functions. Only 8.1% to 9.1% of identified 

proteins belong to the phylostratum oomycetes or “younger” (Figure 8). Furthermore, 

only 0.57% to 0.80% of identified proteins belong to the phylostratum Peronosporales or 

“younger” (Figure 8). This suggests that the more recently evolved genes may be under 

tighter transcriptional control or expressed only in specific scenarios. Additionally, some 

of the proteins identified as being species-specific may not be legitimate genes. 

 
 
Conclusions 

Here, we have sequenced the genomes for three ubiquitous Phytophthora species—Ph. 

chlamydospora, Ph. gonapodyides and Ph. pseudosyringae. Using bioinformatics 

methods, comparative genomics, and mass spectrometry, we provide a comprehensive 

characterization of the nuclear genomes, mitochondrial genomes, in silico secretomes, 

extracellular proteomes, and mycelial proteomes of each species. These genome 

resources will be useful for future studies to understand the lifestyles of these widespread 

Phytophthora species. 
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Overview 

Oomycetes are osmotrophic microorganisms that commonly inhabit terrestrial and 

aquatic habitats worldwide. Oomycetes are highly diverse in terms of their lifestyles, 

pathogenicity and host ranges. Some of the most destructive pathogens of plants and 

animals belong to the oomycete class. It is estimated that global food production must 

increase by 70% to feed the growing global population (M. Carvajal-Yepes et al. 2020). 

However, global food supply is threatened by plant pathogens and pests which are 

estimated to cause up to 30% crop yield losses annually (Savary et al. 2019). 

Phytopathogenic oomycetes represent some of the biggest threats to global food security. 

Examples of infamous oomycete species include Phytophthora infestans, the causative 

agent of late potato blight and cause of the Irish potato famine (Haas et al. 2009). 

Phytophthora sojae is another highly destructive species that causes up to $2 billion worth 

of soybean crop loss each year (Tyler 2007). Oomycetes also threaten forestry and natural 

ecosystems. For example, Phytophthora ramorum, the sudden oak death pathogen, has 

decimated forests across North America and Europe (Grünwald et al. 2019). There is an 

increasing risk of invasive pathogens spreading to nurseries, forests and natural 

ecosystems worldwide due to the increased global movement of people and trade of plants 

(e.g. nursery plant trade) (Brasier 2008; Jung et al. 2016; Hulbert et al. 2017).  

Sequencing the genomes of oomycete species has significantly advanced our 

understanding of oomycete biology and evolution, and revealed insights into the 

mechanisms of oomycete-host interactions. The results presented in this thesis use 

comparative and evolutionary genomics methods to investigate genomic evolution across 

the oomycete class, with a particular focus on oomycete secretomes and effector arsenals. 

The main themes of research conducted in this thesis are summarised in Figure 5.1. 
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This thesis begins with a review of the latest developments in oomycete genomics 

(Chapter 1)(McGowan and Fitzpatrick 2020). This introductory chapter discusses some 

of the important findings that were facilitated by oomycete genome sequencing projects 

since the first oomycete genome sequences (Ph. ramorum and Ph. sojae) were published 

in 2006 (Tyler et al. 2006). This chapter also presents an updated phylogeny of the 

oomycete class using a phylogenomic approach based on a supermatrix alignment of 102 

BUSCO proteins from the genomes available at the time of writing (McGowan and 

Fitzpatrick 2020). 

The availability of a large number of oomycete genome sequences facilitated 

bioinformatic characterisation of the secretomes and effector arsenals of 37 species 

(Chapter 2)(McGowan and Fitzpatrick 2017). Large numbers of known effector families 

were significantly enriched across the secretomes, for example, elicitins, necrosis-

inducing proteins, RxLRs and plant cell wall degrading enzymes. Comparative genomic 

analyses identified species-specific and lineage-specific expansions of effector families. 

The repertoire of cytoplasmic RxLR effectors in each oomycete was also catalogued 

leading to the identification of 4,131 putative RxLRs across the 37 genomes. A homology 

network was constructed of putative RxLRs revealing numerous disconnected clusters, 

indicating that some RxLR families do not share significant sequence similarity. This 

suggests that some RxLR families may not be related. A number of secreted proteins were 

putatively annotated as IgA peptidases, suggesting that they may represent a novel 

effector family. Network and phylogenetic analyses identified a putative horizontal gene 

transfer event involving a type 2 necrosis-inducing protein. This chapter represents an up-

to-date in silico catalogue of the effector arsenal of diverse oomycete species (McGowan 

and Fitzpatrick 2017). 
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Compared to other taxonomic groups, such as fungi, there has been a dearth of 

dedicated tools available to study oomycete genomes. In an attempt to negate this 

somewhat, the Oomycete Gene Order Browser (OGOB) was developed (Chapter 

3)(McGowan et al. 2019). OGOB is a novel database and tool that facilitates comparative 

genomic and syntenic analyses of oomycete genomes. The version described herein 

currently hosts genomic data for 20 diverse oomycete species and is available at 

https://ogob.ie. OGOB also hosts a number of bioinformatics tools that facilitates 

common analyses such as performing multiple sequence alignments, estimating the rate 

of evolution of genes and performing phylogenetic reconstruction of gene families. 

Comparative syntenic analyses using OGOB highlighted the high degree of syntenic 

conservation within oomycete genera. On average, when comparing any pair of the 20 

species, 34% of total genes or 65% of orthologs were microsyntenically conserved. As 

expected, syntenically conserved genes were enriched for housekeeping functions. 

Analysis of gene duplications within individual species revealed that up to 15% of all 

genes are located in tandem clusters. Proteins predicted to be secreted were significantly 

enriched in tandem clusters, with up to 35% of tandemly duplicated genes bearing 

putative signal peptides. This suggests that tandem gene duplication has played a major 

role in the expansion and evolution of oomycete secretomes (McGowan et al. 2019). 

Draft genome assemblies were generated for three widespread Phytophthora 

species - Ph. chlamydospora, Ph. gonapodyides and Ph. pseudosyringae (Chapter 

4)(McGowan et al. 2020). Ph. gonapodyides and Ph. chlamydospora are thought to be 

the two most globally widespread Phytophthora species. They are both important 

opportunistic pathogens that can cause significant damage when spread from natural 

ecosystems to managed forests. Ph. pseudosyringae is an important forest pathogen that 

is abundant in Europe and North America. The genomes were sequenced to high 

completeness (87.2% to 97.8% BUSCO completeness) with genome sizes ranging from 
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45 Mb to 61 Mb. The mitochondrial genome of each species was also assembled and 

circularised revealing genome sizes ranging from 38,329 bp to 43,974 bp. Mitochondrial 

gene content and gene order were highly conserved across the three species, except for 

two inversions present in Ph. pseudosyringae. Comparative genomic analyses of 44 

oomycete genomes suggest that Ph. chlamydospora and Ph. gonapodyides have 

distinctive CAZymes arsenals relative to other Phytophthora species and that oomycete 

lifestyles may be linked to their CAZyme repertoires, in particular, their glycoside 

hydrolase repertoires. Gene prediction led to the annotation of 17,439 to 23,348 protein-

coding genes per species. Availability of high-quality gene sets facilitated proteomics 

experiments to further interrogate the three Phytophthora species. Previously, mass 

spectrometric analyses of oomycete extracellular proteomes were limited to only two 

Phytophthora species – Ph. infestans and Ph. plurivora (Meijer et al. 2014; Severino et 

al. 2014). This work extends this number to five by performing LC-MS/MS analysis of 

the extracellular proteomes of Ph. chlamydospora, Ph. gonapodyides and Ph. 

pseudosyringae. This led to the identification of approximately 300 extracellular proteins 

per species. The majority of identified extracellular proteins were putatively involved in 

osmotrophy or infection and included several known effector families, such as necrosis-

inducing proteins, elicitins, transglutaminase elicitors and plant cell wall degrading 

enzymes. Furthermore, LC-MS/MS analysis identified differences in the mycelial 

proteome of each species, with 84 to 353 mycelial proteins being uniquely detected in 

one species. In total, the expression of approximately 3,000 genes per species was 

validated at the protein level (McGowan et al. 2020).  

Overall the body of work presented in this thesis provides new insights into the 

evolution of oomycete species. In particular, the data presented herein significantly 

expands our knowledge of the biology of Ph. chlamydospora, Ph. gonapodyides and Ph. 

pseudosyringae. 
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Future Work 

In line with continuous advances in sequencing technologies and drastic decreases in the 

cost of whole-genome sequencing, there has been an increased pace of oomycete genome 

sequencing (Figure 5.2). At the time of writing (April 2020), there are 215 publicly 

available oomycete genome assemblies deposited in NCBI GenBank (Benson et al. 

2012), corresponding to 75 species (Figure 5.2). The increasing number of high-quality 

genome assemblies, in particular those that have been assembled to high contiguity with 

long-read technologies, represent new genomes that could be added to future versions of 

OGOB. Furthermore, as more high-quality genome sequences become available for 

multiple representatives of each Phytophthora clade/subclade, future phylogenomic 

analyses may be performed to further resolve the contentious relationships between 

Phytophthora clades.  

 

Figure 5.2. Total number of oomycete genomes sequenced up to April 2020. Data is 

based on either year of publication or year deposited on NCBI GenBank.  
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 The ever-increasing number of oomycete genomes will require the 

development of dedicated tools to fully exploit the genomic resources. As discussed in 

Chapter 1 (McGowan and Fitzpatrick 2020), BUSCO (Waterhouse et al. 2018) is one of 

the most commonly used tools to assess genome completeness. In BUSCO v3 the most 

specialised BUSCO dataset available for oomycete genomes is the “Alveolata-

Stramenopiles” dataset, which contains only 234 target BUSCO proteins. The low 

number of target proteins may result in an inaccurate assessment of genome 

completeness. BUSCO v4 was recently released and includes a new “Stramenopiles” 

dataset, which incorporates orthologs from 27 stramenopiles, including 15 oomycete 

species. However, this dataset includes even fewer target BUSCOs with only 100 target 

proteins, due to the inclusion of diverse stramenopiles in the dataset, such as brown algae 

and diatoms. With a large number of oomycete genome sequences available, it would be 

more appropriate to have dedicated datasets for the oomycetes or for individual oomycete 

genera, for example using ubiquitous single-copy orthologs identified by OGOB. This 

would allow for more accurate assessment of oomycete genome assembly completeness. 

 LC-MS/MS analysis of the extracellular proteomes of Ph. chlamydospora, 

Ph. gonapodyides and Ph. pseudosyringae identified a total of 965 extracellular proteins. 

Only 551 (57%) of these proteins were predicted to contain a signal peptide. Future 

bioinformatics analyses of the extracellular proteins lacking signal peptides may reveal 

divergent signal peptides or novel motifs involved in non-canonical secretory pathways. 

SignalP is the most commonly used bioinformatics tool to predict protein secretion and 

is often the first step performed to identify putative effector proteins. The latest version, 

SignalP v5, uses a deep neural network-based approach to identify signal peptides, trained 

with a dataset of 20,758 protein sequences (Almagro Armenteros et al. 2019). The 

majority of proteins in the training dataset come from model organisms, such as Homo 

sapiens (4,258), Arabidopsis thaliana (2,491), Saccharomyces cerevisiae (2,061), 
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Schizosaccharomyces pombe (1,888), Mus musculus (1,841) and Drosophila 

melanogaster (540). Only one protein in the training data comes from the oomycetes. The 

inclusion of additional training data from oomycete species in future tools, for example, 

the extracellular proteins identified by mass spectrometry in this thesis, might improve 

the performance of oomycete signal peptide prediction. Similarly, with the growing 

number of experimentally verified oomycete effector proteins and databases such as PHI-

Base (Urban et al. 2017), machine learning classifiers could be trained to predict 

oomycete effectors, using methods similar to EffectorP, which was developed to predict 

fungal effector proteins (Sperschneider et al. 2018). 

 Several oomycete species have had multiple strains sequenced, including Ph. 

fragariae, Ph. kernoviae, Ph. lateralis, Ph. ramorum and Ph. rubi (Quinn et al. 2013; 

Studholme et al. 2015; Adams et al. 2019; Dale et al. 2019; Studholme et al. 2019). 

Sequencing multiple isolates of a species facilitates population genetics studies to 

understand the population structure and diversity of different strains. Furthermore, it 

facilitates pan-genomic studies (Tettelin et al. 2005) which can reveal insights into strain-

level variation of gene content which may be linked to differences in infection 

aggressiveness, differences in host range and fungicide resistance. Availability of genome 

sequences for Ph. chlamydospora, Ph. gonapodyides and Ph. pseudosyringae facilitates 

future resequencing studies to understand the population structure of these species. 

 The two clade 6 species sequenced in this thesis, Ph. chlamydospora and Ph. 

gonapodyides, are generally regarded as opportunistic pathogens that primarily act as 

saprophytes in riparian ecosystems, where their populations survive by colonising plant 

debris (Hansen et al. 2012). The newly sequenced genomes will facilitate future studies 

to determine if these opportunistic pathogens behave the same as other “typical” 

Phytophthora species during infection. This could be achieved by performing 

comparative proteomics or transcriptomics analyses of these species with another 
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Phytophthora species, such as Ph. pseudosyringae, during infection of a common host, 

for example, Fagus sylvatica or apple fruit. 

 The majority of oomycetes genomics research conducted to date has focused on 

plant pathogens. For example, 62 (83%) of the sequenced oomycete species are 

phytopathogens. This is not surprising, given the threat oomycete plant pathogens pose 

to global food security. In comparison to phytopathogens, there is a lack of genomic data 

for non-pathogenic oomycetes and little is known about saprophytic oomycetes that play 

key ecological roles in natural environments. Furthermore, there is a dearth of genomic 

data for more basal oomycete species. Future sequencing of basal oomycete species will 

potentially help to further elucidate the origin and evolution of pathogenicity in the 

oomycetes. 

 

 

Concluding Remarks 

To conclude, the results presented here help elucidate some of the mechanisms of 

genomic evolution across the oomycete class. In particular, this thesis focuses on the 

genomic and proteomic characterisation of oomycete secretomes and effector arsenals to 

better understand the evolution of pathogenicity in economically important members of 

the class Oomycota. The development of the Oomycete Gene Order Browser, a novel 

database and tool for analysing oomycete genes and genomes, is also described. 

Furthermore, this thesis presents the first large-scale genomic and proteomic investigation 

of three ubiquitous Phytophthora species, Ph. chlamydospora, Ph. gonapodyides and Ph. 

pseudosyringae. The data presented herein will be invaluable for future studies to further 

understand the biology of these ubiquitous microorganisms. 
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