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Abstract

While seemingly a ubiquitous cognitive process, the precise definition and function of surprise

remains elusive. Surprise is often conceptualized as being related to improbability or to contrasts with

higher probability expectations. In contrast to this probabilistic view, we argue that surprising observa-

tions are those that undermine an existing model, implying an alternative causal origin. Surprises are

not merely improbable events; instead, they indicate a breakdown in the model being used to quantify

probability. We suggest that the heuristic people rely on to detect such anomalous events is randomness
deficiency. Specifically, people experience surprise when they identify patterns where their model

implies there should only be random noise. Using algorithmic information theory, we present a novel

computational theory which formalizes this notion of surprise as randomness deficiency. We also pre-

sent empirical evidence that people respond to randomness deficiency in their environment and use it

to adjust their beliefs about the causal origins of events. The connection between this pattern-detection

view of surprise and the literature on learning and interestingness is discussed.
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As we know, there are known knowns; there are things we know we know. We also
know there are known unknowns; that is to say we know there are some things we do not
know. But there are also unknown unknowns, the ones we don’t know we don’t know.

—Donald Rumsfeld, February 12, 2002, United States Secretary of

Defense

1. Introduction

Every day, people deploy their knowledge to carry out a bewildering array of cognitive

tasks, ranging from motor tasks to perception, to reasoning and decision making. This

knowledge, as highlighted by Rumsfeld above, is tenuous. Not only are facts themselves

uncertain, but so too are the assumed causal models that allow these facts to be inferred

in the first place. At any moment, we may be faced by a revelation which necessitates

a fundamental reevaluation of our beliefs, resulting in an experience we know as

“surprise.”

Given the prevalence of uncertainty in the world, surprise is a ubiquitous experience.

It can be elicited by many different events, including unique or unusual occurrences (e.g.,

finding a large wad of money on the ground; meeting your neighbor while on holiday in

a foreign country), to more mundane events (e.g., realizing your keys are not where you

initially thought; finding that there is no milk in the fridge). While numerous accounts

have been proposed to explain the experience of surprise (Baldi & Itti, 2010; Maguire,

Maguire, & Keane, 2011; Meyer, Reisenzein, & Sch€utzwohl, 1997), debate persists

regarding the precise factors that contribute to the perceived surprisingness of an event

(Foster & Keane, 2015).

Because a theory of surprise must cover the failure of every possible model of reality,

it must be powerful and general. It must be capable of discriminating between observa-

tions that are typical and unthreatening versus those that signal a breakdown in modeling.

Whatever this mental mechanism is, it cannot just be an ordinary theory that itself is sub-

ject to failure; it must be a fail-safe meta-theory, grounded on deep inviolable principles.

In this article, our goal is to explain and formalize a model of surprise that meets these

requirements. To do this, we will first review insights from classical and Bayesian proba-

bility theory, before outlining our own computational model of surprise based on the prin-

ciples of algorithmic information theory (AIT). Specifically, we demonstrate how the

concept of randomness deficiency can be relied on to successfully model surprise.

2. Probability theory and surprise

Over the last century, probability theory has emerged as the ubiquitous approach for

modeling uncertainty and surprise, though its relatively late development (17th century)

hints that it is not a particularly natural way of thinking. Probability theory was formal-

ized by Kolmogorov in the 1930s through the notion of probability space, whereby a set
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of possible outcomes is mapped to a number that represents its likelihood by a probability

measure function (see Li & Vit�anyi, 2008). It has been argued that surprise holds an

inverse relationship with probability, in that highly probable outcomes result in low levels

of surprise and vice versa (e.g., Meyer et al., 1997). However, the concept of a direct

relationship between the two does not always hold up to scrutiny (Maguire & Maguire,

2009).

A key feature of classical probabilistic models is that their outcomes are assumed to

be independent of each other, and hence independent of the model itself. As such, out-

comes do not provide any information about the model, nor do they assist in predicting

subsequent outcomes. Probability theory works perfectly for describing the behavior of

finely calibrated stochastic mechanisms, such as dice. Each roll of a dice can be consid-

ered as independent, insofar as subsequent rolls do not cause observers to update their

beliefs about the dice.

However, since real-world evidence in support of any stochastic model is necessarily

finite, classical probabilistic models, which do not include any role for learning, are vul-

nerable to being undermined by certain possible, though somehow “atypical,” outcomes.

For instance, if a dice produced a six time after time, eventually observers would find this

“surprising.” Repeated observations of the same number undermine the assumption of

independent rolls, and they lead observers to question whether the dice might be biased.

Although a repeated sequence of sixes is mathematically just as likely as any other

particular sequence, it is somehow unsatisfactory as a “random” sequence. This idea was

demonstrated in practice in 2009, when the same set of six numbers appeared in two con-

secutive draws in the Bulgarian National Lottery. While lottery officials insisted that

manipulation was impossible, a commission was nevertheless established to investigate

the incident, indicating a lack of complete confidence in the randomness of the draw.

Maybe the balls were not equally weighted, maybe the drum mechanism was defective,

or maybe the lottery officials were corrupt. In sum, the occurrence of the same set of

numbers on two consecutive occasions was so surprising that it served to undermine con-

fidence in the assumption of independent draws.

This example illustrates that equally probable events are not always perceived as

equally surprising (see also Teigen & Keren, 2003). Moreover, it demonstrates that sup-

posedly strong assumptions, such as the randomness of a lottery draw, can be challenged

by only brief deviations from expected randomness. In practice, people have to be ready

to alter their beliefs at all times, meaning they need to be alert to signals that something

is amiss in their representation of the environment. Adherence to a fixed stochastic model

precludes any possibility of learning, a failure which would be detrimental to survival if

applied in the real world (Baldi & Itti, 2010). Because it is not possible to be absolutely

certain of anything, people need to ready for surprises.

In the following sections, we seek to define the property that highlights certain obser-

vations as being surprising, and to show how people rely on this signal to update their

representations in response to such anomalies. We begin with the Bayesian theory of sur-

prise presented by Baldi and Itti (2010), before revealing our own computational theory.
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3. Bayesian surprise

Whereas, classical probability is founded on certainties and fixed causal models,

Bayesian probability instead focuses on subjective uncertainties and inductive inference.

It extends the classical approach by viewing probability not as an objective phenomenon,

but as the state of knowledge of an uncertain observer, a state which is therefore subject

to refinement. Bayesian probability opens up a new dimension to classical probability, in

that it takes into account how observations inform the observer. It is an approach that has

proved useful for psychological modeling, having been applied to the understanding of a

wide range of cognitive phenomena (see Chater, Oaksford, Hahn, & Heit, 2010). The the-

ory recasts many specific cognitive tasks in the form of a universal framework whereby

predictions, made from prior hypotheses, are subsequently updated on the basis of

observed evidence. Bayesian graphical models, for instance, can explicitly express which

pieces of evidence are dependent on others (Pearl, 2009; Sloman & Lagnado, 2005), and

it can predict interesting patterns of inference in people’s reasoning (Rottman & Hastie,

2016).

An influential Bayesian explanation of surprise has been proposed by Baldi and Itti

(2010). Here, surprise is deemed to be a product of the amount of learning that has taken

place by an observer, which is quantified in terms of the relative entropy (i.e., Kullback–
Leibler divergence) between the prior and posterior distributions. To quantify the surpris-

ingness of an observation, one needs to identify a set of hypotheses which are being

actively considered. The surprise value reflects the extent to which the balance of belief

gets shifted within that hypothesis set.

Experimental results have reinforced the value of Baldi and Itti’s (2010) surprise

notion. It has been shown to yield a robust performance in predicting human gaze across

different spatio-temporal scales, modalities, and levels of abstraction (Friston et al., 2012;

Itti & Baldi, 2006), as well as being applied to detect salient acoustic events (Schauerte

& Stiefelhagen, 2013). Other theoretical work, which views surprise in terms of contrasts

between hypotheses (e.g., Meyer et al., 1997; Teigen & Keren, 2003), is broadly consis-

tent with Baldi and Itti’s (2010) approach.

This account, however, does not seem to cover all instances of surprise, especially

those that are completely unanticipated. For example, if a brick comes through the win-

dow, it is surprising precisely because one would never have thought of entertaining such

a hypothesis (Ortony & Partridge, 1987). There are also examples of surprising experi-

ences that are awkward to express in terms of belief shifting among a finite number of

discernible alternatives, such as looking down at the dashboard of a car and seeing the

odometer at 66,666 km (Dessalles, 2008).

As stated by Baldi and Itti (2010, pp. 661–662) themselves: “The process by which a

learning system realizes that a model class is unsatisfactory in an alternative free setting—the

open-ended aspect of inference—has so far eluded precise formalizations and ought to be

the object of future investigations.” Baldi and Itti’s (2010) theory might therefore be

more accurately regarded as a theory of “surprise calculation” (i.e., informativeness)

rather than as a theory of “surprise detection.” Rather than capturing that initial “oh-no”
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moment of heightened awareness before a stimulus is fully explained, it instead provides

a final retrospective evaluation of how much impact an event has had in shifting a set of

beliefs.

In contrast, Foster and Keane (2015) view surprise as a metacognitive estimate of the

work involved in explaining an abnormal event, an estimate which becomes available

before any belief shifting has even been attempted. An anomalous observation, which ini-

tially provokes a high metacognitive estimate of discrepancy, may in the end turn out not

to justify any representational updating at all. For example, if you were to look up at the

sky and see a cloud in the shape of a dog, a high level of surprise detection would be

experienced. On reflection, however, any causal account might seem unjustified, leading

you to view the event as a “fluke” rather than updating your beliefs. Following Baldi and

Itti’s (2010) formulation, which is based on ultimate belief adjustment, the event would

register low on surprise calculation. In sum, Baldi and Itti’s approach fails to explain

why a striking coincidence without immediate explanation should grab people’s attention.

A comprehensive theory of surprise needs to account for how people flag observations

as being potentially anomalous before they’ve figured out how to make sense of them:

People have to be able to detect surprise before resolving surprise. In the following sec-

tion, we propose a more general “hypothesis-neutral” theory of surprise, which does not

depend on quantifying Bayesian learning.

4. Surprise as randomness deficiency

We propose that surprising observations are those that contain unaccounted-for pat-

terns; in other words, they evidence randomness deficiency. When a set of observations

contains patterns where an existing model implies there should only be random noise

(e.g., a dice continually landing on 6), it undermines the assumption of independent out-

comes and suggests the presence of some alternative mechanism at work. If the devia-

tions of a model’s predictions are randomness deficient, it implies that a superior

predictive model is available (see Vit�anyi & Li, 2000). The experience of physiological

surprise can be viewed as a response to this situation, whereby heightened awareness and

enhanced sensory intake (e.g., eye widening, opening of the mouth, enlargement of the

nasal cavity serve) serve to facilitate the resolution of the discrepancy (Susskind et al.,

2008; Tottenham et al., 2009).

To illustrate the concept of randomness deficiency more clearly, consider the situa-

tion where a packet of rice is accidentally spilled on the floor. According to probability

theory, it is just as likely that the grains of rice will produce a “pattern” as any other

particular arrangement. Nevertheless, we expect the grains to scatter “randomly.” What

that means in practice is that we do not expect to see any out-of-context patterns arise

in the arrangement of the grains. Imagine then how surprised you would be to find your

name spelled out precisely by the rice (in 1795 Pierre-Simon Laplace used a similar

example of finding words spelled out by random letters; see Griffiths & Tenenbaum,

2007).
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The rice-name scenario is randomness-deficient because the outcome can be concisely

described, suggesting the potential for another explanation that provides a better fit: Per-

haps somebody wrote your name on the floor in a sticky substance that has attracted the

grains. Adjusting your understanding in this way may be more reasonable than accepting

that a random scattering of rice grains would just happen to spell out your name.

Rather than holding an innate appreciation of what randomness should look like, peo-

ple are instead attuned to detecting the presence of patterns (Zhao, Hahn, & Osherson,

2014). An observation appears random when there is no obvious way to describe it more

concisely than using the assumed stochastic model and recording each event indepen-

dently. For example, given a random sequence of dice rolls, the most concise way to repre-

sent it is simply to write down each roll result separately, one after the other. In contrast,

an observation is randomness deficient (i.e., surprising) when it can be described more con-

cisely than this; in such cases, we say that the sequence can be “compressed.” For example,

while an apparently random sequence such as 8, 11, 20, 29, 31, and 45 cannot seemingly

be described in any more concise fashion, a sequence such as 1, 2, 3, 4, 5, and 6 can be

compressed as “1 to 6,” suggesting it is not the product of random selection.

The greater the compressibility of a supposedly random set of observations, the greater

its randomness deficiency, and the greater its likelihood of having being produced by an

alternative mechanism (see Vit�anyi & Li, 2000). Sequences that can be described by simple

patterns are extremely rare for a random lottery draw, yet presumably much more common

for other deterministic mechanisms. Consequently, if we observe a lottery sequence with a

pattern, it surprises us, because it leads us to question whether the draw might be biased.

To define a general theory of surprise, it is necessary to formalize this concept of ran-

domness deficiency. In the following section, we show how AIT, the discipline within

which the concept of randomness has been defined, can provide an appropriate framework.

Our idea is simply this: Surprise is the normalized difference between the probabilistic

point of view, which treats observations as independent, and the computational point of

view, which gives the shortest possible description. The more the probabilistic encoding

deviates from the shorter computational encoding, the greater the level of surprise.

4.1. Preliminaries

The fundamental premise of AIT concerns the equivalence between likelihood and sim-

plicity (Chater, 1996; Chater & Vit�anyi, 2003). Specifically, AIT is based on the assump-

tion that the probability of a model, grammar, or pattern, is inversely proportionate to its

complexity (complexity being the opposite of simplicity), and that complexity is propor-

tionate to minimum description length (Chater & Brown, 2008). In other words, the more

concisely a model describes a set of data, the more likely it is to be correct, and the more

successful its predictions will be. This finding can be interpreted as a formalization of

Occam’s razor, the idea that, all being equal, simple theories should be preferred because

they are more likely (Chater & Brown, 2008). Vit�anyi and Li (2000) show that data com-

pression (i.e., looking for models that support concise descriptions of events) is almost

always the best strategy, both in hypothesis identification and prediction.
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Kolmogorov complexity is a notion which captures the most concise possible descrip-

tion of a dataset, thus allowing us to define the computational view (see Li & Vit�anyi,
2008, for more details). The main idea is as follows: Suppose we flip a coin 30 times to

generate a random binary string of length 30. We obtain the string

100100010011010011011111111100 and are happy with the result, since it looks “ran-

dom.” The next day, we repeat the experiment and obtain the string

000000000000000000000000000000. This time we are unsatisfied, since the string does

not look random at all. How can we formally argue that the first string looks random,

whereas the second does not? We cannot argue from the probabilistic view because the

two strings are equally probable to be the result of 30 coin flips (both have probability

2�30). So let us try instead to describe the first string as succinctly as we can. Since we

can spot no obvious pattern, the shortest description we can come up with is: “Print

100100010011010011011111111100.” What about the second string? In that case we find

a much shorter description, namely: “Print thirty zeros.” So, while the first string admits

no short descriptions (the length of the shortest description we could find is as long as

the string itself), the string of 30 zeros admits a description of length 18 (namely “Print

thirty zeros”), which is much shorter than 30. Herein lies Kolmogorov’s idea: the first

string is random because the length of its shortest description is as long as the string

itself, while the second string is not random, because its shortest description (i.e., its com-

plexity) is substantially shorter than the length of the string.

The idea is very elegant, but what language should we use to describe strings? Should

we use English? Latin? Esperanto? What if in some ancient language the short word “chi-

sen” stands for “100100010011010011011111111100”? Kolmogorov observed that it does

not matter as long as one uses a fixed “universal” description language based on a univer-

sal computer programming language: Since one quickly runs out of short descriptions for

long strings, any two universal languages will yield almost the same set of random strings

(with the exception of only a few strings). To allow mathematical formalization, Kol-

mogorov describes strings based on the idea of a universal computer, that is, a computer

that can simulate any other computer (formally a universal Turing machine). Kolmogorov

proved that the choice of the universal computer does not matter: If one chooses another

universal computer, then the lengths of the shortest descriptions based on the new com-

puter differ from the ones based on the old universal computer by at most a fixed additive

constant. Also, we can restrict ourselves to binary strings, since any finite object (English

sentences, books, movies, etc.) can be encoded into such strings in some natural way.

Accordingly, a valid description of a string x is the code of a program p, such that if

we run the program p on the universal computer, the computer prints x. The Kolmogorov

complexity of string x is the length of the shortest program p that makes the universal

computer output x. In this case, the shortest program for the string

100100010011010011011111111100 is at least 30 bits long, while the string of 30 zeros

has a lower Kolmogorov complexity, because it can be computed by a short program.

We say a string is random if its Kolmogorov complexity is greater than or equal to its

length. Otherwise we say the string is not random.
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4.2. Formal definition of surprise

Imagine a black box that prints out strings, one after the next. We do not know how it

works, but for every possible string x we know the probability PrB(x) that the black box

outputs x (formally PrB is a probability distribution over the set of binary strings).

Knowing the distribution PrB, there are some “typical” strings we expect to be out-

putted, whereas some others are surprising (the atypical ones). One can quantify this

lack of typicality in terms of randomness deficiency (see Li & Vit�anyi, 2008). For

example, consider box B that outputs all the binary strings of length 30, where each

such string is outputted with probability 2�30. Imagine the box outputs string

s = 100100010011010011011111111100. We are not surprised. Let us compute the ran-

domness deficiency of s: Suppose we want to encode the outputs of the black box using

a probability based encoding which assumes all outputs are independent of each other.

Then s would require log 1/PrB(s) = 30 bits to encode. What if we use the universal

computer instead? Imagine for fairness we provide the computer with the probability

distribution PrB (i.e., the computer can look up the value of PrB(x) for any string it

wishes, and it is given the answer; this ensures that the length of the computational

encoding is never greater than the probabilistic one). Then the shortest description of s
has length approximately 30 (knowing PrB does not help the computer in this case), and

the difference between the probabilistic and computational views (i.e., the randomness

deficiency) is approximately zero.

Imagine the box next outputs t = 000000000000000000000000000000. Why does this

seem surprising? Let us investigate by computing the randomness deficiency of t: The

probability based description length is still 30. If the shortest description of t on the uni-

versal computer given PrB is 18, then the randomness deficiency is 30 � 18, which is

much larger than for the other string s.
In sum, given a black box with probability distribution PrB, we propose that the sur-

prisingness of string x is expressed by the randomness deficiency of x, that is, the differ-

ence between the length of the probability based encoding of x and the length of the

shortest description of x on the universal computer given PrB. This can be written for-

mally as d(x|PrB) = log 1/PrB(x) � C (x|PrB).
This value can be normalized to a value between 0 and 1 (up to a logarithmic factor),

thereby quantifying bits of surprise per bit of observation, in other words, the proportion

of the probability based encoding that is superfluous according to the computational point

of view. The more an observation can be compressed (i.e., the greater the discrepancy

between the probabilistic and computational points of view), the greater the associated

level of surprise.

4.3. Discussion

Randomness deficiency applies to situations where we expect randomness but then

experience structure. It also applies to situations where we expect structure but experience

randomness instead (see Loewenstein & Heath, 2009, for an account of how such pattern
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breakers are used to generate surprise and amusement in folktales and story jokes). Imag-

ine, for example, having observed the following sequence: 1, 2, 3, 4, 5, 6, 7, . . . Clearly,
one would be more surprised if the following number was 86 than if it was 8, even

though 86 is ostensibly more random. What differs between this case and the lottery

example is the probability distribution. Assuming people have adjusted their representa-

tion so as to anticipate an ascending sequence, the appearance of 86 violates the existing

model, thereby exposing the preceding 1 to 7 sequence as an unexplained pattern with

high randomness deficiency. Observers are surprised because they are challenged to find

a new explanation for a pattern which no longer matches the “ascending sequence” repre-

sentation.

This example can be formalized as follows using our model of surprise: The black box

outputs encoding of strings of the form 1, 2, 3,. . . n, with a high probability, let’s say, of

order 1/n2. All other sequences of length n (e.g., 1, 2, 3, 4, 5, 6, 7, 86) are outputted with

a lower probability of order 2�n. For strings of the first kind, the randomness deficiency

is �log(1/n2), which is of order log n, minus the shortest description of the string (given

the black box distribution function), which is also of order log n (since a short program

could say “print all integers from 1 to n,” and n can be encoded in order log n bits). In

the first case, the difference between the probabilistic and computational points of view is

small, and so is the surprise. In the second case, the second term stays small, but the first

term is �log(2�n), which is linear in n; hence, the difference between the probabilistic

and computational points of view is large, and so is the surprise. In this way, any

instance of surprise, whether switching from randomness to structure or vice versa, can

be presented in terms of patterns being observed without the underlying causal model that

would account for them.

Our framework is consistent with explanation-based accounts of surprise (e.g., Foster

& Keane, 2015; Maguire, Moser, Maguire, & Keane, 2014; Maguire et al., 2011). Expla-

nation-based accounts propose that surprise is mediated by an estimate of the amount of

work needed to integrate an observation with an existing representation, or in other

words, the amount of work needed to explain an observation. Results in AIT have shown

that the concepts of “explanation” and “data compression” are very closely connected

(see Vit�anyi & Li, 2000): Compressing a sequence of observations is equivalent to

explaining those observations, insofar as it permits future observations to be more accu-

rately predicted. The metacognitive estimate of “work” outlined by Foster and Keane

(2015) is thus captured by evaluations of randomness deficiency.

It should be noted that our computational approach is not intended to challenge Baldi

and Itti’s (2010) Bayesian approach. At the limit, both approaches are theoretically equiv-

alent. For example, nonparametric Bayesian approaches have been proposed as a means

of explaining how people identify representations that are complex enough to faithfully

encode the world, but not so complex as to overfit the data (see Austerweil, Gershman,

Tenenbaum, & Griffiths, 2015). What our formalization does differently to the Bayesian

approach is simply to provide a convenient means of quantifying surprise in a hypothe-

sis-neutral context. While the Bayesian approach carves up the hypothesis space into a

set of discrete alternatives and calculates how beliefs fluctuate between them, our
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formalization depends only on the specification of a compression scheme that approxi-

mates C(x). This allows the surprisingness of an event to be expressed relative to the set

of “all other possibilities” without needing to directly represent those alternatives. This

approach may prove more useful for modeling open-ended contexts which lack a clear

set of salient competing hypotheses. In the case of seeing 66,666 km on a car’s odometer

(Desalles, 2006), for example, it seems awkward and unnecessary to express the surpris-

ing event as one contrasting with a large number of alternative possibilities (e.g.,

66,665 km, 66,664 km, 66,663 km, . . . etc.).
With the formal definition of randomness deficiency in place, we now turn to investigat-

ing the role it plays in determining how people respond to real-world situations. In the fol-

lowing section we present an experiment which investigates whether people are sensitive to

surprise as we have defined it, and whether they use it to make decisions in practice.

5. Empirical investigation

The following experiment presents a subjectively uncertain scenario that is intuitively

amenable to the probabilistic point of view, namely lottery sequences (see Desalles,

2006). While a straight-forward application of probability theory suggests that all lottery

sequences are just as likely, their randomness deficiency (i.e., surprisingness) can differ

markedly. Rather than needing to specify a set of competing hypotheses, as per Baldi and

Itti’s (2010) formulation of surprise, we can express randomness deficiency in terms of

data compression.

In the Irish National Lottery, where 6 numbers are drawn from 45, each ordered

sequence has a classical probability of 1/C(45, 6) = 1/8.15 million. According to our the-

ory of surprise, people are sensitive to deviations from randomness and thus should

expect the lottery numbers to be Kolmogorov-random (i.e., incompressible), thus requir-

ing log28,145,060 = 23.0 bits to encode. The more a sequence deviates from a typical

random string, the lower the likelihood that it reflects the output of a random source.

Since a universal compressor is an uncomputable ideal (see Li & Vit�anyi, 2008), we
are obliged to create a heuristic compressor which approximates how people experience

patterns in lottery sequences. In their investigation into the perceived randomness of bin-

ary sequences, Griffiths and Tenenbaum (2004) found that people are sensitive to patterns

produced by simple processes such as repetition, symmetry, and duplication (see Bigelow

& Piantadosi, 2016; for a large dataset of human-generated number patterns). Based on

this research, we developed an encoding scheme which exploits such patterns to reduce

description length. This heuristic compressor takes in an ordered sequence of six numbers

and computes the six step sizes between them (with the first number counting as the first

step). A Huffman encoding scheme is then applied, which relates bit size to step size (a

Huffman encoding is one that provides optimal compression under the assumption that all

symbols are independent). A breakdown of the structure of the associated Huffman tree is

provided in Table 1, with level depth corresponding to the number of bits needed to

encode each value.
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For instance, the sequence 10, 32, 33, 35, 39, 45 is transformed to step sizes of +10,
+22, +1, +2, +4, +6, which is then encoded using 8 + 8 + 2 + 3 + 4 + 6 = 31 bits.

Using this scheme, an analysis of 6 years of bi-weekly Irish National Lottery draws

revealed a mean compressed length of 30.9 bits (SD = 3.6), with a mode of 31 bits. The

most randomness-deficient of the 624 sequences was 2, 4, 32, 34, 36, 37 (description

length of 20 bits), while the most random was 9, 20, 26, 27, 34, 45 (description length of

39 bits). The theoretical minimum description length of our system is 12 (e.g., 1, 2, 3, 4,

5, 6), while the theoretical maximum is 43 (e.g., 7, 13, 20, 29, 36, 45). This contrasts

with the 23.0 bits needed to perfectly encode an ordered random sequence of six numbers

between 1 and 45.

Although our compressor does not capture all computable patterns, it delivers compres-

sion for randomness-deficient outputs (i.e., it compresses below 23.0 bits for certain non-

typical random sequences) and can therefore be used to evaluate the hypothesis that peo-

ple use randomness deficiency to adjust beliefs regarding causal origin. It should be noted

that our choice of encoding is just one possible compression scheme among many that

could be adopted, all of which would presumably yield similar results.

5.1. Experiment

Two quickpick (i.e., randomly selected) lottery tickets were purchased for the subse-

quent week’s Irish National Lottery draw, each with six ordered numbers ranging from 1

to 45. The number on the first ticket had a compressed description length of 31 bits (2, 8,

11, 19, 23, 38), while the second had a length of 30 bits (6, 13, 17, 20, 43, 44). Based on

our analysis of 5 years of winning tickets, these lengths were close to the mean/modal

description lengths of Irish lottery ticket sequences. Each of the number sequences from

these two tickets were, respectively, combined with four other number sequences that had

been specifically constructed to have different compression lengths, and thus different

levels of surprisingness. The aim of the experiment was to identify whether participants

would rely on randomness deficiency to identify the original lottery sequences in a

hypothesis-neutral context.

Table 1

Structure of Huffman encoding scheme

Level Depth Leaves No. Branches

1 — 2

2 +1, repeat 2

3 +2, +3 2

4 +4 3

5 +5 5

6 +6 9

7 +7, +8 16

8 +9 up to +40 —
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5.1.1. Participants
One hundred thirty undergraduate students from Maynooth University participated vol-

untarily in this study.

5.1.2. Procedure
Participants were informed that a pair of valid lottery tickets had been purchased for

that week’s draw, which would be displayed at the end of the experiment. They were pre-

sented with the two sets of five number sequences (i.e., one of the lottery number

sequences mixed in with the four constructed sequences). Their goal was to identify the

lottery sequence from within the set of five candidate sequences. No mention was made

of how the other four constructed sequences had been obtained.

Each quickpick sequence was presented on a screen along with four other sequences

generated randomly by a computer algorithm. This program kept iterating through ran-

dom sequences until finding one matching the required bit size. The four distractor

sequences met the constraints of having compressed bit-sizes of 15–18 bits (e.g., 2, 4, 5,

6, 10, 12), 19–22 bits (e.g., 14, 15, 18, 19, 20, 22), 23–26 bits (e.g., 10, 11, 22, 23, 24,

27), and 27–29 bits (e.g., 7, 11, 15, 16, 18, 44), respectively. The ordering of the five

sequences on the screen was randomized.

To avoid influencing participants into thinking in a particular way about the task, we

deliberately avoided using the words “surprise” or “probability.” Participants were instead

asked to rank each set of five sequences according to perceived likelihood of being the

quickpick sequence, from highest likelihood to lowest likelihood.

Unfortunately for the experimenters, the lottery tickets did not turn out to be winning ones.

5.2. Results

An individual applying classical probability would view all sequences as equally likely

and would thus only have a 20% chance of correctly identifying one quickpick sequence

mixed with four distractor sequences. However, 64% of participants correctly identified

the numbers on the first ticket, and 66% on the second ticket (i.e., ranked these sequences

in first place out of the five possibilities). The first ticket had a compressed description

length of 31 bits, while the second had a length of 30 bits.

Fig. 1 shows the mean compressed bit size for sequences ranked from first to fifth

place across the two presentations. The overall correlation between ranking and com-

pressed description length was 0.965, p < .001.
For judgments involving the first ticket, the mean compressed description lengths of

sequences ranked in places from first to fifth were 28.2, 25.6, 24.1, 21.8, and 18.4 bits,

respectively. A Friedman test revealed a significant difference in the bit sizes of per-

ceived likelihood ranks, v2(4) = 162.8, p < .01. Post hoc analysis using Wilcoxon

signed-rank tests with Bonferroni corrections found significant differences between all

comparisons (p < .01).
For judgments involving the second ticket, the mean compressed description lengths were

28.4, 25.7, 23.1, 21.1, and 19.4 bits, respectively. These results again revealed a significant
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difference in perceived likelihood ranks, v2(4) = 209.1, p < .01. Again, all comparisons

were shown to differ in post-hoc analysis using Bonferroni-adjusted Wilcoxon signed-rank

tests, with larger bit size sequences being ranked more likely to be the lottery sequence.

5.3. Discussion

Our results demonstrate that, not only are people sensitive to randomness deficiency,

they rely on it to enhance their judgement accuracy. While probability theory assumes

that all lottery sequences are equally likely, people realize that there is an element of

uncertainty involved in how those sequences have been generated. They understand that

the greater the randomness deficiency of a lottery sequence, the greater the likelihood that

it was produced by an alternative non-random mechanism. These results underscore the

importance of surprise in reasoning and decision making.

Although the Bayesian approach and the computational approach are theoretically

equivalent at the limit, our model may offer closer insight into the experience of “surprise

detection” (as opposed to “surprise calculation”). As argued by Foster and Keane (2015),

the initial surprise response reflects a metacognitive estimate of the work involved in

explaining an abnormal event. This initial estimate is more likely to involve a basic

hypothesis-neutral appraisal of events, as described by our computational model of sur-

prise, as opposed to a more fine-grained analysis of how beliefs are shifted among a

specific set of hypotheses, which Baldi and Itti’s (2010) quantification entails. Our model

demonstrates how an event can be perceived as anomalous even in the absence of any

salient hypotheses (e.g., repeated numbers in the Bulgarian lottery). Because randomness

deficiency acts as a context-neutral indicator of suboptimal representation, it provides a

valuable heuristic for homing in on potentially informative stimuli.

Converging evidence points to a connection between randomness deficiency and learn-

ing. Infants, for example, display a sensitivity to coincidence, selectively exploring
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Fig. 1. Mean compressed bit size according to rankings of likelihood.
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objects that produce anomalous data (Gopnik & Schulz, 2004; Xu & Kushnir, 2013), as

well as relying on suspicious coincidence to infer the correct meaning of words (Jenkins,

Samuelson, Smith, & Spencer, 2014). The detection of surprising events provokes ani-

mals to learn faster (Courville, Daw, & Touretzky, 2006), and it has also proved key to

causal discovery and rational inference in the sciences (Xu & Kushnir, 2013). People are

fascinated by the experience of unexpected patterns (Itti & Baldi, 2006) and can accu-

rately assess the level of statistical support they provide for an underlying causal struc-

ture, thus equipping them with a fundamental skill for concept learning and theory

formation (Griffiths & Tenenbaum, 2007). Taken to unproductive extremes, however, this

responsiveness to anomalous patterns produces a condition known as “apophenia” (see

Fyfe, Williams, Mason, & Pickup, 2008).

In sum, people’s attention naturally gravitates toward subject matter which offers the

potential for the identification of unexpected patterns, setting up a close link between sur-

prise, randomness deficiency, curiosity, and interestingness. Schmidhuber (2009), for

instance, argues that the experience of randomness deficiency, with subsequent resolution

through representational updating (i.e., data compression), is what makes subjects interest-

ing, films entertaining, and jokes funny. Both scientists and artists actively select experi-

ments in search of simple innovative laws which would compress the observation history,

thereby leading to enhanced understanding. Schmidhuber (2009) argues that the creativity

of painters, dancers, musicians, pure mathematicians, and physicists can all be viewed as

the by-product of a human drive toward enhanced compression progress.

6. Conclusion

No matter how hard we try, it is never possible to eliminate uncertainty. For highly

specialized and precisely engineered situations, such as those involving games of chance,

representations are so reliable that the possibility of surprise can be effectively ignored.

In noisy real-world environments, however, surprise is a common experience, and failing

to identify it can have detrimental consequences.

In this article, we have provided a general model of surprise. Rather than expressing it

in terms of shifting hypotheses (e.g., Baldi & Itti, 2010), we have defined surprise in

terms of universal pattern detection. The observation of randomness deficiency is a good

heuristic for a representation that is missing something, since compressible patterns rarely

occur by chance and are much more likely to be driven by some underlying structure

which is not being correctly modeled. For this reason, it makes sense for people to be

constantly alert to the appearance of patterns in unusual contexts.
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