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Abstract

Cell imaging for cancer diagnosis typically requires invasive procedures to make cells

visible, and in time-lapse imaging, light levels can be harmful for cells. These routines can

affect the behaviour of cells and introduce unwanted artefacts in the captured images.

Digital holographic microscopy (DHM) enables stain-free single-shot imaging of living

cells, uses low light intensities, and requires low data storage capacity. Due to advantages

over many other methods, DHM is a strong candidate for high-throughput analyses. Use

of DHM for imaging complex three-dimensional organoids has not been reported before.

The major limitation preventing widespread-use of DHM is the lack of analysis al-

gorithms and limitations with those that are available. There are no algorithms to detect

the presence of objects encoded in digital holograms. Existing algorithms used to find the

in-focus depths of objects encoded in digital holograms require multiple reconstructions

that increase processing time making them unsuitable for high-throughput analyses. There

are no algorithms that could be used to segment digital hologram reconstructions of biolo-

gical objects to multiple distinctive regions. To the best of our knowledge, using digital

hologram reconstructions for classification of cysts has not been reported before.

This thesis introduces novel approaches for efficient analyses of holograms of cell lines

and real patient samples. By analysing and interpreting different features of organoids,

cancer-specific signatures are identified. In this thesis, a number of novel contributions

are reported. A model-based object presence detection approach exploiting information

extracted from a CNN is reported. CNNs are trained to find in-focus depths of organoids

encoded in digital holograms without any numerical propagation. Reconstructions from



Abstract

digital holograms of organoids are segmented to multiple discrete regions using a CNN,

allowing novel quantitative analyses. Different classifiers using either extracted feature

vectors or phase reconstructions are trained to discriminate healthy and tumorigenic

organoids. A large-scale experiment is conducted for finding a CNN model with sufficient

classification accuracy and minimum number of learning parameters; hand-crafted features

are added to these shallow networks to improve the classification accuracy. Organoids

derived from tissue samples of thirteen prostate cancer patients are shown to introduce

additional challenges. Based on the existing data, there is an indication that prostate cancer

is unique for each patient thus complicating detection of cancer.
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1
Introduction

1.1 Background and motivation

Cancer is and will remain one of the biggest global challenges concerning human health

and is one of the leading causes of death. For instance in Europe every year, nearly

four million Europeans are diagnosed with cancer [1]. Early detection and diagnosis of

cancer and subtypes thereof are key factors for effective treatment. At present, cancer

detection and assessments of at-risk patients are mainly conducted by blood and tumour

tissue tests, urine tests, X-ray scans, CT scans, and endoscopy. The clinical diagnosis

and the treatment plan is largely based on a subjective expert evaluation. For example,

a pathologist estimates aggressiveness of a cancer based on histological evaluation of a

tissue sample and the treatment plan is largely derived from this. This is a typical example

of a traditional medical treatment, in which less consideration is given to the differences

between individuals. As the number of different drugs and treatments increase, it is of

great importance to find the best possible treatment plan for an individual patient. This fact

is partially emphasized by a transition from traditional medical treatment to personalized

precision medicine [2–5]. This approach allows clinicians to more accurately predict which

treatment for a particular disease is the best possible for each individual. Reducing the

number of unnecessary treatments and improving drug responses via tailored treatment

plans can drastically reduce health care costs and significantly improve the well-being of

patients living with cancer.

In response to this challenge, one possibility is to analyse tumour cells [6] and their

response to different drugs. A tumour cell in the context of this thesis is defined to be a cell
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1.1 Background and motivation

that has abnormal cell growth and abnormal cell division properties. Over time, these cells

typically form abnormal structures differentiating them from their healthy counterparts.

Based on the quantitative analysis of a bank of tumour cells, each exposed to a different

drug, the best possible drug for an individual could be chosen. Unfortunately, there is no

standard test available that works at the cellular level, observing a cell and its response

to different drugs. A natural way to observe a cell is through imaging. For this kind of

imaging to be meaningful and also reliable, we define the system to enable:

• high-throughput (thousands of images per day),

• quantitative measurements,

• non-invasive measurements (low light levels),

• freedom from tagging,

• long term observation, and

• freely moving cells in a sample.

Conventional microscopes require tagging (labelling) the sample, which can be a highly

invasive procedure that affects the behaviour of the cells. Typically, tagged cells are

imaged with confocal microscopes that are based on scanning, which can limit the size

and movement of cells inside a sample. Also, they require a high amount of light that may

rapidly impair cell viability and morphology [7, 8]. Electron microscopes require the object

to be fixed and sputtered with metal, which kills the sample. Phase-contrast techniques

such as Zernike, Normarsky, and dark-field microscopies only increase the visibility of the

internals of the cell and cannot be used to infer any quantitative three-dimensional (3D)

information about the cell. X-ray microscopes can achieve nanometre resolution, but again

they will kill a living sample.

Digital holographic microscopy (DHM) [9] and other interferometry based microscopy

techniques, in principle, are the only ex vivo high-resolution technologies capable of

capturing and thus following dynamics of a living sample completely non-invasively and

without introducing artefacts and ambiguities in the measurements. DHM enables the

capture of quantitative transmitted phase of an object over long periods of time, does not
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require any labelling, uses small light intensities (approximately 1000 times less than in a

confocal microscope), allows free movement of a sample within the field of view, and has

true potential in high-throughput imaging. The suitability of DHM for high-throughput

imaging is supported by the fact that the imaging is not based on any form of scanning; a

single hologram capture time is limited only by the integration time of the imaging sensor.

Due to this property, another advantage of DHM is that it produces a small amount of data

compared with other 3D microscopy techniques.

In light of these properties and advantages, DHM as a technology is a perfect candidate

for high-throughput imaging and analysis. However, a severe lack of algorithms exists.

For this technology to really be usable for clinicians, biologists, and other medical experts,

there need to be algorithms that can be used to analyse holographic data. This thesis

decreases this gap by implementing novel solutions that can be used together with data

captured by sophisticated hardware to do analysis for a range of purposes.

1.2 Problem statement

The problem tackled in this thesis is how to build a high-throughput three-dimensional

analysis system for cysts and organoids.

The most pressing need for any solution to this problem is reliable processing and

analysis software components. There are no available computational methods for cancer

detection that use the morphology of cancer cells. This thesis provides a new dimension to

cancer cell detection and characterisation with a rapid and robust ex vivo microscopical

assessment of tumour cell morphology. Research methods include imaging, observation,

and analysis conducted at the cellular level by use of DHM. Crucial solutions required for

a high-throughput imaging system are identified, defined, implemented, and tested.

In addition to the general problem statement of what is needed to build a high-

throughput analysis system comprising the optical imaging system and processing and

analysis algorithms, we are interested in:

• Can we extract information/features from digital holograms of biological samples

that can be used for high accuracy two-class classification (healthy and oncogenic)?
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• If so, which and how many features are needed for reliable classification?

• Can we improve two-class classification with deep learning?

• If so, how deep do convolutional neural network models need to be to solve the

problem?

• If we need convolutional neural networks, how much data is needed?

1.3 Scope and contribution of the thesis

This thesis forms a first stage for exploring the possibilities of DHM for high-throughput

analysis in cancer research. The technology enables capturing the phase information

of transparent objects that can potentially be used in identification and morphological

characterisation of tumourigenic cells. By analysing and interpreting morphological

features of living samples, that manifest themselves in the quantitative optical density,

cancer-specific signatures will be identified and will inform our software development.

The aim of this thesis is to design a method for high-throughput screening (allowing to

analyse thousands of images per day) and increased knowledge of cell-with-cancer specific

features and structural changes through cell morphology and physiological quantitative

measurements. In addition, possibilities to use sophisticated machine learning algorithms

will be explored. The main focus is on high-throughput imaging, cancer cell detection and

characterisation, which may display various specific features like distorted cell division.

The ultimate goal of the thesis is to form a high-throughput analysis method and design

reliable classifiers of morphological phase signatures which can be used to detect cancer.

This thesis investigates possibilities for combining image processing, image analysis,

and DHM. Novel image processing approaches, that can be used for processing and feature

extraction of cells, are introduced. These extracted features are further used with machine

learning algorithms in order to discriminate between healthy and tumourigenic cells, and

moreover, solutions presented in this thesis can be used to quantify the tumourigenic po-

tential of cells. Our convolutional neural network (CNN) design decisions are summarised

in Table 1.1.
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Table 1.1 Table of CNN design decisions.

Decision Description

Size normalisation
Input to a CNN is scaled to a proper size as
designed by the CNN. This allows
magnification independent CNN training.

Wavelength normalisation
Inputs to a CNN are normalised to allow
wavelength independent CNN training.

Off-the-shelf architectures
Where possible, off-the-shelf CNN architectures
such as AlexNet are used.

Minimal pre-processing
Minimum amount of numerical pre-processing
giving a sufficient result is applied to holograms
before feeding to a CNN.

Size normalisation - digital holographic microscopes can be used with different

microscope objectives that change the magnification of objects. As the CNNs are not

scale invariant, due to nature of the convolution operation, this changes the perceived

size. Therefore, to be able to do inference using a trained network with digital holograms

captured with different microscope objectives, it is important to scale the objects to the

same size as the samples used to train the network.

Wavelength normalisation - digital holographic microscopes operate at various dif-

ferent wavelengths. The number of phase wraps in phase reconstructions are dependent

on the used wavelength, i.e. a wrapped phase reconstruction of a digital hologram of an

object captured with a short wavelength displays more phase wraps than the same object

captured with a longer wavelength. This information is transferred to the unwrapped phase

reconstruction and phase values would be higher for the unwrapped phase reconstruction

captured using the shorter wavelength. Therefore, to be able to do inference using a trained

network with digital holograms captured with a different wavelength, it is important to

normalise unwrapped input values to the same range that they were while training the

network.

Off-the-shelf architectures - well-known, widely tested and accepted, and well per-

forming CNN models are preferred whenever possible. These existing models have been

proven to work with images of real-world objects. Minimal changes are applied to these

models so that they can work on holographic data.

Minimal pre-processing - before feeding a hologram input to the network, minimal

pre-processing is applied. For example, inputs to the CNNs that were trained to find the
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in-focus depth were hologram-plane amplitude. Minimal pre-processing will increase the

throughput of the system.

Throughout the thesis, two main themes are present: simplification and paradigms.

Simplification in the context of this thesis is defined as: “Design and implementation of

solutions and model architectures in a simplified manner using basic elements whenever

possible; entirely without reducing the efficiency”. Simplification is shown with different

design choices made in the thesis: CNN models are successively simplified, training data

is reduced, and the number of features used for training is reduced.

Paradigms in the context of this thesis is defined as: “Model- and learning-based

approaches are used in collaboration to improve the performance of the other.” This theme

is used both ways; model-based approaches are used to improve learning-based approaches

and vice versa.

1.4 Organisation of the thesis

Figure 1.1 shows identified components of an automated high-throughput imaging system.

These three components need to be addressed for a fully functional system. Each of these

components can be split to smaller problems that need to be answered (Fig. 1.2). This

thesis provides solutions to most of the identified problems, but not to all (see Fig. 1.2).

The imaging method relies on holography and its principles. The algorithms, in

turn, rely strongly on different machine learning algorithms. Chapter 2 contains a short

introduction to both of these concepts. In addition, this chapter contains a literature review

of machine learning approaches used in conventional microscopy and quantitative phase

imaging (including DHM). At the end of the chapter, biological aspects of the thesis are

introduced.

Chapter 3 describes optical hardware that is needed to implement an automated high-

throughput imaging system. In addition, it defines the digital holographic system that was

used for the experiments. The software forms the core of this thesis. Chapter 4 contains

first set of machine learning algorithms used for classification. Chapter 5 contains a novel

solution used to detect if an object is in the field of view captured in a digital hologram.

6



1.4 Organisation of the thesis

Software

HardwareBiological 
aspects

Figure 1.1 The main components of an automated high-throughput imaging system. Such a
system is a collection of interlocked components that work in collaboration. Different sizes
represent their importance in this thesis. The emphasis is on software while biological
aspects and hardware, have important roles in a high-throughput analysis system. Hardware
consists of optical, mechanical, and computer hardware (realisations of trained classifiers).

Chapter 6 describes a novel approach used for finding the in-focus depth of objects

encoded in digital holograms. Chapter 7 introduces another novel approach that can be

used to segment objects encoded in digital holograms.

Chapter 8 introduces a shallow convolutional neural network architecture that is used to

classify holograms of oncogenic and healthy living samples. The suitability of the system

for time-lapse imaging and real patient samples is demonstrated in Chapter 9.

Chapter 10 summarises this thesis with sections for discussion and future work.
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Figure 1.2 Automated high-throughput imaging system. Three main components contain
smaller problems that need to be solved for a fully functional automated high-throughput
system. The figure displays chapter numbers where chapters contain solutions to particular
problems. In addition, publications are marked. Most of the system works online, however,
the hardware calibration and classifier training can be accomplished off-line. The problems
with either a chapter number or a publication number have been solved in this thesis.
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2
Background

This chapter gives a short introduction to holography and machine learning. The section

on holography follows the chronological development of the science and technology that

took approximately 50 years. The last section of this chapter is about biological aspects

related to this thesis.

2.1 Introduction

The background of holography is in electron microscopy, a field that Dennis Gabor worked

on. Gabor [10] was working on improving the resolution of the electron microscope when

he invented holography, work for which he was awarded the Nobel prize more than two

decades later. From his early work on conventional analogue holography, holography has

evolved into digital holography and digital holographic microscopy. Nevertheless, the

basic principle remains the same – this technology enables the capture of a full wavefront.

One definition of machine learning given by Tom Mitchell is: “Well posed learning

problem: a computer program is said to learn from experience E with respect to some task

T and some performance measure P, if its performance on T, as measured by P, improves

with experience E” [11]. Machine learning itself has a rather long history starting from

the work of Karl Pearson [12], Ronald A. Fisher [13], and Arthur Samuel [14]. Frank

Rosenblatt [15] designed the perceptron, the first image recognition machine in 1957.

Ten years later in 1967, the nearest neighbour algorithm was published [16]. From these

early discoveries, machine learning has evolved new approaches such as support vector

machines, random forests, convolutional neural networks, and boosting, amongst others.
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Interestingly, holography has a history as an enabling technology for artificial neural

networks (ANNs) [17], and ANNs have been applied before in the fields of digital holo-

graphy [18, 19], digital holographic microscopy [20, 21] and more generally in quantitative

phase imaging [22]. These are just examples, as many other machine learning algorithms

and approaches have been applied in the field of digital holography. These algorithms

are important aspects of the modern digital holography and are necessary for efficient

hologram processing and analysis.

2.2 Holography

2.2.1 Introduction to holography

Gabor’s idea was to have two interfering waves and record the formed interference pattern

on a photographic medium [10]. The first one of the waves, the object wave, is altered by

the object under investigation and the second wave, the reference wave, goes through the

volume unaltered (Fig. 2.1). The recorded hologram contains both amplitude and phase

information of the wavefront. Mathematically, a hologram, I, which is an interference

pattern formed by the reference wave, UR, and the object wave, UO, can be expressed as

I = |UO +UR|2 =UOU∗
R + |UR|2 + |UO|2 +U∗

OUR (2.1)

where ∗ is the complex conjugate, |UR|2 and |UO|2 denote the dc terms, and UOU∗
R and

U∗
OUR are the conjugate and real images, respectively.

Later the recording process can be inverted, and a reconstruction obtained from the

hologram by illuminating the hologram with an optical imitation of the original reference

wave (Fig. 2.2).

The two most important properties of a conventional reconstruction (a consequence of

recording the quantitative phase) are as follows:

• The viewer can naturally focus at any depth of the scene.

• The viewer can view the scene from different perspectives (limited by the hologram

size and the illumination angle).
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Figure 2.1 Recording a hologram as explained by Gabor [10]. The hologram is formed
from the object and the reference waves interfering. See text for more explanation.

  

Figure 2.2 Reconstructing from a Gabor hologram. The hologram is reconstructed by
illuminating the hologram with the original reference wave. An observer is able to view
two identical replicas of the reconstructed object at equal but opposite distances, z0, from
the hologram.
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  (a) (b)

Figure 2.3 Special properties of a hologram. This figure shows two photographs captured
of a reconstructed hologram. (a) background in focus, viewed from left, (b) front in focus,
viewed from right. Figure adapted from [23].

Fig. 2.3 shows hologram reconstructions which demonstrate both of these properties.

The original recording approach, in-line holography, as invented and described by

Gabor has one major challenge; the reconstructed wavefront contains two exact copies of

the object, twin images (a virtual and a real image), at the same but opposite distances

from the hologram plane (Fig. 2.2). This is due to the fact that the virtual image is in

the opposite phase to the real image. When viewing the reconstruction, the in-focus real

image is partially occluded by the out-of-focus twin. To overcome this problem, when the

first commercial helium-neon lasers became available, Leith and Upatnieks [24] invented

off-axis holography in the early 1960s. The off-axis approach introduces an angle between

the reference and the object wave (Fig. 2.4). This method enables spatial separation of

the virtual and the real image in the reconstruction (Fig. 2.5). In addition, the zero-order,

which is located at the centre of the reconstruction in an in-line hologram, can be spatially

separated.

Fourier-transform holography was invented by Stroke and Falconer [25]. The difference

with the original idea by Gabor is that a reference point-source is placed at the object

plane (Fig. 2.6). After capturing a hologram with this approach, a reconstruction from the

hologram can be accomplished by taking a Fourier transform of the hologram. Both twins

appear in-focus at the object plane.

2.2.2 Digital holography

The first digital holograms were computer generated and made by Brown and Lohman in

1966 [26]. They printed holograms on a computer line printer and reconstructed them op-
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Figure 2.4 Off-axis setup. The reference and the object waves are separated by an angle
allowing spatial separation of different hologram terms.

  

Figure 2.5 Off-axis reconstruction. The process to reconstruct from a hologram is similar
to Gabor’s. However, due to the separation angle of two waves in capturing, different
hologram terms are spatially separated allowing to view the reconstructed object free of
disturbance of the out-of-focus twin.

13
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Figure 2.6 Recording a Fourier hologram. A point source is located on the same plane
with the object.

tically by using coherent laser illumination. Shortly after this, digitally captured holograms

were produced by Goodman and Lawrence [27]. They captured Fourier holograms by using

a vidicon with the front lens removed. The reconstruction (numerical two-dimensional

Fourier transform) was performed by a PDP 6 computer. Later Goodman introduced an

efficient numerical reconstruction approach that can be used on Fresnel holograms [28]. A

digital hologram, I(x,y) can be reconstructed at any depth z as

U(x,y;z) =
−i
λ z

exp(ikz) I(x,y)⊗ exp
(

iπ
x2 + y2

λ z

)
, (2.2)

where λ is the wavelength of the light, ⊗ denotes a convolution operation and k = 2π/λ .

Eq. 2.2 can be solved numerically with the angular spectrum method by using discrete

Fourier transforms (DFTs) as

U(x,y;z) = F−1 {F [I(x,y)]F [h(x,y;z)]} (2.3)

where F and F−1 denote the DFT and the inverse DFT, respectively; x and y denote the

spatial discrete coordinates; and h(x,y;z) is the diffraction kernel defined as

h(x,y;z) =
−1
2π

∂

∂ z
exp( jkr)

r

=
−z
2π

(
jk− 1

r

)
exp( jkr)

r2

(2.4)

14



2.2 Holography

where r is

r = (x2 + y2 + z2)
1
2 (2.5)

The DFT of the h(x,y;z) can be replaced with [23]

F {h(x,y;z)}= F( fx, fy;z)

= exp
{
− jkz[1− (λ fx)

2 − (λ fy)
2]

1
2

} (2.6)

where fx and fy are the spatial frequencies. From the complex-valued reconstruction,

U(x,y;z), an intensity reconstruction, O(x,y;z), can be extracted as its absolute square

O(x,y;z) = {Re[U(x,y;z)]}2 +{Im[U(x,y;z)]}2 (2.7)

and phase reconstruction can be extracted as

Φ(x,y;z) = arc tan
{

Im[U(x,y;z)]
Re[U(x,y;z)]

,

}
(2.8)

where the arc tan function is implemented computationally using atan2.

Yaroslavskii and Merzlyakov introduced the theory of digital holography in 1977 [29],

however, it was the technological evolution in the ’90s that brought digital holography to

wider use. Digital recording became more efficient due to the evolution of imaging sensors

to their current state. The first recordings on a charge-coupled device (CCD) was reported

by Schnars and Jüptner [30]. Pixels in such sensors became small enough, and sensor sizes

were large enough for a sufficient sampling for a hologram. Also, frame rates were high

enough to take holographic video recordings of moving objects. In addition, the increased

calculation power of computers enabled numerical reconstructions from a digital hologram

to be performed in a reasonable amount of time.

One important discovery that provided a solution to “the twin problem” of in-line

holograms was the development of phase shifting digital holography (PSDH) by Yamaguchi

and Zhang in 1997 [31]. In PSDH one captures multiple holograms of the same object

each with a different phase. The phase is typically altered (shifted) by using a piezoelectric

mirror or another precise controller to change the length of one of the paths along the
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optical axis of the system in a holographic capture setup; usually the reference path is

altered. Let us consider one example: four equally spaced phase shifts. The complex-

valued hologram U(x,y) is computed from a sequence of four interferograms I(x,y;0),

I(x,y; π

2 ), I(x,y;π), and I(x,y; 3π

2 ), each differing from the previous by a phase shift of

π/2, according to [31, 32] with reference R and object O waves as

U(x,y) =
1

4U∗
R0

{
[I(x,y;0)− I(x,y;π)]+ i[I(x,y;

π

2
)− I(x,y;

3π

2
)]

}
=

1
4U∗

R0

[
(|UR0|

2 + |UO|2 +UR0U
∗
O +U∗

R0
UO −|URπ

|2 −|UO|2

−URπ
U∗

O −U∗
Rπ

UO)+ i(|UR π
2
|2 + |UO|2 +UR π

2
U∗

O +U∗
R π

2
UO

−|UR 3π
2
|2 −|UO|2 −UR 3π

2
U∗

O −U∗
R 3π

2

UO)

]
=

1
4U∗

R0

[
(UR0U

∗
O +U∗

R0
UO −URπ

U∗
O −U∗

Rπ
UO)

+i(UR π
2
U∗

O +U∗
R π

2
UO −UR 3π

2
O∗−U∗

R 3π
2

UO)

]

(2.9)

which, using Re(A) = A+A∗

2 and the complex number property (AB)∗ = A∗B∗, can be

expressed as

U(x,y) =
1

4RU∗
0

{
[2Re(U∗

R0
UO)−2Re(U∗

Rπ
UO)]+ i[2Re(U∗

R π
2
UO)−2Re(U∗

R 3π
2

UO)]

}
.

(2.10)

By using the properties URπ
=−UR0 and UR 3π

2
=−UR π

2
equation (2.10) can be rewritten

as

U(x,y) =
1

4U∗
R0

[
4Re(U∗

R0
UO)+ i4Re(UR π

2
U∗

O)
]
. (2.11)

With the complex number property of UR π
2
U∗

O = Im(U∗
R0

UO)+ iRe(UR0U
∗
O) this can be

rewritten as

U(x,y) =
1

U∗
R0

[
Re(U∗

R0
UO)+ iIm(U∗

R0
UO)

]
=UO , (2.12)

which is the full complex-valued description of the object wave.

This shows how PSDH gives a representation of the full complex-valued Fresnel field

in the plane of the camera, free of the dc and the second twin. The benefit of this approach

over an off-axis holography approach is that the full spatial size of the imaging sensor can
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be used to sample a hologram. As the object wave is assumed to be identical between each

interferogram, some downsides to the approach are that it is sensitive to vibrations and fast

moving objects pose a challenge for imaging. PSHD is not used in this thesis.

Digital holograms have clear benefits and disadvantages compared with traditional

glass-plate holograms. No chemical processing is required after the capture. Digital

holograms can be transmitted over networks, and they can be numerically processed (e.g.

noise removal, compression). Although pixel sizes are relatively small and imaging sensors

are physically large, there is still a vast difference in the optical quality of digital and

conventional holograms. While digital camera pixel sizes are a few micrometres, grains in

a holographic film are hundreds of nanometres in length. This means that conventional

holograms have a higher sampling density and therefore a wider viewing angle. Also,

imaging sensors are smaller in size than conventional holographic recording mediums

and therefore are limited to imaging relatively small objects. Still, digital holograms, if

captured at a large-enough distance, contain the same special properties as conventional

holograms. They can be viewed from multiple perspectives, by reconstructing a different

portion of the hologram. In addition, any plane of a volume can be viewed (reconstructed)

numerically.

In addition to numerical reconstruction, digital holograms can be reconstructed optically

by using spatial light modulators [33, 34]. This is out of scope for this thesis, and will not

be covered here.

2.2.3 Digital holographic microscopy

Haddad et al. introduced a Fourier-transform holographic microscope in 1992 [35]. This

system used a drop of glycerol on top of a microscope cover slide to enable the formation

of Fourier holograms. An improvement to this was made by Boyer et al. in 1996 when

they replaced the glycerol drop with a reflecting metal sphere [36]. Zhang and Yamaguchi

proposed to use phase-shifting digital holography in microscopy [37]. These approaches

allow the use of the reconstructed intensity to observe microscopic samples.

The first proposal to use the reconstructed phase was by Schnars in 1994 who proposed

to use hologram interferometry with digitally recorded holograms [38].
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Figure 2.7 Principle of Michelson interferometry for reflecting objects. Collimated light
from a laser (L) is split by a beamsplitter (BS) into an object wave and a reference wave.
The reference wave is reflected back to the beamsplitter by a reference mirror (M). The
object wave goes through a microscope objective (MO) to the sample (S) and is reflected
back from the sample through the microscope objective. The two beams are combined at
the beamsplitter and the formed interference pattern is recorded by the camera (C).

In 1999, Cuche et al. introduced an application of off-axis digital holography that could

use the reconstructed phase of a single hologram for profile measurements of reflective

objects [9]. Later, this was extended to microscopy (digital holographic microscopy, DHM)

and also to transparent objects, enabling thickness measurements of transparent samples

(if refractive indices of the sample and medium are known) based on the reconstructed

phase from a single hologram [39]. In this type of DHM, the magnification is realised by

using a microscope objective. A typical optical set-up for capturing reflective objects with

this approach is a Michelson interferometer (Fig. 2.7,) and a Mach-Zehnder interferometer

(Fig. 2.8) can be used for transmissive objects.

Digital in-line holographic microscopy (DIHM) follows the original idea by Gabor and

was introduced by Kreuzer et al. [40] in 1999 (Fig. 2.9). In DIHM, a coherent light source

is focused onto a pinhole producing a spherical wave that goes through a volume containing

a sparse collection of objects. Light going through objects forms an object wave and the

light going through the volume without interacting with the objects forms a reference wave.

The light emerging from a pinhole contains a natural magnification (a natural free-space

propagation) as the beam expands as a function of distance. Objects positioned closer to

the pinhole therefore have higher magnification (and the system resolution is also better for

these objects) [41]. The greatest benefit of DIHM, if compared to systems using imaging

lenses, is its simplicity; a microscope can be assembled by using just three components:
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Figure 2.8 Principle of Mach-Zehnder interferometry for transparent objects. Collimated
light from a laser (L) is split by a beamsplitter (BS1) to an object wave and a reference
wave. The object wave is steered by a mirror (M1) through the sample (S) and is magnified
by a microscope objective (MO). The reference wave is steered by a mirror (M2) to a
beamsplitter (BS2) where the two beams are combined and the formed interference pattern
is recorded by the camera (C).

a light source, a pinhole, and an imaging sensor. Typically a microscope objective is

used to focus light onto a pinhole, however, the objective is not used for imaging. This

type of setup is referred to as lensless. The downside of this approach is that for the

reconstructed phase to be meaningful, relatively heavy numerical processing is required.

This is due to the fact that the phase of the out-of-focus twin corrupts or disturbs the

in-focus phase. However, with weakly scattering objects the phase is usable even without

intense processing [42].

In-line holographic microscopy can also be realised by using a microscope objective

for imaging. In this approach, all the components are in-line and the reference and object

waves are formed as described in the original idea by Gabor. An imaging lens (microscope

objective) is placed in front of the imaging sensor, after the object/volume (Fig. 2.10).

Because of the near proximity of the sensor to the object in DHM, DHM does not

have a conventional holography property of viewing the object from different perspectives.

The most modern approach to DHM is tomographic DHM [43–48] where the object is

rotated or the angle of illumination is varied, to enable the capture of multiple holograms
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Figure 2.9 Gabor interferometer with a free space propagation. Collimated light from
a laser (L) is focused by a microscope objective (MO) onto a pinhole (Ph) forming a
spherical wave that goes through a sample (S). The formed interference pattern is captured
by a camera (C). The inset shows how the object wave and the reference wave are formed.

Figure 2.10 Gabor interferometer with a microscope objective magnification. Collimated
light from a laser (L) is directed through a sample. The formed interference pattern is
magnified by the microscope objective (MO) and captured by a camera (C). The inset
shows how the object wave is formed by the reference wave.
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at different object orientations. By processing captured holograms, a full 3D refractive

index map can be produced. The greatest benefit of this approach is that the object can

be viewed from different angles revealing its internal structures. This approach has been

used successfully to increase the imaging resolution of a DHM system beyond the optical

diffraction limit [49].

2.2.4 Digital holographic image processing

Digital holograms can be modified with digital processing, a process that can be called

digital holographic image processing. Image processing includes noise removal, contrast

enhancement, edge detection, segmentation, and compression among other operations. The

output of image processing is another image. In digital holography the standard processing

of a digital hologram before propagation is:

1. dc terms and conjugate image removal

2. aberration removal

The out-of-focus twin (conjugate image) and dc terms must be removed from a digital

hologram reconstruction for the reconstructed phase to be usable. Kreis and Jüptner [50]

showed that the dc can be removed by subtracting the average intensity from a hologram.

Subtracting a simulated (computer-generated) reference wave intensity from an off-axis

hologram in order to suppress dc term was proposed by Chen et al. [51]. Zhang et al. [52]

used Sobel differential gradient algorithm to remove the dc. These procedures, of course,

do not remove the conjugate image.

In an off-axis setup the dc term and the conjugate image removal operation can be

realised by taking a Fourier transform of a digital hologram, removing the frequencies

representing the dc and one of the twins, centring frequencies that belong to the other twin,

and taking an inverse Fourier transform as proposed by Cuche et al. [53]. This is possible

as different terms are spatially separated in the Fourier domain. An automated method

to remove these unwanted terms was proposed by He et al. [54]. They used iterative

thresholding in the Fourier plane to find three blobs belonging to different terms.

A microscope objective used for magnifying an object introduces phase aberrations

in the reconstructed phase. These aberrations can be removed numerically by carefully
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adjusting reconstruction parameters as proposed by Cuche et al. [39]. Ferraro et al. [55]

proposed three methods to remove phase curvature: extrapolating extracted information of

an object free region, estimating a correcting wavefront, and double-exposure. Colomb

et al. [56] proposed a method where known flat regions of a phase reconstruction are

manually selected and extracted as a reference for aberration-free sections. Information in

these regions combined with polynomial fitting was used to remove aberrations. Zuo et

al. [57] proposed a method where aberrations could be removed automatically without prior

knowledge of the scene by using principal component analysis. Goldstein and Creath [58]

proposed to use the square of the phase gradient map to determine background pixels and

a best-fit plane to remove tilt present in a quantitative phase image. Quite recently, Liu et

al. [59] proposed to use optimisation on Zernike polynomials in order to create a phase

correction mask. Nguyen et al. [60] proposed to use Zernike polynomial fitting as well,

but they trained a CNN to detect the background of a scene.

After a hologram is pre-processed and propagated, the subsequent steps usually are

1. phase unwrapping, and

2. segmentation.

The reconstructed phase is wrapped (modulo 2π) due to the arctangent function used

in the phase extraction. To compensate for this, and to allow relatively thick objects to

be quantitatively imaged, phase unwrapping needs to be applied. Over the years, various

different methods for phase unwrapping have been proposed [61–71].

Before any analysis can be accomplished, typically one segments the object(s) from

the background. Segmentation is an operation where an image can be divided into regions

based on some attribute [72, 73]. In digital holography, many different methods have

been introduced and applied. Active contours [74], block-wise variance [75, 76], adaptive

thresholding with border following [77], adaptive thresholding with level set [52], and

watershed segmentation [78] have been reported. In the field of particle holography,

segmentation using thresholding [79, 80], thresholding based on combining knowledge of

amplitude minimum along the longitudinal axis for each (x,y) position on the transverse

plane with a particular signal to noise ratio was reported in [81], and using information of
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the conjugate image by propagating between two twins was reported in [82]. Our CNN

based segmentation approach is described in Chapter 7.

2.2.5 Digital holographic image analysis

Image analysis involves extracting meaningful information from an image. These tasks

include extracting morphological information or other features from objects present in an

image. Typically, the output from this process is a set of features, for example continuous

numbers or other abstractions that are useful for later analysis. Different analysis algorithms

such as

1. finding in-focus depth of objects encoded in digital holograms,

2. detection,

3. classification, and

4. tracking,

have been reported in the field of digital holography.

DHM overcomes the problem present in conventional optical microscopes of a shallow

depth-of-field, permitting one to reconstruct at different in-focus planes of a volume.

Despite this powerful property of digital holography, an object of interest is usually in-

focus at few depths, possibly only one, as a single reconstruction layer still carries a shallow

depth-of-field. Many methods have been proposed to solve auto-focusing, the problem of

finding an in-focus plane. Our deep learning based solution is described in Chapter 6.

The detection and classification of objects is one of the active research areas in digital

holography [83–88, 80, 89]. Correlation was used to classify protein crystals [83]. Mor-

phological feature vectors of biological samples were extracted using Gabor wavelets and

classification was realised by graph matching in [84]. This work was extended by adding

standard statistical methods in [85, 86]. Principal component analysis with statistical

hypothesis testing for biological microorganisms in general was reported in [87]. Malaria

detection by using the cross-correlation of control and test samples was proposed in [88].

Morphological feature extraction and texture analysis for detecting and classifying para-
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sites in drinking water was performed in [80]. Stem cell clustering based on the entropy

estimation was reported in [89].

Another active research area that is closely related to auto-focusing is object tracking, as

an object to be tracked typically needs to be in-focus. When tracking, a holographic video

is recorded and tracking is applied to each frame. A comprehensive review of holographic

3D particle tracking was published by Memmolo et al. [90]. Reported holographic tracking

approaches are based on a maximum a posteriori (MAP) tracker for the tracking of

biological microorganisms [91], particle tracking velocimetry (PTV) algorithm for tracking

red blood cells (RBC) in a microtube [92], living cell tracking (RBC and fibrosarcoma cells)

by applying logarithmically weighted and bandpass-filtered power spectra [93], 3D particle-

tracking algorithm that was used in the tracking of swimming micro-organisms [94]. Other

similar applications using the PTV algorithm was reported in [95], and hidden Markov

models in [96]. Two-dimensional cross-correlation of two successive frames was used in

tracking cell mobility [97]. Summing differences of two consecutive holograms of multiple

holograms (video) and thresholding was reported in [98]. Tamura coefficient and intrinsic

holographic shearing between two successive frames were used in particle tracking in [99].

Other recent reported applications of DHM are particle characterisation [100], mitosis

detection [101, 102], cell death detection [103] and classification [104], quantifying RBC

volume [105], helical trajectories of sperm [106], cell life cycle characterisation [107], cyto-

toxicity screening [108], morphometry of living cells in methanol [109], microscopic fiber

characterisation [110], cell phenotype screening [111], monitoring wound healing [112],

RBC morphometry [113–115], and measurement of cardiomyocytes dynamics [116].

2.3 Machine learning in the context of this thesis

2.3.1 Introduction to machine learning

Machine learning and learning algorithms can be divided into two major paradigms:

supervised and unsupervised. In supervised learning, the training data is a set of input

vectors along with their corresponding targets (labels), while in unsupervised learning the

data does not contain corresponding targets [117]. In this thesis, multilayer perceptrons,
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convolutional neural networks, random forest classifiers, and support vector machines are

used for different applications and they represent supervised learning. k-means clustering

and principal component analysis used in this thesis, in turn, are examples of unsupervised

learning. Another paradigm, although out of the scope of this thesis, falling between these

two is semi-supervised learning where typically some of the data is labelled.

2.3.2 Convolutional neural networks

Convolutional neural networks (CNNs) were pioneered by LeCun et al. [118]. A CNN

is an artificial neural network where some of the layers perform convolution operations

on their multi-dimensional input. The weights of convolution kernels are learned during

training. Four main ideas behind convolutional neural networks are local connections,

shared weights, pooling, and the use of many layers [119].

Each convolution operation produces a feature map where each feature in the map

shares the same kernel, and different feature maps in a layer use different kernels. Pooling

layers merge semantically similar features down to one reducing the dimensionality of

feature maps. Pooling is based on small patches of a feature map for which an operation

(for example maximum or averaging) is calculated and stored as a new value of a sub-

sampled feature map. Pooling improves the shift invariance by increasing the size of the

receptive field [119]. This should not be confused with shift invariance defined in optics

textbooks as pointed out by Barbastathis et al. [22].

Currently, one of the promoting factors and a benchmark that pushes CNN progress

further are different challenges and competitions such as the ImageNet Large Scale Visual

Recognition Challenge [120]. Many of the modern and well-known architectures and dis-

coveries related to CNNs have been introduced within this context [121–125]. Krizhevsky

et al. [121] were the first to successfully use CNNs with large size images. They showed

that using rectified linear unit (ReLU) activation decreases learning times significantly

compared with other activation functions. In addition, they used dropout as a regularisation

method to prevent overfitting [126]. Dropout has been successfully replaced in many

applications by batch normalisation [127]. Szegedy et al. [122] introduced GoogLeNet; the

most important part of this architecture was its Inception module that concatenates outputs
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of multiple convolution layers. Simonyan and Zisserman [123] used a CNN architecture

with a fixed 3×3 pixel kernel in its convolution layers. He et al. [124] used residual learning

in which outputs of lower layers are combined (via elementwise addition operations) with

outputs of higher layers. Zagoruyko and Komodakis [125] added more width to a residual

network to improve network’s performance and reduce the training time.

CNNs are not restricted to conventional classification and regression tasks. CNNs have

been used successfully for image segmentation using image patches [128], and later using

fully convolutional neural networks [129]. The encoder-decoder architectures [130, 131]

allow to maintain spatial information of features. Networks using dilated convolutions [132–

134], and a combination of encoder-decoder and dilated convolutions [135], allow image

segmentation without pooling layers.

One important image analysis and computer vision challenge is object detection where

objects belonging to different classes are spatially identified in images. CNNs have been

used to tackle this problem [136–140].

An important aspect that needs to be mentioned here is overfitting. The easiest ways

to avoid it is to use regularisation and have a large enough training dataset. As it is not

always possible to obtain such a large dataset, the existing dataset can be extended through

data augmentation [141]. Data augmentation can be based on affine transforms, such

as translation, scaling, reflection, rotation, shear mapping, and elastic deformations. In

addition, data can be cropped at different spatial locations. There is no single theory or rule

on how much data is necessary. This should be experimentally tested on each application

and signs of overfitting need to be monitored by comparing training and validation loss

values.

2.3.3 Other machine learning algorithms used in the thesis

Support vector machines are supervised learning algorithms that map the input vectors into

a high dimensional feature space through some non-linear mapping chosen a priori [142,

143]. A decision surface is constructed in this space. The datapoints that are located closest

to the decision surface are used to measure a margin and are called support vectors. The

basic idea is to find support vectors that separate two classes with an optimal margin. If the
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data is linearly non-separable, it is possible to use different kernel functions (such as the

radial basis function (RBF) kernel [144]) that compute a dot product in a higher dimensional

space that possibly is linearly separable. As the algorithm was originally designed for a

binary (two class) problem, different approaches to do multi-class classification have been

proposed [145]. In a study by Pal [145] the one-vs-one approach was found to provide the

highest accuracy and the lowest computational cost compared to the other five investigated

approaches.

k-means clustering is an unsupervised learning clustering algorithm [146]. k-means

clustering divides data to k clusters. This algorithm is iterative and contains two steps.

After the centre of each cluster is initialised at some data point:

1. data points find the shortest Euclidean distance to a cluster centre and are assigned

to that cluster, and

2. a new mean is calculated based on the formed clusters.

Steps 1 and 2 are repeated until convergence is achieved i.e. the means do not change.

Principal component analysis (PCA) [12] is a linear data dimensionality reduction

technique aiming to find a set of orthogonal vectors in a dataset that can then be used to

describe the data in a lower dimensional space. PCA is an important tool, especially as a

preprocessing step for some machine learning tasks where the data is high dimensional.

Random forests is an example of ensemble learning using a collection of decision trees

and is less prone to overfitting than an individual decision tree [147]. A decision tree con-

tains nodes for features that are linked (rules, represented as branches) down to conclusions

(e.g. classes) in the leaf nodes. The idea of combining the results of multiple classifiers or

predictors that are trained with randomly picked portions (with replacement) of the trained

data is called bootstrap aggregating (bagging) and was introduced by Breiman [148]. If

using random forests for classification, a class is determined by a majority vote; the class

that gets most votes from the trees is the classified class. In a regression task, the predicted

value is the mean of all the outputs of the trees in the forest.
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2.4 Microscopy and machine learning

2.4.1 Conventional microscopy and machine learning

As most of the microscopes nowadays are equipped with digital cameras, digital image

processing and analysis are easily applied to the captured data. A wide variety of machine

learning approaches have been applied to different fields of microscopy. A common reason

to use machine learning within microscopy is to extract features of the captured image

data [149], instead of using the whole image data as an input e.g. to a classifier.

A relatively new imaging modality, whole slide imaging, that is used as part of digital

pathology has strongly influenced diagnostic pathology [150, 151]. Typically, in digital

pathology, a pathologist prepares tissue samples that are stained and scanned by using

whole slide imaging, which produces billions of pixels of data depending on the resolution

of sensor used in the imaging. Different machine learning approaches within whole image

sliding have been reported [152–163]. Beck at al. [152] used a logistic regression classifier

with features extracted from hematoxylin and eosin (H&E) stained histological images of

breast cancer tissue microarrays. Linder et al. [153] used a SVM together with extracted

features to identify tumour epithelium and stroma. Cosatto et al. [154] used multiple-

instance learning (MIL) to classify H&E stained gastric tissue sections. In MIL, the input

is a set of multiple vectors (bag) with a single label [164]. Cireşan et al. [165] used a

CNN to detect mitosis in breast cancer histology images. Cruz-Roa et al. [155] used

CNNs to detect basal cell carcinoma in H&E stained histopathology images. Rexhepaj

et al. [156] used a SVM to discriminate melanoma from non-melanoma cells. Wang et

al. [157] combined handcrafted features with a CNN in order to detect mitosis in breast

cancer pathology images. Lewis et al. [158] applied a SVM on extracted features of H&E

images in order to classify carcinoma. Arevalo et al. [159] used an unsupervised learning

approach to classify H&E stained basal cell carcinoma cells. Xu et al. [160] applied a CNN

to segmenting and classifying epithelial and stromal regions of images of H&E stained

samples. Yu et al. [161] predicted prognosis of lung cancer patients by extracting features

of H&E stained histopathology images and using seven different classifiers. Yamamoto et

al. [162] used a SVM classifier with morphometric features extracted from p63 and H&E
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stained myoepithelial cells of breast tumours. Cruz-Roa et al. [163] used CNNs to detect

invasive breast cancer regions of whole slide histopathology images.

SVMs have been used successfully in other fields of microscopy and in different

microscopy applications [166–168]. Neumann et al. [166] used a SVM to classify nuclei

in time-lapse RNAi screening. Osowski et al. [167] reported an application of automated

detection of blood cells in bone marrow smear samples by combining a genetic algorithm

and SVMs. Han et al. [168] used Haematoxylin and H&E -stained fibroblast samples and

a SVM to detect cell nuclei.

Usage of conventional artificial neural networks in microscopy have been reported

in [169–173]. Stotzka et al. [169] did prostate grading by using extracted features of

microscope images of lesions as an input to a neural network. Binder et al. [170] used

epiluminescence microscopy and reported an automated detection of pigmented skin

lesions by using an artificial neural network. Boland and Murphy [171] used an artificial

neural network to recognise different parts of HeLa cells imaged with a fluorescence

microscope. Jurrus et al. [172] used multiple ANNs to detect and finally to segment neuron

membranes by using electron microscopy images. A general approach for the classification

and segmentation of medical images by using ANN was given by Sharma et al. [173].

As deep learning has become the most popular machine learning approach to image-

based applications, CNNs have been used in various different applications [174–185].

Cireşan et al. [174] used a CNN to segment neuronal membranes of electron microscopy

images. Prentašić et al. [175] applied CNNs to segment foveal microvasculature of optical

coherence tomography (OCT) angiography images. Rezaeilouyeh et al. [176] used a

shearlet transform on H&E-stained histopathology images and extracted the magnitude

and phase of shearlet coefficients which were then fed to a CNN in order to classify

cancerous and normal cells. Kraus et al. [177] combined CNNs and MIL to segment

and classify microscopic images of fluorophore labelled cells. Eulenberg et al. [178]

used imaging flow cytometry (brightfield and darkfield) and a CNN to classify (seven

class classification) cell cycle phase of Jurkat cells. Dürr and Sick [179] performed cell

phenotype classification by using an existing image database of fluorophore labelled cells

and a CNN. Gopakumar et al. [180] applied deep belief network and CNN on microfluidics-
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based imaging flow cytometry to classify leukemia cells. They used a pre-trained CNN to

extract features of images and on the output of the last fully connected layer they applied

PCA to reduce output vector dimensionality from 4096 to 20. These 20 element vectors

were then used to train the actual classifiers (SVM, feed-forward network, naïve Bayes,

and k-nearest neighbour). Kraus et al. [181] captured fluorophore labelled samples with

a confocal microscope and used a CNN to classify different compartments of yeast cells.

Abdolmanafi et al. [182] used OCT and the combination of a CNN as a feature extractor

and three different classifiers (CNN, SVM, and Random forest) to identify Kawasaki

disease from tissue samples. Karri [183] et al. used OCT to image a retina and used a CNN

to identify retinal pathologies. Rivenson et al. [184] used a CNN in order to improve the

resolution of an optical microscope. Later Rivenson et al. [185] used a CNN to virtually

stain imaged auto-fluorescing tissue samples.

Approaches that are based on other machine learning algorithms or various differ-

ent algorithms have been reported in [186–192]. Farjam et al. [186] reported automated

Gleason grading (five class classification) on pathological images of the prostate gland

by using tree-structured classification. Boucheron et al. [187] used multispectral imaging

on H&E-stained histopathology samples and six different classifiers to classify captured

images as benign or malignant. Timelapse RNAi screening was used by Jones et al. [188]

who applied Gentle AdaBoost [193] on extracted features to classify different cell pheno-

types. Theriault et al. [189] captured phase-contrast images of fibroblast cells and classify

their morphological state by using AdaBoost. Koydemir et al. [190] used fluorescent

microscopy and bagging to classify particles in a water sample in order to detect cysts of

a Giardia lamblia parasite. A comprehensive review of machine learning in phenotypic

profiling was written by Grys et al. [191]. Lannin et al. [192] reported an application of

circulating tumour cell identification by using k-nearest neighbour, SVM, random forest,

and Bayesian classifiers.

2.4.2 Quantitative phase imaging and machine learning

Despite the fact that DHM is a relatively new imaging technology, different machine

learning approaches have been reported in the literature [84, 85, 87, 88, 20, 21, 194–209].
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These approaches are solving traditional image interpretation problems. In addition, some

of the approaches utilise machine learning to solve new quantitative phase imaging related

problems such as poor resolution, shallow depth-of-field, and propagation. Javidi et

al. [84, 85] used DHM and extracted features that were used with rigid graph matching

to identify microorganisms. Moon and Javidi [87] showed that PCA can be used to

classify digital holograms of biological microorganisms. Anand et al. [88] used DHM to

capture malaria-infected and healthy red blood cells (RBCs) and correlation to detect the

malaria-infected cells. Conventional artificial neural networks have been used successfully

in holographic tomography [20], and particle characterisation with a simulated in-line

DHM [21]. Feizi et al. [194] classified both stained and unstained cells, and quantified cell

viability and concentration by using in-line digital holographic microscopy and an SVM.

Park et al. [195] detected malaria by extracting features of quantitative phase images of

erythrocytes together with linear discriminant, logistic regression, and k-nearest neighbour

classifiers. Roitshtain et al. [196] used human cell lines, both healthy and tumourigenic,

to identify cancer cells by using an interferometric phase microscopy. They extracted

spatial morphological and textural features of unwrapped phase reconstructions, applied

PCA to the features and used a SVM as a classifier. Jo et al. [197] captured holograms of

anthrax spores and four different Bacillus species in order to identify anthrax spores by

using a CNN. Rivenson et al. [198] designed a CNN that was able to learn propagation

from digital holograms and recover dc and twin free amplitude and phase reconstructions.

Wu et al. [199] extended the depth of field of digital hologram reconstructions with the

use of a CNN. Göröcs et al. [200] used in-line holographic microscopy and deep learning

to analyse water samples. Wu et al. [201] used in-line holographic microscopy and deep

learning to monitor and classify bio-aerosols. Ren et al. [202] trained a CNN to detect the

in-focus plane of digital holograms. Hannel et al. [203] used a CNN to detect and localise

particles in a holographic video. Zhang et al. [204] applied CNNs to extract in-focus

unwrapped phase of digital off-axis holograms. Another in-focus depth detection of digital

holograms utilising a CNN was proposed by Lee et al. [205]. Nguyen et al. [206] proposed

to use a CNN in reference beam free optical diffraction tomography where a CNN learns

the inverse scattering. Luo et al. [207] were able to improve the resolution of digital
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holograms by using low-resolution holograms (smaller quantity than in conventional pixel

super-resolution approaches) and deep learning. The same application was reported by

Byeon et al. [210]. Trujillo and Garcia-Sucerquia [208] showed that a CNN can be used to

detect and count phase objects present in digital holograms. Ren et al. [209] trained a CNN

to perform hologram reconstruction of amplitude and phase objects (at a macroscopic

level).

Besides DHM, other quantitative phase imaging technologies have been used with

machine learning algorithms. Nguyen et al. [211] reported an application of automated

prostate grading by using a spatial light interference microscope (SLIM) for imaging.

They combined random forests (segmentation), the bag-of-words model and a SVM to

do the classification. Chen et al. [212] utilised time-stretch quantitative phase imaging to

image cells, and extracted features from quantitative phase images that were then input

to a multilayer artificial neural network in order to discriminate tumourigenic cells from

normal, and classify algal lipid content. Guo et al. [213] used time-stretch quantitative

phase imaging and a SVM in order to detect microalgal lipids. Li et al. [214] showed that

a CNN can learn quantitative phase of objects imaged behind a scattering media. Sinha et

al. [215] showed that a CNN can learn quantitative phase from intensity diffraction images.

This work was later improved by applying spectral modulation to the training inputs [216]

and extended to biological objects [217]. Zheng et al. [218] used quantitative differential

interference contrast (TI-DIC) imaging and deep learning to identify cancerous lung cells.

Based on this literature review, machine learning algorithms have been used with

different microscopy techniques for more than two decades. Quite recently, deep learning

has started to have more and more impact in different research fields, including the field of

DHM. Deep learning has been used within many interesting applications that extend use

cases for machine learning.

2.4.3 Commercial software tools

Several companies manufacture digital holographic microscopes and software tools that

can be used to process and reconstruct holographic data. This section contains a short

description of features that different software products are advertised to have.
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OsOne Image Analysis Software from Ovizio Imaging Systems NV/SA (Brussels,

Belgium) has implementations of machine learning algorithms for analysing digital holo-

grams. Machine learning is used to detect dead cells, activated cells, viral infection, and

beads [219]. In addition, this software allows users to create their own machine learning

models for classifying samples. In the available public material, no details of the machine

learning algorithms are given.

Koala Acquisition & Analysis from Lyncée Tec SA (Lausanne, Switzerland) is capable

of performing operations such as hologram stitching [220], sample roughness quantifica-

tion [221], and aberration removal [56]. None of the algorithms utilize machine learning.

The HoloMonitor App Suite from Phase Holographic Imaging PHI AB (Lund, Sweden)

has algorithms for time lapse kinetic cell proliferation, quality control, and kinetic cell

motility [222]. None of the algorithms utilize machine learning.

4-Deep Inc. (Halifax, Canada) manufactures in-line digital holographic microscopes

and software. Octopus [223] is able to perform particle counting. Swordfish [224] from

the same company can be used to detect particles based on size, intensity and shape. The

third software product from the same company is called Stingray [225]; it has functionality

for morphology analysis and contains an unknown deep neural network classifier that users

can train and use with their own data.

Based on all of the publicly available information on different manufactures’ websites

and advertising brochures, to the best of our knowledge, none of the commercial software

can be used for performing tasks needed in this thesis. These products do not have

functionality to identify the presence of objects in the field-of-view, they cannot be used

for finding in-focus depth in real-time, and they cannot be used to segment and classify

complex three-dimensional cysts. All the algorithms presented in this thesis are therefore

considered novel.
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Figure 2.11 Epithelium. Epithelial cells forming tight cell-to-cell connections form the
epithelium that is built on the basement membrane. The free surface facing the opposite
direction of the basement membrane is an apical surface. (Author’s own image).

2.5 Biological aspects of the work reported in this thesis

2.5.1 Epithelial cells

Epithelial cells form an epithelial tissue, called an epithelium, that is one of four major

tissue types in animals. The epithelium coats surfaces of an organism, line organs, ducts

or secretory acini and is therefore usually an interface between the organism and the

environment, or between an organ and a fluid space [226]. Functions of epithelial cells

are [227]:

• to protect tissues and organs,

• to maintain homoeostasis of an organism,

• the secretion of hormones and other products, and

• to register sensations.

The epithelial cells of most organs can be grown in tissue cultures. These cells and models

derived from them have been used actively in studying the regulation of cell proliferation

and differentiation [226]. The basic structure of epithelium is shown in Fig. 2.11.

Three-dimensional (3D) cell culture systems provide cells with in vivo-like microenvir-

onmental growth conditions and have become a standard model for diverse cell biology and

drug discovery applications. One of the best-characterised examples of 3D cell cultures
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are Madin-Darby canine kidney (MDCK) epithelial cells embedded in 3D collagen or

Matrigel™ substrates, where the normal cells proliferate to form spherical multicellular

cysts with a hollow interior, called a lumen [228]. The main components of a cyst are

epithelial cells themselves, an apical surface (walls of a lumen when grown in 3D medium),

and a basement membrane (Fig. 2.12). These 3D cultures are particularly useful when

detecting growth properties of abnormal cells, such as oncogenic cancer cells that are

poorly differentiated and so fail to form structurally organised polarised cysts [229, 230].

As a model for abnormal cells, we used MDCK cells that express an oncogenic G12V-

mutant of K-Ras proto-oncogene (KRasV12) [230]. KRasV12 is a strong oncogene that is

frequently found in several different types of solid tumours including lung, pancreatic,

and colorectal cancers with poor prognosis [231]. A human prostate epithelial cell line,

RWPE-1, was the other cell line used in the experiments. This cell line underwent the same

processing and culturing methods as the MDCK line. Lentiviral transgenesis was used

to overexpress KRasV12 in otherwise healthy cells. In lentiviral transgenesis, lentiviruses

replace the chromosome of target cells with their genome [232].

DHM measures a projection along the optical axis (the direction that light propagates

from the sample to the camera). Therefore, if a hollow lumen is present in a spherical cyst,

the quantitative phase values should be lower at the centre of the projection and higher

between the basolateral membrane and apical surface (the edge region consisting of a

monolayer of polarized cells). Fig. 2.13 shows same cyst captured with a confocal micro-

scope (63x oil immersion microscope objective) and DHM (40x microscope objective).

It can be observed that the hollow lumen (confirmed with Fig. 2.13b) is displayed as a

"crater" -shape in the hologram reconstruction.

2.5.2 Prostate

The prostate is located between the bladder and the penis in front of the rectum (Fig. 2.14).

The urethra goes from the bladder through the centre of the prostate to the penis allowing

urine to exit the body. The function of the prostate is to secrete a fluid during an ejaculation.

The prostate is composed of epithelial and stromal cells [233]. The epithelial cells form

glands with hollow lumens, and the stroma surrounds these glands [233] (Fig. 2.15).
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Figure 2.12 Cyst formation. When epithelial cells are embedded in a 3D medium, cells
form cell-cell contacts and form their basolateral membrane (yellow). With a healthy cyst
(green arrows) the apical lumen (red) is formed when cells are correctly polarised. In
the case of failure, the formation of a lumen can be disturbed, and cysts can grow as an
unpolarised cell mass (red arrow 1) or partially polarised structures (multiple lumens) (red
arrow 2). In case of resistance to anoikis (programmed cell death), that should take place
when a cell is trapped inside a lumen, cells can continue to proliferate inside the lumen,
blocking the lumen (red arrow 3). Figure inspired by [228].
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Figure 2.13 Confocal and DHM of MDCK cyst. The same MDCK cyst imaged with a
spinning disc confocal microscope and DHM. Confocal images at different sections of a
cyst (a)-(c), at (a) 6µm, (b) 34.8µm, and (c) 63.6µm, (d) digital hologram, (e) quantitative
phase reconstruction at -4.8 cm from the hologram plane, (f) 3D mesh representation of
(e).
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Figure 2.14 The male reproductive system showing the location of the prostate. (Author’s
own image.)
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Figure 2.15 Hematoxylin phloxine saffron (HPS) stained prostate tissue sample obtained
through biopsy, showing a thin cross section of a prostate. Green arrows point out benign
prostatic glands that are formed of hollow lumens (hollow tubular structures inside prostatic
glands) surrounded by polarised epithelial cells and stromal cells. The region inside the
rectangle contains cancerous tissue with malignant prostatic glands. The scale bar on the
bottom left is an estimated scale. [The original figure: Copyright ©2011 Michael Bonert
(https://commons.wikimedia.org/wiki/User:Nephron).] License: CC BY-SA 3.0.
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Prostate cancer is the second most common cancer in men after lung cancer [234]. In

2018, globally 1.2 million new cases were diagnosed [235]. There is no standard test for

prostate cancer screening. A prostate specific antigen (PSA) is generated by the prostate,

and the quantity of this can be measured from blood of a patient. High levels of PSA may

indicate prostate cancer, however, only 25 % of men with elevated PSA levels have prostate

cancer [236]. A digital rectal examination conducted by a medical expert can be performed

together with the PSA test, and is routinely performed if PSA levels are high or if a

patient has prostate related symptoms. The final diagnoses and evaluation (Gleason score)

of prostate cancer is performed by a pathologist from tissue samples obtained through

biopsy. Radical treatments (prostatectomy or radiotherapy) do not necessarily improve life

expectancy when compared to active-monitoring [237]. Therefore, it would be important

to be able to estimate cancer aggressiveness accurately and treat actively only men with

a lowered life-expectancy or lowered life quality. If this was possible, not only financial

benefits could be achieved, but also patients suitable for active-monitoring would not

need to suffer from unnecessary treatment side-effects such as erectile dysfunction [238],

urinary problems [239], and infections.
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3
Equipment and method

This chapter discusses challenges present in current imaging systems and proposes a system

based on DHM that can be used in high-throughput analysis of cysts. Imaging results

obtained by DHM are shown together with data captured with a confocal microscope.

3.1 Introduction

Multicellular 3D structures are often relatively large and thus pose immense challenges

for imaging and image-based analyses [240, 241]. Typically, confocal microscopy or

selective plane illumination microscopy (SPIM) [242] is used to analyse these structures,

each of which relies on fluorescent marker molecules that must be introduced into the

cells (Fig. 3.1). Moreover, and particularly in the case of confocal microscopy, high-

intensity laser excitation of the samples is required to capture high-quality data, potentially

resulting in photobleaching of the fluorophores, phototoxicity, and production of oxygen

radicals [7, 8]. In addition, these techniques capture multiple optical slices that are

aggregated to generate a 3D dataset that requires significant storage capacity, in particular

for time-lapse imaging applications. Further, imaging live and fast-moving specimens can

be challenging for these scanning-based techniques, and selecting and analysing features

in the scanned 3D data is largely a laborious manual process. Despite these challenges,

the field of imaging and image-based analysis of 3D cysts is active, and in particular

high-throughput analysis is a new topic that is seeing growing interest. State-of-the-art

methods [243, 244] however, by using only 2D imaging techniques, are not exploiting

the full 3D information available for analysis in 3D cysts. As explained, existing 3D
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Figure 3.1 Conventional cyst imaging and analysis compared to DHM. Conventional
approach (blue arrows) starts with introducing fluorescence molecules into a sample (1),
the sample is imaged using raster scanning (2) producing confocal stacks (3), that are
reconstructed and analysed (4); DHM approach (red arrows) is a fluorescence-free and
completely non-scanning imaging modality producing a small amount of data compared to
many other techniques (I) that can be efficiently processed and analysed (II).

imaging techniques have various disadvantages that mean they are unavailable as options

for the specific needs of the high-throughput 3D cyst analysis community. This motivates

the pressing need for an automatic system that can image and analyse tens or hundreds

of thousands of cysts, removing bias in the selection of the cysts for measurement, thus

increasing the reliability and tenability of any resulting scientific findings.

Quantitative phase imaging, such as DHM allows one to quantify the optical density of a

living specimen without fluorophores (Fig. 3.1) [37, 39], for example to obtain noninvasive

dry mass [245]. DHM can be characterized as a non-scanning imaging technique that

uses low-intensity light and produces comparatively small amounts of data (a modest data

storage requirement) compared to other 3D microscopy techniques. Without data loss,

DHM captures the full wavefront of laser light passing through a specimen, allowing a

single camera frame to be used to reproduce brightness and phase measurements at multiple

focus depths through a 3D sample. Although the technology behind DHM is known

and understood, and rudimentary hologram processing algorithms such as segmentation

have been applied to digital holograms, robust and reliable automated hologram analysis

algorithms for many fields, including organoid research, are not found in the literature.
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Figure 3.2 DHM setup. The optical architecture based on an off-axis Mach-Zehnder
interferometer: the light from the laser (L) goes through a half-wave plate (HWP) and is
focused by the microscope objective (MO1) onto a pinhole (PH). The resulting spherical
wave is collimated by the collimating lens (CL) and split into two mutually-coherent
beams, called the reference and object beams, by the polarizing beam splitter (PBS).
The object beam goes through another half-wave plate (HWP) matching the polarization
of the reference light and illuminates the sample (SH) through the condensing lens (C).
The second microscope objective (MO2) magnifies the object beam and is combined by
the beam splitter (BS). The digital camera (CCD) samples the hologram formed by the
interference of the two beams. M1 and M2 are mirrors used for beam steering. A small
angle is introduced between the directions of the reference and object beams enabling
more convenient decoding of the digital holograms.
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Figure 3.3 DHM analysis and confocal data. Reconstructed phase images with vertical
(green) and horizontal (red) lines show positions of the extracted phase profiles plotted
above and to the left of the images. Below each phase image, three confocal sections of a
z-stack of the same cyst are shown. Confocal data was captured with a Zeiss spinning disc
confocal microscope, and DHM data with a commercial digital holographic microscope
(Lyncée Tec SA, Lausanne, Switzerland). Scale bars are 10 µm. (a) segmented quantitative
phase reconstruction of a KRasV12 transformed MDCK cyst reconstructed at 5.3 cm from
the hologram plane, lumen index 0.01; (b) segmented quantitative phase reconstruction of
a wild-type MDCK cyst reconstructed at 3.6 cm from the hologram plane, lumen index
0.83; (c) segmented quantitative phase reconstruction of a KRasV12 transformed MDCK
cyst reconstructed at 5.8 cm from the hologram plane, lumen index 0.19.

We couple DHM with a novel image analysis algorithm for living 3D cell cultures. To

validate the novel imaging and analysis modality, wild-type MDCK cells were embedded

into a MatrigelTM substrate where they formed hollow polarized cysts within 4-to-5 days

in culture. The total number of wild-type and KRasV12 transformed cysts analysed was 281

and 217, respectively. A subset of the cysts (20 and 24, wild-type and KRasV12-transformed

cysts, respectively) were imaged with both a digital holographic and a spinning disc

confocal microscope. After being imaged with the DHM, the cell nuclei were stained with

DAPI to facilitate confocal imaging. The majority of the KRasV12-transformed MDCK

cells grew as solid clusters without lumen as evidenced by multiple DAPI-stained nuclei

inside the cell clusters (Fig. 3.3a). In these cases, the DHM quantitative phase images

also unambiguously showed the absence of lumen in KRasV12-transformed cysts (the edge

region could not be distinguished from the central region). For most wild-type MDCK

cysts, DHM clearly reveals higher quantitative phase values between the basolateral and

luminal membranes (Fig. 3.3).

43



3.1 Introduction

While both confocal and DHM techniques, in general, were able to resolve whether

the cysts contained lumen or not, there is evidence that DHM can be more discriminating.

This claim is justified by the observation that in some cases, K-RasV12-MDCK cysts

reconstructed from confocal slices appeared to have central lumens that were devoid of

DAPI-stained nuclei whereas the DHM quantitative phase image of the same cyst did not

detect any lumen. It was found that in these cases DNA had been digested resulting in a

loss of DAPI-staining although cell debris was still present (Fig. 3.3). The ability of DHM

to detect any biological material, including that which would be unlabelled in a confocal

fluorescence setup, could therefore be beneficial for more reliable imaging and analysis in

some cell clusters. In terms of storage requirements, the DHM data consists of a single

image (digital hologram) whereas the confocal data consists of multiple individual optical

slice images. Importantly, storage requirements also have an implication for processing

speeds: whereas complex reconstruction and volumetric analysis of the confocal 3D stack

is required for the quantitative measurement of confocal images, the single DHM phase

image can be easily converted to a non-biased quantitative measure that determines a

“lumen index”.

To verify the feasibility of applying the proposed approach to other cell types, human

prostate (RWPE) samples were prepared (the number of wild-type and KRasV12 cysts in

the analysis was 85 and 114, respectively), imaged with DHM, and analysed. The most

distinguishing feature for RWPE samples was related to lumen. This is surprising as this

cell type does not form clear hollow lumens like MDCK cysts do, it was expected that

other features would have a greater significance. No individual extracted feature alone can

be used to differentiate wild-type and transformed samples with a high degree of accuracy.

Instead, multiple extracted features should be used with machine learning algorithms

to classify different cyst phenotypes. This is a feasible solution for applications where

one needs to compare metamorphosis to an expected phenotype, for example, after some

sample treatment.
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3.2 Digital holographic microscope

In the imaging experiments a commercial T1000 series digital holographic microscope

(Lyncé Tec SA, Lausanne, Switzerland) was used. The microscope comprised a 660 nm

laser source and a 1024×1024 pixel CCD camera with 6.45 µm square pixels. All the

imaging experiments were performed by using a 40x microscope objective with 0.7

numerical aperture (Leica HCX PL Fluotar). The optical setup was based on an off-axis

Mach-Zehnder interferometer (Fig.3.2). Manual three-axes translation stages were used to

manually find cysts in a petri dish and holograms were captured close to an in-focus plane.

The microscope had a built-in automated calibration procedure that allowed it to

compensate for an optical path length difference caused by the sample. This calibration

was performed at the beginning of each imaging experiment to compensate for differences

in medium thickness between different samples.

After verification of the suitability of the proposed system, the system was automated

to enable the system to be used for high-throughput imaging/analysis. Motorized actuators

(SGDC10-25, OptoSigma Corp., Santa Ana, California, USA) were installed on two

orthogonal axes translation stages besides a top-stage environmental chamber (model Uno-

T-H-CO2, OKOLAB S.R.l, Ottaviano, Italy). Although holograms shown and analysed

here are captured with a 40x objective, a 10x microscope objective (Leica HCX PL

Fluotar 10x/ NA 0.3) is sufficient for imaging and extracting quantitative features related

to morphology and phase, enabling capture with a larger field of view (Fig. 3.4). Table 3.1

shows a comparison of extracted features with these two microscope objectives. It can be

observed that 10x is indeed suitable for high-resolution imaging of cysts.

3.3 Confocal microscope

The same cysts imaged by DHM were imaged by using a Zeiss Cell Observer microscope

equipped with a Yokogawa CSU-X1 spinning disc confocal unit. Imaging was performed

by using a 63x alpha Plan-Apochromat oil immersion objective with a numerical aperture

of 1.46. The cysts were searched for manually by using a motorized three-axis translation

stage and confocal stacks were captured from the top to the bottom part of a cyst. Start and
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3.3 Confocal microscope

  
10 μm 100 μm(a) (b)

Figure 3.4 40x vs 10x objective. A cyst captured with two different microscope objectives.
(a) 40x microscope objective, (b) 10x microscope objective.

Table 3.1 40x and 10x comparison. Comparison of extracted feature values of holograms
captured with two different microscope objectives. Features were extracted using methods
described in Chapters 4 and 7. Units are in micrometres where applicable.

Feature 40x 10x Absolute difference
Major axis length 90.31 90.47 0.16 (0.18 %)
Minor axis length 67.96 65.96 2.00 (2.95 %)

Eccentricity 0.66 0.68 0.02 (3.94 %)
Area 4605.44 4450.43 155.01 (3.37 %)

Roundness 0.72 0.69 0.03 (3.72 %)
Perimeter 306.60 291.17 15.43 (5.03 %)

Convex area 5118.01 4927.94 190.07 (3.71 %)
Equivalent diameter 76.58 75.28 1.30 (1.70 %)

Extent 0.63 0.65 0.02 (2.39 %)
Minimum phase 7.37 39.24 31.87 (432.46 %)
Maximum phase 171.71 117.57 54.14 (31.53 %)

Orientation -0.75 -0.76 0.01 (1.30 %)
Solidity 0.90 0.90 0.00 (0.00 %)

Skewness 0.42 -0.08 0.52 (119.92 %)
Kurtosis -0.36 -0.60 0.24 (67.38 %)

Roughness 1.08 1.04 0.04 (3.43 %)
Standard deviation 24.86 11.24 13.62 (54.78 %)

Density 0.003 0.01 0.008 (269.35 %)
Average 82.94 31.75 51.19 (61.73 %)

Lumen index 0.72 0.76 0.04 (5.56 %)
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3.4 Sample preparation

end points were selected manually, and optical sections were gathered in 600 nm steps to

fulfil the sampling theorem.

The captured data was processed with ZEISS ZEN microscope software that allows

controlling a microscope, processing, and analysing images.

3.4 Sample preparation

150 µl of MatrigelTM was pipetted onto a 35 mm high glass bottom u-dish (Ibidi 81158)

and allowed to solidify at 37 ◦C for 20 minutes. Subconfluent MDCK cells were treated

with trypsin, resuspended in complete growth medium (MEM-Glutamax; 41090-093, Life

Technologies) supplied with 5 % fetal bovine serum (FBS, Life Technologies) and 1 %

penicillin/streptomycin (15140122, Gibco) and cells were counted. Ten thousand cells

were resuspended into 1.5 ml of complete medium containing 2 % MatrigelTM and the

mixture was gently pipetted onto thin layer MatrigelTM-coated U-dish. Culture medium

was exchanged every two days with fresh culture medium containing 2 % MatrigelTM.

3.5 Conclusions

The full system is idealised in Fig. 3.5. The microscope operates online and can be accessed

with client software through the internet. This enables a user to monitor the progress of

imaging and analysis giving access to data on demand. An initialization step requiring user

interaction with the system at the beginning of the imaging contains a sample preparation

and placing the sample on the sample holder. After this initialization, the whole process of

imaging and analysis is fully automated. With a state-of-the-art translation stage and 10x

microscope objective a full 36 mm dish (with a 21 mm observation area, the largest square

fitting a 21 mm circle diameter is 14.85 mm, resulting in 527 holograms) can be imaged in

271 seconds (with 500 ms settling time, 1 ms shutter time, and 13 ms translation time).

This chapter contained a description of hardware that is needed for an automated

high-throughput imaging. In addition, the DHM hardware used for experiments in this

thesis was defined. A lack of processing and analysis algorithms was identified. In the

following chapters, we give novel tools that provide this missing piece of knowledge. An
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3.5 Conclusions

Figure 3.5 Asynchronous capturing, processing and analysing. Two different processes are
run parallel. One of the processes is in charge of capturing data and translating the sample
while the other process reads the captured data, processes and analyses the data, and stores
values in a database.
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3.5 Conclusions

automated solution to determine if a field of view contains an object is described in detail

in Chapter 5. Finding in-focus depth of objects encoded in digital holograms is given

in Chapter 6. A novel segmentation approach of holograms is introduced in Chapter 7.

Further analysis of holograms is given in Chapters 4 and 8. Suitability of the system for

time-lapse imaging and real patient samples is proven in Chapter 9.
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4
Classification with extracted features

In this chapter, extracted quantitative features are used with three different classifiers to

classify cysts as normal or oncogenic. In addition, a CNN is trained to perform the same

classification task. An approach to use multiple different classifiers was chosen in order to

investigate if some of the classifiers perform better than others. The object was to show

that at least one configuration of deep learning network outperforms an exhaustive battery

of less sophisticated techniques. It is not the intention in the thesis to explain for all deep

learning design decisions and all hyperparameters, which are the most crucial. While

transfer learning has been proved to be a viable technique, and there are concepts such

as “reasonable default values" for certain hyperparameters, in general, if one has a novel

dataset, one cannot predict the optimal properties and parameter values for a given deep

learning network in advance. For the results in this thesis, we cannot claim that they will

hold with different cell lines. All solutions presented in this chapter were implemented

using the general-purpose Python programming language, and the scikit-image [246] and

scikit-learn [247] libraries. The experiments related to CNNs were implemented using the

PyTorch [248] deep learning framework.

4.1 Introduction

An automatic process that can correctly classify cysts as normal or oncogenic is a useful

tool when there is a need to distinguish between the two. One potential application is in

drug research where different drugs are applied to tumourigenic samples, and the drug
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4.2 Preprocessing and feature extraction
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Figure 4.1 Processing and analysing steps. Numbers inside each box refer to a section in
this chapter.

responses need to be monitored. This monitoring can be performed by classifying each

cyst and tracking the number of each class over time.

Before any classification can be realised, the data for a classifier needs to be pre-

processed into a suitable format. In this chapter, data for a classifier is extracted from a

digital hologram phase reconstruction. For the corresponding classification using CNNs,

segmented phase reconstructions are used as input. For data extraction, the phase re-

construction needs to be segmented from the background. In the literature, most of the

segmentation methods for digital holographic microscopy exploit intensity reconstruc-

tions [74, 81, 92, 100, 94, 80]. As the cysts have a relatively large diameter, the in-focus

plane is disturbed by the diffraction of the out-of-focus planes. This fact complicates the

use of the reconstructed intensity.

4.2 Preprocessing and feature extraction

The overall process flow is shown in Fig. 4.1. Briefly, phase aberrations caused by the

optical set-up and unwanted hologram terms are removed. A hologram is propagated to

the in-focus plane and a phase reconstruction is extracted, objects are segmented, each

object is unwrapped and quantitative features are extracted for further analysis.
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4.2 Preprocessing and feature extraction

4.2.1 Aberration removal

Holograms were preprocessed by removing the zero order, a twin term, and phase ab-

errations using a method introduced by Zuo et al. [57] (Fig. 4.2). This state-of-the-art

technique for phase aberration correction, at the time, was chosen as it does not require

prior knowledge of the imaged sample. A comparison of phase extraction methods was

beyond the scope of the thesis. In addition, in justification of the use of this method, the

problems of how to choose optimal phase extraction and phase aberration methods were

not problems tackled in this thesis. Unfortunately, we did not have access to any other

competing phase metrology technology in our laboratory (although we did compare it with

confocal microscopy in Chapter 3). This meant that we had no ground truth phase data for

our samples. If we had, we could have performed very interesting analyses such as how

differences, if any, between reconstructions and ground truth affect the performance of

the classification algorithms, including experimental upper bounds on the accuracy of our

algorithms with perfect data. Not having ground truth phase data can be problematic if one

has a self-built phase capture system and one wishes to argue for the general applicability

of one’s image processing algorithms. However, in our case, we use an off-the-shelf

commercial DHM and well-known cell lines, so capturing identical phase data to ours can

be achieved in principal in any laboratory. It therefore becomes less important whether

the perfectly accurate phase is measured or not, as long as the classification accuracy

is high (i.e. the transfer function of the repeatable capturing system could be enhancing

classification accuracy) and the capturing system and capturing conditions can be easily

replicated.

4.2.2 Propagation

The holograms were reconstructed along the optical axis at the centre region of the cyst

by using the Fresnel approximation (Eq. 2.2) where the reconstruction depth was chosen

automatically (our CNN based automated method for finding an in-focus plane is described

in detail in Chapter 6)
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4.2 Preprocessing and feature extraction

a

-π

π
b

-π

π

Figure 4.2 Hologram processing. (a) wrapped phase reconstruction at 3.5 cm from the
hologram plane containing aberrations caused by the microscope objective, (b) aberration
free wrapped phase.

4.2.3 Segmentation

Segmentation evolved during process of this thesis. Our convolutional neural network

approach is described in detail in Chapter 7.

4.2.4 Phase unwrapping

Phase unwrapping was realised by using the method introduced by Ghiglia and Romero [62].

4.2.5 Feature extraction

The lumen condition can be analysed accurately by using the segmentation masks. For

this we have derived a novel metric, r, that defines relation between a theoretically empty

lumen and a measured lumen. Each segmentation mask S(x,y) originally contains three

distinct values (0: background, 1: cells between apical and basolateral membranes, 2: and

hollow lumen). By binarising S(x,y) (combining regions 1 and 2, and leaving value 0

for the background), and applying an image erosion operation to the resulting mask with

a 50 pixel diameter isotropic structuring element, we obtain a binary mask S′(x,y) that
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4.3 Classifiers

segments the theoretical lumen only. By calculating total number of pixels of S′(x,y) as

A′ =
M

∑
x=1

N

∑
y=1

S′(x,y) (4.1)

we are able calculate lumen index, r, the ratio between the measured lumen, L, and

theoretical area

r =
L
A′ (4.2)

where L is

L =
M

∑
x=1

N

∑
y=1

S′′(x,y) (4.3)

where

S′′(x,y) =


1, if S(x,y) = 2.

0, otherwise
(4.4)

The r value defines how much of a lumen is hollow. In addition, as the lumen is

segmented with such a high accuracy a multi-lumen phenotype can be detected; if the

region inside basement membrane contains more than one connected region, the cyst is

multi-lumen.

In addition, other features were extracted. Some of the features are the same as those

used in a paper by Härmä et al. [249]. This shows that DHM can be used to extract the

same quantitative features that are available in confocal images. These features can be

divided into two groups: morphology and phase related as shown in Tables 4.1 and 4.2.

4.3 Classifiers

The lumen index can be used to quantify the lumen region; however, it is not sufficient alone

on its own to discriminate different phenotypes within different cell types. The maximum

phase can be regarded as the most descriptive single feature with MDCK samples, but still,

it cannot be used alone for a high accuracy classification as will be shown later in this

chapter. Indeed, the classification accuracy can be improved by additional features. For

this, the extracted features (n=19) of MDCK data were used with a multilayer perceptron

(MLP), a random forest classifier (RF), a support vector machine (SVM), and a CNN.
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4.3 Classifiers

Table 4.1 Extracted morphological features and their derivations.

Feature Equation

Area (A)
W

∑
x=1

H

∑
y=1

S(x,y)

Convex area (C) number of pixels of convex hull image

Eccentricity (ε)

√
1− γ2

β 2

Equivalent diameter
The diameter of a circle with the same area

as the region

Extent (E)
A/lc,

where l and c are the height and width of
a region, respectively

Major axis length (β )
The length of the major axis of the

ellipse that has the same normalised
second central moments as S(x,y)

Minor axis length (γ)
The length of the minor axis of the
ellipse that has the same normalised
second central moments as S(x,y)

Perimeter (P)
length of a line through the centres of border

pixels of S(x,y) using a 4-connectivity

Roughness (R)
P
P′

Convex image perimeter (P′)

length of a line through the centres of
border of a binary convex hull image which

has the same size as bounding box of
S(x,y) using a 4-connectivity

Roundness (O)
4πA
(πβ )2

Solidity (T )
A
C

Table 4.2 Extracted phase features and their derivations.

Feature Equation

Average (α)
1

WH

W

∑
x=1

H

∑
y=1

φ(x,y)S(x,y)

Density (D)
s2

α

Kurtosis (K) WH
∑

W
x=1 ∑

H
y=1[φ(x,y)S(x,y)−α]4

{∑
W
x=1 ∑

H
y=1[φ(x,y)S(x,y)−α]2}2

Lumen index (r) see text for explanation
Maximum phase max[φ(x,y)S(x,y)]
Minimum phase min[φ(x,y)S(x,y)]

Skewness (B)
∑

W
x=1 ∑

H
y=1[φ(x,y)S(x,y)−α]3

s3

Standard deviation (s)

√√√√ 1
WH

W

∑
x=1

H

∑
y=1

[φ(x,y)S(x,y)−α]2
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4.3 Classifiers

For the MLP, RF and SVM, in total 12 independent imaging experiments were realized

for MDCK and RWPE cysts; 6 for each cell line over a six-year period. In total 479 MDCK

cysts were used for this experiment (266 wild type and 213 KRasV12 samples, imaging

experiments 0-5 in Appendix A). In addition, wild type and KRasV12 RWPE samples were

prepared and imaged holographically (containing 85 wild type and 114 KRasV12 cysts,

imaging experiments 6, 8, and 10-13 in Appendix A). The reason for having results for

different classifiers is to show that all the different classifiers display the same trend in

classification accuracy. By adding more features, but not necessarily all, classification

accuracy can be increased. The data was split into training (90 %, 431) and testing (10 %,

48) sets. Features were standardized to have a zero-mean and standard deviation of 1.

The data splitting was performed randomly for each run; the total number of runs being

1000. For each of the classifiers, multiple training runs and tests were realised by using

a different number of features. Features were added in the order described in Tables 4.3

and 4.4 (page 60). This approach aligns with the simplification theme in this thesis.

For the CNN the same data (segmented phase reconstructions) was used, except 10 %

of data was extracted for validation, leaving 80 % for the training data.

4.3.1 Multilayer perceptron

Extracted features (n=19) were used with a multilayer perceptron that had a single hidden

layer with 3 neurons. ReLu was used as an activation function, the regularisation parameter

was 0.001, the maximum number of iterations was 5000, and the tolerance for the optim-

isation was 1×10−6. The tolerance for optimisation was used to determine if learning was

improving. When the loss score does not improve by at least this value, convergence has

been reached and training is finished. The optimiser was the limited-memory BFGS [250],

which was found to result in faster convergence than the stochastic gradient descent.

4.3.2 Support vector machine

The support vector machine classifier was trained with the radial basis function kernel as

that was found to provide better results than the linear kernel, the penalty parameter was 1,

the kernel coefficient (γ) was determined by
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4.3 Classifiers

γ =
1
n

(4.5)

where n is the number of features, the shrinking heuristic was used, and the stopping

criterion was set to 0.001.

4.3.3 Random forest

The random forest classifier contained 15 trees, and used the Gini impurity for the inform-

ation gain. The maximum number of features for the best split was set to the number of

features (1-11), and the minimum number of samples to split an internal node was set to 2.

The nodes were expanded until all the leaves were pure or until all leaves contained less

than the minimum number of samples, where the minimum number of samples required to

be at a leaf node was set to 1. An unlimited number of leaf nodes were allowed, and the

early stopping tree growth threshold was set to 10−7.

4.3.4 Convolutional neural networks

Although conventional classifiers perform well with extracted data, as shown later in

this chapter, we wanted to see if classification performance can be improved with more

complex models. For this reason we used deep convolutional neural networks. In addition,

conventional neural networks perform well with the data captured at the same time than the

training data. However, if these classifiers are tested with the data captured at a different

time, accuracy decreases or classifiers fail completely (this is shown later in Chapter 8,

Fig. 8.2).

Two different deep convolutional neural networks were used (see Fig. 4.3). The first

was based on AlexNet [121], which won the classification and localization tasks in the

Large Scale Visual Recognition Challenge 2012. AlexNet has 5 convolution layers, 3

fully-connected layers, and uses convolutional filters up to 11×11 pixels in size. The

second, VGG16, was based on a variant of the VGG [123] architecture that was successful

in the classification task in the same challenge in 2014. It has 13 convolution layers, 3

fully-connected layers, and learns smaller features with its 3×3 pixel convolutional filters.
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Figure 4.3 Network architectures based on AlexNet (above) and VGG16 (below): C, convo-
lution block; F, fully-connected block; input size, 227×227 or 224×224 pixels depending
on the network. Numbers show amount of layers in each block. Each convolution block is
followed by a maxpooling layer (with kernel size of 3 and stride of 2 in AlexNet, and with
kernel size of 2 and stride of 2 in VGG16).

Both of these network architectures are well-known and highly accepted models for a

wide range of real-world image-based applications. In this chapter, we show that these

standardised models can be used as-is with holographic data from biological samples, and

that it is not necessary to invent a custom architecture for each new application. This

aligns with the simplification theme in this thesis. The only modifications made were as

follows. Both networks used batch normalisation. In addition, as our data contained a

single channel, these network configurations were modified to take a single channel input

instead of RGB input, while the rest of the network architectures were kept the same.

Cysts were segmented (the approach used is not described until Chapter 7). Square

regions around the cysts in the reconstructed phase images were segmented. Each segmen-

ted cyst was scaled to an appropriate size as required by the network architecture and was

randomly augmented during run-time by a random combination of rotations by 90 degrees,

horizontal mirroring, and vertical mirroring.

4.4 Experimental results

Figure 4.4 shows example MDCK holograms and phase reconstructions. From Fig. 4.5 it

can be observed that wild type MDCK holograms display higher maximum phase values

than KRasV12 transformed holograms. To display the importance of this feature, the

maximum phase values were extracted and principal component analysis was performed

on features other than maximum phase. A plot of the maximum phase and the 1st principal
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A

B

i ii iii iv v vi vii viii

Figure 4.4 Example holograms and phase reconstructions of MDCK samples. A: holo-
grams, B: in-focus unwrapped phase reconstructions of A.
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Figure 4.5 MDCK maximum phase histogram. Feature extraction on MDCK samples
using DHM and quantitative phase analysis revealed that maximum phase (shown here)
was the most representative individual feature for MDCK cysts from the set of features
examined.

component on vertical and horizontal, respectively, is shown in Fig. 4.6. It can be observed

that samples of two phenotypes are partially overlapping. The importance of maximum

phase as a feature is demonstrated by running an analysis of variance (ANOVA) between

two different sample populations on all extracted features. The results of ANOVA are

shown in Table 4.3 where features are ordered in descending order by the F-values obtained

from ANOVA. It can be observed that the maximum phase value is the most important

feature. Nearly all of the extracted features within these populations are statistically

significant (p-value < 0.05).

By running ANOVA on the RWPE samples, it is observed that lumen index is the most

important single feature. As with the MDCK samples, nearly all extracted features are

statistically significant between wild type and KRasV12 samples (p-value < 0.05). These
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Figure 4.6 MDCK maximum phase and 1st principal component. Showing maximum
phase values on vertical axis and 1st principal component of other features on horizontal
axis.

Table 4.3 Features and their corresponding F and p values from ANOVA on MDCK
samples. Features below the dashed horizontal line have p value > 0.05.

Feature F-value p-value
Maximum phase 304.3 6.2×10−53

Skewness 204.6 8.4×10−39

Kurtosis 172.0 1.0×10−33

Minor axis length 139.0 2.8×10−28

Perimeter 134.0 1.9×10−27

Convex area 133.8 2.1×10−27

Area 133.0 2.83×10−27

Equivalent diameter 130.7 7.1×10−27

Lumen index 120.6 3.9×10−25

Standard deviation 117.9 1.1×10−24

Major axis length 111.0 1.9×10−23

Minimum phase 83.5 1.9×10−18

Density 70.3 5.8×10−16

Roughness 68.1 1.5×10−15

Average 24.2 1.2×10−6

Solidity 19.1 1.5×10−5

Extent 15.5 9.7×10−5

Eccentricity 1.7 0.19
Roundness 0.9 0.34
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Table 4.4 Features and their corresponding F and p values from ANOVA on RWPE samples.
Features below the dashed horizontal line have p value > 0.05.

Feature F-value p-value
Lumen index 165.5 6.8×10−28

Average 56.6 1.8×10−12

Minimum phase 49.6 3.0×10−11

Density 43.2 4.4×10−10

Minor axis length 39.3 2.3×10−9

Equivalent diameter 35.6 1.1×10−8

Area 24.8 1.4×10−6

Convex area 22.6 3.8×10−6

Major axis length 22.2 4.7×10−6

Perimeter 18.5 2.6×10−5

Kurtosis 18.5 2.7×10−5

Standard deviation 10.6 1.3×10−3

Skewness 10.1 1.7×10−3

Extent 5.3 0.02
Roughness 5.1 0.03

Solidity 3.4 0.07
Eccentricity 2.2 0.14
Roundness 1.8 0.18

Maximum phase 0.1 0.71

results are shown in Table 4.4. A histogram showing lumen indices of wild type and

KRasV12 is depicted in Fig. 4.7. It can be observed that the two populations differ greatly

on this extracted feature. KRasV12 displays low lumen index values and is positively

skewed; most of the values are below 0.1. The lumen index values of wild type cysts have

a larger variance, the distribution is more symmetrical, and values spread more evenly. The

range of the two distributions is approximately equal, which is not surprising as with these

two phenotypes it is typical to have KRasV12 cysts that look wild type and vice versa. By

extracting lumen indices from the feature vectors and performing principal component

analysis on other features, it can be observed that the two phenotypes can almost perfectly

be linearly separated using lumen index and the 1st principal component (Fig. 4.8).

A normalised cross-correlation between features is shown in Fig. 4.9. It can be observed

that size related features with all sample types have strong correlations, as expected. Phase

related features do not show the same trend. By looking at MDCK control samples, there

are strong correlations between average, lumen index, and skewness; in addition, density

is correlated with size-related features and maximum phase with standard deviation. With

KRasV12 samples, the lumen index is correlating with skewness, maximum phase with
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Figure 4.7 Lumen index on RWPE samples. Feature extraction on RWPE samples using
DHM and quantitative phase analysis revealed that lumen index (shown here) was the most
representative individual feature for RWPE cysts from the set of features examined.
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Figure 4.8 RWPE lumen index and 1st principal component, shows lumen index on the
vertical axis and the 1st principal component of the other features on horizontal axis.
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Figure 4.9 Normalised cross-correlation between extracted quantitative features. (i) MDCK
wild-type, (ii) MDCK KRasV12, (iii) RWPE wild-type, (iv) RWPE KRasV12. See text for
more explanation.

size related features and standard deviation, and minimum phase with some of the size

related features.

With RWPE samples, strong correlations between phase related features are almost

non-existent with few exceptions. Density is correlated with size-related features for

both control and KRasV12. In addition, with KRasV12 sample, density is correlated with

kurtosis.

4.4.1 Multilayer perceptron

Results of using a different number of features are shown in Fig. 4.10. With MDCK

samples, by using only the maximum phase value, the median classification accuracy was

81.3 %. By using a full set of features the median accuracy with the test data was 87.5 %.

It can be observed that the multilayer perceptron provides the best median classification

accuracy with only the two top features; the median accuracy being 89.6 %. With additional
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features, there is no improvement or decrease in median classification accuracy. The lowest

standard deviation of 4.3 was obtained with two features. With the RWPE samples, by using

only the lumen index, the median classification accuracy was 80.0 %. The best median

accuracy and lowest standard deviation was obtained by using six features (Fig. 4.11).

With six features, the median classification accuracy was 85.0 % and the standard deviation

was 7.7.

Figure 4.10 Multilayer perceptron classification accuracy by using different number of
features with MDCK samples. Showing minimum, maximum, median, 25th, and 75th
percentiles.

4.4.2 Support vector machine

With MDCK samples, and using only the maximum phase, the median classification

accuracy was 83.3 %. Results of using a different number of features are shown in

Fig. 4.12. It can be observed that the same median accuracy of 91.7 % can be achieved

by using any number of features from 14 to 19. Of these, the one with 18 features has the

lowest variation with a standard deviation of 3.8.

With the RWPE samples, 85.0 % median accuracy could be achieved with any number

of features (Fig. 4.13). The smallest standard deviation was obtained by using 12 features.
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Figure 4.11 Multilayer perceptron classification accuracy by using different number of
features with RWPE samples. Showing minimum, maximum, median, 25th, and 75th
percentiles.

4.4.3 Random forest

With MDCK samples, and using only the maximum phase value, the median classification

accuracy was 72.9 %. Results of using a different number of features are shown in Fig. 4.14.

It can be observed that the same median accuracy of 91.7 % can be achieved by using

any number of features from 14 to 19. Of these, the one with 16 features has the lowest

variation with a standard deviation of 4.0.

With the RWPE samples and using only the lumen index, the median classification

accuracy was 75.0 %. A 85 % median classification accuracy could be achieved with any

number of features from three to 19 (Fig. 4.15). The smallest standard deviation of 7.1 was

obtained by using 8 features.

4.4.4 Convolutional neural networks

Figure 4.16 shows training and validation loss curves together with validation accuracy

over epochs for two typical training runs. There are no obvious signs of overfitting and
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Figure 4.12 Support vector machine classification accuracy by using different number of
features using MDCK samples. Showing minimum, maximum, median, 25th, and 75th
percentiles.

the validation loss follows the training loss. The average classification accuracies over ten

runs of AlexNet and VGG16 were 88.0 % and 81.4 %, respectively.

4.4.5 Results summary

For this particular application, and with the data used, the support vector machine and

random forest give the best classification accuracy, with a best median accuracy of 91.7 %.

Figure 4.17 shows receiver operating characteristic (ROC) curves and area under curve

(AUC) values for MLPs, SVMs, RFs, and CNNs for one example run. It can be observed

that all classifiers perform very well in their task. The AUC values of all classifiers are

greater than 0.9 denoting an excellent classifier capability.

4.5 Conclusions

It was shown that extracted data from a segmented phase reconstruction can be used to

classify cysts as tumourigenic or healthy. A novel metric to define a condition of the

lumen was introduced. Classification was performed by using conventional classifiers.
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Figure 4.13 Support vector machine classification accuracy by using different number of
features using RWPE samples. Showing minimum, maximum, median, 25th, and 75th
percentiles.

In addition, two different CNNs were trained to conduct the same classification task. In

total, classification was executed on five different classifiers and the performance of them

all, based on their ROC curves, was excellent. It needs to be noted that test performance

was measured only on data that was captured at the same time as the training data. If the

conventional classifiers were tested on data captured on a different day, they would fail.

This is shown later in Chapter 8.
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Figure 4.14 Random forest classification accuracy for different numbers of features on
MDCK samples. Showing minimum, maximum, median, 25th, and 75th percentiles.

Figure 4.15 Random forest classification accuracy by using different number of features
using RWPE samples. Showing minimum, maximum, median, 25th, and 75th percentiles.
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Figure 4.16 Training loss, validation loss, and accuracy curves for (a) AlexNet, (b) VGG16.
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Figure 4.17 ROC curves for MLP, SVM, RF, AlexNet and VGG16. See text for more
explanation.
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5
Object detection in the field of view

This chapter introduces a novel approach that can be used for detecting if an object is in

the field of view. This approach is parametrised based on analysis of deep learning results.

5.1 Introduction

Several approaches, such as [251, 252], have been proposed to determine the in-focus-depth

of a transparent object. However, each of these methods assume that the hologram contains

an object in its field of view (FOV). Furthermore, well-known techniques to segment a

transparent object from a hologram reconstruction volume (one approach that as a side-

effect can detect the presence or absence of an object) requires multiple reconstruction

steps per hologram. Although straightforward to solve for reflective objects, efficiently

detecting the presence or absence of a transparent object of interest in a noisy medium can

be challenging.

When DHM is used for time-lapse imaging, particle field imaging, or any other

application where a large number of holograms are captured, many holograms can be

recorded without an object in their FOV. Subsequently processing these holograms as

if they contained objects can be wasteful. To overcome this inefficiency, we propose a

solution that can be used to detect the presence, or alternatively absence, of a transparent

object in the FOV before any numerical processing on a captured digital hologram is

performed, including for example searching for the in-focus plane.
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5.2 Object detection

5.2 Object detection

We propose a histogram-based approach to quantify gross features in the Fourier domain

of digital holograms. Given a M× N hologram I we Fourier transform it and extract the

amplitude to give us I′. The metric to determine low frequency content of a hologram is

calculated as

α =
1

mn

m−1

∑
x=0

n−1

∑
y=0

Ω(x,y) , (5.1)

where Ω is an m×n (m << M and n << N) binary mask containing ones in a particular

region of I′. The size and shape of the region was determined experimentally as

Ω(x,y) =


1, if I′(x+u,y+ v)> τ

0, otherwise ,
(5.2)

where x ∈ [0,m−1], y ∈ [0,n−1], τ is some threshold, and u and v are empirically chosen

regions defined as

u =
M
2
, v =

5
16

N . (5.3)

I′ is the amplitude of the two-dimensional Fourier transform of a M× N pixel hologram.

An example amplitude of a hologram containing an object in the FOV showing the

experimentally chosen region used for analysis is shown in Fig. 5.1.

Because the α metric requires a hyperparameter τ that might need to be tuned to the

application at hand, the metric was also compared, on the basis of accuracy and computa-

tional efficiency, with an approach employing a well-known deep learning convolutional

neural network as a binary classifier, trained on Fourier-domain amplitude inputs.

The CNN contained five convolution layers, four max pooling layers and two fully-

connected layers (Fig. 5.2). The kernel size for all convolution layers was 3×3 pixels,

except for the first layer that had 9×9 pixel kernels. The stride of the convolutions was

always one pixel. Each convolution layer was followed by a batch normalisation layer, and

then an activation function. The parametric rectified linear unit (PReLu) [253] was used

for the activation function. The pooling layers had 2×2 pixel kernels with a 2-pixel stride,

except for the last pooling layer that had 14×14 pixel kernels with a 13-pixel stride. These
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Figure 5.1 Fourier transform of a hologram with an object in the FOV. Black lines show
borders of an empirically selected region. Zoomed-in version of this region is shown on
right.

parameters for the last pooling layer were used to reduce the data dimensions before the

fully-connected layers.

As data for the CNN, 290 holograms with, and 290 holograms without, an object

(MDCK cell line) in the FOV were used (example holograms are shown in Fig. 5.3) (from

the imaging experiment 23 in Appendix A). The data was split into training (80 %, 464),

validation (10 %, 58), and testing (10 %, 58). Each subset had a similar number of examples

of each class. The input for the CNN was the amplitude of the two-dimensional Fourier

transform of a hologram. 1024×1024 pixel Fourier amplitude images were down-sampled

(with interpolation) using the scikit-image library [246] to 224×224 pixels to allow for

greater batch sizes.

PyTorch [248], a deep learning framework, was used. Training was executed on two

Nvidia GTX 1080 graphics cards with a batch size of 50. The network was trained for 100

epochs with Adam [254] as the optimiser and categorical cross entropy loss. The initial

learning rate was set to 1×10−4 and was reduced by a factor of 10 if the validation loss

failed to improve for ten consecutive epochs.
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Convolution + Batch normalisation + PReLu

Max pooling

Fully connected + PReLu + Drop-out

Fully connected

Figure 5.2 CNN architecture showing the different layers, and their sizes. Below each
layer the number of output channels is shown. Numbers above denote spatial dimensions.
See text for more explanation.
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Figure 5.3 Example holograms. Holograms in row A contains objects in the FOV whereas
holograms in row B are without objects in the FOV.
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Figure 5.4 α results with an empirically set Fourier region. See text for more explanation.
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Table 5.1 FOV confusion matrix, heuristic approach. Showing predicted and actual classes.

Actual

Predicted

Yes No
Yes 289 30
No 1 260

5.3 Experimental results

A good value for τ was empirically found to be max(I′)/1000. Results with this value are

shown in Fig. 5.4. By setting the α threshold to 0.014, we can respectively identify 99.7 %

and 89.7 % of holograms that do not and do have an object in the FOV (Table 5.1). The

average accuracy with this threshold is 94.7 %. Loss values and validation accuracy for the

CNN approach are shown in Fig. 5.5. The average CNN testing accuracy over three runs

was 97.2 %. These values show that the CNN approach gives a better accuracy. However,

it raised new questions:

• Why is the CNN so much better?

• Can we improve our heuristic approach by changing the Ω region?

If the performance of a heuristic approach is sufficient, clear advantages are:

• it will be faster than a CNN approach,

• it can potentially be used with several input types (different cell types),

• if assumed that the same threshold can be used, no training is needed, and

• it has more relaxed constraints (twin terms can be located at any position in the

Fourier domain).

To answer these newly raised questions, we investigated which features/regions the

CNN considers the most important, and if it was possible to construct our mask based on

this analysis. This approach is in alignment with our paradigms theme. We ran gradient-

weighted class activation mapping (Grad-CAM) [255] on several Fourier amplitude input

images to discover what a CNN considers to be the most distinguishing features. Grad-

CAM can be used to produce visual explanations of the functionality of a CNN. It uses

gradient information flowing into the last convolutional layer of the CNN to understand the
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significance of each neuron for a particular decision (in our case, the presence or absence

of an object in the field of view). Regions of these features were used to construct a

new region Ω’, hence the trained CNN model parametrised our histogram based heuristic

approach.

Fig. 5.6 shows example Grad-CAM outputs for seven example inputs and an average

Grad-CAM image from 100 inputs. It can be observed that with an object in the FOV,

the most important region is around the dc region at the centre of the Fourier amplitude.

Without an object in the FOV, the most important features are found around different

hologram terms. Based on this, a mask S(x,y) was constructed as follows:

S(x,y) =


1, if A(x,y)≥ τ and x ≥ M

2

0, otherwise ,
(5.4)

where A(x,y) is an average image (Fig. 5.6, row A, last column) of 100 Grad-CAM outputs

with an object in the field of view, and τ is an iteratively obtained threshold. An initial

value for τ is given by Otsu’s method [256], and is increased iteratively by steps of one

until S(x,y) contains only one blob. Fig. 5.7 shows the created mask.

Ω′(x,y) was obtained as

Ω
′(x,y) =


1, if S(x,y)H ′(x,y)> τ ′

0, otherwise ,
(5.5)

where I′ is the amplitude of two-dimensional Fourier transform of a M× N pixel hologram,

τ ′ is a threshold defined as

τ
′ =

k
1000

(5.6)

where k = max[S(x,y)I′(x,y)].

Figure 5.8 shows α values for all 580 test holograms (290 with and 290 without an

object in the FOV). It can be seen that holograms without an object in the FOV show

significantly lower α values.

Figure 5.9 shows a histogram comparison of intensity, Tamura coefficient, and α from

our proposed method. For the intensity calculation, the hologram plane intensities were
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Figure 5.5 Training loss, validation loss and validation accuracy. Although the validation
loss fluctuates there are no signs of overfitting.
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Figure 5.6 Grad-CAM results. Showing high values in regions the trained CNN model
considers to contain most important features. Images in row A are with an object in the
FOV and ones in row B are without an object in the FOV. Numbers above show each file
index and the last column is the average of 100 image inputs.

  

Figure 5.7 Segmentation mask S(x,y). This mask is used to segment the region of Fourier
transformed holograms that is used for α metric calculation. See text for more explanation.
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Figure 5.8 α result with 580 test holograms. Showing α values with and without objects in
the FOV. It can be observed that holograms without an object in the FOV show, in general,
significantly lower α value.

Table 5.2 FOV confusion matrix with the proposed method. Showing predicted and actual
classes.

Actual

Predicted

Yes No
Yes 287 16
No 3 274

summed. The Tamura coefficient was calculated as described in [251]. It can be observed

from these results that the proposed method can be used to efficiently detect the presence

or absence of an object with high reliability (see Fig. 5.9c). Intensity is not suitable to

detect the presence of an object as can be deduced from Fig. 5.9a. The Tamura coefficient

works to some extent (Fig. 5.9b). By setting a threshold to 2.3×10−3 (values below that

indicate there is no object in the FOV), we can respectively identify 99.0 % and 94.5 % of

holograms that do not and do have an object in the FOV (Table 5.2). The average accuracy

with this threshold is 96.7 % which is comparable to the 97.2 % classification accuracy of

the CNN. This is an obvious improvement to the empirically chosen region that had an

average accuracy of 94.7 %.

When benchmarked, a single α value calculation takes 5.4 ms (averaged over 580

holograms) on a PC with 16 GB DDR3 memory and i5-4300U processor. The correspond-

ing runtime for the CNN model (averaged over 58 test holograms) is 70.8 ms, including

rescaling the input and converting it to a tensor.
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Figure 5.9 Comparison between intensity, Tamura coefficient and the proposed method.
See text fore more explanation.
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5.4 Conclusions

We have proposed a novel method to parametrise a heuristic approach based on the

information obtained from a CNN model. It was shown that the proposed metric is able to

identify holograms, with or alternatively without, an object in the FOV with high accuracy.

The accuracy is at the same level as the CNN. As a heuristic approach, the proposed

approach is fast and therefore facilitates a high data throughput. As such, it is well suited

for high-throughput analysis, where only the holograms containing an object(s) should

be processed further. The proposed approach was tested only with digital holograms of

cysts, however in theory it should work with other types of transparent and semitransparent

objects.
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6
Deep learning for autofocusing

This chapter contains an application to find the in-plane of an object enclosed in a digital

hologram.

6.1 Introduction

Deep learning [119] is a technique for solving hitherto open problems in image analysis,

and other fields, that is starting to have an impact in the field of biomedical optics, for

example OCT [175, 182, 183] and other forms of microscopy [174, 157, 176, 180, 184].

Image-based applications of deep learning [120] are characterised by neural networks

with at least eight hidden layers, at least tens of thousands of images, at least hundreds

of images per class, at least millions of learned parameters, and training times of at

least weeks if run on a single-processor personal computer. This type of network has

been used successfully in various different visual object recognition and object detection

applications [121, 123]. In this chapter, we introduce an application that finds an in-focus

depth of an object encoded in a digital hologram by using off-the shelf architectures.

6.2 Autofocusing

A digital hologram is an efficient encoding of a diffraction volume. It would be desirable for

digital holography researchers to be able to edit the hologram directly, in order to produce

some semantic change in the diffraction volume (such as 3D segmentation), or even more

simply, analyse the hologram directly so we may construct an understanding of the 3D

scene. Unfortunately, in the general case, this has eluded researchers in digital holography.
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Researchers are limited to sampling the reconstruction volume (i.e. using numerical

propagation to reconstruct from the digital hologram at a plurality of depths) before they

can understand the encoded 3D scene. A handful of notable exceptions exist, such as the

landmark papers by Vikram and Billet [257] and Onural and Özgen [258], and subsequently

others over the past decade [259–264, 21] whose work allows one to determine the size

and position of individual particles based on an analysis of the hologram directly. However,

these approaches are limited to the special case of idealised spherical particles. Here, we

consider significantly more complicated multi-cellular partially-transparent objects.

One open problem in DHM is how to efficiently determine the appropriate in-focus

plane for an arbitrary semi-transparent microscopic object encoded in a digital hologram.

If the sample contains more complicated objects than idealised spherical particles [258],

researchers must perform a plurality of numerical propagation steps, which is not efficient.

In this chapter, we demonstrate that it is possible to design a deep convolutional neural

network to predict the in-focus distance of a living cell cluster from only the digital

hologram plane amplitude. With deep learning, we propose that DHM researchers now

have a tool at their disposal that is a major step towards removing the need to perform any

propagation steps in order to determine the in-focus distance.

DHM overcomes the shallow depth-of-field problem in optical microscopes, by allow-

ing one to change the in-focus plane after hologram capture. However, since each in-focus

plane has a narrow depth of field, the object of interest is in focus only for a small range of

reconstruction depths. The problem of determining the most appropriate in-focus depth is

essential for applications such as auto-focusing, extended focus imaging, and 3D object

segmentation/recognition.

The critical importance of this problem to digital holography researchers is evidenced

by the regularity of newly proposed focus metrics to apply to Eqs. 2.7 and 2.8 [265–

268, 76, 269, 251, 270–272, 252], among others. We highlight some of them as follows.

Gillespie and King [265] were the first to automate in-focus plane detection of digital

holograms. They applied entropy as a focus metric. Ferraro et al. [266] detected phase

changes and used this information as a focus metric. Liebling and Unser [267] used

a wavelet approach to measure image energy as a focus metric. A reconstruction in
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a stack that contains high levels of image energy in as few coefficients as possible is

considered to be the in-focus plane. Dubois et al. [268] discovered that integrated amplitude

reconstruction is at a minimum for pure amplitude objects and at a maximum for pure

phase objects. McElhinney [76] et al. used the maximum of the grey level variance of

an amplitude reconstruction stack to find in-focus objects in a scene. Langehanenberg

et al. [269] compared power spectra, grey level variance, edge detection, and Laplacian

filtering of pure phase objects and concluded that power spectra and edge detection are

equally well suited for pure phase objects. Memmolo et al. [251] showed that Tamura

coefficient estimation on pure phase objects is at the minimum in a reconstruction stack for

the in-focus plane. Dohet-Eraly et al. [270] used multi-wavelength DHM and developed a

focus metric that works on Fourier domain phase. They showed that their metric yielded

a minimum at the in-focus plane of a reconstruction stack. He et al. [271] calculated

the cosine score on an amplitude reconstruction stack, and by finding the minimum

value they were able to discover the in-focus plane. An approach of Ren et al. [272]

by using structure tensors and their eigenvalues was shown to work with overlapping

objects. By finding maximum peak(s) in their focus metric, applied on a reconstruction

stack, they discovered in-focus plane(s). Lyu et al. [252] calculated the sum of subtracted

neighbouring reconstructions in a stack, and by finding the maximum of amplitude objects

and the minimum for phase objects, they were able to find the in-focus plane.

Despite a great number of publications tackling this challenging problem, they each

have the same drawback, namely, that a stack of reconstructed images must be com-

puted, and the focus metric must be applied to each reconstruction. This time-consuming

drawback is compounded by the fact that the whole procedure must be applied to each

new hologram. There is a trade-off between computational search time and accuracy (by

sampling the diffraction volume at too low a resolution longitudinally one may miss the in-

focus plane and sampling the volume with a fine resolution leads to increased computation

time).

The greatest benefit of the deep learning method outlined here is that after training, the

in-focus depth can be obtained from the hologram plane intensity directly, and in constant

time, without any numerical propagation. Ren et al. [202] reported a deep learning based
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Figure 6.1 Example training images. Each row shows amplitude reconstructions from one
hologram (at the in-focus plane, and at the distances ±100 mm from the in-focus plane).

approach for both amplitude and phase objects. An interesting deep learning approach

where the network learns to propagate a hologram of a transparent object to an in-focus

plane and perform a phase unwrapping operation was reported by Rivenson et al. [198].

In contrast to these papers, the phase objects reported here are living biological 3D

multicellular samples with all of the noise and inhomogeneities of living organisms.
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Figure 6.2 Amplitudes of the twelve dc- and twin-free holograms used for testing (with the
ground truth in-focus distance shown).
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6.2.1 Focusing with a regression model

Two different deep convolutional neural networks as described in Chapter 4 (see Fig. 4.3)

were used. The regression model did not have the softmax layer and it returned a single

real number denoting the in-focus depth.

A set of 494 holograms of semi-transparent MDCK cysts were used for this experi-

ment (from imaging experiments 0-5 in Appendix A). Each hologram was preprocessed

automatically by removing the zero order and twin terms according to [53]. To obtain the

ground truth data, the in-focus depth for each hologram in the training, validation, and

test datasets was determined manually. For this, holograms were reconstructed (by using

Eq. 2.2) at multiple depths and the particular depth z that visually displayed the sharpest

outer border was chosen as the in-focus depth.

The holograms were used to generate a database of images as follows. An amplitude

reconstruction was obtained from each hologram at each of 21 depths distributed equally

over the range ±100 mm centred on the in-focus plane (see examples in Fig. 6.1). (We

follow a convention [266, 269] of ignoring the effect of the microscope objective in our

reconstruction distances.) Through different combinations of rescaling and cropping, each

reconstruction was used to generate six similar but distinct 227×227 pixel rescaled and

cropped images. Each such image was augmented with 90°, 180°, and 270° rotations, and

each resulting image was further augmented through horizontal mirroring. This formed a

database of 497952 images. From this database, all augmented images from the twelve

hand-picked holograms shown in Fig. 6.2 (comprising 12096 images, 2.4 % of the set)

were set aside as test data. The remaining images were partitioned randomly into training

(87.8 %, 437271) and validation (9.8 %, 48585) data. Finally, a mean image (calculated

from the training data only) was subtracted from each image.

6.2.2 Focusing with a classification model

Although finding the in-focus depth can be considered clearly as a regression task, treating

this application as a classification task provides a few interesting properties that can be

useful. When used for classification, a CNN returns confidence values (probabilities) for

an input to be an example of a certain class. This type of network "forces" its input to be
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Figure 6.3 The learned filters from the first convolution layer: 96 11×11 pixel filters from
AlexNet (top), 63 3×3 pixel filters from VGG16 (bottom).
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Figure 6.4 Loss functions (square mean error, logarithmic scale) for (a) AlexNet, (b)
VGG16. Possibly VGG16 would have benefited from a greater minibatch size (as evidenced
by the fluctuation in the loss function).
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one of the pre-determined classes; the input cannot belong to any other class than the ones

that have been decided at the beginning before any training takes place. In addition, there

is no need for extrapolation, the allowed range is determined already. It was decided that

the networks should learn 21 classes (labelled ‘-10’, . . . , ‘10’), representing reconstruction

distances (in mm) in a range ±ρ from the in-focus plane, with quantization ρ/10.

6.3 Experimental results

6.3.1 Regression

The training used Nvidia’s Deep Learning GPU Training System (DIGITS) software with

two Nvidia GTX 1080 graphics cards. Learning rates were fixed at 1×10−5 and 1×10−6

for AlexNet and VGG, respectively. AlexNet was trained for 100 epochs (16 hours) and

VGG16 for 80 epochs (210 hours) with a stochastic gradient descent solver. The loss

function was mean square error and each network returned a single value for the predicted

in-focus depth. The minibatch size was set to 150 and 25 for AlexNet and VGG16,

respectively. The learned filters from each of the first convolution layers are shown in the

Fig. 6.3, allowing one to infer the basic features that each network learned to extract from

an image for analysis in subsequent layers. When the training was finished, the training

loss was 2.73 and 4.47 for AlexNet and VGG16, respectively (Fig. 6.4).

Testing was performed on a separate computer to demonstrate the portability of deep

learning. The trained models (with sizes 227.4 MB and 662.9 MB for AlexNet and VGG16,

respectively) were imported into the Caffe [273] deep learning framework using the

general-purpose Python programming language. The run times (mean of 200 holograms)

were 247 ms (AlexNet) and 680 ms (VGG16) on a PC with 16 GB DDR3 memory and i5-

4300U processor without a discrete graphics card. For comparison, on the same computer,

and using a hologram of the same 1024×1024 dimensions, a single Tamura coefficient

calculation (mean of 200) requires 932 ms (aberration removal 380 ms, reconstruction

318 ms, phase unwrapping 231 ms, Tamura coefficient calculation 3 ms).

Testing was performed by using holograms that were not used in training or validation,

as explained. Of the 12096 test images, 100 % and 99.9 % were within an acceptable error
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Figure 6.5 Absolute estimation errors with the testing data. In 88.7 % and 88.9 % of test
cases, for AlexNet and VGG, respectively, the absolute depth estimation error is ≤10 mm;
in 100 % and 99.9 % of test cases, respectively, the absolute error is ≤20 mm.

Table 6.1 Regression test results using the 12 holograms from Fig. 6.2, showing regression
result from each network: G, ground truth; A, AlexNet; AE, absolute error; V, VGG16.

G (mm) A (mm) AE (mm) V (mm) AE (mm)
-51 -46.0 4.9 -52.5 1.5
-53 -52.4 0.6 -55.3 2.3
-51 -49.8 1.2 -57.7 6.7
-48 -41.1 6.9 -42.9 5.1
-15 -15.2 0.2 -15.5 0.5
-6 -5.1 0.9 -13.4 7.4
1 1.4 0.4 -4.3 5.3
7 0.0 7 5.1 1.9
0 -4.4 4.4 -4.7 4.7
-2 -1.0 1.0 2.7 4.7

-74 -83.0 9.0 -82.1 8.1
-65 -60.1 4.9 -67.8 2.8

margin of 20 mm for AlexNet and VGG16, respectively (see Figs. 6.5 and 6.6). The rms

errors were 6.37 mm and 6.49 mm for AlexNet and VGG16, respectively. The error margin

of 20 mm was determined experimentally; there was no significant visual difference in

amplitude reconstruction quality within this range. All required morphological information

about cell clusters can be extracted within this range with good accuracy. This is supported

by extracting a single morphological feature, size, with test holograms (an example shown

in Fig. 6.7).

To examine how the networks responded to holograms that may have an in-focus

distance not a multiple of the 10 mm discretisation used in training, the holograms from
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(a)

(b)

Figure 6.6 Box-plots. (a) AlexNet and (b) VGG16 showing distributions of in-focus depth
prediction errors for different out-of-focus depths.
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Figure 6.7 Area calculated at multiple depths on one of the test holograms. In addition,
showing reconstructions at -20 mm, 0 mm, and 20 mm from the in-focus plane. The dashed
horizontal line shows the 0 % error. The red dashed vertical lines show ± 20 mm range.
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Figure 6.8 Fine (1 mm) depth-resolution test results with different size cell clusters. (a
linear result indicates perfect estimation). (a) and (b) are two holograms reconstructed ±
100 mm around the in-focus plane, (c) a hologram reconstructed ± 200 mm around the
in-focus plane.
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Figure 6.9 Fine (1 mm) depth-resolution test results with a human cell line sample.

Fig. 6.2 were used directly (see Table 6.1). The mean absolute error over the 12 holograms

was 3.62 mm and 4.25 mm for AlexNet and VGG16, respectively.

Systematic testing was then performed with the holograms from Fig. 6.2 over the range

±100 mm centred on the in-focus depth, but this time with a finer depth resolution of 1 mm.

For a system to generalise well outside the discrete set of 21 in-focus depths with which it

was trained, the shape of the scatter plot should be linear. Both networks generalised well

with each test hologram and typical examples are shown in Figs. 6.8(a) and 6.8(b).

To test the extrapolation capability of the models beyond depths not used in the training,

the test holograms were reconstructed at distances in the range ±200 mm from the manually

estimated in-focus plane, with steps of 1 mm (Fig. 6.8c). It can be observed that beyond

depths that were not used in the training, the error increases. This is expected as neural

networks, in general, are not good in extrapolation. As the volume size is known before

the training, the system should be trained within the full depth of the volume so that there

is no need for extrapolation during prediction.

To test the generalisation capability and push the networks past their designed cap-

abilities, the networks were tested with a human cell line captured with the same DHM

hardware. An example with 1 mm reconstruction steps is shown in Fig. 6.9. It can be

observed that, in general, the CNN is able to determine in-focus depths correctly. However,

the result displays greater error in the middle region. Typically, with new samples that

differ greatly from a training set of a trained model, one needs to retrain a model with new

data. However, transfer learning [274] can be used to speed up the training process.
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Figure 6.10 In 52.2 % and 66.9 % of test cases the correct depth class was predicted. In
94.8 % and 97.9 % of test cases a depth within one depth class of the ground truth depth
was predicted.

6.3.2 Classification

For classification networks, AlexNet was trained for 60 epochs (13 hours) and VGG16

for 40 epochs (108 hours) with a stochastic gradient descent solver. The minibatch sizes

were set to 100 and 40 for AlexNet and VGG16, respectively. When the training was

finished, the training loss was 2.497×10−2 and 4.955×10−3 for AlexNet and VGG16,

respectively.

Of the 12096 test images, 94.8 % and 97.9 % were classified within one class of

the ground truth depth for AlexNet and VGG16, respectively (see Fig. 6.10). Although

the depth classes are completely unrelated as far as each network is concerned, it is a

remarkable indicator of robustness that where each model incorrectly classifies an input, it

invariably choses a neighbouring depth class instead.

To examine how the networks responded to holograms that may have an in-focus

distance not a multiple of the 10 mm discretisation used in training, the holograms from

Fig. 6.2 were used directly (see Table 6.2). Based on probability, the two top predictions

for each network typically straddle the correct answer. Both networks typically classify

with high confidence holograms with an in-focus distance close to a multiple of 10 mm.

For holograms with in-focus depths halfway between two classes, AlexNet can partition

its confidence appropriately between two classes, for example, the holograms with ground
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Table 6.2 Classification test results using the 12 holograms from Fig. 6.2, showing the two
top predictions from each network as ranked by their confidence values: G, ground truth;
A, AlexNet; C, respective confidence values; V, VGG16.

G (mm) A (mm,mm) C (%,%) V (mm,mm) C (%,%)
-51 -40,-50 60,40 -40,-50 95,5
-53 -50,-60 99,1 -50,-60 96,4
-51 -60,-50 100,0 -60,-70 100,0
-48 -40,-30 99,1 -40,-50 100,0
-15 -10,-20 100,0 -10,-20 94,6
-6 -10,0 77,23 0,-10 99,1
1 10,0 100,0 0,10 100,0
7 0,10 99,1 10,0 100,0
0 0,-10 100,0 0,-10 100,0
-2 0, 10 99,1 0,10 100,0

-74 -90,-100 100,0 -80,-70 99,1
-65 -70,-60 58,42 -60,-50 100,0

truth values of -6 mm and -65 mm (highlighted in bold). The mean absolute error over the

12 holograms was 6.58 mm and 4.92 mm for AlexNet and VGG16, respectively.

Systematic testing was then performed with the holograms from Fig. 6.2 over the range

±100 mm centred on the in-focus depth, but this time with a finer depth resolution of 1 mm.

For a system to generalise well outside the discrete set of 21 in-focus depth classes with

which it was trained, the shape of the scatter plot should exactly be a staircase with a linear

trend. Both networks generalised well with each test hologram, and a typical example is

shown in Fig. 6.11(a).

To push the networks past their designed capabilities, the networks were tested (over

the same depth range and resolution) with a human cell line sample captured with the same

DHM hardware. Both networks performed surprisingly well on this sample. However

classification with AlexNet, while largely monotonic, is no longer linear [see Fig. 6.11(b)].

6.4 Needed amount of data

Typically, in real-world image classification or regression problems, the number of images

is hundreds or thousands, and the magnitude of classes is in the same range. As we

restricted our depth finding problem to a specific range, we were interested if it is possible

to reduce the amount of data, while retaining the same performance (clasffication accuracy).

To investigate this, we conducted an experiment where the number of images for each
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Figure 6.11 Fine (1 mm) depth-resolution test results with classification models (a linear
staircase indicates perfect classification): (a) same DHM hardware and same sample type
as in training, (b) same DHM hardware but different cell line.

depth was reduced systematically. This experiment is in alignment with out simplification

theme. We did not augment all the images as before, but instead each input was augmented

during run-time by a randomly chosen combination of rotation of 90 degrees, horizontal

mirroring, and vertical mirroring. Data was reduced by steps of 10 % from 100 to 10 and

then by steps of 1 % from 10 to 5. For each training, the starting point was the previous

dataset and a proportion of data according to the reduction plan was used for training. For

each reduction step, the training was repeated three times. The used network was based on

VGG16 architecture. All networks were trained with two Nvidia GTX 1080 graphics cards

using the PyTorch [248] deep learning framework.

Figure 6.12 shows the mean absolute error with different numbers of input images. It

can be observed that reducing the amount of data by 60 % does not affect the accuracy;

the performance remains the same. After a 60 % data reduction, the accuracy decreases,

however, it is remarkable that even with 90% data reduction, the mean absolute error is

only 5.8 mm.

Figure 6.13 shows focus prediction error using different amounts of training data. It

can be observed that the data reduction flattens the data distribution, thus increasing the
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Figure 6.12 Data reduction mean absolute error. Showing mean absolute error by using
VGG16 networks with different amounts of training data. The data reduction strategy used
is explained in the text.

standard deviation and kurtosis. The standard deviation without data reduction was 4.0

mm, and it remains approximately the same up to 60 % data reduction (4.5 mm).

From these results it can be concluded that increasing amount of data does not always

improve performance, at least if the data is as homogeneous as ours. It needs to be noted

that less data is also favourable due to a faster training time.

6.5 Conclusions

It was shown that a CNN can learn the propagation distance from a hologram amplitude

image to its in-focus plane. At the time of publication [275], this was one of the first

applications of deep learning to digital holographic microscopy in the literature, where we

show that a deep artificial neural network can be designed to learn the appropriate in-focus

depth of an arbitrary MDCK cell cluster encoded in a digital hologram. Its greatest benefit

is that the in-focus depth can be obtained from the hologram plane intensity only, and in

constant time, without any numerical propagation. It generalises well to in-focus depths

differing from those in its training set.

It was shown that the same problem can be solved using either regression or classifica-

tion. Both of the approaches have pros and cons. In addition, a data reduction experiment
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Figure 6.13 Data reduction error. Showing error range with networks trained with different
amount of training data.

was reported. It was shown that data can be reduced greatly and still keep the same

performance.
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7
Deep learning for hologram segmentation

This chapter describes segmentation algorithm that can be used to extract quantitative

morphological information from digital holograms. High accuracy segmentation allows

precise quantification of lumenal space.

7.1 Introduction

Image segmentation is an image processing operation where an image can be divided

into regions based on some attribute [73]. In the problem of segmentation, each pixel

of an image must be given a single label, where pixels sharing one of a set of mutually-

exclusive properties are given the same label. This process is useful later in the analysis

stage as the obtained segmentation mask can be used to extract meaningful information

such as morphology-related details (e.g. size). Conventional segmentation approaches

include methods such as thresholding [276, 256] and edge detection [277]. More soph-

isticated methods include statistical approaches such as active contours [278], k-means

clustering [279], and different region growth approaches [280].

Conventional neural networks have been used successfully in image segmentation [281–

285]. After these early applications, quite recently CNNs have been used for the same

task. Initially, segmentation using CNNs was performed on patches of an image [128].

The main reason for using image patches was the existence of fully-connected layers that

required a fixed input size. Fully convolutional networks (FCNs) were introduced by

Shelhamer et al. [129]. This approach replaced fully connected layers with convolutional

layers, allowing dynamic input sizes. In addition, processing the whole image in one
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iteration was possible — there was no need to divide the image into patches. In the

network, the spatial dimensions of the data are usually reduced using pooling layers,

which allow a greater receptive field (larger field of view) in the downstream layers of

the network. This has a drawback of losing some spatial information about a feature,

which can be undesirable in segmentation tasks. To overcome this problem, the encoder-

decoder architecture was invented [130]. This architecture contains skip connections from

earlier layers to later layers allowing the network to retain spatial information of features.

One of the most common encoder-decoder architectures is the family of implementations

based on U-Net [131]. Another approach that does not use pooling layers is based on

dilated (atrous) convolutions [132–134]. The most recent development is a combination of

encoder-decoder and dilated convolutions [135].

7.2 Segmentation

In the field of digital holographic microscopy, Yi et al. [286] were the first to use FCNs for

segmentation. They segmented phase reconstruction images of red blood cells. Nguyen et

al. [60] used FCNs for the segmentation of objects as part of their aberration removal. To

the best of our knowledge, these are the only two papers that report the use of FCN for

segmentation within the field of digital holographic microscopy. The two main differences

that we have that those authors did not have are

1. we have complex 3D objects with extensive volumes (above 1000 picolitres), and

2. we are interested in segmenting with heterogeneous regions (multi-label segmenta-

tion).

As the lumen may contain multiple hollow 3D regions, if one can identify the basolat-

eral and apical membranes accurately it is possible to make accurate measurements of the

lumen. For this purpose, we have trained a CNN to segment objects into three regions:

0. background,

1. cells between apical and basolateral membrane (or non-hollow 3D region), and

2. hollow lumen
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Pixels in our segmentation mask S(x,y) therefore have one of three distinct values, one for

each region, from {0,1,2}.

7.3 Combining two worlds: ground-truth masks

The performance of a CNN is highly dependent on the quality of training data: the better

the data, the better the result. Because of this, we drew the ground-truth masks semi-

manually. The extracted quantitative phase of the complex-valued reconstruction is in the

range of [−π,π] due to the arctangent function used in the phase extraction (Fig. 7.1b).

Typically, the next step before any further processing and analysis would be to apply an

unwrapping procedure on the wrapped phase image. Then, the unwrapped phase would be

segmented using an algorithm such as [287, 78]. We are proposing an alternative way to

use the wrapped phase in the process of making the segmentation mask as the extracted

wrapped phase may have remaining aberrations (such as a tilt), and the phase unwrapping

algorithms themselves may introduce errors in the data. In addition, the phase difference

of the object and the surrounding medium can be too small in the unwrapped phase image

for accurate differentiation between the object and the background.

Our initial segmentation mask is obtained through a morphological gradient operation

as

G(x,y;z) = φ(x,y;z)⊕b(x,y)−φ(x,y;z)⊖b(x,y) (7.1)

where φ(x,y;z) is the wrapped phase image, x,y define the reconstruction plane and z

is the reconstruction distance, ⊕ and ⊖ are greyscale dilation and erosion operations,

respectively, and b is a flat structuring element. The morphological gradient (Fig. 7.1c) is

calculated for each pixel of φ by using an over-blocking window, where the size of the

window is determined by the size and shape of b. G(x,y;z) is thresholded to produce a

binary mask M(x,y;z) with a manually chosen fixed threshold τ as

M(x,y;z) =


1, if G(x,y;z)≥ τ,

0, otherwise
(7.2)
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Figure 7.1 Segmentation. (a) digital hologram of MDCK cyst, (b) wrapped phase re-
construction at 3.5 cm from the hologram plane, (c) morphological gradient map that is
obtained by using a disk-shaped structuring element with a 25 pixel radius, inset shows a
histogram of the morphological gradient map illustrating how effortlessly the thresholding
can be realized, (d) segmented and unwrapped quantitative phase map.
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τ is 0.6 in all of our experiments. Three successive binary erosion operations are applied

on the mask; first, with 15-pixel radius disk-shaped structuring element, second with

five-pixel diamond-shaped structuring element, and third with two-pixel diamond shape

structuring element. These operations are required because the resulting mask from the

morphological gradient operation is larger than the object. A morphological binary open

operation (followed by a binary fill operation) is applied to M. Regions smaller than a

predefined threshold (20000 pixels in our experiments) and regions connected to the phase

image borders are removed. Unconnected regions in M(x,y;z) are labelled using one label

function of the measure module of scikit-image [246] library, to produce a label mask

M′(x,y;z), permitting each cyst in a scene to be segmented and unwrapped independently.

Labelling is performed by using 2-connectivity. A bounding box is determined for each

labelled region R(x,y;z) in M′(x,y;z), and the corresponding region of the R(x,y;z) is

cropped and binarised as

R′(x,y;z) =


1, if R(x,y;z)> 0

0, otherwise.
(7.3)

Phase unwrapping was performed using the method of Ghiglia and Romero [62]. An

example of segmented unwrapped phase reconstruction is shown in Fig. 7.1d. These

initial binary masks were manually corrected using GNU Image Manipulation Program

(GIMP) [288] using the unwrapped phase as a background layer. GIMP is a free and open

source software application for such tasks as photo retouching, image composition and

image authoring. In addition, a third region was manually defined for the lumen. With

this approach, each ground-truth mask contained two to three distinct values depending on

whether there was any lumen present. Example masks are shown in Fig 7.2. Obtaining

initial segmentation masks as described using a model-based approach for use in deep

learning is in alignment with our paradigms theme.
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Figure 7.2 Example MDCK phase reconstructions with ground truth masks. Example phase
reconstructions (i) from imaging experiments along with the corresponding ground-truth
masks (ii). A and D are of healthy samples, and B and C show KRasV12 samples. In
the masks black is for background, grey is for basolateral membrane (or non-hollow 3D
region), and white is for hollow lumen.
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7.4 Experimental results

The ground-truth mask making process was repeated for 200 cyst holograms that were

captured at eight distinct times (Appendix A, experiments 1-5, 24 and 30). From two of

these imaging experiments (experiment 24 and 30), 50 holograms of healthy cysts and 50

holograms of KRasV12 cysts were randomly picked. The remaining 100 were randomly

picked from the remaining experiments. The reason for picking data as described was the

different number of holograms captured in each imaging experiment. In total, half of the

holograms (100) contained KRasV12 transformed samples, and the remaining contained

healthy samples (100). The network architecture was based on U-Net [131] with a full

1024×1024 pixel resolution input (Fig. 7.3). This architecture has been used successfully

before with DHM [60, 199, 289] which is the reason for choosing this architecture.

The network was trained with three different input types: a hologram, an out-of-focus

phase, and an in-focus phase; each subsequent type requiring more pre-processing for the

network than the previous type. If the network was able to distinguish cyst and lumen

using a real-valued hologram, it would allow for the smallest amount of pre-processing and

therefore a faster throughput. Convolution kernels were 3×3 pixels with one-pixel stride,

except for the last convolution that had a 1×1 pixel kernel. All max pooling layers had

2×2 pixel kernels with two-pixel stride making the output side lengths half of the input

side lengths. Transposed convolutions had 2×2 pixel kernels with a stride of two making

the output side lengths two times larger than the input side lengths. The network was

trained with two Nvidia GTX 1080 graphics cards using the PyTorch [248] deep learning

framework with a batch size of three. The network was trained for 100 epochs with the

Adam [254] optimiser, weight decay of 1×10−4, and two-dimensional cross entropy loss.

The initial learning rate was set to 1×10−4, and reduced by a factor of 10 every 25 epochs.

Figure 7.4 shows loss values during training with different inputs. With hologram and

in-focus phase inputs, the loss is smaller than with out-of-focus phase inputs, however, in

general, the loss values are small with all three different input types. Each network was

trained once.

Figure 7.5 shows results for multiple different inputs, both healthy and tumourigenic.

From these results, it is clear that the in-focus phase provides the best accuracy. These
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Figure 7.3 U-Net network structure, showing data flow through the network. Numbers
above show iamge dimensions and numbers below show depths of layers. The input to the
network was a greyscale image with 1024×1024 pixels. The output was 3×1024×1024 –
containing different label probabilities at each of three channels.

3D objects are so complex that the lumen boundary cannot be determined directly from

hologram nor from the out-of-focus phase images for our particular network architecture

and training set.

To quantify segmentation accuracy for analysis, lumen indices r were calculated using

different CNNs (r is defined in Section 4.2.5). Table 7.1 shows r values for test holograms

shown in Fig. 4.4. Figure 7.6 shows absolute r value error with different network inputs.

The average absolute errors were 0.158, 0.170, and 0.040 for hologram, out-of-focus phase,

and in-focus phase input CNNs, respectively. This demonstrates that the in-focus phase

images provide the smallest error. The segmentation CNN with in-focus phase as input

is more robust than others, successfully segmenting all 11 samples, whereas the network

with out-of-focus phase input successfully segmented only seven.

7.5 Conclusions

In this chapter it was shown that a CNN can perform an efficient segmentation of 3D cell

clusters, and their lumens, encoded in digital holograms. A high accuracy segmentation

is an important initial step in the processing and analysis pipeline for many biomedical
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Figure 7.4 U-Net training loss values with different training inputs.
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Figure 7.5 Segmentation results. A, hologram; B, out-of-focus phase; C, in-focus phase; D,
mask with hologram input; E, mask with out-of-phase input; F, mask with in-focus input;
G, ground truth mask. Columns i through iv are healthy cysts, and columns v through viii
are oncogenic inputs.
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Table 7.1 Lumen analysis. Showing r values of ground truth masks and masks obtained
from different CNNs for example cysts shown in Fig 7.2. If a scene contained multiple
cysts, cysts are indexed (e.g. H1.1), and indexes are increased from top to down; a cyst
located at the top part of the input gets the lowest index. GT: ground-truth, H: hologram,
OP: out-of-focus phase, IP: in-focus phase. NA in results means that this cyst with the
input type could not be segmented.

Cyst GT H OP IP
H1.1 0.370 0.015 NA 0.361
H1.2 0.029 0.065 NA 0.014
H2.1 0.208 0.088 NA 0.235
H2.2 0.219 0.00 NA 0.104
H2.3 0.358 0.021 0.011 0.334
H3 0.396 0.196 0.240 0.457
H4 0.476 0.492 0.237 0.382
H5 0.070 0.000 0.059 0.048
H6 0.228 0.001 0.021 0.246
H7 0.000 0.050 0.007 0.000
H8 0.544 0.659 0.324 0.489

H1.1 H1.2 H2.1 H2.2 H2.3 H3 H4 H5 H6 H7 H8
0

0.1

0.2

0.3

0.4 Hologram
Out-of focus phase
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Figure 7.6 Lumen index r value absolute error, showing r value absolute errors of eight
cyst holograms (Fig 7.2), containing 11 cysts in total.
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applications. The best performance was provided using in-focus phase reconstructions.

For the U-Net architecture and our training set, the lumens in these 3D cell clusters are

too complex to be analysed from the digital holograms or from the out-of-focus phase

reconstructions directly.
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8
Shallow CNN architectures

This chapter contains a deep learning based approach to classify cysts as either healthy or

oncogenic. An alternative to existing deep CNN architectures for two-class classification

is described and results with various different shallow architectures is reported. In addition,

this chapter investigates if a-priori knowledge of samples can be integrated into a neural

network for our particular application domain.

8.1 Introduction

Our problem is binary classification; we want to classify our cysts as either normal or

oncogenic. There does not exist a state-of-the-art CNN architecture specific to binary

problems as all widely used and well-known architectures are invented for (usually harder)

multi-class problems. Many of them are introduced as part of different challenge com-

petitions, perhaps the most well-known is the ImageNet Large Scale Visual Recognition

Challenge [120]. Although these architectures and model designs work well with binary

problems, executing a single inference with these models can be time-consuming due

their deep architectures. To tackle this problem, we investigated the possibility to simplify

the network architecture for binary-classification. This approach is in alignment with our

simplification theme.

In addition, we compare the performance of shallow networks with and without

additional extracted quantitative hand-crafted features. Traditionally, a CNN contains a

feature extraction part that, during training, automatically learns to extract distinguishing

features from the data that can be used with a fully connected part of the network to
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perform its task (classification or regression). It is also possible to combine CNN features

with hand-crafted features that originate from elsewhere. In several published papers

hand-crafted features are combined with CNN features and another classifier is trained

with a composition of these features [290–293]. Jin et al. [290] used a combination of the

locality-constrained linear coding (LLC) method and CNN features as an input to a SVM

classifier. Li et al. [291] trained a support vector machine by concatenating the output of a

first or second fully connected layer of a fine-tuned CNN with handcrafted features (root-

SIFT, vectorised raw-pixel values and multi-resolution local patterns). Lee et al. [292] used

random forest classifier with a concatenation of CNN features and hand-crafted features

of shape and texture. Nguyen et al. [293] concatenated CNN features and a multi-level

local binary patterns as an input to a SVM classifier. Other approaches either feed in

hand-crafted features to a network [294] or use hand-crafted features as an additional input

to a network [295]. Hosseini et al. [294] used Gabor filter responses as inputs to a CNN.

Wu et al. [295] combined colour and texture histograms with features extracted by feature

extractor part of a CNN based on the AlexNet architecture.

8.2 Shallow networks

8.2.1 Building blocks

We define the concept of building blocks where each building block is a combination of

multiple layers. We enumerated our architectures using a binary encoding to ensure that

all small building block combinations in our scheme are included. We keep our building

blocks as simple as possible where the two blocks are:

• one convolution layer followed by max pooling (denoted with the symbol ‘0’)

(Fig. 8.1a)

• two convolution layers followed by max pooling (denoted with the symbol ‘1’)

(Fig. 8.1b)
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Convolution + Batch normalisation + PReLu

Max pooling

Fully connected + PReLu + Drop-out

Fully connected

a b

c

Figure 8.1 Building blocks. A: ‘0’, B: ‘1’, C: An example architecture with ‘1101’
configuration. Numbers above layers show the spatial size of their output and numbers
below show the number of output channels/features.

Tables 8.1 and 8.2 show tested building block combinations along with the number

of learnable parameters. For reference, the AlexNet architecture contains 58.3 million

learnable parameters.

8.2.2 Procedure to combine building blocks

In building block ‘0’ there is one convolution layer followed by a maxpooling layer (see

Fig. 8.1). In building block ‘1’ there are two convolution layers followed by a maxpooling

layer. In both cases, each convolution layer is followed by a batch normalisation layer that

is followed by an PReLu activation layer. The first fully connected layer is followed by

an activation layer and a drop-out layer with a 50 % drop-out ratio. The second (and last)

fully connected layer outputs two features that are fed to a logarithmic softmax layer.

8.2.3 Network parameters

Each convolution layer has 1-pixel stride and a 3×3 pixel kernel size except the first

convolution layer that has 9×9 pixel kernel size. Max pooling layers have 2×2 pixel kernel

and 2-pixel stride except for the last max pooling layer. The last max pooling layer outputs

a o×2×2 feature vector to the fully connected layer, where o is dependent on the depth of
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Table 8.1 Shallow CNN architectures starting with a ‘0’ building block, showing total
number of learning parameters.

Index Model Parameters
1 0 9636
2 00 10237
3 01 15234
4 000 15234
5 001 23377
6 010 23377
7 011 37049
8 0000 23377
9 0001 37049

10 0010 37049
11 0011 60202
12 0100 37049
13 0101 60202
14 0110 60202
15 0111 102463
16 00000 37049
17 00001 60202
18 00010 60202
19 00011 102463
20 00100 60202
21 00101 102463
22 00110 102463
23 00111 182054
24 01000 60202
25 01001 102463
26 01010 102463
27 01011 182054
28 01100 102463
29 01101 182054
30 01110 102463
31 01111 337890
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Table 8.2 Shallow CNN architectures starting with a ‘1’ building block showing total
number of learning parameters.

Index Model Parameters
32 1 14633
33 10 15966
34 11 24109
35 100 24109
36 101 37781
37 110 37781
38 111 60934
39 1000 37781
40 1001 60934
41 1010 60934
42 1011 103195
43 1100 60934
44 1101 103195
45 1110 103195
46 1111 182786
47 10000 60934
48 10001 103195
49 10010 103195
50 10011 182786
51 10100 103195
52 10101 182786
53 10110 182786
54 10111 338622
55 11000 103195
56 11001 182786
57 11010 182786
58 11011 338622
59 11100 182786
60 11101 338622
61 11110 338622
62 11111 653267
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8.2 Shallow networks

the network as

o =


⌊a(gc−2)⌋, if c > 2,

⌊ag⌋, if c = 2,

a, otherwise,

(8.1)

where a is the number of output channels from the first convolution layer, g is the growth

factor, and c is the total number of convolution layers. The growth factor, g, determines

how rapidly the number of features (width of the network) is increased. The growth

factor affects the third and subsequent blocks only. This layer outputs the same number

of channels as the first convolution block. We set g to 1.5 and a to 4 in our experiments.

Besides these, we keep the number of output features from the first fully connected layer,

b, fixed at 256.

The networks were trained for 100 epochs with the Adam [254] optimiser, weight

decay of 1×10−3 and cross entropy loss. An adaptive learning rate was used with an initial

learning rate of 10−4 that was reduced by a factor of 10 if the validation loss had not

decreased for ten consecutive epochs.

8.2.4 Justifying network parameters a and b

To justify these choices we trained the ‘1000’ and ‘1001’ architecture models with different

values of a and b. The average accuracies obtained by using these parameter values

were compared with AlexNet and a multilayer perceptron. The multilayer perceptron

was trained with extracted features as explained in Chapter 4, and all classifiers used

the same training and testing data. Three CNNs and 1000 multilayer perceptrons were

trained. The averaged results of these networks are shown in Fig. 8.2. This figure shows

classifier average accuracies on testing data captured on the same day as the training data,

data captured at a different time than the training data, and averages of these two testing

datasets weighted by the number of test samples (imaging experiments 24, 30, and 33 in

Appendix A). It can be observed that all classifiers performed well on the data that was

captured on the same day as the training data. However, when testing on the data that

was captured at a different time (imaging experiments 0-6 in Appendix A), differences

became more obvious. The multilayer perceptron failed on this dataset. With a = {2,4}
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(2, 64) (4, 128) (8, 256) (16, 512) (32, 1024) (64, 2048) (128, 4096)
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Model '1000' weighted average Model '1000' same day Model '1000'  different day
Model '1001' weighted average Model '1001' same day Model '1001'  different day
AlexNet weighted average AlexNet same day AlexNet different day
MLP weighted average MLP same day MLP different day

Parameters of first convolution and first fully connected layer (a, b)
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Figure 8.2 Choice of parameters. Showing classification accuracy of two shallow CNN
models (‘1000’ and ‘1001’), AlexNet, and multilayer perceptron (MLP) with different
testing data and their weighted averages. See text for more explanation.

and b = {64,128}, the shallow models failed to classify this data. By looking at weighted

averages, the shallow models with a = 8 and b = 256 were near to the performance of

AlexNet so using these parameters was regarded as appropriate minima.

8.2.5 Claim and systematic search

The research question we are interested in is: given our architectural design restrictions,

what is the minimum number of learning parameters that can compete with AlexNet for

our particular problem?

Definition 8.2.1. We define an architecture to be a sequence of layers created using the

building blocks defined in Section 8.2.1 using the procedure defined in Section 8.2.2, and

parameters defined in Section 8.2.3.

Definition 8.2.2. We define an application to be classification of in-focus segmented

phase reconstructions from digital holograms of healthy and oncogenic MDCK cysts.

The cysts are cultured and imaged as described in Chapter 3. Classes are restricted to

two, healthy and oncogenic, and the nature of classification is therefore binary (two-class

classification).

Definition 8.2.3. We define the reference architecture to be AlexNet as described in

Section 4.3.4. We define performance metric to be weighted average accuracy.
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8.3 Experimental results and systematic search

Claim 8.2.1. For the class of architectures described in Definition 8.2.1 and for the

application defined in Definition 8.2.2 no more than 100000 learning parameters are

required to solve the problem within 10 % of the performance of the reference architecture

as defined in Definition 8.2.3.

Systematic search. In order to validate this claim, we just need to show the existence of

one instance of the architecture with sufficient performance for our binary-classification

problem. We find this instance by performing a systematic search over the architectures.

The scope of this result is very limited. We hold the input domain and output domain

fixed (for our specific dataset and binary classification problem), we restrict ourselves to

a narrow architectural class (those CNNs that can be defined using our building blocks),

and we keep various parameters fixed (such as learning rate behaviour, batch size, weight

decay, dropout ratio). In this very restricted scenario, we then perform an exhaustive search

with all combinations of building blocks and investigate which combinations of building

blocks provides sufficient performance for our binary-classification problem.

Although this will demonstrate conclusively the existence of an architecture instance

with no more than 100000 learning parameters that solves the problem, this is just char-

acterising an upper bound on the number of learning parameters required, and we are

not claiming that no smaller network exists. Similarly, for a different architecture, more

learning parameters may be required.

In order to go further and prove that this upper bound would be optimal, we would

need to exhaustively search each possible test set of our particular dataset, exhaustively

search all the parameters of each neural network in our collection of architectures (batch

size, weight decay, dropout ratio), search all possible learning strategies (learning rate

behaviour, choice of activation function), check all possible randomly-generated network

weight initialisation values, and so on.

8.3 Experimental results and systematic search

A total of 2741 (2245 control and 496 KRasV12) MDCK cysts were used in the classification

experiment. The data was split into training, validation and, testing data as follows. First,

from both phenotypes, 100 holograms were chosen for test data. From the remaining
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8.4 Combining two worlds: additional hand-crafted features

holograms, 400 holograms from both phenotypes were randomly chosen for training. For

validation data, 200 and 180 objects were picked from control and oncogenic phenotypes,

respectively. We made sure that none of the holograms used for training or validation

overlapped with test holograms. In addition, we supplemented the test dataset with an

additional test dataset to make the classification problem harder (called additional test

dataset in the remainder of this chapter). It contained 199 control and 146 oncogenic

MDCK samples that were captured at a different time from the training data. All networks

were trained with two Nvidia GTX 1080 graphics cards using the PyTorch [248] deep

learning framework with a batch size of 30.

Each input was randomly augmented during run-time by a randomly generated combin-

ation of rotation by 90 degrees, horizontal mirroring, and vertical mirroring. Rescaling to

224×224 pixels enables magnification independency allowing the same network model to

be used with data captured using different microscope objectives. Each unwrapped phase

input was normalised to be between 0 and 1 to allow wavelength independency as the

number of phase wraps is dependent on the used wavelength. Each network was trained

three times.

Result of the systematic search. We demonstrate the existence of an architecture instance

satisfying Claim 8.2.1 by examining the results of the exhaustive search of architectures

as described in Definition 8.2.1 in increasing order of the number of learning parameters.

From Fig. 8.3 it can be seen that model ‘00010’ has accuracy (78.5 %) within 10 % of

reference architecture (86.7 %) as defined in Definition 8.2.3. Model ‘00010’ has 60202

learning parameters. This demonstrates that no more than 100000 parameters are needed

for the application defined in Definition 8.2.2.

8.4 Combining two worlds: additional hand-crafted fea-

tures

In the literature, defined at the beginning of this section, where hand-crafted features were

used some way or another with CNNs, the magnitude of extracted features were typically

the same as CNN extracted features (in the thousands). As we have a-priori morphological
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and phase related quantitative features for cysts (defined in Chapter 4), we wanted to

investigate if this information could be used to improve the classification accuracy. In total,

we had 19 extracted features which is a small number compared to the typical number of

extracted convolutional features. Our aim was to develop an end-to-end-trainable network

where we integrate our additional data into the network, keeping the feature extraction part

of our CNN intact. To accomplish this, we modified the last fully connected layer to output

19 values that were concatenated with our 19 a-priori features. The magnitudes were made

equal so that the hand-crafted features do not vanish during the training and have the same

significance as the CNN extracted features. We introduced an additional fully connected

layer that took these 38 values as input and returned as output two values that were fed to a

logarithmic softmax layer. The network was able to learn weights also for a-priori features.

This procedure is illustrated in Fig. 8.4. Adding hand-crafted features increases the total

number of model parameters by 4523. This approach is in alignment with our paradigms.

We trained all 62 shallow neural networks with the hand-crafted features. Figure 8.5

shows the mean classification accuracy of the test and additional test datasets with different

building block combinations with and without a-priori hand-crafted features. It can be ob-

served that adding a-priori hand-crafted features generally improves classification accuracy

with few exceptions. Accuracy improvements are more pronounced with shallower models.

With deeper models, containing more parameters, accuracy improvements are small or

non-existent. The average accuracy improvement was 6.0 % with a standard deviation of

4.6.

8.5 Visualisation

A visualisation of the most representative image from CNN’s point of view (as proposed by

Simonyan et al. [296]) is shown in Fig. 8.6. In this visualisation, the starting image contains

only zeros and the loss is minimised for a specific class keeping the trained weights of

the model fixed at each iteration. At each iteration, we perform a forward pass, correct

the classification, and perform a backward pass, updating the image. The center region of

Fig. 8.6b shows more constant values than Fig. 8.6a, which might be an indication of a

blocked lumen. However, these results are not easily interpreted.
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A different visualisation and understanding of what features are important for a CNN

can be obtained by using Grad-CAM [255]. Example results of this are shown in Fig. 8.7

and Fig. 8.8 for five normal and five KRasV12 samples, respectively. These figures contain

results of using and not using hand-crafted features. The most important features for

normal cysts were found at edges and membrane borders (Fig. 8.7). The most important

features for KRasV12 cysts were larger homogeneous regions, at least without hand-crafted

features (Fig. 8.8). With hand-crafted features, edges display the highest values.

Figure 8.11 shows individual weights for convolutional and hand-crafted features

after the concatenation layer for the trained ‘00010’ model. Figure 8.12 shows absolute

differences of weights from Fig. 8.11. A greater difference means a more important

feature. Based on these results, hand-crafted features are less important than convolutional

features. The most important single hand-crafted feature for this model and with this data

is roughness. Of the hand-crafted features, area was the least important discriminative

features.

8.6 Data and importance of segmentation

The inputs to the networks were in-focus segmented unwrapped phase images. For this,

we defined a square region around the object using our heuristic segmentation approach

(presented in Chapter 7). Each segmented phase image was rescaled to 227×227 pixels as

required by the network. This process is illustrated in Fig. 8.13. This approach kept some

of the background in the inputs. In order to investigate how important the background is

and if the cysts in the field of view should be segmented from the background alone, all the

values within a circular region with a diameter of the bounding box side length were set to

0. The image was cropped relative to the bounding box with parameters +25 pixels to -45

pixels (with 5 pixel steps). Then the cropped region was rescaled back up to the original

image size. This permitted us to preserve different amounts of background in input images

(example inputs shown in Fig. 8.14). For this experiment, the AlexNet [121] architecture

as defined in Section 4.3.4 was used.

In total, 980 MDCK cyst holograms were used in this experiment (500 wild-type and

480 oncogenic) and this was partitioned between training (400), validation (380), and
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testing (200) (example phase reconstructions are shown in Fig. 8.15). In addition to the

MDCK cell line, a human prostate (RWPE-1) epithelial cell line was utilised from 13

independent imaging experiments (example phase reconstructions shown in Fig. 8.16). In

total 818 RWPE holograms were used and this data was split into training (423), validation

(180), and testing (215).

Figure 8.17 shows classification accuracies with different background proportions. It

can be observed that, for both cell lines, the classification accuracy remained high even

with a small fraction of the background. With the MDCK cell line, accuracies varied

from 93 % (+25 pixels) to 71 % (-45 pixels). With the RWPE cell line, accuracies varied

from 81.4 % (+ 20 pixels) to 74.9 % (-40 pixels). Given that all accuracies are higher

than 70 %, it can be verified that the networks were not failing with any of the inputs, and

remarkably the networks were able to learn distinguishing features from small proportions

of the background alone.

8.7 Conclusions

In this chapter, it was shown that a CNN can be used to reliably classify normal and

oncogenic cysts. The phase data needs to be normalised for wavelength independency and

magnification independency can be obtained by rescaling the data. The results of a large

scale comparison of different CNN architectures for a binary classification task were given.

It was shown that by adding a-priori information to a CNN, it is possible to improve the

classification accuracy of shallow models. Shallow CNNs with hand-crafted features (in

our experiments) have higher classification accuracy than the same models without hand-

crafted features, and may be more robust to the noise present in real biological samples.

CNNs containing more learning parameters are able to learn discriminative features that

are equally or more important than hand-crafted features, making the hand-crafted features

less useful.

In addition, an experiment on the importance of background removal was performed.

Based on these results, it can be concluded that samples prepared and cultured at different

times may leave visible artefacts on the background that can be learned by a CNN. Also,

the imaging system needs to be examined carefully so that the quality of the captured
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holograms remains constant between different captures. Dissimilar lighting conditions or

other artefacts introduced into the system can fabricate a system-state-specific "fingerprint"

that is transferred to captured data. Liquid solutions (MatrigelTM, pH buffers etc.) inside

the petri dish need to be carefully adjusted and constant amounts should be used between

different captures. Finally, the environmental conditions (CO2 levels, humidity, temperat-

ure) should be stable and constant between the captures. One solution to this problem is an

accurate segmentation of objects-of-interest where the background cannot interfere with

the classification.
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Figure 8.3 Accuracy of different architectures, showing accuracies of different shallow
models. In addition, AlexNet and multilayer perceptron accuracies are shown. The model
number on the horizontal axis refers to the indices in Tables 8.1 and 8.2. The arrow indicate
the accuracy of model ‘00010’.
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Convolution + Batch normalisation + PReLu

Max pooling

Fully connected + PReLu + Drop-out

Fully connected

Concatenation

A-priori feature vector

Figure 8.4 A-priori feature addition. See section 8.4 for more information.
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Figure 8.5 Classification accuracies of different shallow models with and without hand-
crafted features. In addition, AlexNet and multilayer perceptron accuracies are shown. The
model number on the horizontal axis refers to the indices in Tables 8.1 and 8.2.
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(a) (b)

Figure 8.6 Class specific image creation. Model ‘00010’ was used to create class specific
images over 100 iterations. Visualisation of (a) normal and (b) KRasV12 cysts. See text for
more explanation.

A

B

C

I II III IV V

Figure 8.7 Grad-CAM for five normal MDCK cysts I-V. Row A: unwrapped phase recon-
struction, row B: Grad-CAM on segmented phase reconstruction without hand-crafted
features, row C: Grad-CAM on segmented phase reconstruction with hand-crafted features.
CNN probabilities for class 0: BI: 0.853, BII: 0.981, BIII: 0.934, BIV: 0.845, BV: 0.965,
CI: 0.645, CII: 0.859, CIII: 0.883, CIV: 0.807, CV: 0.911. Model ‘00010’ was used to
obtain these results. Colourbar: values are normalised to be from 0 to 255 for visualisation.
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I II III IV V

A

B

C

Figure 8.8 Grad-CAM for five KRasV12 MDCK cysts I-V. Row A: unwrapped phase
reconstruction, row B: Grad-CAM on segmented phase reconstruction without hand-
crafted features, row C: Grad-CAM on segmented phase reconstruction with hand-crafted
features. CNN probabilities for class: 1 BI: 0.983, BII: 0.642, BIII: 0.999, BIV: 0.987,
BV: 0.976, CI: 0.999, CII: 0.969, CIII: 0.999, CIV: 0.983, CV: 0.979. Model ‘00010’ was
used to obtain these results. Colourbar: values are normalised to be from 0 to 255 for
visualisation.
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I II III IV V

A

B

C

Figure 8.9 Grad-CAM incorrect classification for five normal MDCK cysts I-V. Row A:
unwrapped phase reconstruction, row B: Grad-CAM on segmented phase reconstruction
without hand-crafted features, row C: Grad-CAM on segmented phase reconstruction with
hand-crafted features. CNN probabilities for class 0: BI: 0.304, BII: 0.102, BIII: 0.001,
BIV: 0.033, BV: 0.044, CI: 0.072, CII: 0.045, CIII: 0.154, CIV: 0.069, CV: 0.001. Model
‘00010’ was used to obtain these results. Colourbar: values are normalised to be from 0 to
255 for visualisation.
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I II III IV V

A

B

C

Figure 8.10 Grad-CAM incorrect classification for five KRasV12 MDCK cysts I-V. Row A:
unwrapped phase reconstruction, row B: Grad-CAM on segmented phase reconstruction
without hand-crafted features, row C: Grad-CAM on segmented phase reconstruction with
hand-crafted features. CNN probabilities for class 1: BI: 0.095, BII: 0.155, BIII: 0.243,
BIV: 0.036, BV: 0.039, CI: 0.24, CII: 0.079, CIII: 0.042, CIV: 0.041, CV: 0.065. Model
‘00010’ was used to obtain these results. Values are normalised to be from 0 to 255 for
visualisation.
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Figure 8.11 Concatenated weights plotted. Showing actual learned weight values of the
concatenation layer of the ‘00010’ architecture model.
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Figure 8.12 Absolute difference of weights (from Fig. 8.11) of the ‘00010’ model.
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Figure 8.13 Phase image preprocessing. Cysts in 1024×1024 unwrapped phase images
were segmented and rescaled to 227×227 pixels. This approach allows the use of different
magnifications during imaging.
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  (a)

(b) (c)

(d) (e)10 μm

Figure 8.14 RWPE cell cluster with different amounts of background preserved. (a) original
phase reconstruction, (b) - (e) example inputs with different portions of background
(bounding box side length average) (b) +25 pixels, (c) +5 pixels, (d)-30 pixels, (e) -45
pixels. (b-e shown with a false colour-map for visualisation)
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Figure 8.15 Example MDCK phase reconstructions. Row A: wild-type, row B: oncogenic.
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Figure 8.16 Example RWPE phase reconstructions. Example RWPE cell clusters from
each imaging experiment. a-l are from experiments 1-12, and m-p are from experiment 13.
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Figure 8.17 Accuracies with MDCK and RWPE samples, showing classification accuracies
with different amounts of background in the inputs.
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9
Time-lapse and patient samples

9.1 Introduction

Microscope modifications (integrated incubator, motorised translation stages, and related

software) allow time-lapse imaging and monitoring morphological changes of cysts over

long periods of time.

University Oulu Hospital (UOH) and Biocenter Oulu (BCO) have conducted collabor-

ative research where patients diagnosed with prostate cancer went through a prostatectomy,

providing tissue samples for research purposes. All participating patients were volunteers

and gave written consent for the research. Tissue samples were prepared for further re-

search purposes, and imaged holographically. Perhaps the greatest challenge with the

patient derived data is that we do not have real control samples, i.e. we do not have samples

of healthy tissue.

In this chapter, we illustrate that gathering time-lapse data of living cysts is possible.

In addition, we show that the system can be used as-is for real patient samples. We use

k-means clustering and different classifiers with the captured holograms.

9.2 Time-lapse data

An example time-lapse sequence of MDCK cysts is shown in Fig. 9.1. Figure. 9.2 shows

change rates of different extracted features (see Chapter 4 for details of extracted features).

Cysts were binary segmented using the heuristic used to create the ground truth mask

with which to train the segmentation CNN from Chapter 7. The CNN was not used
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(a) (b) (c)

(d) (e) (f)

10 μm

Figure 9.1 Example phase sequence from time-lapse imaging at different imaging times.
(a) 0 h, (b) 24 h, (c) 48 h, (d) 72 h, (e) 96 h, and (f) 120 h.

for segmentation in this experiment (it was developed later chronologically). For these

experiments we also use an alternative (earlier developed) lumen index compared to that

defined in Section 4.2.5.

For each mask R′(x,y;z) (defined in Section 7.3) where the ground-truth masks were

applied we constricted the mask towards the centre of the mass by approximately 10 µm

(50 pixels) and obtained a new mask L(x,y;z) that covered only the lumen. By subtracting

L(x,y;z) from R′(x,y;z) we obtain another mask, B(x,y;z), for the cells between the

basolateral and apical membranes. We calculated a heuristic lumen index, l, as

l =
∑

M−1
x=0 ∑

N−1
y=0 L(x,y;z)S(x,y;z)

AB̄
(9.1)

where B̄ is the average of maxima along the y axis of B(x,y;z)S(x,y;z), and M and N are

width and height of L(x,y;z), respectively. S(x,y;z) is defined as

S(x,y;z) = φ
′(x,y;z)R′(x,y;z) (9.2)
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Figure 9.2 MDCK change rates of different extracted features. Values are averages of 20
healthy and KRasV12 MDCK cysts.
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9.2 Time-lapse data

τ=0.6

10 μm (a) (b)

(c) (d) (e)

B

L(x,y;z)S(x,y;z)

Figure 9.3 Cyst segmentation procedure. (a) aberration free wrapped phase φ(x,y;z), (b)
morphological gradient image G(x,y;z) calculated from (a), (c) binary mask M(x,y;z)
obtained through processing (b), (d) segmented unwrapped phase reconstruction, (e)
illustration of different regions of a cyst: B (red) region of cells between the basolateral
and apical membranes and lumen (green).

where φ ′(x,y;z) is a part of the wrapped phase image φ(x,y;z) with same coordinates as

the bounding box for the segmentation mask. A is defined as

A =
M−1

∑
x=0

N−1

∑
y=0

L(x,y;z). (9.3)

9.2.1 Principal component analysis and k-means clustering

For PCA-k-means combination, we used time-lapse data captured with our automated

system. The hologram capture was realised over 144 hours (6 days) where discrete (x,y)

positions were captured every 24 hours. This was performed for both healthy and KRasV12

samples. For the actual analysis and experiment, data from days 2 to 6 were used. 20

sequences from both healthy and KRasV12 cysts were used for analysis.

Principal component analysis can be used to reduce dimensions of high dimensional

data. For this, we are interested if PCA together with k-means clustering can be used

to split cysts into tumourigenic and healthy cysts. Each cyst was segmented from the

background and quantitative phase and morphology related features (Table. 9.1) were

extracted as well as the rate of change of each feature. Features were standardised so that
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9.2 Time-lapse data

Table 9.1 Morphology and phase related features.

Index Name Type
1 Major axis length Morphology
2 Minor axis length Morphology
3 Eccentricity Morphology
4 Area Morphology
5 Roundness Morphology
6 Perimeter Morphology
7 Roughness Morphology
8 Standard deviation Phase
9 Density Phase

10 Average Phase
11 Lumen index (I) Phase

Table 9.2 Component loadings without change rates. Index refers to Table 9.1.

Hours 24 48 72 96 120
Index/PC 1 2 1 2 1 2 1 2 1 2

1 0.41 0.15 0.37 0.19 0.39 0.18 0.39 0.08 0.39 0.07
2 0.42 -0.19 0.40 -0.06 0.40 -0.01 0.39 -0.09 0.39 -0.06
3 -0.13 0.43 -0.25 0.38 -0.17 0.63 -0.11 0.61 -0.11 0.60
4 0.44 -0.07 0.40 0.02 0.40 0.08 0.39 0.00 0.38 0.04
5 0.09 -0.47 0.23 -0.46 0.17 -0.63 0.10 -0.64 0.11 -0.61
6 0.44 0.01 0.39 0.08 0.40 0.11 0.40 0.01 0.39 0.05
7 -0.03 0.27 -0.10 0.40 0.00 0.16 0.06 0.20 0.20 0.41
8 0.33 0.30 0.30 0.34 0.37 0.01 0.37 0.15 0.35 -0.07
9 -0.01 0.44 -0.17 0.40 -0.17 -0.14 -0.19 0.27 -0.25 -0.04
10 0.26 0.40 0.25 0.40 0.37 0.22 0.36 0.23 0.36 0.18
11 0.27 -0.16 0.29 0.07 0.15 -0.25 0.23 0.13 0.14 -0.20

the data had zero mean and a standard deviation of one. k-means clustering was run on each

day’s data ten times with different centroid seeds to avoid local minima. The maximum

number of iterations was 300 for a single run. The seed initialisation was performed with

the k-means++ initialisation scheme [297].

Table 9.2 and Table 9.3 show component loadings without and with change rates,

respectively. It can be observed that there are no strong correlations between features

and principal components and most of the features are therefore contributing equally to

principal components. Based on this result, lumen index, l, is the only feature that does

not show component loading values greater than 0.3 with any dataset without change rate.

With the data using the change rate, component loadings are even more balanced.

Figures 9.4 and 9.5 show principal component analysis of different age cysts without

and with change rates, respectively. These figures display also k-means clustering result.
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9.2 Time-lapse data

Table 9.3 Component loadings with change rates. Index refers to Table 9.1. CR=change
rate of corresponding feature.

Hours 24 48 72 96 120
Index/PC 1 2 1 2 1 2 1 2 1 2

1 0.29 0.11 0.31 0.01 -0.29 0.05 0.31 0.00 0.32 -0.03
CR 0.29 0.11 0.21 0.24 -0.27 -0.19 0.28 0.10 0.25 0.16
2 0.29 -0.14 0.32 -0.11 -0.29 0.15 0.31 -0.11 0.31 -0.10

CR 0.29 -0.14 0.26 -0.22 -0.23 0.21 0.26 -0.19 0.24 -0.17
3 -0.09 0.30 -0.17 0.21 0.08 -0.36 -0.07 0.39 -0.04 0.37

CR -0.09 0.30 0.02 0.29 -0.12 -0.42 0.03 0.37 0.01 0.42
4 0.31 -0.05 0.33 -0.07 -0.29 0.10 0.31 -0.06 0.32 -0.06

CR 0.31 -0.05 0.33 -0.04 -0.29 0.06 0.31 -0.06 0.29 -0.07
5 0.07 -0.33 0.15 -0.26 -0.08 0.36 0.06 -0.42 0.05 -0.38

CR 0.07 -0.33 -0.03 -0.34 0.16 0.41 -0.04 -0.39 -0.02 -0.42
6 0.31 0.01 0.33 -0.04 -0.29 0.11 0.31 -0.05 0.32 -0.05

CR 0.31 0.01 0.29 0.10 -0.28 -0.04 0.29 -0.02 0.29 0.03
7 -0.02 0.19 -0.05 0.24 0.03 0.16 0.06 0.15 0.18 0.15

CR -0.02 0.19 -0.04 0.14 -0.02 0.07 0.08 0.10 0.18 0.17
8 0.24 0.21 0.26 0.17 -0.26 0.17 0.30 0.05 0.27 -0.04

CR 0.24 0.21 0.10 0.33 -0.23 -0.14 0.19 0.25 0.06 0.25
9 -0.01 0.31 -0.11 0.32 0.16 0.13 -0.12 0.20 -0.20 0.10

CR -0.01 0.31 0.02 0.32 -0.14 -0.18 0.02 0.32 -0.01 0.20
10 0.18 0.28 0.23 0.18 -0.27 0.04 0.29 0.09 0.30 0.08
CR 0.18 0.28 0.08 0.31 -0.24 -0.21 0.14 0.23 0.17 0.31
11 0.19 0.11 0.23 0.03 -0.08 0.28 0.17 0.05 0.09 -0.03
CR 0.19 -0.11 0.14 0.08 0.11 0.06 0.05 0.10 -0.04 0.13
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9.3 Patient data

Table 9.4 shows classification accuracies that are based on confusion matrices shown in

Figures 9.4 and 9.5. From these results, it can be seen that classification accuracies vary

between different age cysts and accuracy does not necessarily improve with older cysts as

could be expected. Adding the change rates to the features improves classification accuracy

with some cases and decreases accuracy sometimes.
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Figure 9.4 PCA and clustering without change rate. Principal component analysis at
different imaging intervals showing first and second principal components on the 11
features in Table 9.1. (a) 24 h – 48 h, (b) 48 h – 72 h, (c) 72 h – 96 h, (d) 96 h – 120 h, (e)
120 h – 144 h. The black line shows the border between clusters.

9.3 Patient data

University Oulu Hospital (UOH) and Biocenter Oulu (BCO) have conducted a collaborative

research where patients diagnosed with a prostate cancer went through a prostatectomy,

providing tissue samples for research purposes. All participating patients were volunteers

and gave written consent for the research.
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Figure 9.5 PCA and clustering with change rate. Same as Fig. 9.4 except 22 features used
for PCA (11 features in Table 9.1 and their change rates).

Surgically removed prostate glands were analysed by a pathologist who performed

a histological evaluation of an adjacent tissue slice of the slice going to be used later

in research. The histological evaluation contained an estimation of possible amount of

cancer tissue. In total 13 patients of 37 were used in this study. These patients were

selected by researchers of BCO based on the histological evaluation containing tissue

samples of benign hyperplasia (3 patients) and different proportions of cancerous tissue

(‘LOW’ to ‘HIGH’). For three of the patients histological evaluation was not performed

(‘UNKNOWN’). Patients are grouped based on proportion of cancerous tissue as shown in

Table 9.5.

Table 9.6 shows grouping of selected 13 patients and number of organoids used in the

study.
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9.3 Patient data

Table 9.4 Classification accuracy with k-means clustering.

Cyst age (h) Accuracy (%) Change rate included
24-48 82.5
48-72 90.0
72-96 87.5

96-120 87.5
120-144 77.5
24-48 82.5 x
48-72 87.5 x
72-96 90.0 x

96-120 82.5 x
120-144 67.5 x

Table 9.5 Patient encoding. See text for more explanation.

Proportion of cancer cells (%) Label
0 ‘BENIGN’

1 - 20 ‘LOW’
21 - 100 ‘HIGH’

Not determined ‘UNKNOWN’

Table 9.6 Patient derived tissue samples showing group label based on evaluation of a
pathologist and total number of organoids.

Patient ID Group label Number of organoids
Z0 ‘BENIGN’ 313
L3 ‘BENIGN’ 45
F0 ‘BENIGN’ 295
Y8 ‘LOW’ 196
D7 ‘LOW’ 280
M8 ‘LOW’ 288
B6 ‘LOW’ 270
L9 ‘HIGH’ 250
W9 ‘HIGH’ 88
W5 ‘HIGH’ 300
E2 ‘UNKNOWN’ 176
T5 ‘UNKNOWN’ 213
A7 ‘UNKNOWN’ 307
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9.3 Patient data

9.3.1 From tissue samples to organoids

The following three paragraphs are largely taken from [298].

Tissue samples were transported from UOH to BCO where they were processed further.

The taken tissue samples were prepared immediately for cell culturing. Tissue samples

were sliced in small parts and cells were isolated through collagen treatment that was

followed by a short-term trypsin treatment. Treated samples were preserved in freezing

solution containing 90 % fetal bovine serum (FBS, Life Technologies) and 10 % dimethyl

sulfoxide (DMSO) and kept in liquid nitrogen for later experiments. Cells in these samples

were not homogeneous, instead each sample contained mixture of different cell types.

Cells were thawed on ice and then suspended into starting medium. Cells were

centrifuged for 5 minutes, and a pellet was suspended into pre-warmed complete medium

(MEM-Glutamax; 41090-093, Life Technologies). The cell suspension was mixed with

MatrigelTM in 1:4 ratio and divided into four wells in 24-well plate. Samples were

incubated in +37 °C for 2 minutes. After that the plates were turned upside down and the

MatrigelTM was allowed to solidify in the same temperature for 15 minutes. A medium with

rho-associated protein kinase inhibitor (ROCK inhibitor Y-27632) and nicotinamide was

added on top of it. The medium was replaced every second day. During the first week both

Y-27632 and nicotinamide were added to the medium and afterwards only nicotinamide. 35

mm glass-bottom µ-Dish (Ibidi GmbH, Gräfelfing, Germany) was blocked with phosphate

buffered saline (PBS) containing 1 % bovine serum albumin (BSA) in +37 °C for an hour.

After the blocking, the µ-Dish was washed with cold PBS and cooled down to +4 °C. A

thin layer of MatrigelTM was spread on top of the µ-Dish and the dish was placed back to

+4 °C for 5 minutes and then transferred into +37 °C for 30 minutes to solidify.

Meanwhile organoids that were grown in MatrigelTM drops were washed with PBS

and cell recovery solution was added covering the blobs. Cells were incubated in a cold

room on shaker for 30 minutes. The melted solution was transferred into Eppendorf tube

and organoids were spun down 10 seconds by using a table top centrifuge. The supernatant

was removed, and pellet was suspended into TrypLE. This was followed by 30 minutes

incubation in +37 °C with 5 % CO2. Organoids were dissolved by pipetting up and down

several times during incubation. The TrypLE was inactivated by adding equal amount
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9.3 Patient data

of soybean trypsin inhibitor solution and pipetting up and down at least six times. This

was followed by 5 minutes incubation at room temperature. The cells were spun down,

supernatant was removed, and pellet was resuspended into culture medium (Complete

Advanced DMEM/F12 medium with Y-27632 and nicotinamide). Equal amounts of cell

suspension and 2 % MatrigelTM were mixed and placed on top of the solidified 100 %

MatrigelTM. After the cells were attached to the bottom, Complete Advanced DMEM/F12

medium containing 2 % MatrigelTM was added on top of the cells. Medium was replaced

every second day. After three days, complete medium was added without MatrigelTM

and Y-27632. The patient-derived organoids were grown for one week in overlay before

imaging. For these experiments, holographic imaging was performed manually — i.e.

organoids in the dish were searched manually.

Cell sorting was not performed due to limited amount of cells and the fact that cell

sorting is harmful for cells. Because the cell sorting was not performed, cultured samples

contained not only epithelial prostate cells but also stromal cells. This fact can complicate

the analysis as cultures with these different cell types can form complex structures [299]

posing additional challenges.

9.3.2 Clustering

Clustering applied on patient data includes various different problems that were identified

during the experiments. These problems together with approaches used to solve problems

are shown in Table 9.7. Definitions of the problems are as follows.

Definition 9.3.1. Clustering consistency problem. Clustering of each patient is per-

formed based on different set features. The problem exists only if patient samples are

clustered one patient at a time based on extracted features of this very same patient.

Definition 9.3.2. Cluster relevance problem. Obtained clusters do not have relevance

to samples being benign or cancerous. The problem exists if cluster centres having no

relevance to disease are used for prediction.

Definition 9.3.3. Cluster indexing problem. Meaning of assigned cluster indexes is

different for different patients. The problem is applicable only if patient samples are

clustered one patient at the time.
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Table 9.7 Clustering problems. Showing problems related to k-means clustering and
approaches to solve the problems. All problems and solution approaches are presented in
this chapter. x denotes existence of a problem, ✓ denotes that the problem is solved by an
approach, N/A denotes that the problem is not applicable, and ∗ denotes future research
and this approach is not tested.

Approach
/Problem

Clustering
each

patient
to two

clusters

Group
patient

data and
cluster to

two clusters

Fix two
cluster
centres

based on
‘BENIGN’

and ‘HIGH’
patients

Apply PCA,
cluster each
patient to

two clusters,
apply 2nd

order
clustering

Include
real

control
data∗

Clustering
consistency

problem
x ✓ ✓ ✓ ✓

Cluster
relevance
problem

x x ✓ x ✓

Cluster
indexing
problem

x N/A N/A ✓ ✓

Index
mapping
problem

x x x x ✓

Definition 9.3.4. Index mapping problem. A mapping from cluster centre indexes to

cancer and benign can not be performed.

The last identified problem can not be tested within this thesis due to the fact that real

control data is not available.

k-means clustering was realised by using scikit-learn machine learning library with

Python [247]. The initialisation method was ‘k-means++’ with 20 random initial cluster

center positions (k-means was run 20 times with different initial cluster positions), max-

imum number of iterations was set to 1000, and tolerance for stopping criteria was set to

10−4.

Clustering was executed with multiple different inputs by using data of samples of

single patients and combinations of patient samples. Each in-focus reconstruction was

segmented using the CNN model that was trained with the MDCK cell line (Chapter 7).

Fig. 9.6 shows example holograms, reconstructions and segmentation masks. It is remark-

able that the trained CNN model works so well with the patient data. A larger set of
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A

B

C

Z3 L3 F0 Y8 D7 M8 B6 L9 W9 W5 E2 T5 A7

Figure 9.6 Example patient data with segmentation masks showing example in-focus phase
reconstructions for each patient. Row A: holograms, row B: in-focus unwrapped phase
reconstructions, row C: segmentation mask. Patient IDs shown above each column.

patient data examples is shown in Fig. 9.7. For clustering, features of cysts were extracted

(Chapter 4) and extracted feature vectors were used as an input to the k-means algorithm.

As many of the (adjacent slice) tissue samples contained both cancer and healthy

tissue, it was assumed at the beginning that this is true also for cultured samples. The first

clustering experiment was performed by using samples of single patients and organoids

of each patient were clustered to two clusters. All the identified problems exist with

this approach (Table.. 9.7). The most severe problem here is the ‘Clustering consistency

problem’; when each patient is independently clustered using only features data specific to

this patient, each patient is clustered into two clusters based on different features. Results

of this is shown in Fig. 9.8. It can be observed that splits between clusters do not match

pathological evaluation for majority of patients. For benign hyperplasia patients, data is

split between two clusters. The same trend can be seen with the patients who received

‘HIGH’ pathological cancer evaluation.

To explore the functionality of k-means deeper and gain more understanding of the

data, clustering was repeated by setting number of initial clusters to one and repeating

clustering 50 times for each patient. Fig. 9.9 shows a boxplot where percentage of samples

in smaller clusters are shown. It can be observed that with majority of patients variance

between different runs is large. For an easier interpretation the following should be noted:

• patient ‘Z0’: maximum, median and 75th percentile are the same (35.14)

• patient ‘Y8’: minimum and 25th percentile are the same (30.1)

• patient ‘D7’: 75th percentile and maximum are the same (42.86)
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Z0
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F0

Y8

D7

M8

B6

L9

W9

W5

E2

T5

A7

Figure 9.7 Example patient data. Showing example in-focus phase reconstructions for each
patient. Patient IDs shown on beginning of each row.
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Figure 9.8 Single patient clustering. Each patient is clustered independently into two
clusters by using k-means clustering.

• patient ‘M8’: 25th percentile, median, 75th percentile and maximum are the same

(24.65)

• patient ‘W5’: minimum, 25th percentile, and median are the same (34.67)

• patient ‘A7’: median, 75th percentile and maximum are the same (36.48)

Our approach to the ‘Clustering consistency problem’ was to conduct the next ex-

periment by using multiple patients simultaneously. All the data of all the patients was

combined and clustered to two clusters. The result of this is shown in Fig. 9.10. Starting

from patient ‘Y8’, a linear increase in one of the clusters can be expected, however, such a

trend is not observed. Two patients, ‘W5’ (‘HIGH’ evaluation) and ‘A7’ (‘UNKNOWN’

evaluation) have completely different distributions between two clusters than other patients.

The same experiment was repeated with all benign hyperplasia patients (‘Z0’, ‘L3’, and

‘F0’) and patient ‘W5’ with ‘HIGH’ pathological cancer evaluation. This was performed

to see if distributions of the number of samples in two clusters are different. The result

of this is shown in Fig. 9.11. It can be seen that for benign hyperplasia patients, the large

majority of data is in cluster 0. The split for patient ‘W5’ is 58/42 for clusters 0 and 1,

respectively. This is completely different from benign hyperplasia patients, however not

as obvious when using all the patients where majority of data was in opposite cluster if
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9.3 Patient data

Figure 9.9 Boxplot of single patient clustering. Each patient is clustered independently
to two clusters by using k-means clustering. Clustering is repeated 50 times with random
initial cluster centers. Showing proportion of samples in a smaller cluster.

compared to benign patients. Although this approach bypasses the ‘Clustering consistency

problem’ other problems still exists.

Our approach to the ‘Cluster relevance problem’ is to assume that data (Fig. 9.11) in

Cluster 0 is related to benign cases and data in cluster 1 is related to cancer. In accordance

with the assumption, k-means was “trained” by using benign hyperplasia patients and

patient ‘W5’. The resulting cluster centres were used to predict clusters for other patients

not used in the “training”. The result of this is shown in Fig. 9.12. A large majority of data
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Figure 9.10 Data of all patients grouped together and clustered to two clusters.
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Figure 9.11 Benign hyperplasia patients and one ‘HIGH’ pathological cancer evaluation
patient (‘W5’). Clustered to two clusters.

is in cluster 0. There is no increase in number of samples in cluster 1 (cancer cluster) as

could be expected based on cancer evaluation.

To investigate why k-means is not working (i.e. cancer proportions are not in agreement

with the evaluation of a pathologist) in accordance with our tentative assumption, we

approach the ‘Cluster indexing problem’ by using principal component analysis to reduce

feature dimensionality, allowing for easier visual inspection of the data. With the human

prostate cell line (RWPE), the lumen index was the most representative single feature

(Chapter 4) between wild-type and oncogenic samples. To study if this is true also for

patient samples, fig.9.13 shows the lumen indices of all patient organoids. 68 % of the

organoids have a lumen index below 0.1. By calculating a single principal component on

other features besides lumen index, plotting fitted data on x and lumen index on y axis,

it can be observed that the data is largely overlapping as shown in Fig. 9.14. These two

features alone do not form visually observable clusters.

A single principal component explains only 39.4 % of the original data variance

(Fig. 9.15). By increasing number of components to three, 77.9 % of the original data

variance is explained. Fig. 9.16 shows PCA fitted data by using all the patient data and

three principal components. It can be observed that the data is spread, mixed and largely

overlapping. However, possibly at some locations the data is concentrated into clusters that
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Figure 9.12 Patient data clustering by k-means with fixed cluster centres.
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Figure 9.13 Lumen indices of all patient organoids. 68.1 % of 3013 organoids have lumen
index below 0.1.
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Figure 9.14 Lumen indexes and PCA fitted data of all patient organoids.

do not display clear borders. Table 9.8 shows component loadings of features for different

principal components. It can be seen that depending on the principal component, some

features are more important than others. For example, for the 1st principal component, axis

lengths, area, perimeter, convex area, equivalent diameter, minimum phase, and maximum

phase are more important than other features (absolute value >0.75). For the other two

components, the loadings are more balanced.

Applying k-means on reduced data by using the same settings as the previous experi-

ment verifies the previous observation. Fig 9.17 shows two cluster centers for each patient

by using fitted data. It can be observed that the region highlighted with the red oval contains

one cluster center for 12 out of 13 patients. Data points falling in this cluster all have

something in common, however it is not directly related to a cancer evaluation performed

by a pathologist. The same can be observed in the Fig. 9.18 where cluster centers are

clustered by using k-means algorithm (2nd order clustering). The data is clustered into

four clusters and most of the data is located in the cluster that had 12 out of 13 patients.

The majority of patient samples are in the cluster 0, it contains 12 out of 13 patients as

shown in Fig. 9.19. Figures 9.20-9.23 show example organoids from four different clusters

shown in Fig. 9.18. All 13 patients had organoids in all four clusters.
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Table 9.8 Patient data component loadings. Showing component loadings of different
features by using three principal components. Absolute values ≥ 0.75 are highlighted with
red colour.

Feature PC1 PC2 PC3
Major axis length 0.93 0.30 0.06
Minor axis length 0.96 0.05 -0.25

Area 0.96 0.17 -0.14
Eccentricity -0.01 0.49 0.68

Average 0.42 -0.64 0.37
Roundness 0.01 -0.59 -0.68
Perimeter 0.88 0.43 0.01

Convex area 0.95 0.21 -0.11
Equivalent diameter 0.98 0.15 -0.12

Extent 0.02 -0.64 -0.49
Min phase -0.81 -0.04 0.02
Max phase 0.61 -0.52 0.33

Solidity 0.12 -0.76 -0.46
Skewness -0.43 0.32 -0.06
Kurtosis -0.05 0.56 -0.52

Roughness -0.10 0.75 0.22
Standard deviation 0.67 -0.56 0.35

Density -0.41 -0.64 0.43
Lumen index -0.33 0.59 -0.51
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Figure 9.15 Explained variance ratio. Showing how much of the original data variance is
explained by each principal component.
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(a) (b)

(c) (d)

Figure 9.16 Fitted patient data with three principal components. (a) 3D plot showing three
axes, (b)-(d) showing two out of three axes, one at the time. Data for each patient has a
unique colour.

Figure 9.17 Clustering cluster centers. Each pair formed of a square and a circle with the
same colour are two cluster centers of a single patient. The red oval contains one of the
cluster centers that had 12 out of 13 patients.
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Cluster 0 Cluster 1 Cluster 2 Cluster 3

Figure 9.18 Voronoi diagram. Showing two cluster centers for each patient with circles
and squares. Crosses show the location of cluster centers of clusterered cluster centers that
were used to define Voronoi cells. Light blue dots show fitted data by using two principal
components of the full dataset.
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Figure 9.19 Patient data clustered. Showing proportion of samples in the cluster 0 that
had cluster centers for 12 out of 13 patients (Largest cluster) and other three clusters 1-3
summed (Other clusters).
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BENIGN LOW HIGH UNKNOWN
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C

Figure 9.20 Example organoids assigned to cluster 0. Row A: hologram, row B: in-
focus unwrapped phase reconstruction, row C: mask with maximum of three values for
background, non-hollow 3D region, and lumen.

BENIGN LOW HIGH UNKNOWN

A

B

C

Figure 9.21 Example organoids assigned to cluster 1. Row A: hologram, row B: in-
focus unwrapped phase reconstruction, row C: mask with maximum of three values for
background, non-hollow 3D region, and lumen.
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BENIGN LOW HIGH UNKNOWN

Figure 9.22 Example organoids assigned to cluster 2. Row A: hologram, row B: in-
focus unwrapped phase reconstruction, row C: mask with maximum of three values for
background, non-hollow 3D region, and lumen.
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Figure 9.23 Example organoids assigned to cluster 3. Row A: hologram, row B: in-
focus unwrapped phase reconstruction, row C: mask with maximum of three values for
background, non-hollow 3D region, and lumen.
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Table 9.9 SVM and MLP training and testing. Showing the experiment number, data used
for training and testing.

Experiment Training data Testing data

1
Data of benign hyperplasia
patients and one patient (‘W5’)
with ‘HIGH’ pathological evaluation

Other patients not
used in training

2 RWPE cell line (control and KRasV12) All the patients

9.3.3 Non-linear classification

To investigate if non-linear approaches are able to identify cancerous organoids, we trained

MLP and CNN classifiers. In addition, for comparison, we trained an SVM classifier with

a radial basis function kernel that performed well with the MDCK data as reported in

Chapter 4. Training and testing data strategies for SVM and MLP classifiers are shown in

Table 9.9.

Multiple SVM and MLP classifiers were trained and all the results reported here are

averages of those runs. For both SVM experiments (Table 9.9), 1000 classifiers were

trained for each. For both experiments 1 and 2, 300 MLP classifiers were trained for each.

RWPE cell line was included as it is a human prostate cell line. In principal, patient derived

organoids should resemble these.

The support vector machine classifiers were trained with the radial basis function

kernel, the penalty parameter was 1, the kernel coefficient (γ) was 0.1, the shrinking

heuristic was used, and the stopping criterion was set to 0.001.

The result of experiment 1 (Table 9.9) is shown in Fig. 9.24. The majority of the

samples are in ‘Benign’ class as expected. However, there is no increase in ‘Cancer’ class

from ‘LOW’ to ‘HIGH’ patients as could be expected.

The result of experiment 2 (Table 9.9) is shown in Fig. 9.25. Interestingly, based on

this result, a large majority of patient samples resemble KRasV12 organoids.

The same two experiments were repeated using MLP classifier. For experiments 1 and

2 (Table 9.9), 20 % of data was extracted for validation data. The network had a single

hidden layer with 100 neurons. ReLu was used as an activation function, the regularisation

parameter was 0.001, the maximum number of iterations was 10000, and the tolerance for

the optimisation was 1×10−6. The optimiser was limited-memory BFGS [250].
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Figure 9.24 SVM result with ‘BENIGN’ patients and a single ‘HIGH’ cancer patient
(‘W5’) in training. Predicted class (Benign or Cancer) for other patients, not used in
training, was predicted and distributions are shown here.
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Figure 9.25 SVM result using RWPE data in training. Class (Wild type or KRasV12) for all
the patients was predicted and distributions are shown here.
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Figure 9.26 MLP loss and accuracy with ‘BENIGN’ patients and a single ‘HIGH’ patient
in training.

Fig. 9.26 show training loss and validation accuracy for one of the classifiers. The

training loss is reduced and converges, while accuracy remains approximately at the same

level after 200 iterations. The classification of experiment 1 (Table 9.9) is shown in

Fig. 9.27. There is no obvious increment in sample proportions for the Cancer class from

‘LOW’ to ‘HIGH’ patients. The split between two classes is more balanced than with the

SVM classifier.

Training loss and validation accuracy for the experiment 2 (Table 9.9) of one trained

classifier are shown in Fig. 9.28. After 1000 iterations the validation accuracy remains

at the same level, and the training loss converges. The classification result is shown in

Fig. 9.29. According this, the majority of patient samples resemble KRasV12 samples.

Three exceptions exist: ‘HIGH’ patient ‘W5’ and two ‘UNKNOWN’ patients ‘E2’ and

‘A7’.

For the CNN classifier, samples from benign hyperplasia patients formed class 0 data,

and samples from patient ‘W5’ formed class 1 data. Class 0 contained 578 samples of

which 29 (5.0 %) were extracted for validation data, 20 (3.5 %) as test data, and 500

(86.5 %) samples were used for training data. Class 1 contained 304 samples that were

split into training (255, 83.9 %), validation (29, 9.5 %) and test data (20, 6.6 %).
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Figure 9.27 MLP result with benign patients and a single high cancer patient in training.
Predicted class (Benign or Cancer) for other patients, not used in training, was predicted
and the distributions are shown here.
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Figure 9.28 MLP loss and accuracy with RWPE training data.
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Figure 9.29 MLP result using RWPE data in training. Class (Wild type or Kras) for all the
patients was predicted and distributions are shown here.

The holograms were reconstructed to the in-focus plane, phase was unwrapped, seg-

mented and rescaled to 227×227 pixels as required by the network architecture. Each input

was randomly augmented during run-time by a random combination of random rotation

by 90 degrees, horizontal mirroring, and vertical mirroring. The network architecture was

AlexNet (see Chapter 4 for details).

The network was trained for 100 epochs with batch size of 50 on two Nvidia GTX

1080 graphics cards using the PyTorch [248] deep learning framework. Adam was used

as the optimiser [254], with a weight decay of 1×10−3, and cross entropy loss was used.

Due to the unbalanced datasets, weights of 1/500 (class 0) and 1/255 (class 1) for the loss

function were used. An adaptive learning rate was used with an initial learning rate of

1×10−4 and was reduced by a factor of 10 if the validation loss failed to improve for ten

consecutive epochs. Three networks were trained with the above settings.

Loss and accuracy curves are shown in Fig. 9.30. Loss is not converging or convergence

is insignificant. The validation accuracy remains approximately at the same level ( 60 %)

after 56 epochs. The average test classification accuracy of the three trained networks was

64.2 %. Other patients, not used in training, were classified next. Classification averages

of the three networks are shown in Fig. 9.31. Based on these results, it is possible that

the number of holograms used to train a CNN classifier was not sufficient. Due to the

limited amount of training data, the CNN was not able to learn distinguishing features.
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Figure 9.30 CNN loss and accuracy. Showing training and validation loss and validation
accuracy.

Another explanation may be that samples in these two classes do not pose discriminating

(convolutional) features and therefore the classifier fails.

9.3.4 Patient identification

The experiments in this section were conducted to study if patients can be distinguished

from each other based on extracted features from the holograms only.

k-means clustering was applied to different patient combinations, where all possible

two-patient-combinations were tested. The results of this is shown in Fig. 9.32. It can be

observed that almost in all cases, the same cluster, 0 or 1, with both patients contains the

majority of data and therefore in a majority of cases a patient can not be identified from

the extracted features. However, in total 12 exceptions were found where two different

clusters (0 or 1) contained more than 50 % of samples. Of these 12 cases, patients ‘L3’ (4

times), ‘Y8’ (3 times), and ‘D7’ (3 times) contribute to the 10 cases. The exceptional 12

patient combinations are marked with red squares in Fig. 9.32. The numerical values of

samples in larger clusters for 12 are shown in Table 9.10.

For MLP and SVM classifiers, 20 % of the data of each patient was extracted for the

testing data. The rest of the data was combined and used for training these classifiers. The
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Figure 9.31 CNN classification test. Showing classification result with patient samples that
were not used in training. Below the patients data is the cancer proportion evaluation of an
adjacent slice given by a pathologist (‘LOW’, ‘HIGH’, ‘UNKNOWN’).

Table 9.10 Exceptions in k-means clustering. Showing numerical values for 12 patients
where two different clusters contained more than 50 % of samples.

Patient combination Larger cluster 1 Larger cluster 2
‘Z0-B6’ 51.4 73.6
‘L3-Y8’ 51.1 73.0
‘L3-W9’ 64.4 54.6
‘L3-E2’ 77.8 58.0
‘L3-T5’ 64.4 70.0
‘Y8-W9’ 73.9 52.3
‘Y8-E2’ 72.5 50.6
‘Y8-A7’ 95.4 57.3
‘D7-M8’ 74.6 56.5
‘D7-E2’ 61.8 51.1
‘D7-A7’ 83.9 62.9
‘L9-A7’ 86.8 51.8
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Figure 9.32 k-means clustering with all combinations of two patients. Each combination
was clustered into two clusters in order to investigate if k-means clustering can be used to
distinguish any two patients. Showing percentages of samples in clusters 0 and 1. Each
group of 4 forms a result for one patient combination, first row above the patient id (on
left) corresponds to a patient id on top. For clarity: first patient id ‘Z0’ is marked above
patient id ‘L3’; the group of 4 values on their right forms data for this patient combination
‘Z0-L3’. Red squares denote patient-combinations where two different clusters contain
more than 50 % of samples.
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same architecture for MLP and the same settings for both classifiers as in the previous

section were used.

Figure 9.33 shows the classification test result for each patient. Each row is normalised

by number of samples for a particular patient and sums up to 100. For interpretation: each

value on the row shows how many times a patient shown on a row label was predicted

correctly (the same patient) or incorrectly (a different patient). Correct classification is

shown on the diagonal. For example, patient ‘Z0’ was correctly classified 49 % (position

[0,0]) of times, and as a patient ‘B6’ (position [0,6]) 10 % of the times. This figure shows

that 5 out of 13 patients have highest percentage for a correct classification. Although,

the predictions are distributed between multiple patients, the classification accuracy with

the majority of patients is better than a random guess of 1
13 ≈ 8%. The weighted average

classification accuracy with this classifier is 22.9 %. Figure 9.34 shows row in Fig. 9.33 as

a histogram.

For Fig. 9.35, the underlining values to create Fig. 9.33 were normalised along columns

instead of rows as in. For interpretation: each column sums up to 100 and each value

on a column shows how many times a patient shown on a column label was predicted

as the patient shown on each row label. Correct classification is shown on the diagonal.

For example, patient ‘Z0’ was predicted correctly 28 % (position [0,0]) of all of the ‘Z0’

classification, this same patient was predicted as patient ‘F0’ 6 % ([position [2,0]]) of the

time.

Given N samples from a single patient j, the probability p(i | j) is the probability that

the classifier predicts patient i conditioned on the sample being from patient j. Therefore,

the probability of samples being from a patient is given by

p(i1, . . . , iN | j) =
13

∏
k=1

p(ik | j)nik (9.4)

where ni is number of the N samples that are classified as the patient i. By calculating

maximum a posteriori (MAP) from the classifier results we can get the best estimate for

the patient as

j∗(i1, . . . , iN) = argmax
j∈1,...,13

p(i1, . . . , iN | j) (9.5)
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Figure 9.33 MLP result with all patient data. Diagonal numbers show classification
accuracy (i.e. correct patient predicted). The red numbers appear in rows where the correct
answer is not a unique mode of the distribution (e.g. patient ‘L9’ was correctly classified
in 22 % of predictions, however this patient was misclassified as patient ‘Z0’ in 24 % of
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Figure 9.34 MLP probability distributions with all patients. Showing the distribution of
classifications for each patient. Above each label a corresponding row from Fig. 9.33 is
plotted. Red circles denote a bin for a correct patient.
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Figure 9.35 MLP result normalised along columns. See the text for more explanation.
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Figure 9.36 MLP classification with all combinations of two patients. Red squares denote
two-patient-combinations where majority (>50 %) of both patient samples were classified
to the same class.

The MLP result of training and classifying all possible two-patient-combinations is

shown in Fig. 9.36. In 17 out of a total of 78 two-patient-combinations, more than 50 % of

both patient samples were classified to the same class. Of these 17, two patients ‘L3’ and

‘W9’ contribute to 15 cases. The weighted classification accuracy with the MLP classifier

was 74.2 %. Given any holograms of two patients, on average the correct patient can be

predicted in 3 of 4 cases.

Figure 9.37 shows simulated patient identification results with different numbers of

given samples. 10 to 100 (with steps of 1) MLP classification results were randomly

simulated using the probability distributions (Fig. 9.34) obtained from the previously

described 300 trained MLPs. In total, 10000 classification results for each patient were

simulated. For each simulated result, the MAP (Eq. 9.5) was calculated using the p(i | j)
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Figure 9.37 Patient prediction simulation with MLP. Showing prediction accuracy of all
the patients when using different numbers of samples.

values obtained from Fig. 9.35 and the patient label was obtained. It can be observed that

11 out of 13 patients can be identified with 100 % accuracy. For these patients, the average

number of samples needed to reach 90 % identification accuracy was 24 samples.

Figure 9.38 shows the classification results of using all the data with this experiment.

It can be seen that the majority of patients can be identified to some extent based on the

extracted data. 10 out of 13 patients have their highest percentage for the correct patient.

With these patients, the test classification accuracy range is from 16 % to 50 %. The

classification accuracy of each patient is better than a random guess. The weighted average

classification accuracy with this classifier is 26.2 %. Figure 9.39 shows histograms of each

row in Fig. 9.38.

The result of training and classifying all possible two-patient-combinations is shown

in Fig. 9.41. In 5 out of the total 78 two-patient-combinations, more than 50 % of both

patient samples were classified to the same class. Of these 5, patient ‘L3’ contributes to 3

cases. The weighted classification accuracy with the SVM classifier was 73.5 %. As with

the MLP classifier, given any holograms of two patients, on average the correct patient can

be predicted in 3 of 4 cases.

Figure 9.42 shows simulated patient identification results with different numbers of

samples. 10 to 100 (with steps of 1) SVM classification results were randomly simulated

using probability distributions (Fig. 9.39) obtained from the previously described 1000

trained SVMs. In total, 10000 classification results for each patient were simulated. For

each simulated result, the MAP (Eq. 9.5) was calculated using the p(i | j) values obtained
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answer is not a unique mode of the distribution.
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Figure 9.39 SVM probability distributions with all patients, showing the distribution of
classifications for each patient. Above each label a corresponding row from Fig. 9.38 is
plotted. Red circles denote a bin for a correct patient.
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Figure 9.40 SVM result normalised along columns. See the text for more explanation.
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Figure 9.41 SVM classification with all combinations of two patients. Red squares
denote two-patient-combinations where the majority (>50 %) of both patient samples were
classified to the same class.

173



9.4 Recommendations for future research

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

Z0 L3 F0 Y8 D7 M8 B6 L9 W9 W5 E2 T5 A7

Number of samples

C
o

rr
e

ct
 p

a
tie

n
t 

id
e

n
tif

ic
a

tio
n

 (
%

)

Figure 9.42 Patient prediction simulation with SVM. Showing prediction accuracy of all
the patients when using different numbers of samples.

from Fig. 9.40 and the patient label was obtained. It can be observed that each of the 13

patients can be identified with 100 % accuracy. For these patients, the average number of

samples needed to reach 90 % identification accuracy was 18 samples.

It should be noted that two patients ‘L3’ and ‘W9’ that received 0 % and 11 % clas-

sification accuracies with MLP and SVM, respectively, and performed poorly in patient

identification, had the smallest amount of data available (in total 45 and 88 organoids,

respectively).

9.4 Recommendations for future research

Working with real patient data has given us a chance to learn not only from the data but

also the procedures related to obtaining the patient samples. We noticed and witnessed

multiple issues or problems that should be improved or fixed in the future. For this reason

we are giving the following recommendations:

1. We had a lack of control samples for our experiments. Samples should be gathered

from biopsies taken for diagnosis rather than from prostatectomy patients, so that if

a diagnosis of prostate cancer is not given, we can be somewhat confident that our

control data comes from healthy tissue. An alternative for control data would be

organ donors.

2. Enough tissue should be gathered so that cell sorting is possible and loss of the cells

of interest during preparation is affordable.
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3. The organoids from a patient sample should be uniformly sampled for imaging,

rather than selected by a person, to avoid one source of bias in the hologram data.

4. Pathological evaluation (if possible) should be performed on the same tissue sample

that is used for further analysis, rather than a neighbouring slice, to ensure correct

labelling.

5. In the order of a thousand organoids for each patient should be imaged due to the

large variability between organoids from a single patient.

9.5 Conclusions

This chapter contained experiments performed using time-lapse data of cell lines, and real

patient data. When classifying time-lapse data with a combination of PCA and k-means

clustering, there was no clear evidence that adding the rates of change of features will

improve performance.

The other part of the chapter used patient data, where multiple different clustering

scenarios were investigated with data extracted from holograms of patient samples. The

extracted data was used in different ways; different partitions of patient data were used to in-

vestigate if the standard k-means clustering algorithm can be used to identify tumourigenic

samples.

Clustering all of the patient data into two clusters solved the ‘Clustering consistency

problem’. It was observed that patients ‘W5’ and ‘A7’ had a majority of samples in cluster

1, while other patients had a large majority of samples in cluster 0. Unfortunately, cancer

evaluation was not performed by a pathologist for patient ‘A7’. Possibly this split implies

differences in cancer proportions, however we can not draw too broad conclusions from

these experiments. In order to solve the ‘Cluster relevance problem’, three ‘BENIGN’

patients and patient ‘W5’ (with a ‘HIGH’ cancer evaluation) were clustered into two

clusters. Splits of samples between two clusters of ‘BENIGN’ patients differed greatly

from the split of patient ‘W5’. These fixed cluster centres were used to predict clusters for

other patients.
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Having fixed cluster centres solved the ‘Cluster relevance problem’. Each cluster centre

was now defined. However, this approach did not solve the ‘Cluster indexing problem’.

To solve this problem, PCA was used to reduce data dimensionality. It was observed that

there are cluster centres close to each other for 12 out of 13 patients, and the data inside

this region should have something in common. From the existing data, it could not be

concluded what this mutual factor would be. This mutual factor is not directly related to a

cancer evaluation given by one of the pathologists.

The ‘Index mapping problem’ remains untested. With the existing data and analysis,

it is not possible to assign labels to different cluster indices. This will be solved when a

proper control dataset is available as defined in Section 9.4.

Another set of experiments was performed by using SVM, MLP and CNN classifiers.

With SVM and MLP classifiers, multiple classifiers were trained using two different

datasets: a RWPE cell line and patient data. By using all ‘BENIGN’ patients and one

‘HIGH’ patient in training, and testing with the other patients, there was no linear trend

with either classifier in samples classified as ‘Cancer’ from ‘LOW’ to ‘HIGH’ patients, as

could be expected. With MLP classifiers, from the results of using extracted features of

the RWPE cell line in training and patient data in testing, it can be concluded somewhat

surprisingly that most of the patient samples resemble KRasV12 samples. With SVM

classifiers, the splits between the two classes are more balanced, but still most of the patient

samples were classified as KRasV12.

With the CNN classification, it was investigated if patient samples can be classified

to be either cancerous or benign based on convolutional features. For this experiment,

holograms of samples from ‘BENIGN’ hyperplasia patients formed data for class 0 and

holograms of samples from a single patient with ‘HIGH’ pathological cancer evaluation

formed data for class 1. The networks were not able to learn distinguishing features from

the existing data, and from the results, we can not make too broad conclusions.

Problems with these different algorithms are partially due to the fact that the derived

patient samples are highly heterogeneous, each sample consists of multiple cell types. In

addition, pathological evaluation was performed on an adjacent tissue slice. It is possible

that cells extracted from different parts of an organ do not display the same characteristics
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and the split between benign and cancer cells is different. One major problem with the

data is the lack of real control data. All of the patients had a cancer diagnosis and even

though some of the organoids might be healthy, there are no correct labels associated with

them. Another identified problem with the data is a possible source of bias due to the fact

that all the imaged organoids were chosen by a person.

The most interesting observation from this chapter is that each patient can be uniquely

identified from their organoid extracted morphological and phase features. It seems

remarkable that a patient could be identified from their phenotype. It would seem to have

profound implications for medical data privacy, but this is beyond the scope of the thesis.
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10
Summary, discussion and future work

10.1 Summary

Cancer is a true global health challenge concerning millions of people every year. Early

detection and diagnoses are two key factors for reducing mortality caused by cancer. For

some cancer types there are existing screening programmes, and many cancers can be

diagnosed by conducting medical tests and using medical imaging modalities. None

of them utilise living cells where it would be possible to detect cancer and estimate its

aggressiveness.

In this thesis, we chose DHM as the imaging modality that works at the cellular level.

Imaging modality augmentation allowed high-throughput capturing of holographic data

of living and moving 3D cysts. Despite the critical importance of this hardware for this

thesis and work, the main contribution of this thesis was in the design, implementation,

and testing of different software solutions. These solutions are summarised here in an

order they would be used for a fully-functional automated high-throughput system. The

first of these allows detection of the presence of an object in the field of view. This

increases the total throughput of the system as only those holograms that contain an object

should be processed and analysed further. This heuristic approach was parametrised using

analysis of convolutional neural network classification results. The performance of the

heuristic approach was at the same level as the more sophisticated and time-consuming

deep learning approach.

A solution that finds the in-focus depth of an object in a hologram was introduced.

Two different CNN approaches, regression and classification, were shown to work with the
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holographic data. These approaches used amplitude information only. The greatest benefit

of these approaches, if compared to other traditional solutions that need to reconstruct a

stack of images, was the fact that the runtime is constant. It was shown that these solutions

perform well, providing accurate in-focus depth predictions. In addition, an experiment

was realised where the amount of needed data for a CNN was investigated. It was shown

that a good performance can be obtained with a relatively small amount of data. We showed

that reducing data by 60 % does not affect accuracy. This can be an important benefit for

other domains as well. Having enough but not too much data can reduce learning times

significantly.

A segmentation algorithm using a CNN approach was shown to work well with

holographic data. It was shown that the in-focus phase reconstructions as inputs provide

the most accurate segmentation results. Ground-truth masks, for training, were made semi-

automatically using outputs from a specially designed heuristic segmentation approach.

The heuristic approach used the phase slope information of closely packed phase wraps

present at the outer layer of cysts. As the hologram is a projection along the optical axis,

this layer is formed of tens of cells between the basement and apical membranes that cause

phase wraps in the wrapped phase image. The CNN approach was able to segment cysts

and hollow lumen with high accuracy. This allowed accurate analysis of lumen, unlike

using the heuristic segmentation approach, as a single lumen may be filled with cells or

other biological material at some 3D regions while other regions are hollow.

From the segmented cysts, quantitative features was extracted. It was shown that data

can be extracted, that is equivalent to other 3D microscopy techniques. In addition, it was

shown that quantitative phase-related features, such as density can be extracted. To this

end, we developed a novel metric, lumen index, that quantifies the lumen. The quantity

of a lumen is the most representative feature when biologists qualitatively analyse cysts’

potentiality for tumourigenesis. This metric was formulated based on a close collaboration

with biologists and the requirements for the software came from the field of biology.

Extracted features were used with different conventional non-deep classifiers to classify

cysts as either healthy or oncogenic. SVMs, random forests and multilayer perceptrons

represented conventional classifiers. These classifiers were trained with a different number
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of extracted features that were added in the order given by the analysis of variance. We

showed that by adding more, but not necessarily all, extracted features, classification

accuracy could be improved. The performance of conventional classifiers with holograms

that were captured at the same time as the training data was excellent. Problems arose when

data was captured at a different time, under different laboratory conditions, showing that

classification based on extracted features only was not reliable enough. To confront this

challenge, deep learning approaches were applied. An exhaustive search of well-defined

subset of shallow CNN architectures was executed and performance was compared with

a well-known deeper CNN model. We trained 62 different CNN architectures that were

built using simple building blocks. We were able to achieve accuracy within 10 % of

AlexNet by using approximately 1 % of its learning parameters. This is a significant

finding showing that extremely shallow models can provide excellent performance for

some difficult two-class classification tasks. Shallow and computationally simple models

are also preferred for mobile and internet-of-things devices.

An experiment measuring the importance of the non-overlapping background of cyst

reconstructions was carried out. It was shown that objects need to be segmented with

great care as the background can contain a "fingerprint" that a CNN can learn, and classify

based on this information alone. As another notable and novel result, we showed that

adding a priori hand-crafted information from holograms of cysts into a CNN improves

network performance of shallow networks. With deeper models containing more learning

parameters, hand-crafted features are less important.

It was shown that hardware modifications allowed time-lapse data capture of living and

moving 3D cysts. It was shown that different quantitative metrics can be followed over

long periods of time. A combination of PCA and k-means for sample discrimination was

investigated. It was shown that adding change-rate of different metrics does not necessarily

improve discrimination. Real patient tissue samples were imaged with the DHM. Different

approaches using the k-means clustering algorithm were attempted. It was shown that the

hologram data is extremely challenging to work with and off-the-shelf k-means cannot be

used ‘as-is’ for any reliable discrimination tasks with the existing data. Different non-linear

classifiers were trained to classify patient data. With SVM and MLP classifiers it was
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shown that patients can be identified based on extracted features of organoids only. A large

set of problems with the existing patient data were identified and discussed.

In summary, this thesis provides guidelines on how it is possible to implement a system

that can be used for high-throughput analysis of living 3D cysts. These guidelines cover

hardware, software, and biology, with an emphasis on software. The solutions invented

in this thesis can be combined and used together to provide a fully automated analysis

system.

10.2 Discussion

The rigorous goal set at the beginning of this project was high-throughput morphological

signature establishment of tumour cells with the use of digital holographic microscopy.

We wanted to reduce the software gap that prevents using DHM for automated high-

throughput analysis system. These solutions, when developed, could enable wider use of

DHM technology. In answer to this need, we were able to develop and implement various

different algorithms that together with the mechanical and optical hardware enable an

automated high-throughput system as summarised in the previous section. The solutions in

this thesis can be used to identify cancer-specific features to some extent. For the prostate

cancer patient samples, identification of tumourigenic samples is still an open question.

This is due to the limited amount of available patient samples and heterogeneous sample

feature set. In addition, as imaged organoids were selected manually by a person, it is

possible that our data is biased. It is possible that the chosen organoids were chosen

based on some visually appealing feature. Those organoids might be the most normal or

alternatively the most abnormal looking examples; we do not know this.

When starting this project, all developed solutions were model-based. In collaboration

with biologists, we attempted to build models that describe cysts. At an early stage, it

was noted that the data we had was noisy, normal samples looking tumorigenic and vice

versa, and software needed to be more robust for reliable results. This observation led to

introducing machine learning. However, these approaches were still relying strongly on

extracted features. Quantitative features were extracted and used with different conven-

tional machine learning approaches. These approaches performed quite well with the data,

181



10.2 Discussion

however, the performance was not as good as required. This reflection steered the research

in the direction of learning-based approaches as these approaches were used actively with

a great success in many scientific fields. With deep learning, we were able to achieve good

and remarkable results within many different applications.

Interestingly, throughout the thesis, we were able to combine these two different

approaches, model-based and learning-based. Throughout the thesis we have identified

this theme as the paradigms theme. We were able to transfer knowledge between the

two approaches both ways within different applications. For the field of view solution

(Chapter 5), we were able to learn from a CNN which features are the most distinguishing

if there is an object in the field of view. This knowledge was incorporated to the model-

based solution. For the CNN segmentation (Chapter 7), the initial ground-truth masks

were created using a model-based approach. This is truly a novel approach, typically

these masks are made completely manually using a very laborious process. For shallow

networks (Chapter 8), we were able to improve the performance of shallow CNN models by

integrating a-priori knowledge (model-based) into the network. Model-based and learning-

based approaches can support and improve performance each other. Each approach can

bring useful advantage for another approach.

Another identified theme has been referred to as simplification throughout the thesis.

This theme was present in multiple different sections throughout the thesis. The number

of extracted features for conventional classifiers can be reduced while retaining good per-

formance. For a CNN, the amount of data can be reduced significantly without decreasing

classification accuracy or network performance. Shallow networks are another example

of the theme in this thesis. The shallow networks results show that with a fraction of

AlexNet’s parameters, CNNs are able to perform well in some hard binary classification

tasks. Another example of the theme was the study of the importance of non-overlapping

background in classification. Through a model-based approach in the experiment, it was

found out that background needs to be removed completely for reliable CNN classification.

Is there future for digital holographic microscopy? Is there future for deep learning? Is

there future for deep learning within holographic microscopy?
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By searching the PubMed database [300], each year approximately 70 papers in the

field of digital holography are published. The exponential growth in the number of deep

learning publications is remarkable. Deep learning is used in an extremely wide spectrum

of applications in various scientific fields. This trend has been seen also in the field

of digital holographic microscopy. Over the past few years, more and more interesting

applications using deep learning have been published by multiple different research groups

across the world. As for the technology itself, DHM has advantages over many other

imaging techniques that make it a good candidate for high-throughput analysis. The

current trend with 3D samples seems to be to use different tomographic techniques. Still,

DHM without tomography is more appropriate for high-throughput analysis. DHM is a

single-shot technique allowing freely moving samples in the field of view. In addition,

processing a single hologram is faster than processing a 3D stack. The advantages of DHM

and increased interest in the use of deep learning in the field, give confidence that DHM

will be an important technology, and deep learning will be used within DHM.

10.3 Future work

The system described in this thesis can be used to monitor living cysts over long periods of

time and the system is able to analyse thousands of cysts from a single petri dish. Besides

morphological measurements, this allows time-lapse imaging that can be used to estimate

cancer aggressiveness by monitoring the behaviour of cysts. Further analysis needs to be

performed on extracted time-lapse data in order to invent suitable metrics.

An interesting aspect of future work is in the use of real patient data where cell

samples derived from cancer patients are cultured and analysed. Different treatments

can be applied to multiple samples derived from the same patient. This would be one

step closer to personalised medicine – a trend towards which medicine, in general, is

moving. Real patient samples, as shown also in this thesis, provide additional challenges.

In the future, possibly some fluorescent marker can be used to mark only the cells of

interest, and the same FOVs can be captured with two different imaging modalities (e.g.

DHM and epifluorescence microscope). The patient tissue samples analysed in this thesis

were obtained from patients going through a radical surgical operation. In the future, our
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collaborators will obtain these tissue samples through biopsy. One advantage of this is that

with a high probability biopsies contain also healthy tissue that can be collected, cultured,

and used for machine learning. This would form a real control dataset, that we did not

have. Our high-throughput analysis system is not restricted to any specific cancer type,

or any specific cell line - in the future different types of cancers and cell lines should be

investigated.

The current trend in deep learning applications is to train a single network to do

multiple tasks. In the future, one interesting possibility would be to investigate and design

a network that is able to take a real-valued hologram as an input and output multiple

different metrics and/or images. One example could be a network that with a hologram

input, outputs multiple images e.g. a segmentation mask and a segmented in-focus phase

reconstruction.
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volumetric samples,” Applied Optics, vol. 52, no. 1, pp. A45–A55, Jan 2013.
[Online]. Available: https://doi.org/10.1364/AO.52.000A45

[83] F. Dubois, C. Minetti, O. Monnom, C. Yourassowsky, J.-C. Legros, and P. Kischel,
“Pattern recognition with a digital holographic microscope working in partially
coherent illumination,” Applied Optics, vol. 41, no. 20, pp. 4108–4119, Jul 2002.
[Online]. Available: https://doi.org/10.1364/AO.41.004108

[84] B. Javidi, I. Moon, S. Yeom, and E. Carapezza, “Three-dimensional imaging
and recognition of microorganism using single-exposure on-line (SEOL) digital
holography,” Optics Express, vol. 13, no. 12, pp. 4492–4506, Jun 2005. [Online].
Available: https://doi.org/10.1364/OPEX.13.004492

[85] B. Javidi, S. Yeom, I. Moon, and M. Daneshpanah, “Real-time automated 3D
sensing, detection, and recognition of dynamic biological micro-organic events,”
Optics Express, vol. 14, no. 9, pp. 3806–3829, May 2006. [Online]. Available:
https://doi.org/10.1364/OE.14.003806

[86] I. Moon, M. Daneshpanah, B. Javidi, and A. Stern, “Automated three-dimensional
identification and tracking of micro/nanobiological organisms by computational
holographic microscopy,” Proceedings of the IEEE, vol. 97, no. 6, pp. 990–1010,
2009. [Online]. Available: https://doi.org/10.1109/JPROC.2009.2017563

[87] I. Moon and B. Javidi, “3-D visualization and identification of biological
microorganisms using partially temporal incoherent light in-line computational
holographic imaging,” IEEE transactions on medical imaging, vol. 27, no. 12, pp.
1782–1790, 2008. [Online]. Available: https://doi.org/10.1109/TMI.2008.927339

[88] A. Anand, V. K. Chhaniwal, N. R. Patel, and B. Javidi, “Automatic identification
of malaria-infected RBC with digital holographic microscopy using correlation
algorithms,” IEEE Photonics Journal, vol. 4, no. 5, pp. 1456–1464, 2012. [Online].
Available: https://doi.org/10.1109/JPHOT.2012.2210199

[89] R. Liu, A. Anand, D. K. Dey, and B. Javidi, “Entropy-based clustering of
embryonic stem cells using digital holographic microscopy,” Journal of Optical
Society of America A, vol. 31, no. 4, pp. 677–684, Apr 2014. [Online]. Available:
https://doi.org/10.1364/JOSAA.31.000677

[90] P. Memmolo, L. Miccio, M. Paturzo, G. Di Caprio, G. Coppola, P. A. Netti,
and P. Ferraro, “Recent advances in holographic 3D particle tracking,” Advances
in Optics and Photonics, vol. 7, no. 4, pp. 713–755, 2015. [Online]. Available:
https://doi.org/10.1364/AOP.7.000713

191

https://doi.org/10.1088/0957-0233/15/4/001
https://doi.org/10.1364/AO.52.000A68
https://doi.org/10.1364/AO.45.003893
https://doi.org/10.1364/AO.52.000A45
https://doi.org/10.1364/AO.41.004108
https://doi.org/10.1364/OPEX.13.004492
https://doi.org/10.1364/OE.14.003806
https://doi.org/10.1109/JPROC.2009.2017563
https://doi.org/10.1109/TMI.2008.927339
https://doi.org/10.1109/JPHOT.2012.2210199
https://doi.org/10.1364/JOSAA.31.000677
https://doi.org/10.1364/AOP.7.000713


References

[91] M. DaneshPanah and B. Javidi, “Tracking biological microorganisms in sequence
of 3D holographic microscopy images,” Optics Express, vol. 15, no. 17, pp. 10 761–
10 766, Aug 2007. [Online]. Available: https://doi.org/10.1364/OE.15.010761

[92] Y.-S. Choi and S.-J. Lee, “Three-dimensional volumetric measurement
of red blood cell motion using digital holographic microscopy,” Applied
Optics, vol. 48, no. 16, pp. 2983–2990, Jun 2009. [Online]. Available:
https://doi.org/10.1364/AO.48.002983

[93] P. Langehanenberg, L. Ivanova, I. Bernhardt, S. Ketelhut, A. Vollmer, D. Dirksen,
G. Georgiev, G. von Bally, and B. Kemper, “Automated three-dimensional
tracking of living cells by digital holographic microscopy,” Journal of Biomedical
Optics, vol. 14, no. 1, pp. 014 018–014 018, 2009. [Online]. Available:
https://doi.org/10.1117/1.3080133

[94] S. J. Lee, K. W. Seo, Y. S. Choi, and M. H. Sohn, “Three-dimensional
motion measurements of free-swimming microorganisms using digital holographic
microscopy,” Measurement Science and Technology, vol. 22, no. 6, p. 064004,
2011. [Online]. Available: https://doi.org/10.1088%2F0957-0233%2F22%2F6%
2F064004

[95] M. H. Sohn, K. W. Seo, Y. S. Choi, S. J. Lee, Y. S. Kang, and Y. S.
Kang, “Determination of the swimming trajectory and speed of chain-forming
dinoflagellate Cochlodinium polykrikoides with digital holographic particle
tracking velocimetry,” Marine Biology, vol. 158, no. 3, pp. 561–570, 2011. [Online].
Available: https://doi.org/10.1007/s00227-010-1581-7

[96] L. Leal-Taixé, M. Heydt, S. Weiße, A. Rosenhahn, and B. Rosenhahn,
“Classification of swimming microorganisms motion patterns in 4D digital in-line
holography data,” in Joint Pattern Recognition Symposium. Springer, 2010, pp.
283–292. [Online]. Available: https://doi.org/10.1007/978-3-642-15986-2_29

[97] J. Persson, A. Mölder, S.-G. Pettersson, and K. Alm, “Cell motility studies using
digital holographic microscopy,” Microscopy: Science, Technology, Applications
and Education. Microscopy Series, vol. 4, pp. 1063–1072, 2010.

[98] X. Yu, J. Hong, C. Liu, M. Cross, D. T. Haynie, and M. K. Kim, “Four-dimensional
motility tracking of biological cells by digital holographic microscopy,” Journal of
Biomedical Optics, vol. 19, no. 4, pp. 045 001–045 001, 2014. [Online]. Available:
https://doi.org/10.1117/1.JBO.19.4.045001

[99] L. Miccio, P. Memmolo, F. Merola, S. Fusco, V. Embrione, A. Paciello, M. Ventre,
P. Netti, and P. Ferraro, “Particle tracking by full-field complex wavefront
subtraction in digital holography microscopy,” Lab on a Chip, vol. 14, no. 6, pp.
1129–1134, 2014. [Online]. Available: https://doi.org/10.1039/C3LC51104A

[100] E. Darakis, T. Khanam, A. Rajendran, V. Kariwala, T. J. Naughton, and A. K.
Asundi, “Microparticle characterization using digital holography,” Chemical
Engineering Science, vol. 65, no. 2, pp. 1037–1044, 2010. [Online]. Available:
https://doi.org/10.1016/j.ces.2009.09.057

[101] B. Kemper, A. Bauwens, A. Vollmer, S. Ketelhut, P. Langehanenberg, J. Müthing,
H. Karch, and G. von Bally, “Label-free quantitative cell division monitoring
of endothelial cells by digital holographic microscopy,” Journal of Biomedical
Optics, vol. 15, no. 3, pp. 036 009–036 009, 2010. [Online]. Available:
https://doi.org/10.1117/1.3431712

192

https://doi.org/10.1364/OE.15.010761
https://doi.org/10.1364/AO.48.002983
https://doi.org/10.1117/1.3080133
https://doi.org/10.1088%2F0957-0233%2F22%2F6%2F064004
https://doi.org/10.1088%2F0957-0233%2F22%2F6%2F064004
https://doi.org/10.1007/s00227-010-1581-7
https://doi.org/10.1007/978-3-642-15986-2_29
https://doi.org/10.1117/1.JBO.19.4.045001
https://doi.org/10.1039/C3LC51104A
https://doi.org/10.1016/j.ces.2009.09.057
https://doi.org/10.1117/1.3431712


References

[102] P. Bon, J. Savatier, M. Merlin, B. Wattellier, and S. Monneret, “Optical detection
and measurement of living cell morphometric features with single-shot quantitative
phase microscopy,” Journal of Biomedical Optics, vol. 17, no. 7, pp. 0 760 041–
0 760 047, 2012. [Online]. Available: https://doi.org/10.1117/1.JBO.17.7.076004

[103] N. Pavillon, J. Kühn, C. Moratal, P. Jourdain, C. Depeursinge, P. J.
Magistretti, and P. Marquet, “Early cell death detection with digital holographic
microscopy,” PLoS One, vol. 7, no. 1, p. e30912, 2012. [Online]. Available:
https://doi.org/10.1371/journal.pone.0030912

[104] J. Balvan, A. Krizova, J. Gumulec, M. Raudenska, Z. Sladek, M. Sedlackova,
P. Babula, M. Sztalmachova, R. Kizek, R. Chmelik, and M. Masarik,
“Multimodal holographic microscopy: distinction between apoptosis and
oncosis,” PLoS One, vol. 10, no. 3, p. e0121674, 2015. [Online]. Available:
https://doi.org/10.1371/journal.pone.0121674

[105] F. Yi, C.-G. Lee, and I.-K. Moon, “Statistical analysis of 3D volume of red blood
cells with different shapes via digital holographic microscopy,” Journal of the
Optical Society of Korea, vol. 16, no. 2, pp. 115–120, Jun 2012.

[106] T.-W. Su, L. Xue, and A. Ozcan, “High-throughput lensfree 3D tracking of human
sperms reveals rare statistics of helical trajectories,” Proceedings of the National
Academy of Sciences, vol. 109, no. 40, pp. 16 018–16 022, 2012. [Online]. Available:
https://doi.org/10.1073/pnas.1212506109

[107] P. Girshovitz and N. T. Shaked, “Generalized cell morphological parameters
based on interferometric phase microscopy and their application to cell life cycle
characterization,” Biomedical Optics Express, vol. 3, no. 8, pp. 1757–1773, Aug
2012. [Online]. Available: https://doi.org/10.1364/BOE.3.001757

[108] J. Kühn, E. Shaffer, J. Mena, B. Breton, J. Parent, B. Rappaz, M. Chambon,
Y. Emery, P. Magistretti, C. Depeursinge, P. Marquet, and G. Turcatti, “Label-free
cytotoxicity screening assay by digital holographic microscopy,” ASSAY and Drug
Development Technologies, vol. 11, no. 2, pp. 101–107, 2013. [Online]. Available:
https://doi.org/10.1089/adt.2012.476

[109] Y. Wang, Y. Yang, D. Wang, L. Ouyang, Y. Zhang, J. Zhao, and X. Wang,
“Morphological measurement of living cells in methanol with digital holographic
microscopy,” Computational and Mathematical Methods in Medicine, vol. 2013,
2013. [Online]. Available: http://dx.doi.org/10.1155/2013/715843

[110] T. Pitkäaho, M. Niemelä, and V. Pitkäkangas, “Partially coherent digital in-line
holographic microscopy in characterization of a microscopic target,” Applied
Optics, vol. 53, no. 15, pp. 3233–3240, May 2014. [Online]. Available:
https://doi.org/10.1364/AO.53.003233

[111] B. Rappaz, B. Breton, E. Shaffer, and G. Turcatti, “Digital holographic micro-
scopy: a quantitative label-free microscopy technique for phenotypic screening,”
Combinatorial Chemistry & High Throughput Screening, vol. 17, no. 1, pp. 80–88,
2014.

[112] D. Bettenworth, P. Lenz, P. Krausewitz, M. Brückner, S. Ketelhut, D. Domagk,
and B. Kemper, “Quantitative stain-free and continuous multimodal monitoring of
wound healing in vitro with digital holographic microscopy,” PLoS One, vol. 9,
no. 9, p. e107317, 2014. [Online]. Available: https://doi.org/10.1371/journal.pone.
0107317

193

https://doi.org/10.1117/1.JBO.17.7.076004
https://doi.org/10.1371/journal.pone.0030912
https://doi.org/10.1371/journal.pone.0121674
https://doi.org/10.1073/pnas.1212506109
https://doi.org/10.1364/BOE.3.001757
https://doi.org/10.1089/adt.2012.476
http://dx.doi.org/10.1155/2013/715843
https://doi.org/10.1364/AO.53.003233
https://doi.org/10.1371/journal.pone.0107317
https://doi.org/10.1371/journal.pone.0107317


References

[113] P. Memmolo, L. Miccio, F. Merola, O. Gennari, P. A. Netti, and
P. Ferraro, “3D morphometry of red blood cells by digital holography,”
Cytometry part A, vol. 85, no. 12, pp. 1030–1036, 2014. [Online]. Available:
https://doi.org/10.1002/cyto.a.22570

[114] F. Yi, I. Moon, and Y. H. Lee, “Three-dimensional counting of morphologically
normal human red blood cells via digital holographic microscopy,” Journal of
Biomedical Optics, vol. 20, no. 1, pp. 016 005–016 005, 2015. [Online]. Available:
https://doi.org/10.1117/1.JBO.20.1.016005

[115] K. Jaferzadeh and I. Moon, “Quantitative investigation of red blood cell three-
dimensional geometric and chemical changes in the storage lesion using digital
holographic microscopy,” Journal of Biomedical Optics, vol. 20, no. 11, pp. 111 218–
111 218, 2015. [Online]. Available: https://doi.org/10.1117/1.JBO.20.11.111218

[116] B. Rappaz, I. Moon, F. Yi, B. Javidi, P. Marquet, and G. Turcatti, “Automated
multi-parameter measurement of cardiomyocytes dynamics with digital holographic
microscopy,” Optics Express, vol. 23, no. 10, pp. 13 333–13 347, May 2015.
[Online]. Available: https://doi.org/10.1364/OE.23.013333

[117] C. M. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.

[118] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard,
and L. D. Jackel, “Backpropagation applied to handwritten zip code recognition,”
Neural Computation, vol. 1, no. 4, pp. 541–551, 1989. [Online]. Available:
https://doi.org/10.1162/neco.1989.1.4.541

[119] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553,
pp. 436–444, 2015. [Online]. Available: https://doi.org:/10.1038/nature14539

[120] R. Olga, D. Jia, S. Hao, K. Jonathan, S. Sanjeev, M. Sean, H. Zhiheng, K. Andrej,
K. Aditya, B. Michael, B. A. C., and L. Fei-Fei, “ImageNet large scale visual
recognition challenge,” International Journal of Computer Vision, vol. 115, no. 3,
pp. 211–252, 2015. [Online]. Available: https://doi.org/10.1007/s11263-015-0816-y

[121] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep
convolutional neural networks,” Advances in Neural Information Processing Sys-
tems, vol. 25, pp. 1097–1105, 2012.

[122] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2015, pp. 1–9. [Online]. Available: https://doi.org/10.1109/CVPR.2015.7298594

[123] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[124] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2016, pp. 770–778. [Online]. Available: https://doi.org/10.1109/CVPR.2016.90

[125] S. Zagoruyko and N. Komodakis, “Wide residual networks,” arXiv preprint
arXiv:1605.07146, 2016.

[126] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov,
“Improving neural networks by preventing co-adaptation of feature detectors,” arXiv
preprint arXiv:1207.0580, 2012.

[127] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training
by reducing internal covariate shift,” arXiv preprint arXiv:1502.03167, 2015.

194

https://doi.org/10.1002/cyto.a.22570
https://doi.org/10.1117/1.JBO.20.1.016005
https://doi.org/10.1117/1.JBO.20.11.111218
https://doi.org/10.1364/OE.23.013333
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org:/10.1038/nature14539
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2016.90


References

[128] D. Ciresan, A. Giusti, L. M. Gambardella, and J. Schmidhuber, “Deep neural
networks segment neuronal membranes in electron microscopy images,” in Advances
in Neural Information Processing Systems, 2012, pp. 2843–2851.

[129] E. Shelhamer, J. Long, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 39, no. 4, pp. 640–651, 2016. [Online]. Available:
https://doi.org/10.1109/TPAMI.2016.2572683

[130] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep convolutional
encoder-decoder architecture for image segmentation,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 39, no. 12, pp. 2481–2495, 2017.
[Online]. Available: https://doi.org/10.1109/TPAMI.2016.2644615

[131] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for
biomedical image segmentation,” in International Conference on Medical Image
Computing and Computer-assisted Intervention. Springer, 2015, pp. 234–241.
[Online]. Available: https://doi.org/10.1007/978-3-319-24574-4_28

[132] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “Semantic
image segmentation with deep convolutional nets and fully connected crfs,” arXiv
preprint arXiv:1412.7062, 2014.

[133] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking atrous convolu-
tion for semantic image segmentation,” arXiv preprint arXiv:1706.05587, 2017.

[134] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“Deeplab: Semantic image segmentation with deep convolutional nets, atrous
convolution, and fully connected crfs,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 40, no. 4, pp. 834–848, 2018. [Online]. Available:
https://doi.org/10.1109/TPAMI.2017.2699184

[135] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder-decoder
with atrous separable convolution for semantic image segmentation,” in European
Conference on Computer Vision. Springer, 2018, pp. 833–851. [Online]. Available:
https://doi.org/10.1007/978-3-030-01234-2_49

[136] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun, “Overfeat:
Integrated recognition, localization and detection using convolutional networks,”
arXiv preprint arXiv:1312.6229, 2013.

[137] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for
accurate object detection and semantic segmentation,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2014, pp. 580–587.

[138] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE international conference on
computer vision, 2015, pp. 1440–1448.

[139] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object detec-
tion with region proposal networks,” in Advances in neural information processing
systems, 2015, pp. 91–99.

[140] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified,
real-time object detection,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 779–788.

[141] P. Y. Simard, D. Steinkraus, and J. C. Platt, “Best practices for convolutional neural
networks applied to visual document analysis,” in ICDAR, vol. 3. Citeseer, 2003,
pp. 958–962.

195

https://doi.org/10.1109/TPAMI.2016.2572683
https://doi.org/10.1109/TPAMI.2016.2644615
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1109/TPAMI.2017.2699184
https://doi.org/10.1007/978-3-030-01234-2_49


References

[142] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm for
optimal margin classifiers,” in Proceedings of the fifth annual workshop on
Computational learning theory. ACM, 1992, pp. 144–152. [Online]. Available:
https://doi.org/10.1145/130385.130401

[143] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning, vol. 20,
no. 3, pp. 273–297, 1995. [Online]. Available: http://dx.doi.org/10.1007/
BF00994018

[144] J.-P. Vert, K. Tsuda, and B. Schölkpf, “A primer on kernel methods,” in Kernel
methods in computation biology, B. Schölkpf, K. Tsuda, and J.-P. Vert, Eds. Camp-
bridge, Massachusetts: The MIT Press, 2004, ch. 1, pp. 1–42.

[145] M. Pal, “Multiclass approaches for support vector machine based land cover classi-
fication,” arXiv preprint arXiv:0802.2411, 2008.

[146] J. A. Hartigan, Clustering algorithms. John Wiley & Sons, Inc, 1975.

[147] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5–32, 2001.
[Online]. Available: https://doi.org/10.1023/A:1010933404324

[148] ——, “Bagging predictors,” Machine Learning, vol. 24, no. 2, pp. 123–140, 1996.
[Online]. Available: https://doi.org/10.1007/BF00058655

[149] N. Orlov, J. Johnston, T. Macura, L. Shamir, and I. Goldberg, Computer vision for
microscopy applications. INTECH Open Access Publisher, 2007.

[150] F. Ghaznavi, A. Evans, A. Madabhushi, and M. Feldman, “Digital imaging
in pathology: whole-slide imaging and beyond,” Annual Review of Pathology:
Mechanisms of Disease, vol. 8, pp. 331–359, 2013. [Online]. Available:
https://doi.org/10.1146/annurev-pathol-011811-120902

[151] J. Griffin and D. Treanor, “Digital pathology in clinical use: where are we now
and what is holding us back?” Histopathology, vol. 70, no. 1, pp. 134–145, 2017.
[Online]. Available: https://doi.org/10.1111/his.12993

[152] A. H. Beck, A. R. Sangoi, S. Leung, R. J. Marinelli, T. O. Nielsen, M. J. van de
Vijver, R. B. West, M. van de Rijn, and D. Koller, “Systematic analysis of breast
cancer morphology uncovers stromal features associated with survival,” Science
Translational Medicine, vol. 3, no. 108, pp. 108ra113–108ra113, 2011. [Online].
Available: https://doi.org/10.1126/scitranslmed.3002564

[153] N. Linder, J. Konsti, R. Turkki, E. Rahtu, M. Lundin, S. Nordling, C. Haglund,
T. Ahonen, M. Pietikäinen, and J. Lundin, “Identification of tumor epithelium and
stroma in tissue microarrays using texture analysis,” Diagnostic Pathology, vol. 7,
no. 1, p. 22, 2012. [Online]. Available: https://doi.org/10.1186/1746-1596-7-22

[154] E. Cosatto, P.-F. Laquerre, C. Malon, H.-P. Graf, A. Saito, T. Kiyuna, A. Marugame,
and K. Kamijo, “Automated gastric cancer diagnosis on h&e-stained sections;
ltraining a classifier on a large scale with multiple instance machine learning,” in
SPIE Medical Imaging. International Society for Optics and Photonics, 2013, pp.
867 605–867 605. [Online]. Available: https://doi.org/10.1117/12.2007047

[155] A. A. Cruz-Roa, J. E. A. Ovalle, A. Madabhushi, and F. A. G. Osorio, “A
deep learning architecture for image representation, visual interpretability and
automated basal-cell carcinoma cancer detection,” in International Conference on
Medical Image Computing and Computer-Assisted Intervention. Springer, 2013,
pp. 403–410. [Online]. Available: https://doi.org/10.1007/978-3-642-40763-5_50

196

https://doi.org/10.1145/130385.130401
http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.1007/BF00994018
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1007/BF00058655
https://doi.org/10.1146/annurev-pathol-011811-120902
https://doi.org/10.1111/his.12993
https://doi.org/10.1126/scitranslmed.3002564
https://doi.org/10.1186/1746-1596-7-22
https://doi.org/10.1117/12.2007047
https://doi.org/10.1007/978-3-642-40763-5_50


References

[156] E. Rexhepaj, M. Agnarsdóttir, J. Bergman, P.-H. Edqvist, M. Bergqvist, M. Uhlén,
W. M. Gallagher, E. Lundberg, and F. Ponten, “A texture based pattern recognition
approach to distinguish melanoma from non-melanoma cells in histopathological
tissue microarray sections,” PLoS One, vol. 8, no. 5, p. e62070, 2013. [Online].
Available: https://doi.org/10.1371/journal.pone.0062070,

[157] H. Wang, A. Cruz-Roa, A. Basavanhally, H. Gilmore, N. Shih, M. Feldman,
J. Tomaszewski, F. Gonzalez, and A. Madabhushi, “Mitosis detection in breast
cancer pathology images by combining handcrafted and convolutional neural
network features,” Journal of Medical Imaging, vol. 1, no. 3, p. 034003, 2014.
[Online]. Available: http://dx.doi.org/10.1117/1.JMI.1.3.034003

[158] J. S. Lewis, S. Ali, J. Luo, W. L. Thorstad, and A. Madabhushi, “A quantitative
histomorphometric classifier (QuHbIC) identifies aggressive versus indolent
p16-positive oropharyngeal squamous cell carcinoma,” The American Journal
of Surgical Pathology, vol. 38, no. 1, p. 128, 2014. [Online]. Available:
https://doi.org/10.1097/PAS.0000000000000086

[159] J. Arevalo, A. Cruz-Roa, V. Arias, E. Romero, and F. A. González, “An
unsupervised feature learning framework for basal cell carcinoma image analysis,”
Artificial Intelligence in Medicine, vol. 64, no. 2, pp. 131–145, 2015. [Online].
Available: https://doi.org/10.1016/j.artmed.2015.04.004

[160] J. Xu, X. Luo, G. Wang, H. Gilmore, and A. Madabhushi, “A deep convolutional
neural network for segmenting and classifying epithelial and stromal regions in
histopathological images,” Neurocomputing, vol. 191, pp. 214–223, 2016. [Online].
Available: https://doi.org/10.1016/j.neucom.2016.01.034

[161] K.-H. Yu, C. Zhang, G. J. Berry, R. B. Altman, C. Ré, D. L. Rubin, and
M. Snyder, “Predicting non-small cell lung cancer prognosis by fully automated
microscopic pathology image features,” Nature Communications, vol. 7, 2016.
[Online]. Available: https://doi.org/10.1038/ncomms12474

[162] Y. Yamamoto, A. Saito, A. Tateishi, H. Shimojo, H. Kanno, S. Tsuchiya, K. ichi
Ito, E. Cosatto, H. P. Graf, R. R. Moraleda, R. Eils, and N. Grabe, “Quantitative
diagnosis of breast tumors by morphometric classification of microenvironmental
myoepithelial cells using a machine learning approach,” Scientific Reports, vol. 7,
2017. [Online]. Available: https://doi.org/10.1038/srep46732

[163] A. Cruz-Roa, H. Gilmore, A. Basavanhally, M. Feldman, S. Ganesan, N. N. Shih,
J. Tomaszewski, F. A. González, and A. Madabhushi, “Accurate and reproducible
invasive breast cancer detection in whole-slide images: A deep learning approach
for quantifying tumor extent,” Scientific Reports, vol. 7, 2017. [Online]. Available:
https://doi.org/10.1038/srep46450

[164] T. G. Dietterich, R. H. Lathrop, and T. Lozano-Pérez, “Solving the multiple instance
problem with axis-parallel rectangles,” Artificial Intelligence, vol. 89, no. 1, pp.
31–71, 1997. [Online]. Available: https://doi.org/10.1016/S0004-3702(96)00034-3
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Table A.1 Conducted imaging experiments. Cell line: MDCK, Madine Darby canine
kidney; RWPE, human prostate epithelial; MFC10a, mammary gland breast epithelial.
Type describes possible manipulation aimed at a specific gene: wild, no treatment done;
KRasV12, oncogenic G12V-mutant of K-Ras proto-oncogene; KO after the type defines
different gene knockouts. Amount describes how many holograms were captured during
the imaging experiment.

ID Captured on Cell line Type Amount
0 10/2013 MDCK wild 25
1 10/2013 MDCK KRasV12 26
2 4/2015 MDCK wild 101
3 4/2015 MDCK KRasV12 101
4 5/2015 MDCK wild 205
5 5/2015 MDCK KRasV12 156
6 12/2015 RWPE wild 23
7 12/2015 RWPE wild inhibitor 19
8 12/2015 RWPE KRasV12 11
9 12/2015 RWPE KRasV12 inhibitor 7

10 12/2015 RWPE wild 43
11 12/2015 RWPE KRasV12 6
12 1/2016 RWPE wild 15
13 1/2016 RWPE KRasV12 16
14 4/2016 MFC10A wild 43
15 4/2016 MFC10A genetically transformed 42
16 8/2016 RWPE wild (20X) 50
17 8/2016 RWPE KRasV12 (20X) 63

18 8/2016 MFC10A
wild and genetically
transformed (10X) 108

19 8/2016 MFC10A
wild and genetically
transformed (20X) 32

20 8/2016 MFC10A
wild and genetically

transformed 263

21 8/2017 MDCK wild 77615
22 8/2017 MDCK KRasV12 129663
23 8/2017 MDCK wild 147110
24 8/2017 MDCK wild 18377
25 9/2017 RWPE wild 150
26 9/2017 RWPE α-1-KO 150
27 11/2017 RWPE wild (20X) 1682
28 11/2017 RWPE wild 1654
29 11/2017 RWPE P10-KO (20X) 1681
30 1/2018 MDCK KRasV12 149256
31 1/2018 MDCK wild 14633
32 1/2018 MDCK aV 40032
33 1/2018 MDCK KRasV12 50
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B
Tools created

B.1 Control, processing and analysis software

“Phaser”

A software application, called Phaser, was designed and implemented during the project.

This software is an interface between the microscope and the user. It can be used to

design imaging experiments, process and analyse holograms, and visualise results. The

graphical user interface (GUI) was implemented in Qt [301] and using the PySide bindings

for Python. Below is a collection of screen-shots of different widgets that are part of the

software (Figs B.1 through B.4).

B.2 HDF file processing software “HDF Viewer”

The processed hologram information was saved in Hierarchical Data Format (HDF) that

was developed originally by National Center for Supercomputing Applications for storing

scientific data [302]. This flexible data format allows one to save data in multiple different

formats. HDF does not have the same restrictions as common image formats that require

frames to have the same dimension and bit depth for each pixel. Besides this, each dataset

(images in our case) can contain meta data as attributes. We developed the application

“HDF Viewer” for faster processing of holographic data. By using this tool, it was possible

to quickly visualise data e.g. to make sure that segmentation was done properly. Figure. B.5

shows the GUI of the software.
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B.2 HDF file processing software “HDF Viewer”

Figure B.1 Main window of the GUI. The centre portion can display holograms, recon-
structions, or other visualisations. On the left-hand side is a widget (Koala Remote) that
is used to connect Phaser to the software that controls the microscope. On the right-hand
side is a widget (“Phase Analyser”) that is used to analyse holograms, extract information
from holograms, and display extracted information and results of analysis.
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B.2 HDF file processing software “HDF Viewer”

Figure B.2 Hologram processing widget. The widget that is used to process holograms:
propagation, aperture apodisation, off-axis processing, aberration removal and dc removal,
and a choice of visualisations.
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B.2 HDF file processing software “HDF Viewer”

Figure B.3 Experiment builder widget. The widget that is used to program imaging
experiments: point or region based scanning.

Figure B.4 Translation stage widget. The widget that is used to control the motorised
translation stages.
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B.2 HDF file processing software “HDF Viewer”

Figure B.5 HDF Viewer GUI. Showing reconstruction parameters, amplitude reconstruction
and two segmented cysts.
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