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Abstract 

Aspergillus fumigatus and Pseudomonas aeruginosa are the most prevalent fungal and 

bacterial pathogens associated with cystic fibrosis (CF)-related infections, respectively. Co-

infection with both pathogens is associated with a deterioration in lung function. Despite the 

persistence of A. fumigatus in the CF airways from an early age, P. aeruginosa eventually 

predominates as the primary pathogen and chronic infection by these bacteria is associated 

with morbidity and mortality. P. aeruginosa has a profound capacity to adapt to the hostile 

conditions that characterize the CF airways. Nonetheless, several factors are likely to 

facilitate colonization in the airways, including a compromised host cellular response and 

alterations to the microbial environment, perhaps generated in part by other microorganisms, 

such as A. fumigatus. A. fumigatus is the causative agent of allergic bronchopulmonary 

aspergillosis (ABPA), a disease characterized by the induction of a hypersensitivity response 

in host cells. The interactions between A. fumigatus and host epithelial cells, such as the 

alveolar epithelial cell line A549, have been well characterized. The response of A549 cells 

to exposure by multiple pathogens is less well understood. With this in mind, a proteomic 

approach was employed to investigate changes to the proteome of A549 cells in response to 

exposure by A. fumigatus and P. aeruginosa. Label-free quantitative (LFQ) proteomics 

revealed distinct changes to the host-cell proteome in response to either or both pathogens. 

Alterations to the proteome were dependent on the duration and sequence of infection. The 

results presented in this thesis suggest that A. fumigatus render A549 cells unable to 

internalize bacteria, thus providing an environment in which P. aeruginosa can proliferate. 

Interaction studies between A. fumigatus and P. aeruginosa identified a key role for A. 

fumigatus in creating a nutrient-rich environment in which P. aeruginosa could proliferate. 

The emergence of antibiotic resistant bacteria, including P. aeruginosa has led to an urgency 

for the need to discover novel antibiotics. Saprophytic fungi inherently produce a range of 

antimicrobial compounds that enable competition in their ecological niche. Fortuitously for 

humans, these compounds can be exploited for medicinal purposes. The process of 

identification of one such potentially novel anti-bacterial compound produced by A. 

fumigatus is described here. The effect of the compound on the P. aeruginosa proteome was 

characterized by LFQ proteomics with a view to gaining insights into the mechanism of action 

by which the anti-bacterial agent inhibits bacterial growth. Taken together, the findings 

presented in this thesis offer novel insights into the complex dynamics that exist between the 

host, P. aeruginosa and A. fumigatus.
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1.1 Cystic fibrosis  

Cystic fibrosis (CF) is an autosomal recessive disorder caused by a mutation in 

the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) 

(Rommens et al., 1989). Although it affects multiple organs, morbidity and mortality is 

associated with chronic lung disease caused by numerous factors including abnormal 

airway surface liquid (ASL), chronic inflammation and microbial infection. CF is the 

most common life-limiting hereditary disorder amongst Caucasians (O’Sullivan and 

Freedman, 2009) and affects more than 70,000 individuals worldwide. Ireland has the 

highest incidence of CF per head of population and as of 2017, 1377 individuals were 

living with CF in the Republic of Ireland (Farrell et al., 2007; CF Registry of Ireland 2017 

Annual Report, 2017). Due to an increase in life expectancy, the population of CF patients 

is increasing, as is the age for survival thanks to advances in medicine. In 2007, 

approximately 5 % of CF patients survived till the age of 40 (CF Registry of Ireland 

Annual Report 2007). In 2017, this number had risen to 10 % of the CF population (CF 

Registry of Ireland 2017 Annual Report, 2017).  

The CFTR protein is a chloride channel that is expressed on epithelial cells and 

blood cells (Yoshimura et al., 1991; Painter et al., 2006). In addition to its primary role 

of regulating cellular chloride and bicarbonate levels, CFTR also negatively regulates 

sodium transport (Stutts et al., 1995). Deletion of phenylalanine at residue 508 (F508del) 

of the CFTR gene is the most common mutation associated with CF and affects 

approximately 82% of patients (Lopes-Pacheco, 2020). Defects caused by F508del lead 

to proteasome-mediated degradation of CFTR, and CFTR that do reach the cell surface 

do not function optimally (Ward et al., 1995; Vankeerberghen et al., 2002). Other 

common mutations such as G551D, in which glycine is replaced by aspartic acid at 

residue 551, account for approximately 5% of the mutations associated with the disease 

(Lopes-Pacheco, 2020). This mutation affects the gating function of the ion channel 

(Bompadre et al., 2008). These defects in CFTR result in a ion imbalance leading to 

viscous secretions that cause ducts to become plugged and atrophic in the affected organs 

(Vankeerberghen et al., 2002). 

In the respiratory system, pulmonary epithelia secrete the ASL, the composition 

of which is crucial for maintaining homeostasis, including normal ciliary function for the 

removal of mucus and microbes from the airways. Additionally, the ASL is a source of 
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antimicrobial peptides and thus plays an important role in the first line of defence against 

potential pulmonary pathogens. In the CF airways, defective CFTR leads to abnormal 

ASL characterized by dehydrated, viscous fluid resulting from an imbalance in sodium 

and chloride ions, and decreased water content (Verkman et al., 2003). The thick sticky 

nature of the ASL makes oxygen diffusion difficult, causing hypoxia, the cilia are 

compressed thereby disrupting the mucociliary elevator, and defective bicarbonate 

transport creates a low pH environment that is unfavourable for antimicrobial peptide 

activity (Tate et al., 2002; Pezzulo et al., 2012; Tilley et al., 2015; Haq et al., 2016; 

Ahmad et al., 2019). Dysfunctional mucus clearance and ciliary action, defective 

antimicrobial activity and an environment, in which microbes can evade antibiotics and 

cells of the innate immune system, provide a reservoir conducive to the growth and 

persistence of pathogens. 

 

1.1.1 The microbial environment of the CF airways 

The microbial environment of the CF airways is a diverse and evolving ecosystem 

and from infancy, the lungs of CF patients are subject to colonization by a range of 

microbial species. Culture independent techniques have revealed a wide variation in the 

microbiota of the CF airways (Rogers et al., 2003; Coburn et al., 2015; Filkins and 

O’Toole, 2015). Although there does exist several genera including Streptococcus, 

Prevotella, Rothia, Veillonella and Actinomyces, individual species such as Pseudomonas 

aeruginosa and Burkholderia cepacia tend to dominated when they are present (Coburn 

et al., 2015; Zemanick et al., 2017).  

The CF airways are characterized by an age-related succession of microbial 

species; in children under the age of 16, Staphylococcus aureus, Haemophilus influenza 

and Stenotrophomonas maltophilia predominate (CF Registry of Ireland Annual Report, 

2017; Zemanick et al., 2017). As patients get older, the species diversity decreases and 

H. influenza and S. aureus are replaced by Pseudomonas aeruginosa which becomes the 

most dominant pathogen (Coburn et al., 2015; CF Registry of Ireland 2017 Annual 

Report, 2017; Zemanick et al., 2017) (Fig. 1A). The pathogenic mould, Aspergillus 

fumigatus is detected from early childhood and is persistent in the CF airways throughout 

the life of the patient (Coburn et al., 2015; CF Registry of Ireland 2017 Annual Report, 

2017) (Fig. 1B).  
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Microbial diversity is greatest in children aged 2 – 10 years but reduces with age 

until it plateaus at approximately 25 years (Coburn et al., 2015; Zemanick et al., 2017). 

Age-related reduction in species diversity is strongly correlated with increased 

colonization by P. aeruginosa and Burkholderia spp. and with a deterioration in lung 

function (Coburn et al., 2015; Filkins et al., 2012).  
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Age-related prevalence rates of bacterial species in Irish CF patients 

 

Fig. 1 The prevalence of microbial pathogens in the CF airways The prevalence of P. 

aeruginosa, S. aureus, MRSA and H. influenza (A) and non-tuberculous mycobacteria, 

Achromobacter species, A. fumigatus, S. maltophilia and B. cepacia complex (B) detected in the 

airways of CF patients registered with Cystic Fibrosis Registry of Ireland. Prevalence was 

measured as a function of age group and was assessed in 2017. Data and figures adapted from the 

Annual Report of the Cystic Fibrosis Registry of Ireland, 2017. 

 

A
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1.1.2 Impact of polymicrobial infections in CF 

Chronic infection in the CF airways drives cycles of inflammation mediated by 

pro-inflammatory cytokines, continuous recruitment of proinflammatory white blood 

cells to the lungs and downregulation of the regulatory cytokine, IL-10 (Bonfield et al., 

1995; Courtney et al., 2004; Wagner et al., 2016; Zhou et al., 2016). In the 

immunocompetent lung, neutrophils account for approximately 1 % of the inflammatory 

cell population however this increases to 70 % in the CF lung (Kelly et al., 2008). The 

excessive influx of neutrophils to the lungs is in part due to higher than normal levels of 

IL-8, the neutrophil chemotactic chemokine produced by pulmonary epithelial cells and 

macrophages in response to inhaled microbes (Jundi and Greene, 2015).  Neutrophils play 

a pivotal role in the cellular innate immune response and their capacity to phagocytose 

and kill pathogens means they are indispensable in the clearance of microorganisms 

(Rosales et al., 2017). However, prolonged neutrophil activity is correlated with 

deteriorating lung function in CF patients (Dittrich et al., 2018). During phagocytosis, 

oxygen consumption by neutrophils is increased through the action of NADPH oxidase, 

which is required for superoxide production. Superoxide is converted to hydrogen 

peroxide, which is used by myeloperoxidase to produce bactericidal reactive oxygen 

species (ROS). This process is called oxidative burst and contributes to the hypoxic 

environment in the CF airways resulting from high levels of oxygen consumption. 

Neutrophils also kill pathogens by non-oxidative mechanisms through the release of 

antimicrobial components contained within granules. These enzymes include neutrophil 

elastase (NE), Proteinase 3 and cathepsin-G that are released upon neutrophil activation 

in a process called degranulation (Hahn et al., 2011; Twigg et al., 2015). Although 

degranulation is essential for microbial killing, degranulation events caused by 

continuous neutrophil stimulation contribute to inflammation and structural damage in 

the airways (Downey et al., 2009; Hahn et al., 2011). Excessive protease activity by NE 

has several consequences, which exacerbate inflammation in the CF lung. These include 

the inhibition of neutrophil activity through cleavage of the IL-8 receptor CXCR1 (Hartl 

et al., 2007) and promoting mucin production thereby increasing mucus content (Voynow 

et al., 2004). NE degradation of the CFTR protein (Le Gars et al., 2013) and activation of 

sodium channels further exacerbates the ionic imbalance that already exists in the CF 

airways (Caldwell et al., 2005).  



7 
 

In addition to neutrophils, pulmonary macrophages are central to the cellular 

innate immune response against inhaled microbes. Macrophages phagocytose and digest 

pathogens, and release pro-inflammatory cytokines, which recruit neutrophils and other 

components of the immune response to the infection site (Byrne et al., 2015). Macrophage 

matrix metalloproteinase 12 (MMP12) is secreted by activated macrophages. It has a 

number of functions including structural remodelling and proinflammatory properties 

(Wagner et al., 2016). Along with NE, MMP12 contributes to pulmonary epithelial 

damage and compromises airway structural integrity (Trojanek et al., 2014; Twigg et al., 

2015; Wagner et al., 2016).  Chronic cycles of inflammation, infection, and constant 

remodelling of the pulmonary surface result in dysfunctional airway epithelium and 

progressive loss of lung function. These pulmonary defects are exploited by certain 

pathogens, which ultimately contribute to respiratory failure and mortality. 

 

1.1.3 Advances in therapy for cystic fibrosis 

Individuals with CF are living longer and have a better quality of life thanks to 

advances in medicine. However, current therapeutic regimes are limited to treating the 

symptoms of the disease such as dehydrated mucus, microbial infection and inflammation 

rather than targeting the underlying molecular cause of CF (De Boeck and Amaral, 2016). 

The most recent breakthrough therapies target the defects in the CFTR protein and include 

a group of small molecules known an CFTR modulators (Ramsey et al., 2019). These 

drugs can be categorized by their function as potentiators, which target and enhance the 

activity of the CFTR gated ion channel or correctors that facilitate processing and 

transport of the CFTR protein to the cell surface (Ramsey et al., 2019). Drugs such as 

ivacaftor (a potentiator) may be used in isolation to treat disease caused by the G551D-

CFTR mutation, or in combination with drugs such as lumacaftor and tezacaftor 

(correctors) which, together with ivacaftor are commonly used to treat disease caused by 

the homozygous F508del-CFTR mutation (Sermet-Gaudelus, 2013; Lopes-Pacheco, 

2020).  

 Mucolytics are a class of mucoactive agents, which may be prescribed for the 

treatment of the thick sticky mucus arising from defects in CFTR. Mucolytics are 

characterized based on their ability to degrade various components of mucus thereby 

decreasing the viscosity and elasticity to enable mucus clearance from the airways (Henke 
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and Ratjen, 2007). Dornase alpha (deoxyribonuclease I) is the mucoactive agent of choice 

for treating mucus-associated complications in CF (Yang and Montgomery, 2018). 

Dornase alpha is a proteolytic enzyme which targets DNA that exists in the CF airways 

in large quantities due to disintegrating lymphocytes and microbial biofilms (Henke and 

Ratjen, 2007; Hall-Stoodley et al., 2008). It is administered as an aerosol and designed 

for long term use by CF patients (Balsamo et al., 2010). Another mucoactive agent, 

mannitol, is administered in powder form and has beneficial effects on mucociliary 

clearance in the CF airways (Nevitt et al., 2018). Mannitol is an osmotic agent thought to 

improve the hydration of airway secretions by increasing the influx of water into the 

airways (Reeves et al., 2012; Bilton et al., 2013). 

Despite the efficacy of CFTR modulators and mucoactive agents in treating CF 

symptoms, microbial infection is an ongoing challenge for individuals living with CF. 

Because of the propensity for pulmonary infection to occur in the CF airways, antibiotics 

are frequently used to treat such infections. In the context of CF, antibiotic therapy aims 

to eradicate acute infections and control chronic infections. The choice of antibiotic and 

treatment schedule is determined by the cause(s) of infection, resistance to antibiotics, 

and whether the infection is chronic or acute. Antibiotics can be administered by 

intravenously, orally or by inhalation (Smith et al., 2017). The latter is beneficial for 

chronic infections such as those caused by P. aeruginosa (Chmiel et al., 2014). For 

example, aztreonam aerosol or tobramycin inhalation powder is recommended for the 

treatment of chronic P. aeruginosa infections, which are often complicated by 

antibacterial resistance (Hamed and Debonnett, 2017; Bassetti et al., 2018a).  For acute 

infections caused by P. aeruginosa, therapy may aggressive and often relies on the use of 

two different antibiotic classes until the resistance to one is determined and the patient 

can be prescribed the most effective treatment  (Bassetti et al., 2018b). Aminoglycosides 

such as tobramycin or amikacin or colistin (polymyxin) may be combined with 

fluoroquinolone (e.g. ciprofloxacin), cephalosporin (e.g. ceftazidime) or carbapenem 

(e.g. meropenem) antibiotics (Chmiel et al., 2014). Vancomycin and linezolid are used to 

treat infections caused by Gram positive bacteria such as MRSA.  

Until a therapy targeting the underlying cause of CF, (i.e. the defects in CFTR) is 

provided, symptomatic treatments will remain exclusive as the choice of treatment for 

CF. Significant progress in gene therapy approaches have been made in the past decade, 

and provide some hope that a “cure” for CF may yet be possible. (Yan et al., 2019). A 
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number of challenges exist, not least ensuring the delivery of therapy to the primary target 

location, the lungs. The pulmonary immune system is efficient and complex and provides 

an obstacle for the entry of viral vectors, the preferred choice for gene therapy (Yan et 

al., 2019). This is complicated further by defective mucus in the CF airways. Non-viral 

vectors such a liposomes have been trialled but have shown little efficacy due to 

difficulties concerned with transport to the cell (Cooney et al., 2018). With the advent of 

CRISPR-Cas9 gene editing techniques in the past decade, comes a potential solution that 

will alleviate the symptoms associated with CF (Hodges and Conlon, 2019). However, 

this approach is in its infant days of research and many challenges remain to be addressed 

before this therapy reaches the clinic (Colemeadow et al., 2016). 

 

1.1.4 The microbial environment in non-cystic fibrosis-related conditions  

Individuals that live with non-cystic fibrosis-related respiratory diseases are also 

susceptible to infection with A. fumigatus and P. aeruginosa. Such pulmonary disorders 

include chronic obstructive pulmonary disorder (COPD) and chronic bronchiectasis, 

which are characterized by the permanent dilation of bronchial airways due to muscle and 

elastic tissue destruction mediated by consistent inflammation in the lungs. Chronic 

cough, increase in sputum production and difficulty in mucus clearance are features of 

COPD and bronchiectasis (McShane et al., 2013).  The development of COPD is largely 

associated with cigarette smoking although there is also a genetic element involved in a 

small percentage of cases (Athanazio, 2012). Bronchiectasis may arise as a complication 

of COPD and approximately 30 – 60% of individuals with COPD develop bronchiectasis 

(Everaerts et al., 2018). The symptoms of bronchiectasis result from cycles of infection 

and inflammation caused by existing immunodeficiency disorders, infection by non-

tuberculosis mycobacteria or by primary ciliary dyskinesia, a disorder that effects the 

mucociliary elevator, which is responsible for removing pathogens from the airways 

(Bilton, 2008). The prevalence of bronchiectasis in the US approximately five times that 

of cystic fibrosis and is a major cause of hospitalization due to increased rates of infection 

(McDonnell et al., 2015; Knapp et al., 2016; Weycker et al., 2017). 

The prevalence of P. aeruginosa in adults with COPD is estimated to be between 

4-15% and higher for individuals with severe COPD and bronchiectasis as part of the 

diagnosis (Murphy et al., 2008; Gallego et al., 2014).  In contrast, the frequency of 
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chronic P. aeruginosa infection for individuals with bronchiectasis as the primary 

conditions is between 9-31% (Araújo et al., 2018). Compared to infection by other 

pathogens, P. aeruginosa is associated with disease progression, recurrent pulmonary 

exacerbations and poorer clinical outcomes, including a higher rate of mortality in 

patients with bronchiectasis (McDonnell et al., 2015; Chai and Xu, 2020). The incidence 

of poly-microbial infections are also greater where P. aeruginosa is detected (McDonnell 

et al., 2015). Co-infection with P. aeruginosa and A. fumigatus have been detected in 

severe cases of COPD and the presence of P. aeruginosa in the airways is considered a 

risk factor for A. fumigatus infection (Huerta et al., 2014). A. fumigatus is frequently 

isolated from the airways of individuals with COPD and bronchiectasis and infection with 

A. fumigatus is a risk factor for the onset of bronchiectasis in COPD (Moss, 2015; 

Everaerts et al., 2017; Máiz et al., 2018; Everaerts et al., 2018). ABPA is employed as a 

diagnostic feature of bronchiectasis and can inform treatment programmes (Bilton, 2008).  

Symptomatic treatment schedules for bronchiectasis depend on the cause and the 

severity of the disease. Inhaled corticosteroids are standard in the treatment of 

bronchiectasis (De Soyza and Aliberti, 2016). Macrolides such as azithromycin are 

commonly used to treat bacterial infections as this class of antibiotics are active against 

P. aeruginosa and have the added benefit of possessing anti-inflammatory properties 

(Chalmers et al., 2015). However, the emergence of antimicrobial resistance, and the 

changes that occur to the lung microbiota caused by the long-term use of these macrolides 

are a cause for concern (Rogers et al., 2014; Chalmers et al., 2015). Inhaled amikacin is 

also recommended for treatment of bronchiectasis and is associated with reduced 

pulmonary exacerbations (Ailiyaer et al., 2018). Treatment options for ABPA are not as 

clear as those for bacterial infections (De Soyza and Aliberti, 2016). In general, 

corticosteroids are used for the symptomatic treatment of ABPA. Itraconazole has shown 

some efficacy in relieving the symptoms of ABPA, particularly when used in conjunction 

with corticosteroids (Wark et al., 2003; Wark et al., 2004). 
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1.2 Study of polymicrobial interactions 

The microbial diversity that exists in the CF lung inevitably gives rise to species-

species interactions. Such interactions can have  negative consequences for the host as 

the outcome eventually favours either or both pathogens (Peters et al., 2012; Nguyen and 

Oglesby-sherrouse, 2016). In the context of infection, polymicrobial interactions may be 

synergistic, where the cooperation between two or more microbes leads to a worse 

outcome for the host in comparison to when either of the microbes are present alone 

(Murray et al., 2014). In contrast, antagonism occurs when two or more species hinder or 

inhibit the growth of another. This may confer protection to the host, but may also 

promote the growth of the antagonist, which may be detrimental to host health (Nguyen 

and Oglesby-sherrouse, 2016).  

In the CF airways, pathogens must compete with each other for nutrients and 

space against a backdrop of inflammation and the possible use of antibiotics. The 

perception of, and response to signals from these challenges is regulated by quorum 

sensing, a method of communication using chemical signals that enables bacteria to 

regulate gene expression in a cell-density dependent manner (Schuster et al., 2013).  

Competition is mediated, in part, by quorum sensing (Hibbing et al., 2010). Given its 

predominant pathogenic role in the CF airways, quorum sensing in P. aeruginosa has 

been studied extensively in the context of nutrient depletion and competition with other 

microbial species. 

In vivo and in vitro co-culture studies have revealed a complex synergistic – 

antagonistic relationship that exists between P. aeruginosa and S. aureus. P. aeruginosa 

sequesters iron from S. aureus by lysing its competitor – a process mediated by 

Pseudomonas quinolone signal (PQS) (Mashburn et al., 2005). Quinolones are small 

signalling molecules involved in quorum sensing. Iron is an essential nutrient for bacterial 

growth and virulence and in iron-depleted environments P. aeruginosa upregulates a 

number of genes encoding iron uptake systems which facilitate the sequestration of iron 

from its surroundings (Nguyen et al., 2015). Amongst these iron sequestration 

mechanisms is the increase in PQS biosynthesis (Oglesby et al., 2008). Thus, P. 

aeruginosa exploits S. aureus as a source of iron under iron-limiting conditions. On the 

other hand, P. aeruginosa was shown to confer resistance to S. aureus against 

aminoglycoside antibiotics by supressing S. aureus respiration through the production of 



12 
 

4-hydroxy-2-heptylquinoline-N-oxide (HQNO), which, paradoxically, is an anti-

staphylococcal growth suppressor (Hoffman et al., 2006). Longitudinal studies have 

established that co-infection with P. aeruginosa and S. aureus is more detrimental to lung 

function than infection with P. aeruginosa alone (Maliniak et al., 2016). 

Interaction studies between P. aeruginosa and the oropharyngeal flora isolated 

from the sputum of CF patients  identified an increase in the number of upregulated genes 

associated with pathogenesis in P. aeruginosa (Duan et al., 2003). In the same study, lung 

damage was more severe in rats exposed to P. aeruginosa and a representative of 

oropharyngeal flora (a Streptococcus strain) than in rats exposed to either species alone 

(Duan et al., 2003). 

In other co-culture studies, the presence of peptidoglycan, a major cell-wall 

component of Gram-positive bacteria, was found to induce a number of virulence factors 

in P. aeruginosa, including the expression of PQS, which regulates the synthesis not only 

of HQNO but also other antimicrobials including pyocyanin and elastases (Korgaonkar 

et al., 2013). In vivo studies using Drosophila demonstrated that upon the introduction of 

P. aeruginosa into the infection model, the abundance of Gram-positive bacteria 

decreased substantially. Similar results were found in a murine wound model 

(Korgaonkar et al., 2013). 

Despite the persistence of fungal pathogens in the CF airways, their interactions with 

bacteria are just beginning to be explored (Briard et al., 2019). Numerous studies have 

focused on the interactions between P. aeruginosa and the commensal yeast, Candida 

albicans. In vitro studies show that P. aeruginosa inhibits the C. albicans yeast to filament 

transition, biofilm formation and intracellular adherence through the production of 

phenazines (Holcombe et al., 2010; Morales et al., 2013). Chen et al., (2014) 

demonstrated that P. aeruginosa phenazines stimulate ethanol production in C. albicans 

which in turn stimulates bacterial biofilm formation (Chen et al., 2014). In vivo studies 

tell a somewhat different story as demonstrated by Lopez-Medina et al., (2015) who used 

a murine co-infection model, to show that C. albicans suppresses expression of  P. 

aeruginosa virulence factors pyoverdine and pyochelin to reduce virulence (but not 

colonization) of the bacteria in mice (Lopez-Medina et al., 2015). Studies using zebra fish 

as an in vivo model of the mucosal surface have shown synergism between C. albicans 



13 
 

and P. aeruginosa and in this infection model, virulence in both pathogens, and host 

mortality was increased (Bergeron et al., 2017). 

These studies demonstrate that polymicrobial interactions are difficult to dissect 

and the results are largely dependent upon the model system used to analyse these 

interactions. Nonetheless, the findings arising from such studies contribute to our 

understanding of microbial interactions and help in detecting potential therapeutic targets. 

 

1.3 In vitro models for the study of pathogen host interactions of the lung 

The airway epithelium is the first point of contact with inhaled microorganisms 

and is central in the innate immune responses to potential pathogens. In vivo, airway 

epithelial cells (AECs) provide a physical defense by providing a structural barrier against 

incoming microbes and maintaing the mucociliary elavator. AECs also provide molecular 

and cellular defenses through the production of antimicrobial peptides, reactive oxygen 

and nitrogen species, and cytokines and chemokines which orchestrate the cellular arm 

of the innate immune response and eventually the adaptive immune response. The 

morphology and function of ECs is determined by their location in the respiratory tract. 

Therefore, in vitro models have been developed to mimic specific systems within the 

tract, including laryngeal, bronciolar and alveolar. 

As with all model systems, advantages and disadvantages exist regardless of the 

cell line chosen. Immortal cell lines derived from carcinomas or virus-transformed cells 

offer several advantages; they are easy to handle, grow quickly and provide reproducible 

results. Additionally, they bypass ethical concerns associated with the use of human 

tissue. On the other hand, these cell lines provide only a 2D monolayer, whereas in vivo 

cells exist as complex, differentiated 3D structures. However, this aspect of in vitro cell 

culture has somewhat been addressed with the development of novel protocols allowing 

for 3D structure of immortal cell lines (Carterson et al., 2005a; Chandorkar et al., 2017). 

Serial passage of immortal cell lines can cause genotypic and phenotypic variation, which 

may cause heterogeneity in cultures (Kaur and Dufour, 2012). Because of this, immortal 

cell lines may not adequately represent primary cells. Nonetheless, immortal cell lines 

have proven extremely useful in understanding how pathogens interact with the host to 

initiate pulmonary infection and have provided insights into the host response to pathogen 

invasion.  
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Because primary cell lines most closely represent the tissue of origin, they are 

excellent model systems for studying the physiology of a particular tissue (Pezzulo et al., 

2011). However, they have a limited life span and are associated with variability because 

they are taken directly from donor tissue. Growing conditions must be customized to the 

specific cell type and it is more difficult to achieve a large sample size, thereby limiting 

research opportunities. 

In the context of airway infections, several in vitro infection models derived from 

humans have been developed to study host interactions with pulmonary pathogens. The 

most commonly used cell lines employed for these studies include A549, a type II 

pneumocyte derived from an alveolar carcinoma (Lieber et al., 1976), 16HBE cells 

derived from bronchial epithelial cells and transformed with SV40, and CFBE cells 

derived from bronchial epithelial cells of CF patients and transformed with 

SV40/adenovirus (Zeitlin et al., 1991; Cozens et al., 1994). Since their development, 

these cell lines have been used for many studies investigating the interactions between 

CF-associated pathogens and the host (Chi et al., 1991; Daly et al., 1999; Wasylnka and 

Moore, 2002; Wasylnka, 2003; Berkova et al., 2006; Osherov, 2012; David et al., 2015; 

Surmann et al., 2015; Golovkine et al., 2016; Bertuzzi et al., 2018). 

 

1.4 The A549 cell line as a model for infection at the alveolar surface 

The alveolar epithelium is composed primarily of type I alveolar epithelial (AE) 

cells, which account for 95 % of the alveolar surface, and type II AE cells, which account 

for 5 % of the alveolar surface (Mason, 2006). Type I AE cells function as the air-blood 

barrier. Type II AE cells are type I progenitor cells that are involved in epithelial repair 

through proliferation, surfactant production and play a role in the innate immune response 

through pathogen recognition, phagocytosis, pathogen killing, cytokine production and 

surfactant production (SP-A and SP-D) (McElroy and Kasper, 2004; Mason, 2006; Mao 

et al., 2015) 

The A549 cell line is composed of type II-like alveolar epithelial cells (pneumocyte) that 

originates from a human lung carcinoma. Since their development in 1976 by Lieber et 

al., they have been used in many studies investigating pathogen-host interactions. With 

the exception of surfactant production, these cells provide several features performed by 

primary Type II AE cells, including pathogen recognition, uptake and killing and cytokine 
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production (Wasylnka and Moore, 2002; Mao et al., 2015; Chen et al., 2015). Ease of 

handling, reproducibility and innate immune functions, have made A549 cells an 

attractive in vitro model of the alveolar surface and for the study of pulmonary pathogen-

host interactions with fungal pathogens such as; A. fumigatus (Croft et al., 2016; Bertuzzi 

et al., 2018), bacteria such as P. aeruginosa, S. aureus and B. cepacia (McClean and 

Callaghan, 2009; Surmann et al., 2015; Hall et al., 2016), and viral pathogens such as 

influenza and HRSV (Munday et al., 2010; Cao et al., 2017). 

 

1.5 Aspergillus fumigatus; an opportunistic human pathogen 

Aspergillus fumigatus belongs to the genus Aspergillus, which also includes A. 

flavus, A. niger, A. terreus and A. nidulans. Aspergilli are saprophytic filamentous, 

moulds that release airborne hydrophobic spores called conidia, which are approximately 

2 – 3 µm in diameter and blue-green in colour. Although its natural ecological niche is 

the soil, A. fumigatus is ubiquitous, existing indoors and outdoors (Latgé, 1999). Because 

of this, inhalation of conidia is a daily occurrence. A. fumigatus is an opportunistic 

pathogen and the most pathogenic out of its genus (Kosmidis and Denning, 2015). For 

immunocompetent individuals, inhaled conidia are swiftly cleared by cells of the 

pulmonary immune system (Dagenais and Keller, 2009). However, in 

immunocompromised individuals, A. fumigatus can cause a mycosis called aspergillosis, 

the severity of which is determined by the immune status of the host. Aspergillosis can 

manifest in one of three forms; allergic aspergillosis, the most common form of which is 

known as allergic bronchopulmonary aspergillosis (ABPA) is characterized by the 

induction of an immune response triggered by the secretion of toxins and allergens from 

the developing fungus. Saprophytic aspergillosis is characterized by the development of 

aspergilloma (fungal ball) in chronic lung cavities of the pulmonary tissue, such as those 

caused by tuberculosis (Chabi et al., 2015). Invasive aspergillosis (IA) is the most 

devastating form of aspergillosis and is characterized by the dissemination of fungal 

hyphae throughout the tissues of the affected area. This occurs in the lungs in more than 

90 % of cases and is called invasive pulmonary aspergillosis (IPA) (Hope et al., 2005). 

Although a number of Aspergillus species have been associated with invasive 

aspergillosis, A. fumigatus accounts for approximately 90% of these cases (Denning, 

1998). IA targets severely immunocompromised individuals including individuals with 
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neutropenia, organ transplant recipients and chemotherapy patients (Kosmidis and 

Denning, 2015). 

 

1.5.1 A. fumigatus pathogenesis and host – from inhalation to germination 

A. fumigatus is a versatile microorganism that is equipped to survive and 

propagate in a variety of environments (Paulussen et al., 2017). The fungus possesses a 

number of features that make it an excellent human pathogen, including the ability to 

grow at high temperatures and varying pH. A. fumigatus can sustain growth above 42°C, 

which in the context of human infection is beneficial for maintaining infection under high 

temperature conditions (Chang et al., 2004). Additionally, it can adapt to the changing 

pH of the mammalian host by activating a set of pH-responsive genes regulated by the 

transcription factor, PacC (Bignell et al., 2005; Bertuzzi et al., 2014). 

The physical size and hydrophobic nature enables A. fumigatus conidia to enter the 

respiratory tract through inhalation, bypass mucocilary clearance, and reach the alveoli. 

Within 30 minutes, resting conidia become metabolically active and begin to swell (Fig 

2A and 2B).  

If left unchallenged by cells of the immune system, conidia begin to germinate within 

approximately three hours and by eight hours, hypha being to form (Fig. 2C and 2D). 

 

 

 

 

 

 

 

 

Fig. 1.2. The morphology of A. fumigatus The differing morphological stages of A. fumigatus growth in 

Sabouraud dextrose liquid medium; as time proceeds, resting conidia at zero hours (A) begin to swell after 

two hours (B) and germinate after 6 hours (C), eventually producing hypha by 24 hours (D).  

A

C
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1.5.1.1 Host cell recognition of A. fumigatus 

Cells of the immune system and pulmonary epithelia possess pathogen 

recognition receptors (PRRs) which detect pathogen associated molecular patterns 

(PAMPs) on pathogens. A range of PRRs have been implicated in the recognition of A. 

fumigatus including Toll-like receptors (TLR) 2, 3, 4  and 9, NOD2 and NLRP3 (Meier 

et al., 2003; Ramirez-Ortiz et al., 2008; Saïd-Sadier et al., 2010; Li et al., 2012; 

Beisswenger et al., 2012).  The C-type lectin receptors (CLRs) dectin-1, dectin-2, DC-

SGIN, Mincle and mannose receptors are the primary receptors for β(1,3)-glucan residues 

that coat the A. fumigatus conidia cell (Brown and Gordon, 2001; Serrano-Gómez et al., 

2005; Sun et al., 2013; Bertuzzi et al., 2014; Goyal et al., 2018). 

A. fumigatus conidia may evade initial host-cell recognition by masking β(1,3)-glucan 

residues with a thin proteinaceous hydrophobic layer called RodA hydrophobin (Carrion 

et al., 2013). As conidia germinate, the RodA layer is shed and β(1,3)-glucan residues are 

revealed, allowing for recognition by cells expressing dectin-1. 

Until recently, little was known about the recognition of non-germinating conidia by host 

cells. A role for a pulmonary and hepatic murine endothelial cell CLR called MelLec in 

the detection of Dihydroxynapthalene (DHN)-melanin was described by Stappers and 

colleagues (Stappers et al., 2018). DHN-melanin is a secondary metabolite found in the 

conidial cell wall. In the environment, it confers resistance against desiccation and 

damage from UV radiation, and in the host it plays an important role in virulence by 

scavenging ROS and protecting conidia against phagocytosis by professional phagocytes 

(Jahn et al., 2002; Heinekamp et al., 2013; Pal et al., 2013). Interestingly, recognition of 

this PAMP by MelLec was lost as conidia began to swell and germinate, thus indicating 

a role for this receptor during the very early stages of fungal infection (Stappers et al., 

2018). Moreover, DHN-melanin is masked by RodA, thus until conidia shed this 

hydrophobin, the cellular immune-recognition response is limited. 
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1.5.1.2 The humoral response to A. fumigatus 

The early host response against inhaled conidia is mediated by the cellular and 

humoral arm of the innate immune system. The humoral component of innate immunity 

augments the cellular response in various ways and is comprised of several soluble 

recognition receptors including Pentraxins, complement proteins, ficolins and collectins 

such as SP-A and SP-D (Bottazzi et al., 2010; Carreto-Binaghi et al., 2016). Pentraxin 3 

(PTX3) is a soluble recognition receptor expressed by activated epithelial cells, 

endothelial cells and myeloid cells and is constitutively expressed as part of the neutrophil 

arsenal of antimicrobial peptides (Jaillon et al., 2007; Moalli et al., 2010). PTX3 binds to 

conidia, but not to hyphae and its role in host defence against A. fumigatus has been 

described as indispensable (Garlanda et al., 2002). This was supported with in vivo studies 

which demonstrated that PTX3-deficient mice were unable to survive conidial infection 

and PTX3-deficient mice that were supplemented with exogenous PTX3 had increased 

survival rates and decreased fungal burdens in the lungs (Garlanda et al., 2002). PTX3 

promotes the interaction with and uptake of conidia by macrophages in vitro and in vivo 

(Garlanda et al., 2002). Interestingly, the levels of PTX3 was lower in the sputum of CF 

patients than that of individuals with chronic obstructive pulmonary disorder (COPD) 

(Hamon et al., 2013). The low levels of PTX3 was attributed to N-terminal proteolytic 

cleavage of PTX3 by serine proteases derived from A. fumigatus and neutrophil elastases 

– both of which are frequent in the CF airways (Hamon et al., 2013). 

Some soluble recognition receptors interact together to enhance fungal killing. For 

example, PTX3 interacts with several components of the complement system to activate 

the three complement pathways (classical, alternative and lectin pathway) (Garlanda et 

al., 2016). However, the killing power of the complement system on conidia is 

questionable, as studies have identified A. fumigatus defence mechanisms that have 

evolved to evade or degrade several components of the complement system. The alb1 and 

arp1 genes belong to a gene cluster that regulates the DHN-melanin pathway in A. 

fumigatus conidia (Heinekamp et al., 2013). Mutants deficient in these proteins were 

more susceptible to deposition by the complement protein, C3 on the conidial cell wall, 

thus indicating a role for DHN-melanin in early evasion of the complement system (Tsai 

et al., 1997; Tsai et al., 1998).  The A. fumigatus metalloprotease Mep1p cleaves several 

complement proteins including C3, C4 and C5, MBL and Ficolin-1 (Shende et al., 2018). 

Since Mep1p is produced by conidia, the authors proposed that A. fumigatus could 
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inactivate the complement during the very early stages of infection. A serine protease, 

Alp1, secreted by A. fumigatus hyphae was also found to degrade the C1q, C3, C4 and 

C5 members of the complement system, thereby indicating that the complement cascade 

could be inactivated by A. fumigatus that has evaded earlier detection by the innate 

immune system (Behnsen et al., 2010). 

Ficolins are recognition molecules that specifically target N-acetyl compounds 

such as N-acetylglucosamine components on fungal cell walls and activate the lectin 

complement pathway (Endo et al., 2011). Although their role in fungal immunity is not 

well established, these lectins do appear to have a protective role against A. fumigatus 

(Genster et al., 2016). Interaction with PTX3 enhanced binding of both ficolin-2 and 

PTX3 to conidia and ficolin-2 mediated complement protein deposition on the surface of 

conidia, a process that was enhanced by the presence of PTX3 (Ma et al., 2009). In vivo, 

ficolin knock-out mice exposed to sub-lethal doses of A. fumigatus conidia displayed 

delayed fungal clearance and impaired production of proinflammatory cytokines IL-1β 

and IL-6, indicating a role for ficolins in modulating inflammation as a response to A. 

fumigatus (Genster et al., 2016). 

Lastly, SP-A and SP-D are surfactant proteins that belong to the C-type lectin 

family of recognition receptors and as such, they bind various carbohydrate structures on 

the outer surface of incoming airway pathogens. In vitro, SP-A and SP-D opsonize 

conidia, resulting in agglutination of the spores and enhanced phagocytosis by alveolar 

macrophages and neutrophils (Madan et al., 1997). SP-A and SP-D are also though to 

play a role in regulating a hypersensitivity response and murine models of ABPA treated 

with exogenous SP-A and SP-D displayed lower levels of eosinophilia than untreated 

mice (Madan et al., 1997; Madan et al., 2001). 

 

1.5.1.3 Manipulation of host epithelial cells by A. fumigatus 

Inhaled A. fumigatus conidia that reach the alveoli can be internalized by AE cells. 

Endocytosis is, in part, dectin-1-dependent and is mediated by PacC-regulated genes in 

the fungus (Bertuzzi et al., 2014). These interactions are actin-dependent and damaging 

to host-cell integrity (Kogan et al., 2004; Bertuzzi et al., 2014). Once internalized, conidia 

are trafficked to late endosomes where a proportion of them are killed within the acidic 

compartments (Wasylnka and Moore, 2002). However, the killing ability of AE cells is 



20 
 

inferior to that of professional phagocytes such as macrophages, neutrophils and dendritic 

cells and a small number of conidia can survive and germinate within the cells (Wasylnka, 

2003).  

Interestingly however, the DHN-melanin is reported to promote the uptake of conidia into 

AE cells, inhibit phagolysosmal acidification and caspase-3-dependent apoptosis in A549 

cells (Amin et al., 2014). The inhibition of host cell apoptosis by conidia has been 

reported previously in several studies and thus, it is plausible that A. fumigatus exploits 

epithelial cells as mechanisms of evasion from the immune system (Daly et al., 1999; 

Berkova et al., 2006; Féménia et al., 2009).  

 

1.5.1.4 The innate immune cell response to A. fumigatus 

Alveolar macrophages are resident phagocytes of the pulmonary innate immune 

system and play a major role in clearing inhaled pathogens from the lung (Cheung et al., 

2000; Philippe et al., 2003). When A. fumigatus conidia are deposited in the lung, the role 

of macrophages is to limit germination (Tanaka et al., 2015; Rosowski et al., 2018). In 

this way, the host is protected from the effects of hyphae and from the potential tissue 

damage cause by excessive neutrophil influx required to kill germinating conidia (Fig. 

1.3). 

Inhaled conidia that reach the lower airways are engulfed by macrophages in an 

actin-dependent manner and internalized conidia are contained within a phagosome 

which undergoes maturation by fusing with a lysosome, forming a phagolysosome 

(Ibrahim-Granet et al., 2003). Vacuolar ATPases induce phagolysosome acidification and 

activate hydrolytic enzymes such as cathepsin-D and chitinases, which initiate 

degradation of the fungal cell wall (Ibrahim-Granet et al., 2003). A. fumigatus conidia 

begin to swell approximately three hours after engulfment and the resulting exposure of 

β-(1, 3) glucans initiates fungal detection by intracellular PRRs dectin-1 and TLR9 which 

associate with the phagolysosome (Ibrahim-Granet et al., 2003; Kasperkovitz et al., 2010; 

Faro-Trindade et al., 2012). Coinciding with this event is the generation of ROS, the 

production of which correlates directly to elevated levels of fungal killing, and the 

production of proinflammatory cytokines including TNF-α and IL-6 (Philippe et al., 

2003; Dubourdeau et al., 2006). 
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The orchestration of a macrophage-mediated proinflammatory response is important for 

the clearance of germinated conidia, which is a neutrophil-dependent process (Philippe et 

al., 2003; Rosowski et al., 2018).  

Neutrophils are indispensable for the control of A. fumigatus infection. This is 

highlighted by prevalence of IA in individuals with chronic granulomatous disease 

(CGD), a disease characterized by defective NADPH oxidase (King et al., 2016b). The 

critical role for neutrophils in innate defence against A. fumigatus has been highlighted in 

several in vivo studies, which have demonstrated high mortality rates and ease of fungal 

colonization in neutropenic murine models of aspergillosis (Stephens-Romero et al., 

2005; Mircescu et al., 2009). Neutrophils employ a range of oxidative and non-oxidative 

mechanisms to destroy developing hyphae, including phagocytosis, NADPH oxidase-

mediated ROS production and the discharge of a range of antimicrobial proteases from 

granules such as histones H2A, H2B, and H3.1, neutrophil elastase (NE), 

myeloperoxidase (MPO), cathepsin G, azurocidin, and defensin 1 (Shlezinger et al., 2017; 

Shopova et al., 2019).  

The formation of neutrophil extracellular traps (NETs) was described by Brinkmann et 

al. (2004) as a novel form of neutrophil-mediated antimicrobial defense and has since 

been implicated in the host defense against A. fumigatus (Bruns et al.,2010; McCormick 

et al. 2010; Rӧhm et al. 2014). NETs are networks of extracellular fibers composed of 

decondensed nuclear chromatin that bind histones and antimicrobial granular proteins 

(Brinkmann et al. 2004). NET formation (NETosis) is induced by a variety of microbes 

or proinflammatory mediators such as IL-8 and is particularly important for defense 

against pathogens that are too large to be phagocytosed, such as A. fumigatus hyphae 

(Brinkmann et al. 2004; Urban et al., 2006). NETs inhibit the growth of, but do not kill 

hyphae, thereby indicating a role for NETs during the latter stages of A. fumigatus 

infection (McCormick et al. 2010). Calprotectin, a NET-associated protein chelates zinc 

ions thereby starving the fungus of an essential nutrient (McCormick et al. 2010; Bianchi 

et al. 2011). Lactoferrin, a glycoprotein released during neutrophil degranulation, also 

contributes to fungal nutrient depletion by sequestering iron from A. fumigatus (Zarember 

et al., 2007) (Fig. 1.3). 
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1.5.1.5 The adaptive immune response to A. fumigatus 

The role of Dendritic cells (DC) in the immune system is to bridge innate and 

adaptive immune responses. Immature DCs (iDC) phagocytose resting conidia, swollen 

conidia and germinating conidia causing them to become activated and mature (Bozza et 

al., 2002; Gafa et al., 2006; Hsieh et al., 2017). Mature DC express CCR7, which direct 

the cells to lymphoid tissues where they interact with their cognate naïve  helper T-cells 

(Th) to activate an adaptive immune response (Riol-Blanco et al., 2005). A. fumigatus-

infected DC produce cytokines that drive specific T-cell responses. As well as TNF-α and 

IL-1β, DC secrete IL-12, IL-23 and IL-27 cytokines that are associated with stimulating 

Th1-mediated adaptive immune responses. IFN-γ is a cytokine with particular importance 

in fungal clearance and its production by Th1 cells in response to IL-23 stimulation, 

demonstrates an important role for DCs in providing defence against A. fumigatus (Smits 

et al., 2004; Gafa et al., 2006). Another IFN-γ-producing cell is the Natural Killer (NK) 

cell, whose role in anti-A. fumigatus defence has been shown in vivo and in vitro to be 

significantly important (Park et al., 2009; Bouzani et al., 2011). Infected DC produce IL-

10 during the later stages of A. fumigatus infection (Bozza et al., 2002; Gafa et al., 2006). 

This is a crucial immunoregulatory cytokine required to downregulate inflammation 

when an infection has cleared.  

The upregulation of IL-10 and IL-4 are associated with the switch from a Th1-

mediate response to a Th2-mediated response, commonly observed in asthma and ABPA 

(Stevens, 2006). Th2 responses are characterized by an increase in IL-5 and IL-4 which 

drive eosinophil maturation, IL-13, which is responsible for mucus hypersecretion and 

activate IgE and IgG1 antibody production in B cells (Stevens et al., 2003; Allard et al., 

2006; Chaudhary and Marr, 2011; Murdock et al., 2011). Defects in the CFTR gene are 

heavily linked with the dysregulation of the T-cell-mediated immune response and the 

intrinsic bias for Th2 responses (Allard et al., 2006; Ratner and Mueller, 2012). 
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Fig. 1.3 The innate immune response to A. fumigatus. Immunocompetent lung, conidia are immediately 

met by a host of soluble recognition receptors including PTX3 and SP-D which bind to and enhance conidial 

phagocytosis by AM. AM recognition and uptake of conidia is mediated by Dectin-1 and TLRs and leads 

to the induction of a proinflammatory response. Conidia that have escaped attack by AM, germinate and 

penetrate through the alveolar surface. AM- and EC-derived proinflammatory mediators recruit neutrophils 

to the site of infection. Neutrophils employ oxidative-dependent (ROS generation) and oxidative-

independent (NET formation, degranulation and lactoferrin production) mechanisms to inactivate 

germinating conidia and hyphae. At the site of infection, DCs phagocytose and process germinated conidia 

for subsequent antigen presentation to naïve T cells, which in turn activate an adaptive immune response 

to A. fumigatus. 

 

 

1.5.2 The role of A. fumigatus secondary metabolites in establishing infection 

A. fumigatus conidia that escape killing by the host immune system begin to 

germinate and produce hyphae. Fungal hyphae secrete secondary metabolites that have 

immunosuppressant properties, such as gliotoxin and fumagillin and secrete a range of 

lytic enzymes such as lipases and proteases that enable fungal expansion and 

dissemination through pulmonary tissue (Kogan et al., 2004; Tsunawaki et al., 2004; 

Farnell et al., 2012; Guruceaga et al., 2018; Raffa and Keller, 2019). 
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One of the features that make A. fumigatus a successful human pathogen is the 

ability to modulate disease progression through the production of numerous secondary 

metabolites. As previously discussed in section 1.5.1, DHN melanin limits the effects of 

ROS and interferes with the phagocytic properties and phagosome acidification in 

phagocytic cells (Amin et al., 2014).  

Gliotoxin  belongs to the epipolythiodioxopiperazine class of fungal toxins and is 

characterized by a disulphide bridge across the piperazine ring (Dolan et al., 2015). The 

disulphide bridge is a reactive functional group to which toxicity is attributed. A. 

fumigatus is protected from the toxic effects of gliotoxin through the upregulation of gliT, 

a gene encoding GliT, a gliotoxin reductase which oxidizes free thiol groups on the 

molecule and reduces oxygen to hydrogen peroxide (Schrettl et al., 2010; Scharf et al., 

2016). ROS is generated through the reduction and oxidation of the disulphide bonds, 

thereby interfering with redox homeostasis in the host (Scharf et al., 2016).  

It is well established that gliotoxin interferes with the host immune response in 

numerous ways. Gliotoxin inhibits activation of the transcription factor nuclear factor κB 

(NFκB) by preventing proteasome-dependent degradation of the NFκB inhibitor, IκBα 

through interference with the proteasome (Kroll et al., 1999). NFκB is a major immune-

regulatory transcription factor and is involved in upregulating proinflammatory 

cytokines. Thus, through inhibition of NFκB, gliotoxin downregulates the host immune 

response. Gliotoxin targets the pro-apoptotic protein Bak to induce apoptosis in vitro and 

in vivo (Pardo et al., 2006). Gliotoxin is in part, responsible for the suppression of 

angiogenesis was inhibited in mice exposed to A. fumigatus, although a role for other 

secondary metabolites was attributed to this inhibition also (Ben-Ami et al., 2009). 

Gliotoxin suppresses the cellular arm of the immune system in a number of ways. 

Gliotoxin interferes with NADPH oxidase activity thereby inhibiting the production of 

ROS (Tsunawaki et al., 2004). Gliotoxin targets phosphatidylinositol 3,4,5-trisphosphate, 

which impairs actin dynamics, hence phagocytosis, as was shown to be the case in murine 

macrophages (Schlam et al., 2016a). Gliotoixin has also been implicated in interfering 

with the ciliary beat in human respiratory cells in vitro (Amitani et al., 1995). The in vivo 

effects of gliotoxin were demonstrated in an immunosuppressed (non-neutropenic) 

murine model of IPA (Sugui et al., 2007). Mice were exposed to a mutant strain of A. 

fumigatus in which the The gliP gene encoding GliP, a nonribosomal peptide synthase 

that catalyzes the first step in the gliotoxin biosynthesis pathway was deleted. Mutant 
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strains were unable to trigger ROS in neutrophils, induce apoptosis in mouse endothelial 

fibroblasts and showed reduced ability to induce mortality in immunosuppressed mice 

(Sugui et al., 2007). 

Fumagillin displays similar immunosuppressant properties to gliotoxin. Although 

to a lesser extent than gliotoxin, fumagillin retards ciliary beating in epithelial cells 

(Amitani et al., 1995; Fallon et al., 2010). It is internalized by A549 cells and induces 

cellular damage as measured by the amount of chromium released in a 51Cr release assay 

(Guruceaga et al., 2018).  Fumagillin has exceptional anti-angiogenic properties and 

covalently binds to methionine aminopeptidase-2 (MetAP-2) via its epoxide ring thereby 

inhibiting endothelial cell proliferation (Sin et al., 1997; Griffith et al., 1998). Fumagillin 

affects neutrophil phagocytosis by interfering with f-actin assembly (Fallon et al., 2010). 

Additionally, NADPH oxidase assembly and neutrophil degranulation is reduced in cells 

exposed to fumagillin, thus inhibiting the ability of these cells to kill internalized 

pathogens (Fallon et al., 2010).  

 

1.5.3 Impact of A. fumigatus on cystic fibrosis patients 

A. fumigatus is the causative agent of allergic bronchopulmonary aspergillosis, 

(ABPA). It is estimated that 1 – 2 % of asthma patients and 1 – 15 % of CF patients are 

affected by ABPA (Stevens et al., 2003). Clinical manifestations of ABPA include 

wheezing and bronchospasms and for individuals with CF, decline in lung function may 

occur (Janahi et al., 2017). For non-CF patients, ABPA diagnostic criteria include asthma, 

elevated serum levels of Aspergillus-specific IgG antibodies, elevated serum levels of IgE 

and eosinophilia (Tanner and Judson, 2008; Patterson and Strek, 2010). Several of the 

diagnostic criteria for ABPA are common manifestations of CF, for example, elevated 

IgG and IgE anti-A. fumigatus antibodies are not uncommon in CF serum due to 

sensitization to A. fumigatus in CF (Knutsen et al., 2004). For this reason diagnosis of 

ABPA in a CF patient may present certain challenges (Tanner and Judson, 2008). 

Nonetheless, A. fumigatus-specific IgE levels are recognized as the most useful diagnostic 

tool (Knutsen et al., 2004; Agarwal et al., 2013). 

ABPA is described as a hypersensitivity lung disease in response to bronchial 

colonization by A. fumigatus (Knutsen and Slavin, 2011). It occurs when conidia 

deposited in the airways begin to germinated and release metabolites such as gliotoxin, 
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fumagillin, and allergens such as Asp f family of allergens (Daly and Kavanagh, 2001; 

Farnell et al., 2012). These toxins disturb the epithelial barrier and impede mucociliary 

clearance (Amitani et al., 1995; Kogan et al., 2004). An influx of pulmonary macrophages 

and neutrophils mediate a proinflammatory cytokine cascade that promote a Th2-type 

adaptive immune response involving the release of IL-4, IL-5, IL-9 and IL-13 (Caminati 

et al., 2018). IL-4 induces IgE production, which binds to and sensitizes basophils and 

mast cells. IL-5 and IL-9 recruit eosinophils and mast cells to the infection site and IL-13 

induces mucus hypersecretion, airway fibrosis and eotaxin production, thus contributing 

to the eosinophilic inflammatory response (Zhu et al., 1999; Fahy, 2015). These factors 

contribute to the chronic inflammation that feature heavily in the CF airways (Fig. 1.4). 

 

 

 

 

Fig. 1.4 The effect of A. fumigatus on the immunocompromised lung. The immunocompromised lung, 

or the asthmatic and CF lung, provides an environment that is conducive to conidial growth. Poor quality 

mucus inhibits access to conidia by immunological mediators, thus conidia germinate and penetrate through 

the alveolar surface. Hyphae produce gliotoxin and fumagillin, which deactivate the mucociliary elevator 

and inhibit neutrophil activity. An overexaggerated inflammatory response to A. fumigatus mediated by 

eosinophiles and neutrophils contributes to tissue necrosis and severe pulmonary damage. 
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1.5.4 Microbial interactions involving A. fumigatus 

Inhaled A. fumigatus conidia form part of the diverse evolving microbial 

community that influence the disease progression in the CF airways. The way in which 

A. fumigatus interacts with other members of this community is fundamental to 

understanding how this pathogen competes with others to establish infection or facilitates 

the establishment of other pathogens in the lung. A better understanding of these 

dynamics may help predict the treatment regimens necessary to ameliorate the disease. 

With the exception of P. aeruginosa, the interactions between A. fumigatus and other 

pulmonary pathogens remain relatively unexplored, although this is changing as the 

recognition for the impact of polymicrobial interactions on disease progression is 

beginning to surface (Filkins and O’Toole, 2015).  

While bacteria such as S. aureus are associated with chronic colonization in 

juvenile CF patients, A. fumigatus persists throughout the lifetime of individuals with CF 

but rarely establishes chronic infection (CF Registry of Ireland 2017 Annual Report, 

2017; Hurley, 2018; Delfino et al., 2019). Co-cultures of S. aureus and A. fumigatus 

conidia revealed antagonistic interactions resulting in the bacteria outcompeting the 

fungus (Ramírez Granillo et al., 2015). In this study, S. aureus cells adhered to conidia 

and fungal-bound bacteria served as a chemoattractant for other bacterial cells. Fungal 

inhibition by S. aureus was most effective where bacteria adhered to the surface first. 

Bacteria induced lysis of the conidia and interfered with hyphal development (Ramírez 

Granillo et al., 2015).  

Although Klebsiella pneumoniae is not typically associated with CF infections, it 

is nonetheless a common cause of pulmonary disease (LiPuma, 2010; Leão et al., 2011). 

In vitro, in mixed biofilms, K. pneumoniae suppressed A. fumigatus conidial germination, 

hyphal development and biofilm formation without killing the fungus (Nogueira et al., 

2019). On the contrary, K. pneumonia biofilm increased in the presence of A. fumigatus. 

These effects were dependent on direct contact between the fungal and bacterial 

pathogens in which K. pneumoniae induced oxidative stress and upregulation of cell wall 

synthesis genes in A. fumigatus (Nogueira et al., 2019). 

Stenotrophomonas maltophilia is an emerging CF-associated pathogen (Esposito 

et al., 2017). Interactions between S. maltophilia and A. fumigatus were analysed in mixed 

biofilms and, similar to the previous S. aureus and K. pneumoniae, the results showed 
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that S. maltophilia interacted directly with fungal biofilm and in the presence of bacteria, 

A. fumigatus hyphal formation was delayed, conidiation was abrogated and and biofilm 

formation was reduced. Moreover, the conidial cell wall was thicker in the presence of S. 

maltophilia.  

These interaction studies indicate that while bacteria outcompete A. fumigatus in 

terms of growth, these encounters do not kill the fungus, rather subdue their ability to 

become invasive. In the context of CF and asthma, this may be clinically relevant, as 

although A. fumigatus does not become invasive, it does persist and induce prolonged 

inflammation (Hartl, 2009; Ghosh et al., 2015). 

The most common interaction studies involving A. fumigatus and another airway 

pathogen are those that occur with P. aeruginosa. The importance of understanding how 

A. fumigatus and P. aeruginosa interact is underpinned by the negative impact of co-

infection with these pathogens in CF. Thus, understanding the dynamics of the 

relationship between these pathogens is fundamental for the development of targeted 

therapeutics that may disturb these interactions and improve patient health.  

 

1.6 Pseudomonas aeruginosa: an opportunistic human pathogen 

P. aeruginosa is a Gram-negative, rod-shaped bacterium and is ubiquitous in 

nature, particularly in aquatic and soil environments. Its ubiquitous nature is due to its 

ability to thrive in environmental niches that are intolerable to other microorganisms and 

its nutritional versatility. The genome of P. aeruginosa is large (~6.3 kbp) (Stover et al., 

2000) and approximately 8-10 % of these genes are predicted to be regulators of gene 

expression (Greenberg, 2000). This confers P. aeruginosa with an incredible capacity to 

adapt rapidly to environmental changes such as nutritional availability (Greenberg, 2000). 

Additionally, P. aeruginosa possess several efflux pumps which can expel toxic 

compounds, such as antibiotics, from the cell faster than they can accumulate (Greenberg, 

2000; Pang et al., 2019). These attributes give P. aeruginosa a competitive advantage 

over other microbes and make this a remarkable opportunistic pathogen of humans.  

Most infections caused by P. aeruginosa arise from the immunocompromised 

condition of the host. P. aeruginosa is a common cause of nosocomial infections, e.g. 

neonatal infections and hospital-acquired urinary tract infections, infections in 
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neutropenic patients undergoing chemotherapy and infections associated with general 

immunosuppression such as AIDS (Lyczak et al., 2000; de Bentzmann and Plésiat, 2011). 

However, a number of human diseases exist in which P. aeruginosa is characterized as 

the primary pathogen including chronic respiratory disease in CF patients, bacteraemia 

that manifests in severe burn victims and the occurrence of ulcerative keratitis in 

individuals who wear contact lenses for extended periods (Lyczak et al., 2000).  

Respiratory infections caused by P. aeruginosa can be categorized as acute or 

chronic. Acute infections are caused by direct trauma to pulmonary tissue such as that 

which may occur when endotracheal tubes (ETTs) are inserted into the airway for 

ventilation. ETTs are reservoirs for bacterial biofilms and P. aeruginosa-biofilm 

formation on ETTs is a common cause of hospital-acquired infection (Gibbs and 

Holzman, 2012; Guillon et al., 2018). Chronic P. aeruginosa infections are caused by 

intrinsic defects in the host immune system, such as those observed in CF. P. aeruginosa 

colonizes the airways from adolescence and persists chronically and intermittently for the 

lifetime of the individual (Govan and Deretic, 1996; Surette, 2014). The unique 

relationship that exists between P. aeruginosa and the CF airways is best described by 

Govan and Deretic (1996), who highlighted the inherent ability of P. aeruginosa to adapt 

to the CF pulmonary environment. 

“In microbial pathogenesis, there are few more striking examples of in vivo microbial 

adaptation than the asymptomatic colonization of CF lungs by typical nonmucoid P. 

aeruginosa strains and the subsequent emergence of mucoid forms during chronic 

debilitating pulmonary infection” (Govan and Deretic, 1996). 
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1.6.1 The host immune response to P. aeruginosa 

 

1.6.1.1 The mucociliary elevator 

In the immunocompetent host, many of the host immune responses to P. 

aeruginosa are applicable to Gram-negative bacteria in general (Williams et al., 2010). 

Variations in the host response to particular pathogens are usually observed according to 

the immunosuppression status of the host and as such, many of the interaction studies 

analysing the host immune response and P. aeruginosa have been performed in the 

context of CF infection (Lovewell et al., 2014).    

To establish infection, P. aeruginosa is required to attach to epithelial cells and 

remain for a period of time, which allows it to secrete its toxic contents into the host. The 

ASL contains soluble antimicrobial agents (e.g. lactoferrin, lysozyme, human β-defensins 

and secretory phospholipase A2), which play an integral role in suppressing microbial 

colonization however the rapid doubling time of bacteria (every 20 minutes under optimal 

conditions) have shown (in vitro) that these peptides alone do not clear bacterial infection 

from the mucus (Cole et al., 1999). Thus, clearance of bacteria from the airways is also 

reliant on a functional mucociliary elevator to physically remove bacteria (Knowles and 

Boucher, 2002). 

Defective mucociliary clearance of pathogens in individuals with CF highlight the 

importance of functional mechanical defence mechanisms in the immune response 

against P. aeruginosa and for this reason, the mucociliary elevator has been characterized 

as the most important defence mechanism against this bacteria (Wiliiams et al., 2010). 

The ASL consists of a thick viscous mucus layer and a low-viscosity liquid layer, which 

rests above ciliated epithelial cells. Mucus consists of varying concentrations of mucins, 

water and ions. Mucins are glycosylated macromolecules with diverse oligosaccharide 

side chains and can be tethered to epithelial cells, forming a physical defence barrier 

against incoming pathogens and other particles (Whitsett and Alenghat, 2015). Pathogens 

become trapped in the mucus, which is released from host cells by pathogen or host-

generated proteases and dispensed from the airways by the mucociliary elevator (Fig. 

1.5). Secreted mucins bind to pathogens upon entering the airways and form part of mucus 

that removes pathogens by the mucociliary elevator. The diversity of the oligosaccharide 

chains of tethered mucins (encoded by MUC4, MUC13, MUC16 and MUC21) and 
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secreted mucins (encoded by MUC5AC, MUC5B, MUC1 and MUC2) enable mucins to 

bind to, and trap most particles that land in the airways (Knowles and Boucher, 2002; 

Whitsett and Alenghat, 2015). Adequate hydration is required for mucins to unfold its 

carbohydrate chains, which are required for binding to particles that are deposited into 

the airway epithelia (Williams et al., 2010).  

The low-viscosity of the periciliary liquid (PCL) enables the cilia of the epithelial 

cells to beat, thereby elevating the mucus layer to the central airways and into the throat 

where the mucus is swallowed or expectorated (Williams et al., 2010). It is estimated that 

clearance of bacteria from the airways by the mechanisms described can take up to six 

hours from the point of bacterial deposition in the peripheral airways (Knowles and 

Boucher, 2002). Within this time, other components of the innate immune system are 

activated to facilitate complete clearance of bacteria. 

 

Fig. 1.5 Bacteria in the CF lung (A) Bacteria and conidia that enter the lugs become trapped in 

mucus and are cleared from the airways by the mucociliary elevator (denoted by large red arrows). 

(B) Bacteria and conidia that enter the CF lung escape clearance due to defects in the mucociliary 

elevator (denoted by small red arrows) and alterations in the composition of ASL. 
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1.6.1.2 Soluble recognition receptors 

Host-cell recognition of P. aeruginosa is mediated by soluble receptors and cell-

surface receptors. The soluble receptor PTX3, is important in defence against P. 

aeruginosa and PTX3-deficient murine model of P. aeruginosa infection showed 

increased rates of mortality than wild-type mice (Garlanda et al., 2002). The surfactant 

protein SP-A appears to play an important role in defence against P. aeruginosa by 

binding flagellin to enhance phagocytosis by macrophages (Ketko et al., 2013). SP-A 

induces IL-1β production via activation of the inflammasome and in vivo, SP-A-deficient 

mice infected with P. aeruginosa produced less IL-1β than wild-type mice (Ketko et al., 

2013). However, motile P. aeruginosa strains that possess intact flagella appear to be 

resistant to SP-A-mediated permeabilization (Zhang et al., 2007). Flagella-deficient 

mutants lack the same levels of LPS as wild-type P. aeruginosa, making the bacterial cell 

wall more susceptible to membrane permeabilization (Zhang et al., 2007). Furthermore, 

flagella-deficient mutants produce less exoprotease than wild-type P. aeruginosa due to 

defects in quorum sensing genes, and are thus less able to degrade SP-A (Kuang et al., 

2011a). These studies present an important role for flagella beyond motility and 

demonstrate strategies employed by P. aeruginosa to evade the effects of SP-A.  

 

1.6.1.3 Host cellular receptors to detect P. aeruginosa 

Cell-surface receptor-mediated recognition of P. aeruginosa occurs by TLRs and 

Nod-like receptors (NLRs), which are expressed on airway epithelial cells and phagocytes 

(Lavoie et al., 2011). TLR2 and TLR4 recognize lipopolysaccharides (LPS) on the outer 

membrane of the bacterial cell, TLR5 recognizes flagellin proteins located on the flagella 

of the bacterium and TLR9 recognizes unmethylated CpG motifs on bacterial DNA 

(Zhang et al., 2005b; Raoust et al., 2009; McIsaac et al., 2012). Binding of bacterial 

ligands to host receptors activates NF-κB –mediated cytokine expression resulting in the 

production and release of TNF-α, IL-6, IL-8, granulocyte-colony stimulating factor 

(GCSF) from epithelial cells and phagocytes (Raoust et al., 2009; Shanks et al., 2010). 

P. aeruginosa effectors (ExoS, ExoU, ExoT and ExoY) are introduced into the 

host cell by Type-3 secretion systems (T3SS) needle-like mechanisms that span the 

surface of the bacterial cell surface. The insertion of T3SS into host cells create pores, 

which together with T3SS rod proteins (PscI) and flagellin introduced into the cell by 
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T3SS activate the NLRC4 inflammasome (Sutterwala et al., 2007; Miao et al., 2010). 

Activation of the inflammasome induces the proteolytic cleavage of pro-caspase-1 to 

caspase-1, which converts pro-IL-1β and pro-IL-18 to the biological active forms, IL-1β 

and IL-18 (He et al., 2016). Pilin, a component of Type IV pili which are used by P. 

aeruginosa for attachment to the host cell also activate IL-1β production when they are 

introduced into the cell via T3SS or when bacteria escape from vacuoles within the host 

cell (Arlehamn and Evans, 2011). P. aeruginosa escapes activation of NLRC4 via 

quorum sensing mechanisms. QS-mediated production of pyocyanin and the QS 

autoinducer 3-oxo-C12-HSL inhibit NLRC4 and NLRP3-meidated inflammasome 

activation. Furthermore, proteases, produced through QS signals, degrade inflammasome 

components ASC and caspase-1 in addition to inflammatory cytokines (Yang et al., 

2017). 

 

1.6.1.4 Cellular response to P. aeruginosa 

The term “double edged sword” is often used to neutrophil-mediated 

inflammation because their role in the innate immune response to pulmonary pathogens 

is indispensable yet they can cause immense tissue damage in some cases, such as CF  

(Parkos, 2016). The role of neutrophils in host defence and clearance of P. aeruginosa 

infection is crucial (Koh et al., 2009; Williams et al., 2010; Lavoie et al., 2011). As with 

A. fumigatus killing, neutrophils employ both oxidative (ROS-mediated) and non-

oxidative (degranulation) mechanisms to kill P. aeruginosa.  

The products of neutrophil degranulation are important for bacterial killing, 

particularly neutrophil elastase (NE) and NE-deficient murine models of acute P. 

aeruginosa infection succumbed to infection by P. aeruginosa while wild-type 

counterparts did not. The role of NE in killing P. aeruginosa appears to be dependent on 

the degradation of bacterial outer membrane protein, OprF (Hirche et al., 2008).  

Upon degranulation, neutrophils also release cathelicidin (hCAP-18), or LL-37 in 

mice, an antimicrobial which has chemotactic activity for neutrophils, monocytes and T 

cells (Yang et al., 2000). In an in vivo model of acute P. aeruginosa infection, LL-37 was 

upregulated in response to bacterial infection and was shown to promote neutrophil-

mediated P. aeruginosa clearance. The efficacy of LL-37 in neutrophil-mediated bacterial 
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clearance was demonstrated in P. aeruginosa-infected LL-37-deficient mice who when 

treated with exogenous LL-37 were able to clear the infection (Beaumont et al., 2014). 

Neutrophil phagocytosis and the release of NETs are stimulated upon recognition 

of motile P. aeruginosa flagella, resulting in the killing of motile forms of the bacteria 

(Lovewell et al., 2014; Floyd et al., 2016). The proteolytic enzymes associated with NETs 

degrade P. aeruginosa flagellin and promote downregulation of its expression (López-

Boado et al., 2004; Sonawane et al., 2006).  This has prompted the suggestion that NETs 

may promote the downregulation of flagellin and induce the switch from motile to 

nonmotile P. aeruginosa, a process associated with the evolution of P. aeruginosa in the 

CF lung (Mahenthiralingam et al., 1994; Floyd et al., 2016). 

The role of macrophages in P. aeruginosa clearance appears useful, though 

dispensable for P. aeruginosa clearance (Cheung et al., 2000). The ability to clear P. 

aeruginosa from the airways of macrophage-deficient mice and macrophage-sufficient 

mice was similar and in both models of acute infection, neutrophils were required to clear 

bacteria (Cheung et al., 2000). Other studies have shown that the absence of macrophages 

increased the bacterial clearance time in murine airways and that the level of neutrophilia 

was reduced in mice where the macrophage population was higher than macrophage-

deficient mice (Manicone et al., 2009). Thus, the role of macrophages in clearing P. 

aeruginosa infection, albeit less clear than that of neutrophils, appears to be important in 

controlling neutrophil activity in response to P. aeruginosa. 

The T-cell mediated response against P. aeruginosa is less well studied than the 

innate immune response. Nonetheless, the role of these cells in terms of the cytokines 

they produce is important to the clinical outcome of P. aeruginosa infection 

(Wojnarowski et al., 1999; Moser et al., 2002). It is well established that anti-flammatory 

cytokine producing Th2 cells are the main T lymphocytes associated with chronic P. 

aeruginosa infections (Hartl et al., 2006). However, Th1-mediated responses are 

associated with better lung function (Moser et al., 2002).  
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1.6.2 P. aeruginosa virulence factors 

The genotypic and phenotypic characteristics of P. aeruginosa differ in acute and 

chronic infections with virulence factors required to establish infection being silenced 

during chronic infection (Smith et al., 2006).  

 

1.6.2.1 Flagella and Type IV Pili 

Flagella are required for motility and binding to heparin sulphates on epithelial 

cells (Bucior et al., 2012). However, due to its immunogenic characteristic, fliC, the gene 

encoding flagellin protein, is repressed during the establishment of biofilm during chronic 

infection such as CF (Wolfgang et al., 2004; Guttenplan and Kearns, 2013). 

Type IV pili enable a flagella-independent mode of motility through twitching and allow 

P. aeruginosa to adhere to pulmonary epithelial cells via N-glycan residues which are 

subject to sialylation (Bucior et al., 2012; Burrows, 2012; Martins et al., 2019). Cells with 

defective CFTR have abnormal sialylation resulting in increased binding sites for P. 

aeruginosa, and thus increase the propensity of P. aeruginosa to establish connection 

with host cells (Saiman and Prince, 1993; Bryan et al., 1998). Binding of pili to host cells 

upregulates the level of cAMP in bacterial cells, which in turn activates the virulence 

factor regulator (Vfr) and the expression of multiple virulence factors including T3SS 

(Wolfgang et al., 2003).  

 

1.6.2.2 Type III secretion systems 

The T3SS induces host-cell damage by injecting bacterial effector proteins into 

the cell. To date, four effector proteins have been characterized (ExoS, ExoU, ExoT and 

ExoY) although it is possible that more exist (Burstein et al., 2015). These proteins are 

highly toxic and facilitate dissemination of P. aeruginosa during acute infection. In 

murine models of P. aeruginosa pneumonia, the translocation of ExoS occurred 

predominantly in neutrophils although ExoS secretion into Type I pneumocytes was 

observed and caused distruption between the pulmonary-vascular barrier, allowing 

bacteria to disseminate (Rangel et al., 2015). ExoS and ExoT interfere with neutrophil 

activity through the inhibition of ROS production and inhibit macrophage and epithelial 

cell phagocytosis by interfering with the actin cytoskeleton (Garrity-Ryan et al., 2000; 
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Vareechon et al., 2017). Unlike ExoS, which is associated with gradual cell death, ExoU, 

the most cytotoxic of the effectors induces rapid host-cell death, by cleaving 

phospholipids and resulting in cell lysis (Finck-Barbançon et al., 1997; Hauser, 2009). 

ExoU is expressed during the early stages of acute infection and delay in expression is 

associated with an inability to establish infection due to increased bacterial clearance by 

the host (Howell et al., 2013). 

Although T3SS from CF P. aeruginosa isolates have been shown ex vivo, to 

mediate killing of neutrophils, the T3SS-positive phenotype and its secretion profile 

changes as P. aeruginosa established chronic infection in the CF lung, eventually 

becoming a T3SS-negative phenotype (Dacheux et al., 1999; Jain et al., 2004). T3SS 

proteins upregulate an antibody-mediated response against these proteins and 

translocation of bacterial antigens into the host cell stimulates a proinflammatory immune 

response, which threatens bacterial survival in the lung (Jain et al., 2004). Thus, selection 

for the T3SS-negative form is likely to benefit P. aeruginosa persistence in the CF 

airways. 

 

1.6.2.3 P. aeruginosa Biofilms and Quorum sensing 

Repression of T3SS coincides with increased exopolysaccharide production and 

the emergence of biofilms, which are a classic feature of chronic infection. Biofilms 

confer a layer of protection against phagocytes and antibiotics. Although neutrophils 

migrate to biofilms, they become immobilized and surrounded by bacteria that escape 

from biofilms. Neutrophil degranulation is compromised and oxygen consumption by 

both neutrophils and the biofilm is increased (Jesaitis et al., 2003) 

Biofilm formation is dependent on quorum sensing (QS) in P. aeruginosa (Parsek 

and Greenberg, 2005). QS is the mechanism by which bacteria communicate in cell 

density-dependent manner and is necessary for the biosynthesis of secondary metabolites 

such as pyocyanin and rhamnolipids, which induce neutrophil apoptosis and necrosis 

respectively (Jensen et al., 2007; Managò et al., 2015). Biofilms are unable to form in the 

absence of iron and under iron-limiting conditions, QS regulates iron acquisition systems 

by inducing the production of siderophores such as pyoverdin (Stintzi et al., 1998; Singh 

et al., 2002).  
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1.6.3 P. aeruginosa acute airway pathogenesis  

  P. aeruginosa is the most common Gram-negative bacteria associated with 

nosocomial respiratory infections (Curran et al., 2017). Pneumonia is an acute respiratory 

condition caused by P. aeruginosa and is described according to the source of infection, 

i.e. that acquired in a healthcare setting; Hospital- acquired pneumonia (HAP), Ventilator-

acquired pneumonia (VAP) and health care-associated pneumonia (HCAP) and that 

acquired elsewhere; community-acquired pneumonia (CAP). P. aeruginosa strains that 

are associated with HAP are typically more lethal than those associated with CAP 

(Williams et al., 2010)  

The main contributors to the prevalence of P. aeruginosa in hospitals is the close 

proximity of a large cohort of immunocompromised individuals and the high incidence 

of multi-drug resistant (MDR) P. aeruginosa strains carried by patients (Otter et al., 

2014). The most common nosocomial infection occurring in intensive care is VAP, with 

a global incidence estimated to by 15.6 % (Ramírez-Estrada et al., 2016). The prevalence 

of MDR strains of P. aeruginosa associated the high mortality rates observed in this 

cohort of patients (Ramírez-Estrada et al., 2016).  

 

1.6.4 Pathogenesis of P. aeruginosa in chronic airway conditions 

Chronic infection arises where acute infection has not resolved (Gellatly and 

Hancock, 2013). If left unchallenged by the immune response or effective antibiotics, P. 

aeruginosa form biofilm in the airways. Owing to the difficulties associated with biofilm 

clearance by a defective host immune system and ineffective antibiotic therapy caused by 

resistance strains, bacterial infection becomes chronic (Gellatly and Hancock, 2013). 

Individuals that live with chronic pulmonary disorders such as COPD and chronic 

bronchiectasis  are vulnerable to P. aeruginosa infection and although persistent infection 

is frequent, acute exacerbations also exist (Murphy et al., 2008).  

On the contrary, CF patients are plagued by chronic P. aeruginosa infection 

throughout adulthood. The adaptation of P. aeruginosa in the CF lung is characterized by 

a change in morphology from the nonmucoid form to the alginate-producing mucoid form 

during the process of colonization (Govan and Deretic, 1996).  
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1.6.5 Adaptation and colonization of P. aeruginosa in the CF lung 

Several mechanisms owing to defects in CFTR, confer susceptibility to P. 

aeruginosa infection in the CF lung. These include physiologically abnormal ASL, 

impaired mucociliary clearance and enhanced sialylated receptors to which bacteria bind 

(Govan and Deretic, 1996). P. aeruginosa exploit these defects in host immunity by 

diversifying genetically and phenotypically into distinct strains that facilitate the 

persistence of this pathogen in the CF airways (Govan and Deretic, 1996; Winstanley et 

al., 2016).  

The switch from non-mucoid to the over-producing alginate mucoid strain is probably the 

most pronounced phenotypic change that P. aeruginosa adopts as it establishes chronic 

infection (Marvig et al., 2014). Alginate plays an important role in the maturation and 

structural stability of P. aeruginosa biofilm and increases bacterial evasion of host 

immune cells and antibiotics (Mauch et al., 2018). Alginate is a major antigenic 

determinant and induces intense antibody production, specifically IgG and IgA (Pedersen 

et al., 1990). The role of antibodies in the CF airways is poorly understood, however, 

reports have suggested defects in the antibody-mediated immune response, such as low 

avidity of antibodies to P. aeruginosa antigens, result opsonic deficiency in the CF 

immune system, thereby reduced antibody-mediated phagocytosis by macrophages 

(Moss et al., 1986; Polanec et al., 1997; Mauch et al., 2018). Several loss-of-function 

mutations that occur during adaptation in the CF lung are characteristic of the 

establishment of chronic infection, including loss of motility, repression of T3SS and 

downregulation of QS regulatory genes such as lasR (Wolfgang et al., 2004; Jain et al., 

2004; Hoffman et al., 2009). 

 

1.6.6 Microbial interactions involving P. aeruginosa 

In the CF airways, microbial diversity decreases with patient age and this loss of 

diversity correlates with the onset of chronic P. aeruginosa infection and deterioration of 

lung function (Rogers et al., 2013; Zemanick et al., 2017). The interactions that occur 

between P. aeruginosa and other pulmonary pathogens have a profound impact on 

bacterial survival, persistence and antibiotic resistance.  
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S. aureus precedes P. aeruginosa as the primary colonizer of the CF airways in 

the first decade of life (Coutinho et al., 2008). Thus, the interactions that occur between 

these pathogens forms the basis for which P. aeruginosa becomes the successor. Co-

colonization is associated with poor clinical outcome (Limoli et al., 2016). In vitro and 

in vivo studies using early and late isolates of P. aeruginosa from a number of CF patients, 

have demonstrated that early isolates have a greater capacity to outcompete S. aureus than 

late isolates (Baldan et al., 2014).  

The outcome of co-culture studies have shown that P. aeruginosa  outcompetes 

S. aureus through the upregulation of genes that enable the former to benefit from 

fermentation products, namely lactate, which S. aureus produces when it is forced into 

fermentation by P. aeruginosa (Filkins et al., 2015; Orazi and O’Toole, 2017; Tognon et 

al., 2019). Oxygen levels decrease and nitrogen levels increase during the early stages of 

co-culture between these pathogens (Tognon et al., 2019). While this in itself has 

implications for the CF airways in terms of oxygen depletion, it also benefits the growth 

of P. aeruginosa which has a remarkable ability to switch from aerobic to anaerobic 

respiration (Van Alst et al., 2009; Hogardt and Heesemann, 2010; Tognon et al., 2019).  

Clinical isolates of P. aeruginosa have been shown to stimulate S. aureus biofilm 

formation, a process that appears to be regulated, in part, by specific P. aeruginosa QS 

molecules (Fugère et al., 2014). Biofilms play an integral role in conferring resistance to 

antibiotics in these pathogens. Exposure of S. aureus biofilms to P. aeruginosa 

supernatants can decrease susceptibility of S. aureus to vancomycin and oxacillin. This 

“protection” mechanism is dependent on the P. aeruginosa QS molecule 2-n-heptyl-4-

hydroxyquinoline N-oxide (HQNO), siderophores, pyoverdine and pyochelin and anoxia, 

all of which induce a decrease the growth of S. aureus, which coincides with reduced 

susceptibility to cell-wall and protein synthesis inhibitors (Orazi and O’Toole, 2017). 

Conversely, the exoproducts of S. aureus have been shown to influence P. aeruginosa 

biofilm formation, making it more resistant to tobramycin, a commonly prescribed 

antibiotic for CF patients (Beaudoin et al., 2017).  

The Streptococcus milleri group (SGM) (consisting of S. anginosus, S. 

constellatus, and S. intermedius) is a clinically relevant CF pathogen associated with 

pulmonary exacerbations (Parkins et al., 2008). P. aeruginosa, particular the mucoid 

form, has been shown in vitro, to promote the growth of SGM (Scott et al., 2019). 
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However, siderophore overproduction caused by defects in the QS system biosynthetic 

pathway attenuated SGM growth.  The downregulation in QS is associated with the 

switch to the mucoid form of P. aeruginosa (Price et al., 2019). This suggests that during 

the earlier stages of infection, P. aeruginosa siderophore-production via QS inhibits 

growth of SGM by outcompeting these bacteria for iron resources. However as chronic 

infection is established, mucoid forms emerge and QS is downregulated, allowing SGM 

to co-exist with P. aeruginosa. Similarly the ability of S. aureus to co-exist with mucoid 

P. aeruginosa has been attributed to the downregulation of siderophores and other QS 

mechanisms otherwise associated with anti-Staphylococcal properties (Limoli et al., 

2017; Price et al., 2019). These findings show that synergistic or antagonistic interactions 

between P. aeruginosa and other microbes in the CF environment are P. aeruginosa-

strain-dependent and can change, as disease progression emergence of several P. 

aeruginosa strains coincide (Scott et al., 2019). 

 

1.7 Interactions between A. fumigatus and P. aeruginosa  

The immunocompromised airways are susceptible to infection by a range of 

fungal pathogens and several of these, including Candida spp., Cryptococcus spp. and 

Scedosporium aurantiacum have been studied in the context of co-infection with P. 

aeruginosa (Bandara et al., 2010; Rella et al., 2012; Kaur et al., 2015). In all cases, P. 

aeruginosa inhibits fungal growth and/or biofilm formation.  Longitudinal studies have 

shown that colonization with A. fumigatus is associated with an increased risk of P. 

aeruginosa colonization in CF (Paugam et al., 2010; Hector et al., 2016). The prevalence 

of co-colonization with P. aeruginosa and A. fumigatus in the CF airways is estimated to 

be between 3.1 and 15.8 % although this occurrence may be higher (Paugam et al., 2010; 

Reece et al., 2017a; Zhao et al., 2018a). Disease prognosis is poor when both pathogens 

are present (Reece et al., 2017a; Zhao et al., 2018a).  The number of studies that have 

begun to investigate A. fumigatus-P. aeruginosa interactions in the past decade is a 

reflection on the clinical importance and the negative impact on the CF airways of co-

colonization with these pathogens. In general, the results of these studies show that P. 

aeruginosa outcompetes A. fumigatus, a finding supported by the predominance of the 

bacteria in the CF lung.  
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1.7.1 Antagonistic interactions between A. fumigatus and P. aeruginosa 

P. aeruginosa secretes a range of compounds that inhibit A. fumigatus 

development and biofilm formation (Mowat et al., 2010; Briard et al., 2015; Sass et al., 

2018).  P. aeruginosa phenazines (pyocyanin, phenazine-1-carboxamide, 1-HP and 

phenazine-1-carboxylic acid) are QS-regulated redox-active molecules that are important 

in bacterial respiration and energy production in oxygen-limiting environments (Price-

Whelan et al., 2006). Phenazines are ROS producing compounds and in the host, changes 

in the redox balance caused by ROS result in host-cell damage and death (Price-Whelan 

et al., 2006). The production of ROS by phenazines also has implications for A. fumigatus 

survival (Briard et al., 2015). Phenazines can enter into swollen, but not resting conidia 

and target the mitochondria, inducing ROS production (Briard et al., 2015). The 

accumulation of ROS may interfere with A. fumigatus growth and biofilms by inducing 

fungal apoptosis (Briard et al., 2015; Shirazi et al., 2016). Exposure of A. fumigatus 

biofilms to culture supernatants from non-mucoid and mucoid P. aeruginosa CuF isolates 

resulted in a greater increase of ROS in fungal biofilms exposed to the non-mucoid strain 

(Shirazi et al., 2016). In the CF airways, mucoid strains are associated with the 

downregulation of QS-regulated molecules including phenazines (Price et al., 2019). This 

suggests that these antagonistic interactions may occur prior to the switch from non-

mucoid to mucoid and the establishment of chronic infection in the CF lung.  

 

The definitive role of phenzaines as a fungicidal agent is uncertain however as 

phenazine-mutants have also been shown to inhibit fungal growth, although the authors 

of this study acknowledge the possible anti-fungal role of an unknown molecule 

upregulated as a result of phenazine depletion (Sass et al., 2018). The P. aeruginosa 

siderophores pyoverdin and 1-hydroxyphenazine (1-HP), chelate iron in the environment, 

depriving A. fumigatus from a necessary nutrient, thereby supressing fungal growth and 

biofilm formation (Briard et al., 2015; Sass et al., 2018). Pyoverdin is thought to be the 

key component involved in outcompeting A. fumigatus and mutants deficient in 

pyoverdin biosynthesis were unable to inhibit fungal growth (Sass et al., 2018). 

 

Another class of P. aeruginosa QS-regulated molecules are dirhamnolipids. These 

molecules alter A. fumigatus cell-wall phenotype by interfering with the extracellular 

matrix enabling enhanced bacterial binding to the fungus, increasing melanin production 
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and inhibiting β 1,3-glucan synthase, causing the hyphal cell-wall to thicken, thereby 

suppressing fungal growth development (Briard et al., 2017). In co-cultures, A. fumigatus 

stimulates P. aeruginosa elastase production, which inhibits the growth of fungus and is 

also cytotoxic to A549 cells (Smith et al., 2015). These findings are of clinical relevance 

because although the arsenal of secondary metabolites secreted by P. aeruginosa in the 

presence of A. fumigatus may have anti-fungal properties, these bacterial compounds and 

the consequences arising from their interactions with A. fumigatus, have negative 

implications for the host. For example, in vivo, melanin enables fungal evasion of 

phagocytic activity and scavenges ROS (Eisenman and Casadevall, 2012). P. aeruginosa 

elastases can degrade SP-A and SP-D and disrupt tight junctions between epithelial cells 

(Mariencheck et al., 2003; Kuang et al., 2011b; Nomura et al., 2014). Phenazines 

contribute to cytokine-mediated damage to host cells by induce proinflammatory 

cytokines (Denning et al., 2003; Rada and Leto, 2013) 

 

Despite the demonstrable ability of P. aeruginosa to subdue A. fumigatus growth 

(Mowat et al., 2010; Manavathu et al., 2014; Briard et al., 2015; Briard et al., 2017; Sass 

et al., 2018), several studies reported the capacity of A. fumigatus to compete with P. 

aeruginosa (Reece et al., 2018; Sass et al., 2019). This supports the notion that A. 

fumigatus can persist in the CF airways, despite not being the dominant pathogen. P. 

aeruginosa inhibits the growth of A. fumigatus conidia but not of hyphae (Manavathu et 

al., 2014). This may be attributed to the ability of hyphae, but not conidia to produce 

gliotoxin which has anti-Pseudomonas activity (Reece et al., 2018). A. fumigatus produce 

hydroxamate-containing siderophores (ferricrocin, hydroxyferricrocin, fusarinine C, 

triacetylfusarinine C) in response to iron limitation. The production of these siderophores 

can mitigate the effect of P. aeruginosa pyoverdin and, in part, protect A. fumigatus 

biofilm, as shown in A. fumigatus siderophore-deficient mutants, which are more 

susceptible to the effects of pyoverdin than the wild-type (Sass et al., 2019).  

 

1.7.2 Synergistic interactions between A. fumigatus and P. aeruginosa 

While the relationship between P. aeruginosa – A. fumigatus is antagonistic for 

the most part, some P. aeruginosa volatile organic compounds (VOC) have been shown 

to stimulate the growth of A. fumigatus without direct contact between the pathogens 

(Briard et al., 2016). 
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Ultimately, whether they are synergistic or antagonistic, the interactions that occur 

between A. fumigatus and P. aeruginosa lead to severe damage to the host and, for the 

CF patient this contributes to a poor prognosis.    

 

1.8  Antimicrobial resistance in P. aeruginosa  

A hallmark characteristic of P. aeruginosa is its tolerance to a vast range of 

antibiotics. The emergence of multidrug-resistant (MDR) P. aeruginosa strains is a 

significant concern in hospital-acquired infections and is a major cause of morbidity and 

mortality among the CF community. In general, bacteria adopt one or more of four 

mechanisms to resist antibiotics. These include i) restricted outer-membrane 

permeability, ii) biosynthesis of antibiotic inactivating enzymes, iii) modifications of 

antibiotic-directed targets and iv) efflux pumps (Bassetti et al., 2018a). While some 

resistance mechanisms are intrinsic, i.e. chromosomally encoded, others are acquired via 

horizontal transfer or by gene mutations, which can cause changes to antibiotic targets, 

over expression of efflux pumps and antibiotic inactivating enzymes or reduced antibiotic 

uptake mechanisms (Pang et al., 2019).  

Different P. aeruginosa isolates can tolerate various antibiotics by combining 

numerous resistance mechanisms, including: biosynthesis of β-lactam and 

aminoglycoside inactivating enzymes (Labby and Garneau-Tsodikova, 2013; Berrazeg et 

al., 2015), reduced outer-membrane permeability by downregulation or loss of OprD (Li 

et al., 2012a), fluoroquinolone resistance caused by mutations in gyrases and 

topoisomerases (Cambau et al., 1995; Akasaka et al., 2001), and over expression of efflux 

pumps such as resistance-nodular-cell division (RND) family type, which actively pump 

antibiotics out the of cell (Koo, 2015). 

The emergence of MDR pathogenic bacteria poses a major global threat to society 

and the necessity to develop novel anti-microbial therapeutics is urgent (Aslam et al., 

2018). Vaccines, nanoparticles, phage therapy, iron chelators, antimicrobial peptides and 

lectin inhibitors are currently being explored and show promise (Pang et al., 2019). Novel 

next generation semi-synthetic derivatives of antibiotics such as plazomicin, an 

aminoglycoside derivative, have shown some activity against P. aeruginosa while 

carbapenem derivative doripenem can be used for the clearance of P. aeruginosa in CF 

patients (Castanheira et al., 2018; Eljaaly et al., 2019). Combination therapies, which 
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involve the use of two antibiotics, (e.g. cephalosporin with β-lactamase inhibitors such as 

Ceftolozane-tazobactam) are now commonly used in the treatment of P. aeruginosa 

infections (Bassetti et al., 2018a). 

  

1.9 Novel antimicrobial drug discovery; approaches and challenges 

The “Golden Age” of antibiotic discovery began in 1928 with the identification 

of penicillin by Alexander Fleming, and lasted until 1987, when acid lipopeptides such 

as daptomycin emerged (Debono et al., 1987; Silver, 2011; Gould, 2016). During this 

period, most registered classes of antibiotics were discovered (e.g. β-lactams, 

aminoglycosides, tetracyclines, macrolides, and chloramphenicol). These antibiotics 

originated from soil bacteria and moulds, although several novel classes of chemically 

synthesized antibiotics also emerged at this time (e.g. quinolones and sulphonamide). As 

screening for natural bioactive products became less fruitful and repeat discoveries were 

becoming more common, the pharmaceutical companies backing the search for novel 

antibiotics, withdrew support for such research (Silver, 2011).  

With the advent of bacterial genomics in the early 1990s, came the potential for 

target-based antibacterial drug discovery and a renewed interest by pharmaceuticals to 

develop novel antibiotics. Intense efforts to discover new antimicrobial compounds were 

performed using high-throughput screens (HTSs) hundreds of novel bacterial targets were 

identified, however no successful drug candidates materialized from these screens and 

the mission to discover novel antibacterial compounds was abandoned by the larger 

companies (Baker et al., 2018).  

Several significant challenges exist which delay the development of novel 

antibacterial candidates, most notably the balance between ensuring effective 

antibacterial activity and minimizing toxicity for the patient. Thus, pharmaceutical 

companies have turned their attention to modifying established classes of antibiotics, and 

while these next generation antibiotics meet the needs of today’s patients, their limitations 

often mimic that of the preceding generation and resistance to these antibiotics is 

inevitable (Baker et al., 2018).  

It is estimated that two-thirds of the antibiotics prescribed today are derived from 

natural products and the majority of natural antibiotics have been discovered by screening 
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microbial isolates obtained from natural habitats such as soil (Newman and Cragg, 2012; 

Wohlleben et al., 2016). Bacteria and fungi provide an abundance of bioactive 

metabolites, which can be exploited for the treatment of infectious diseases. These 

bioactive compounds are bacterial, fungal and plant-derived secondary metabolites such 

as polyketides (e.g. erythromycin and tetracycline), non‐ribosomal peptides (e.g. 

penicillin G and vancomycin) or polypeptides, terpenes or sterols and are widely used in 

the modern clinic (Herrmann et al., 2016). 

 Methods for antibiotic discovery are diverse and several approaches can be 

employed. These include phenotypic assay systems, targeted drug discovery, chemical 

screening, genome mining and investigating unexplored strains (Lee et al., 2012; 

Wohlleben et al., 2016). Although each method is not without its drawbacks, combining 

bioinformatics, molecular biology, proteomics, analytical and synthetic chemistry will 

lead to more success in the search for novel antibacterial therapeutics (Coates and Hu, 

2007; Lee et al., 2012; Wohlleben et al., 2016).   

 

1.10 Choosing proteomics to investigate inter-species interactions  

The host-pathogen and poly-microbial interactions that drive progression of 

diseases such as CF and ABPA are dynamic and extremely complex. To gain a better 

insight into the factors that contribute to disease progression, an in-depth understanding 

of the host and microbe(s) cellular and molecular response is required. Where more than 

one organism is involved, delineating these interactions poses many challenges. Genomic 

technologies such as next generation sequencing and gene editing have led the way in 

addressing some of these challenges by enabling the detection of mutations that may be 

responsible for microbial virulence, antibiotic resistance or host susceptibilities to certain 

pathogens (Bertelli and Greub, 2013; Starr et al., 2018).  

Without doubt, whole-genome sequencing has provided the foundation for greater 

insights into biological systems. However, the study of genes alone is insufficient to 

elucidate the dynamic and responsive biological processes that contribute to disease 

onset, progression and outcome. Such physiological processes are largely regulated by 

proteins, their abundance, function and interactions (Graves and Haystead, 2002). It is 

well established that the level of gene expression and mRNA transcript do not necessarily 

correlate with protein abundance (Graves and Haystead, 2002). Post-transcriptional and 
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post-translational modifications ultimately determine the fate of proteins, their function 

and abundance, which in turn dictates the phenotype of an organism (Graves and 

Haystead, 2002; Lippolis and De Angelis, 2016).  

The proteome, a term coined in 1994 by Marc Wilkins, refers to the “entire protein 

complement expressed by a genome, or by a cell or tissue type” (Wilkins et al., 1996). 

Proteomics is the global analysis of the proteome or the study of proteins within the 

proteome, and incorporates several technological approaches for the separation and 

identification and quantification of proteins. In conjunction with bioinformatics, 

proteomics aims to close the knowledge gap between genotype and phenotype so that a 

greater understanding of biological processes, systems and interactions may be gained 

(Wilkins et al., 1996; Abbott, 1999; Graves and Haystead, 2002).  

 

1.10.1 Label-free quantitative proteomics  

Traditionally, protein identification and quantitation was performed using gel-

based techniques, such as 2-dimensional polyacrylamide gel electrophoresis. This 

involves the separation of complex protein mixtures according to their net molecular 

charge on immobilized pH gradients (first dimension), and according to their molecular 

mass by gel electrophoresis (second dimension). Protein alignment software is used to 

detect changes in protein abundance and protein “spots” of interest are cut out of gels 

prior to in-gel enzymatic digestion and identification by mass spectrometry (MS). The 

main limitations with this approach is obtaining reproducible gels and the amount of 

proteins that can be detected on a single gel (Abbott, 1999). Nonetheless, until more 

advanced technological solutions were developed, this was the primary method used to 

separate and quantitatively compare complex protein mixtures. 

In the past decade, advancements in technology have allowed for the development of 

more sensitive methods for proteomic analysis. These MS-based methods usually involve 

one of two approaches referred to as “top down and “bottom up” proteomics (Lin et al., 

2003; Graham et al., 2007). The former involves the analysis of intact proteins by MS. 

This approach is particularly useful for the study of proteoforms (i.e. different forms of a 

protein arising from genetic variation, alternative splicing of RNA transcripts and PTMs) 

(Smith et al., 2013c; Toby et al., 2016).  
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Bottom-up proteomics is the most common approach for studying complex 

mixtures of proteins and involves the in-solution digestion of proteins to peptides prior to 

analysis by MS  (Breuker et al., 2008). Shotgun proteomics describes a frequently used 

“bottom-up” approach for proteomic analysis. This method involves the enzymatic 

digestion of a complex protein mixture into peptides, which are then fractionated on a 

reverse phase C18 column prior to analysis by MS (LC–MS) with tandem mass 

spectrometry (LC–MS/MS) (Gundry et al., 2010). Protein quantification can be 

performed with a label (i.e. by the addition of metabolic or isobaric chemical labels prior 

to MS analysis) or without a label (i.e. label-free quantitative proteomics/LFQ) (Li et al., 

2012b). LFQ proteomics offers a means of characterizing changes to protein composition 

in a dynamic environment and by not focusing on specific proteins, it can offer a bias-

free analysis of complex proteins mixtures (Graham et al., 2007; Meissner and Mann, 

2014). Considering this, LFQ proteomics is a powerful approach for addressing host-

pathogen and poly-microbial interactions.  

 

1.10.2 The application of LFQ proteomics for investigating inter-species 

interactions 

In the context of microbial pathogenesis, quantitative proteomics is an important 

tool for investigating mechanisms of virulence and antimicrobial resistance in pathogens, 

and offers novel insights into mutualistic, synergistic or antagonistic interactions that 

occur between different species and the host (Pérez-Llarena and Bou, 2016). The ability 

to search databases with multiple reference proteomes allows for the simultaneous 

analysis of several species, such as those which occur in biofilms (Herschend et al., 2017). 

The global analysis of the proteome using LFQ proteomics is particularly 

important in identifying the changes to bacterial proteomes which enable pathogens to 

recover from antibiotic challenge and acquire resistance (Giddey et al., 2017; Hashemi et 

al., 2019). Furthermore, LFQ proteomics has provided insights into the mechanisms by 

which pathogens adapt to the host environment (Surmann et al., 2014; Surmann et al., 

2015; Surmann et al., 2016) and the response of the host to pathogen invasion (Surmann 

et al., 2016; Qu et al., 2017). Understanding the pathways and processes by which 

pathogens initiate disease, resist antibiotics, and evade the host immune response is 

important for the identification of potential therapeutic targets. 
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1.11 Overview of thesis objectives 

The emergence of antimicrobial drug resistance necessitates new approaches to 

challenge fungal and bacterial pathogens and novel therapeutic strategies are required to 

compensate for the diminishing availability of effective antibiotics. To address these 

concerns, a better understanding of the mechanisms by which pathogens interact with 

each other and with the host is needed, so that pathogen vulnerabilities may be identified 

and targeted accordingly. 

The study of polymicrobial interactions presents many challenges although recent 

advances in bioinformatic and proteomic technologies such as detailed reference 

genomes, high-resolution mass spectrometry and comprehensive computational tools for 

data analysis, have made it possible to overcome some of these obstacles. 

To this end, the goal of this project was to address the knowledge gap that exists 

in the area of polymicrobial-host interactions. LFQ proteomics was used to elucidate the 

biological mechanisms that modulate the interactions between A. fumigatus, P. 

aeruginosa and A549 cells (model of the alveolar surface) by providing a global analysis 

of the changes in protein composition arising from interactions between these organisms. 

This approach was chosen because of its capacity to support a bias-free analysis of the 

interactions between different species based on changes to the proteome of the organism 

being interrogated. 

The first objective of this project was to investigate the proteomic response of 

A549 cells to sequential-infection with A. fumigatus and P. aeruginosa and to compare 

this with the host response to infection by either pathogen.  By exploring the pathways 

and processes that are upregulated or downregulated in response to A. fumigatus and P. 

aeruginosa, this project sought to gain novel insights into how host cells respond during 

the early stages of polymicrobial infection and to investigate how one pathogen may 

eventually predominate over the other in the presence of the host.  

The second objective was to examine the relationship between A. fumigatus and 

P. aeruginosa, and to measure how synergistic and/or antagonistic interactions could alter 

the virulence and improve the pathogenicity of these microorganisms. Although P. 

aeruginosa predominates in the CF airways, A. fumigatus exists there intermittently 

throughout the lifetime of a CF patient. This project sought to investigate the phenotypic 

attributes that enable P. aeruginosa to have a competitive advantage over A. fumigatus, 
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and to understand the mechanisms adopted by A. fumigatus that allow the fungus to persist 

in the airways despite the presence of P. aeruginosa.  

The final objective of this project was to investigate the effect of culture filtrates 

produced by A. fumigatus cultured in media of different compositions. During a classical 

screening test for fungal-derived antibacterial compounds, the inhibitory effect on P. 

aeruginosa by A. fumigatus-derived culture filtrates produced in a nutrient-rich medium 

was observed. To assess the mechanism by which this compound suppressed bacterial 

growth, the effect on the P. aeruginosa proteome when exposed to a sub-inhibitory dose 

of the culture filtrate was investigated by LFQ proteomics. Efforts to isolate purify and 

identify the active compound was performed by reversed-phase high-performance liquid 

chromatography (RP-HPLC), nuclear magnetic resonance (NMR) and high-resolution 

mass spectrometry (MS). 

The findings obtained during this project provide a solid foundation for which 

future hypotheses can be formed and tested.  
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2.1 General Chemicals and Reagents 

All chemicals were analytical or molecular grade unless otherwise stated, and 

were obtained from Sigma-Aldrich Co. Ltd. (Arklow, Ireland). Solvents (chloroform, 

acetonitrile, acetone and methanol) were purchased from Fisher Scientific (Dublin, 

Ireland). Buffers were prepared using distilled H2O (dH2O) or deionized H2O (ddH2O). 

dH2O was purified with the Millipore Milli-Q apparatus to obtain milli-Q water (de-

ionized water; ddH2O) (18 MΩ).  

 

2.1.1 Phosphate Buffered Saline (PBS) 

One PBS tablet (Oxoid, Cambridge, UK) was added to 100 ml dH2O and 

autoclaved at 121°C for 15 minutes. PBS was stored at room temperature. 

 

2.1.1.2 PBS-Tween 80 (PBST) 

Tween-80 (50 µl) was added to 100 ml sterile PBS and stored at room 

temperature. 

 

2.1.2 Solutions for pH Adjustment 

 

2.1.2.1 Hydrochloric Acid (HCl) (5 M) 

 

Hydrochloric Acid (43.64 ml) was added slowly to ddH2O (40 ml) in a glass 

duran. The final volume was adjusted to 100 ml with ddH2O. The solution was stored at 

room temperature. 

2.1.2.2 Sodium Hydroxide (NaOH) (5 M) 

 

NaOH pellets (20 g) were added to ddH2O (80 ml) and dissolved using a magnetic 

stirrer. The final volume was adjusted to 100 ml with ddH2O. The solution was stored at 

room temperature. 
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2.2 Maintenance and preparation of P. aeruginosa 

 

Table 2.1 Bacterial species and strains. The species name, strain and source of bacteria used in 

experiments. 

 

Species 

 

Strain 

 

Source 

 

Pseudomonas aeruginosa 

 

PAO1 

 

Medical Mycology Laboratory, MU 

 

*Escherichia coli 

 

PEK499 

Antimicrobial resistance and 

microbiome laboratory, MU 

 

*Staphylococcus aureus   

 

ATCC-33591 

 

Medical Mycology Laboratory, MU 

 

*Klebsiella pneumoniae 

 

Clinical Strain 

 

Medical Mycology Unit, MU 

*Bacteria used in Chapter 6 only 

  

2.2.1 Bacterial culture media 

Nutrient Agar (Scharlau, Barcelona, Spain) (28 g) was dissolved in 1 L dH2O. The 

solution was autoclaved (121°C, 15 minutes), and allowed to cool to ~50 °C. Agar (25 

ml) was poured into 90 mm petri dishes, aseptically. The plates were allowed to set and 

stored at 4 °C. Nutrient Broth (13 g) (Oxoid, Cambridge, UK) was dissolved in 1L dH2O 

and autoclaved (121°C, 15 minutes). Liquid media were stored on the bench at room 

temperature.  

 

2.2.2 Super Optimal Broth with catabolite repression (SOC medium); SOC agar 

(0.3%) 

Tryptone (10 g), Yeast extract (2.5 g), Dextrose (1.8 g), agar (0.75 g), 5 ml MgSO4 

1 M, 1.25 ml KCl 1 M was added to 300 ml dH2O and dissolved. The solution was brought 

up to 500 ml with dH2O and autoclaved (121°C, 15 minutes). The agar was poured into 

90 mm petri dishes and stored at 4°C. 
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2.2.3 Synthetic Cystic Fibrosis Medium (SCFM)  

SCFM was prepared according the the protocol in Palmer et al. (2007). All amino 

acids were maintained as 100-mM stocks in and stored at 4°C. Tyrosine, aspartate, and 

tryptophan were dissolved in 1.0 M, 0.5 M, and 0.2 M NaOH, respectively. All other 

amino acids were dissolved in ddH2O. Amino acids (from the 100-mM stocks) were 

added to a buffered base (6.5 ml 0.2 M NaH2PO4, 6.25 ml 0.2 M Na2HPO4, 0.35 ml 1 M 

KNO3, 0.122 g NH4Cl, 1.11 g KCl, 3.03 g NaCl, 10 mM MOPS, 779.6 ml ddH2O) in the 

following volumes: L-aspartate, 8.27 ml; L-threonine, 10.72 ml; L-serine, 14.46 ml; L-

glutamate·HCl, 15.49 ml; L-proline, 16.61 ml; L-glycine, 12.03 ml; Lalanine, 17.8 ml; 

L-cysteine·HCl, 1.6 ml; L-valine, 11.17 ml; L-methionine, 6.33 ml; L-isoleucine, 11.2 

ml; L-leucine, 16.09 ml; L-tyrosine, 8.02 ml; L-phenylalanine, 5.3 ml; L-ornithine·HCl, 

6.76 ml; L-lysine·HCl, 21.28 ml; L-histidine·HCl, 5.19 ml; L-tryptophan, 0.13 ml; and 

L-arginine·HCl, 3.06 ml. The pH of the medium was adjusted to 6.8 and filter sterilized 

through a 0.2 µm membrane filters (Filtropur S, Sarstedt, Germany). The following 

components were sterilized and added to 1L of the medium; 1.75 ml 1 M CaCl2, 0.61 ml 

1 M MgCl2, and 1 ml 3.6 mM FeSO4·7H2O. The medium was stored at 4°C.  

 

2.2.4 Maintenance of P. aeruginosa 

Pseudomonas aeruginosa (PAO1) was cultivated on Nutrient Agar plates (section 

2.2.1) at 37°C and maintained at room temperature. A sterile loop was used to inoculate 

Nutrient Broth. Bacterial cultures were grown overnight in a shaker at 200 rpm at 37°C 

to the early stationary phase. Liquid cultures were maintained at room temperature and 

sub-cultured monthly. The concentration of the bacteria in suspension was measured by 

obtaining the optical density at 600 nm (OD600), where OD1 represents approximately 3 

x 108 CFU/ml. 

 

2.2.4.1 Preparation of P. aeruginosa in cell culture medium 

 

P. aeruginosa suspension (5 ml, OD 1) was centrifuged at 2000 x g for 15 minutes. 

The bacterial pellet was resuspended in sterile PBS. This step was repeated. Bacterial 

cells were resuspended in 5 ml cell culture medium (section 2.4.1).  
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2.2.5 Bacterial toxicity assays 

The OD600 of bacterial suspensions were measured to 0.1. Bacterial suspension 

(100 µl) was added to the wells of 96-well plates. Medium (100 µl) was added into the 

respective wells. The 96-well plates were incubated at 37°C and the absorbance (600 nm) 

was measured in a microplate reader (Synergy HT Bio-Tek). 

 

2.3 Maintenance and preparation of A. fumigatus 

 

Table 2.2 Aspergillus species and strains. The species name, strain and source of Aspergillus 

used in experiments. 

 

Species 

 

Strain 

 

Source 

 

Aspergillus fumigatus 

 

ATCC 26933 

 

Medical Mycology Laboratory, MU 

 

Aspergillus flavus 

 

TJES19.1 

 

Fungal genome and secondary metabolism 

Laboratory, MU 

Aspergillus nidulans AGB551 Fungal genome and secondary metabolism 

Laboratory, MU 

 

2.3.1 Aspergillus culture media (Czapek-Dox) 

Czapek-Dox Broth (Duchefa Biochemie B.V., Haarlem, Netherlands) (35 g) was 

dissolved in 1L dH2O and autoclaved (121°C, 15 minutes).  

 

2.3.2 Aspergillus culture media (Sabouraud) 

Sabouraud Dextrose Agar (Oxoid, Cambridge, UK) (65 g) was dissolved in 1 L 

dH2O. The solution was autoclaved (121°C, 15 minutes). Agar (25 ml) was poured into 

90 mm petri dishes, aseptically. The plates were allowed to set and stored at 4°C. 

Sabouraud Liquid Medium (SAB) (Oxoid, Cambridge, UK) (30 g) was dissolved in 1 L 

dH2O and autoclaved (121°C, 15 minutes). Liquid media was stored on the bench at room 

temperature. 
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2.3.3 Minimal Medium Broth  

Glucose (2% wt/vol), yeast nitrogen base (without amino acids or ammonium 

sulfate) (DifcoTM) (0.5% wt/vol) and ammonium sulfate (0.5% wt/vol) was added to 

dH2O and autoclaved (121°C, 15 minutes). 

 

2.3.4 Culture and maintenance of A. fumigatus 

A. fumigatus (ATCC 26933, obtained from the American Type Culture 

Collection) conidia were maintained on Sabouraud Dextrose Agar at room temperature. 

To sub-culture the stock, a sterile loop was used to streak conidia onto agar plates. The 

plates were incubated at 37 °C until the conidia had turned blue-green and were covering 

the entire surface of the agar. For liquid cultures, conidia were harvested from the plate 

by adding sterile PBST (5 ml), and using a Pasteur pipette to dislodge the conidia and 

transfer the suspension into a falcon tube. The conidial suspension was centrifuged at 

2000 x g for 5 minutes in a Beckman GS-6 Centrifuge. The supernatant was discarded 

and the pellet was resuspended in sterile PBS (5 ml) and centrifuged again. This step was 

repeated. Conidia were counted using a haemocytometer to determine the conidial density 

(conidia/ml).  

 

2.3.4.1 Preparation of A. fumigatus conidia in mammalian cell culture medium 

 

Conidia were harvested as described in section 2.3.4. Conidia were washed twice 

with PBS and resuspended in mammalian cell culture medium Dulbecco's Modified Eagle 

Medium (DMEM) (95 % v/v) was supplemented with foetal calf serum (FCS) (Gibco) (5 

% v/v), L-glutamine (2 % v/v) (Gibco). 
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2.3.5 Culture and maintenance of A. flavus and A. nidulans 

 

2.3.5.1 Media preparation 

 

Uracil powder (100mg) was added to SAB (100 ml) prior to sterilization by 

autoclave (121°C). Uridine solution (5 %) was prepared by dissolving 0.5 g uridine into 

10 ml ddH2O and filter sterilized through 0.2 µm membrane filters (Filtropur S, Sarstedt, 

Germany). When the media had cooled to room temperature 500 µl uridine solution was 

added to SAB. Agar plates were prepared as described using Sabouraud Dextrose Agar 

instead of SAB liquid medium (section 2.3.2).  

 

2.3.6 Culture and maintenance of A. flavus 

A. flavus spores were harvested as described in section 2.3.4 and added to each 

flask of SAB containing uracil and uridine (section 2.3.5.1) (5 x 105/ml). Cultures were 

incubated at 30°C, shaking at 200 rpm.   

 

2.3.7 Culture and maintenance of A. nidulans 

SAB was prepared as described in section 2.3.5.1. Pyroxidine (0.1 %) was 

prepared by dissolving 0.1 g proxidine in 10 ml ddH2O. Prior to inoculating spores, 

pyroxidine solution (100 µl) was added to each flask. A. nidulans spores were harvested 

as described in (section 2.3.5.1) and added to each flask (5 x 105/ml). Cultures were 

incubated at 37°C shaking at 200 rpm. 

 

2.3.8 A. fumigatus culture filtrate and P. aeruginosa culture filtrates 

A. fumigatus conidia (5 x 105 conidia/ml) were cultured in Czapek-Dox for 48 

hours. P. aeruginosa (a loopful) was cultured in Czapek-Dox for 48 hours. Both 

cultures were incubated at 37 °C shaking at 200 rpm. The fungus and bacteria were 

removed from the culture using Miracloth and centrifugation, Culture filtrates were 

filter sterilized through 0.22 µm membrane filters.  
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2.3.8.1 A. fumigatus and P. aeruginosa co-culture culture filtrates 

  

A. fumigatus conidia (5 x 105 conidia/ml) were cultured in Czapek-Dox for 24 

hours. P. aeruginosa (a loopful) was cultured in Czapek-Dox for 24 hours. Both cultures 

were incubated at 37 °C shaking at 200 rpm. After 24 hours, the cultures were combined 

into a sterile 250 ml flask and incubated for a further 24 hours. The fungus and bacteria 

were removed from the culture using Miracloth and centrifugation, Culture filtrates were 

filter sterilized through 0.22 µm membrane filters.  

 

2.3.8.2 Exposure of A. fumigatus to culture filtrates 

A. fumigatus conidia (5 x 105 conidia/ml) were cultured for four hours in Czapek-

Dox (25 ml) in 125 ml Erlenmeyer flasks. Culture filtrates produced in Czapek-Dox 

(section 2.3.8 and 2.3.9) (50 ml) were added to the flasks and incubated at 37°C shaking 

at 200 rpm for 24 hours prior to protein extraction.  

 

2.3.8.3 Exposure of P. aeruginosa to culture filtrates 

P. aeruginosa was cultured for 24 hours in Czapek-Dox (25 ml) in 125 ml 

Erlenmeyer flasks. Culture filtrates produced in Czapek-Dox (section 2.3.8 and 2.3.9) (50 

ml) were added to the flasks and incubated at 37°C shaking at 200 rpm for 24 hours prior 

to protein extraction. 

 

 

 

 

 

 

 

 

 



58 
 

2.4 A549 Cell culture medium and maintenance  

 

2.4.1 Cell culture medium 

Dulbecco's Modified Eagle Medium (DMEM) (95 % v/v) was supplemented with 

foetal calf serum (FCS) (Gibco) (5 % v/v), L-glutamine (2 % v/v) (Gibco) and stored at 

4 °C. 

2.4.2 Cryporeservation buffer 

DMEM (40 % v/v) was supplemented with FCS (40 % v/v) and dimethyl 

sulfoxide (DMSO) (10 % v/v). Cryopreservation buffer was prepared on the day of use, 

filter-sterilized through 0.2 µm membrane filters and stored on ice. 

 

2.4.3 Maintenance and sub-culturing 

The Type II alveolar epithelial cell line A549, ATCC CCL 185 (derived from a 

human lung carcinoma) was grown in 25 cm2 tissue culture flasks (Sarstedt) containing 5 

ml cell culture medium (section 2.4.1) and incubated at 37ºC in a humidified atmosphere 

containing 5% CO2. When the flasks were 80 - 90 % confluent, cells were subcultured 

by trypsinisation (approximately every 3 - 5 days); cell culture medium was removed 

from the flasks. Trypsin EDTA (Gibco) (1 ml) (diluted with sterile PBS to give a final 

concentration of 10 % v/v), was added to the flask and removed immediately. 

Trypsin/PBS solution (4 ml) was added to the flask. The flasks were incubated until the 

cells began to detach (3 – 5 minutes). The trypsin solution was neutralized with 4 ml cell 

culture medium. Cells were transferred into a sterile tube and harvested by centrifugation 

(200 x g). The medium was removed and the cell pellet was resuspended with fresh, pre-

heated cell culture medium. Cells (1 ml) were seeded into fresh, sterile 25 cm2 flasks to 

give an approximate confluency of 25 %. Fresh, pre-heated cell culture medium (4 ml) 

was added to each flask. 
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2.4.4 Cryopreservation of A549 cells in Liquid Nitrogen  

Cells were cultured to approximately 80 % confluency. Cells were trypsinized and 

centrifuged (200 x g) (section 2.4.3). The cell pellet was resuspended in 1ml cell culture 

medium (section 2.4.1). 1 ml cryopreservation buffer (section 2.4.2) was added slowly, 

dropwise. The cell suspension was transferred into two cryo-vials (Thermo Scientific) 

and stored at -80ºC overnight before being placed into a liquid nitrogen tank for long-

term storage. 

 

2.4.5 Recovery of A549 cells from Liquid Nitrogen 

A549 cells were recovered from liquid nitrogen and cryo-vials were held in hot 

water to speed up the thawing processes in order to maintain cell viability. The cell 

suspension (1 ml) was transferred into a 25 cm2 flask containing 4 ml pre-heated cell 

culture medium (section 2.4.1). When cells had attached (6 – 24 hours), the medium was 

removed and replaced with fresh pre-heated medium. 

 

2.4.6 Exposure of A549 cells to A. fumigatus and/or P. aeruginosa for 12 hours 

Immediately prior to exposure with A. fumigatus or P. aeruginosa, the cell culture 

medium in which pre-treated A549 cells were contained, was exchanged with freshly 

made cell culture medium. A. fumigatus conidia and P. aeruginosa suspensions were 

prepared in cell culture medium (section 2.3.4.1 and 2.2.4.1 respectively) and added to 

each of three sub-confluent flasks of A549 cells to give a final concentration of 2 x 104 

conidia/ml and 1 x 106 CFU/ml, respectively. To co-expose the A549 cells, A. fumigatus 

conidia (2 x 104 conidia/ml) and P. aeruginosa (2 x 105 CFU/ml) were added to flasks. 

To each of the controls, the medium in which cells were cultured was replaced by fresh 

cell culture medium. Unexposed cells and pathogen-exposed A549 cells were incubated 

for 12 hours as described in section 2.4.3, after which the medium was decanted. A549 

cells were subjected to protein extraction as described in section 2.5.5 and prepared for 

LFQ proteomic analysis (section 2.7). 
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2.4.7 Sequential Exposure of A549 cells to A. fumigatus and P. aeruginosa  

A549 cells were incubated with A. fumigatus conidia (2 x 104 conidia/ml, prepared 

in cell culture medium) for eight hours, after which P. aeruginosa (2 x 105 CFU/ml, 

prepared in cell culture medium) was added to each of the flasks and incubated for a 

further four hours to give a total incubation period of 12 hours. Separately, A. fumigatus 

and P. aeruginosa were cultured with A549 cells also at these densities, for eight and four 

hours, respectively. Unexposed A549 cells were incubated for 12 hours. Proteins were 

extracted from the A549 cells after each time-point (section 2.5.5) and prepared for LFQ 

proteomic analysis (section 2.7).  

 

 

2.5 Protein extraction  

 

2.5.1 Lysis buffer/Resuspension buffer 

Urea (6 M), thiourea (2 M), and tris-HCl (0.1 M) was dissolved in 50 ml ddH2O, 

(table 2.3) adjusted to pH 8 and filter sterilized through a 0.2 µm membrane filters. The 

buffer was stored at 4°C. 

 

2.5.2 Protein quantification by Bradford protein assay 

Bio-Rad protein assay dye (Bio-Rad Laboratories) (1 ml) was diluted in PBS (5 

ml) prior to use. Sample (20 µl) was added to 980 µl of the diluted Bio-Rad protein assay 

dye and mixed thoroughly. The final sample (1 ml) was transferred to a 1 ml plastic 

cuvette and incubated for 5 min at room temperature. Samples were measured by 

spectrophotometry (Eppendorf Biophotometer) at 595 nm to determine protein quantity. 

 

2.5.3 Protein quantification by Qubit 

Protein quantification using the Qubit® Quant-IT™ protein assay kit (Invitrogen) 

was performed on a Qubit® fluorometer version 2.0 following the manufacturers 

operating guidelines. For all protein samples quantified by this method, 2 µl of each 

sample was used for quantification. Sample was added to 198 µl of working buffer (199 

µl of Qubit buffer Component B and 1 µl of Qubit dye reagent Component A), gently 

mixed and incubated (in the dark at room temperature) for 15 minutes before measuring 

the protein concentration. 
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2.5.4 Protein precipitation by acetone 

Ice-cold acetone (100 %) was added to quantified protein samples in a ratio of 

five parts acetone to one part protein sample, to concentrate the protein and to remove 

contaminants. Protein was stored at -20ºC overnight. Precipitated protein was centrifuged 

at 13,000 x g for 10 minutes at 4 °C. Taking care not to disturb the pellet, the acetone was 

removed and allowed evaporate before preparation of proteins for mass spectrometry.  

 

2.5.5 Protein extraction from A549 cells 

A549 cells were harvested by trypsinization as described in section 2.4.3. After 

centrifugation (200 x g for five minutes), the supernatant was discarded. The cell pellet 

was resuspended in 3 ml sterile PBS and the centrifugation step was repeated. The cell 

pellet was resuspended in 500 µl lysis buffer (section 2.5.1) supplemented with protease 

inhibitors (10 μg/ml) (aprotinin, leupeptin, pepstatin A, and Nα-p-tosyl-L-lysine 

chloromethyl ketone (TLCK)), and phosphatase inhibitors (phosphatase inhibitor cocktail 

2) (1 % v/v). Cell lysates were incubated for two hours at room temperature on a rotary 

wheel (Stuart Rotator SB2, Bibby Scientific Limited, Staffordshire, UK). The lysate was 

centrifuged at 8000 x g for 10 minutes at 4 °C (Eppendorf Centrifuge 5418). The 

supernatant containing the protein was transferred into fresh, 1.5 ml Eppendorf tubes. The 

extracted protein lysates were quantified by Bradford protein assay (section 2.5.2). 

Acetone was added to the protein as described in section 2.5.4. 

 

2.5.6 Protein extraction from P. aeruginosa 

P. aeruginosa cells were harvested by centrifugation (3000 x g) for 15 minutes. 

The supernatant was decanted. The bacterial pellet was resuspended in 20 ml PBS. This 

wash step was repeated twice. The pellet was resuspended in 1 ml lysis buffer (section 

2.5.1) supplemented with protease inhibitors (10 μg/ml) (aprotinin (1 mg/ml), pepstatin 

A (1mg/ml), and TLCK (1mg/ml)), and phenylmethylsulfonyl fluoride (PMSF) (1 µl/ml, 

100 mM) (Table 2.1) on the day of use. The bacteria suspension was sonicated with a 

sonication probe (Bandelin Sonopuls, Bandelin electronic, Berlin) at 40% power, cycle 3 

for 10 seconds. This was repeated twice more with the sample being cooled on ice 

between each sonication. The sample was centrifuged at 10000 x g for 10 min at 4 °C and 

the supernatant was transferred into fresh 1.5 ml Eppendorf tubes. Protein quantification 
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was carried out using the Bradford protein assay (section 2.5.2) and acetone precipitated 

(section 2.5.4). 

 

2.5.7 Protein extraction from A. fumigatus  

A. fumigatus hyphae were separated from the culture filtrate through miracloth 

(Merk). Hyphae were weighed prior to protein extraction and transferred into a mortar. 

Liquid nitrogen was used to snap freeze the hyphae, which were crushed into a fine dust 

using a pestle. Lysis buffer (4 ml/g hyphae) (section 2.5.1) supplemented with protease 

inhibitors (10 μg/ml) (aprotinin, pepstatin A, and TLCK), and PMSF (1 µl/ml, 100mM) 

on the day of use, was added to the crushed hyphae and mixed to make a thick paste. The 

mixture was transferred into a sterile tube using a Pasteur pipet and sonicated (section 

2.5.6). The lysate was centrifuged at 10000 x g for 10 min at 4 °C. The supernatant was 

transferred into fresh 1.5 ml Eppendorf tubes. Protein quantification was carried out using 

the Bradford protein assay (section 2.5.2) and acetone precipitated (section 2.5.4). 

 

2.5.8 Protein extraction from A. fumigatus culture filtrates 

A. fumigatus (5 x 105 conidia/ml) was cultured in Czapek-Dox broth (section 

2.3.1) or SAB for 48 hours or 72 hours respectively (section 2.3.2) at 200 rpm at 37°C. 

Hyphae were removed using Miracloth and weighed. Culture filtrates were filter sterilized 

through 0.2 µm membrane filters. The filtered culture filtrate (A. fumigatus CuF) were 

concentrated by centrifugation (Vivaspin 20, 3kDa MWCO PES, Sartorius). Proteins (> 

3kDa) were precipitated overnight with acetone prior to digestion and preparation for 

mass spectrometry.   

Table 2.3 Components for lysis/resuspension buffer 

Urea (6 M) 18 g 50 ml ddH2O 

Thiourea (2 M) 7.6 g 50 ml ddH2O 

Tris HCl (0.1 M) 0.79 g 50 ml ddH2O 

PMSF (100 mM) 0.87 g 50 ml Ethanol 
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2.6 Sodium Dodecyl Sulphate Gel Electrophoresis-Poly Acrylamide Gel 

Electrophoresis (SDS-PAGE) 

 

2.6.1 Stock solutions 

 

2.6.1.1 Tris–HCl (1.5 M) 

 

Tris-HCl (1.5 M) was prepared by dissolving 36.3g Trizma Base (Tris Base) in 

200 ml ddH2O and adjusted to pH 8.8 using HCl. The buffer was filter sterilized with 0.2 

µm membrane filters and stored at 4ºC. 

 

2.6.1.2 Tris-HCl (0.5 M) 

Tris-HCl (0.5 M) was prepared by dissolving 12.1g Trizma Base in 200 ml 

deionised water and adjusted to pH 6.8 using HCl. Following pH adjustment 0.5 M Tris-

HCl was filter sterilised through a 0.2 µm membrane filter and stored at 4 ºC. 

 

2.6.1.3 Sodium Dodecyl Sulphate (SDS) (10 %) 

Sodium dodecyl sulphate (10% w/v) was prepared by dissolving 5 g SDS in 50 

ml ddH2O. The solution was stored at room temperature. 

 

2.6.1.4 Ammonium Persulphate (APS) (10%) 

APS (10% w/v) was prepared by dissolving 0.1 g APS in 1 ml ddH2O and stored   

at -20°C. 

 

2.6.1.5 10X Electrode Running Buffer 

Electrode Running buffer (10X), was prepared by dissolving Tris Base (30g), 

Glycine (144g) and SDS (10g) in 800 ml distilled water. The volume was adjusted to 1L 

and stored at room temperature.  
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2.6.1.6 10X Electrode Running Buffer 

10X running buffer was diluted to a 1X running buffer by adding 100 ml to 900 

ml dH2O. 

2.6.1.7 Separating gel stock solution (12.5 %) 

 

SDS-PAGE gels were made of acrylamide with 12% (v/v) Bis-acrylamide and 

cast using Mini-Protean II gel casting apparatus. Two SDS PAGE gels required 12 ml 

stock solution (Table 2.4.1). To 12 ml separating stock solution, 75 µl APS (10 % v/v) 

and 6 µl TEMED was added. A Pasteur pipet was used to transfer stock solution into 

glass plates (1.0mm, Bio-rad), supported by casting apparatus. The gels were sprayed 

with 0.01 % SDS stock solution (0.1 ml 10 % SDS stock into 9.9 ml dH2O) to ensure 

evenness, and were left to solidify at room temperature. 

2.6.1.8 Stacking gel stock solution (5 %) 

 

Table 2.4.2 lists the volumes sufficient to make 500 ml stacking solution stock. 

Two 1D SDS PAGE gels required 5 ml stock solution. To 5 ml stocking stock solution, 

50 µl APS (10 % v/v) and 5 µl TEMED was added. A Pasteur pipet was used to transfer 

stock solution on top of solidified separating gel plates. Combs (10 rows, 1 mm, Bio-rad) 

were inserted into the gel immediately and were left to solidify at room temperature. 

 

Table 2.4.1 Separating stock solution (12.5 %) 

1.5 M Tris-HCl (pH 8.8) 120 ml 

ddH2O 156 ml 

30% v/v Bis-Acrylamide (Protogel, National Diagnostics 200 ml 

10% v/v SDS 4.8 ml 

 

Table 2.4.2 Stacking stock solution (5 %) 

0.5 M Tris-HCl (pH 6.8) 63 ml 

ddH2O 340 ml 

30% v/v Bis-Acrylamide (Protogel, National Diagnostics) 83 ml 

10% v/v SDS 5 ml 
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2.6.1.9 Coomassie Brilliant Blue solution and destain  

Coomassie Brilliant Blue stain solution (Table 2.4.3) and destain solution (Table 

2.4.4) was prepared to a 1L volume and stored at room temperature. Stain was poured 

over the gel and incubated on a rocker at room temperature for a minimum of 12 hours 

before being removed and replaced with destain. Gels were rinsed thoroughly with 

dH2O prior to scanning. The stain and destain could be reused. 

 

2.6.1.10 Colloidal Coomassie stain and fixing solution 

Fixing solution (Table 2.4.5) and Colloidal Coomassie stain solution (Table 2.4.6) 

were stored at room temperature. Gels were placed in fixing solution for a minimum of 

12 hours. The fixing solution was removed and replaced with ddH2O. After rehydration 

for approximately 20-30 minutes, ddH2O was replaced with staining solution and Serva 

blue (approximately 10 mg). Gels were stained at room temperature on a rocker for 24 – 

48 hours. Prior to scanning, stain was discarded and gels were rinsed thoroughly with 

dH2O. 

Table 2.4.3 Coomassie Brilliant Blue staining solution  

Methanol (45 % v/v) 450 ml 

Acetic Acid (10 % v/v) 100 ml 

Brilliant Blue R (0.1 % w/v) 1 g 

dH2O (45 % v/v) 450 ml 

 

Table 2.4.4 Coomassie destaining solution 

Methanol (20 % v/v) 200 ml 

Acetic Acid (10 % v/v) 100 ml 

dH2O (70 % v/v) 700 ml 

 

Table 2.4.5 Colloidal Coomassie fixing solution 

Ethanol (50 % v/v) 500 ml 

Phosphoric acid (3 % v/v) 30 ml 

ddH2O (47 % v/v) 470 ml 
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Table 2.4.6 Colloidal Coomassie staining solution 

Methanol (34 % v/v) 450 ml 

Phosphoric acid (3 % v/v) 30 ml 

Ammonium sulphate (17 % v/v) 170 g 

ddH2O (46 % v/v) 460 ml 

 

2.6.2 1D SDS-PAGE gel sample loading 

Laemmli sample buffer (2X) (7 µl) was added to 3 µl digested protein sample 

(section 2.7.1) and 10 µl ddH2O. The final volume (20 µl) was loaded into each well of a 

1D SDS gel (2.6.1). Broad Range (10-250 kDa) protein standard (5 µl) (New England 

Biolabs, UK) was added to the first lane of every gel.  

 

2.6.3 Gel Electrophoresis running parameters 

SDS-PAGE gels were immersed in 1X running buffer. The gels were 

electrophoresed at 60V until the proteins had left the stacking gel (indicated by the 

position of the blue tracking dye). When the tracking dye had moved to within 0.5 cm 

from the bottom of the gel, the gels were transferred to a clean staining dish containing 

50 ml Coomassie Brilliant Blue stain (section 2.6.1.8) or Colloidal Coomassie fixing 

solution (section 2.6.1.9.) 

 

2.6.4 Gel visualization and scanning 

When they were ready to be visualized and scanned, gels were rinsed thoroughly 

with dH2O. Scanning was performed on an Epson scanner (LabScan™ 6.0, Epson 

Scanner 10000XL software). Images were saved as 8 bit Tiff and 16 bit Tiff for further 

analysis.  
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2.6.5 2D SDS PAGE Preparation 

 

2.6.5.1 Isoelectric focusing (IEF) – first dimension protein separation 

 

Isoelectric Focusing (IEF) buffer was prepared to give a final volume of 50 ml 

(described in Table 2.5.1) and stored in 1ml aliquots at -20ºC. Ampholytes (0.8%, v/v; 2 

µl/ml) and DTT (65 mM; 0.02 g/ml) were added to the defrosted aliquots on the day of 

use and stored at room temperature. Precipitated protein samples (100 µg) in acetone were 

centrifuged for 10 minutes at 14,000 g. Acetone was removed from pelleted protein 

samples. When the acetone had completely evaporated, samples were resuspended 50µl 

IEF buffer and placed in a sonication bath (Fisher Scientific) for five minutes. 

Bromophenol blue was added to the remaining IEF buffer using a pipet tip. IEF 

buffer/bromophenol blue solution (50 µl) was added to the IEF buffer/protein sample to 

give a final concentration of 100 µg/100 µl. Protein samples were loaded into the positive 

end of 7 cm ceramic IPG strip holders. The IPG strip (7 cm) (Immobiline DryStrip pH 4-

7; G.E. Healthcare) was added, gel-side down, using a forceps, while the holder was tilted 

slightly to ensure distribution of sample along the holder. Care was taken to prevent the 

trapping of air bubbles underneath the strip. The strips were overlaid with Plus One 

Drystrip Coverfluid (Amersham) (0.5 ml) and subjected to IEF on an IPGphor II IEF Unit 

using the following programme outlined in Table 2.5.2. 

 

Table 2.5.1 IEF focusing buffer 

Urea (8 M) 24 g 

Thiourea (2M) 7.6 g 

Tris Base (10 mM) 0.079 g 

CHAPS (4 % w/v) 2 g 

Triton-x 100 0.5 ml 

ddH2O bring up to final volume 50 ml 
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Table 2.5.2 Programme used for focusing IEF strips (22.15 hours total) 

Time Volts Mode 

8 hours 50 Gradient 

15 minutes 250 Gradient 

2 hours 1000 Gradient 

4 hours 4000 Gradient 

4 hours 8000 Gradient 

4 hours 8000 Hold 

 

Table 2.5.3 Equilibration buffer for IEF strips (pH 8.0) (add glycerol last) 

Urea (6 M) 180 g 

Tris HCl (30 mM) 3.94 g 

SDS (2 % w/v) 10 g 

ddH2O 200 ml initially 

Glycerol (30% v/v) 150 ml 

ddH2O bring to 500 ml 

 

Table 2.5.4 Sealing solution (heated for 1 minute in microwave before first use) 

Agarose 1% (w/v) 1 g 

Bromophenol Blue (0.5 % w/v) 0.5 g 

1 X Running buffer 100 ml 

 

2.6.5.2 Equilibration and second dimension protein separation 

 

Equilibration buffer was prepared as described in table 2.5.3. Buffer was separated 

into 7.5 ml aliquots to ensure full coverage of the strips. Into each aliquot, DTT (DTT; 

0.01 g/ml) was added. After focusing, IPG strips were transferred immediately to 

equilibration buffer/DTT solution and placed on a rotating wheel for 15 minutes. 

Following reduction by DTT, strips were then transferred to tubes covered in tinfoil 

containing 7.5ml of equilibration buffer with IAA (0.025 g/ml) and placed on a rotating 

wheel for 15 min. Following alkylation, IPG strips were rinsed briefly in 1X electrode 

running buffer (2.6.1.6). Strips were placed on top of homogenous 12.5% SDS-PAGE 

gels (section 2.6.1.7) and sealed with 1% (w/v) agarose sealing solution (Table 2.5.4) 

once hand hot. Gels were subjected to electrophoresis (section 2.6.3). When the tracking 
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dye had reached approximately 0.5 cm from the bottom of the plate, the gels were placed 

in Colloidal Coomassie fixing solution followed by Colloidal Coomassie stain solution 

(section 2.6.1.9).  

 

2.6.6 Analysis of protein in 2D SDS PAGE gels  

 

2.6.6.1 Statistical analysis of 2D SDS PAGE gels 

 

2D-PAGE Colloidal Coomassie stained gels were aligned using Progenesis™ 

SameSpot Software (Nonlinear Dynamics Ltd, UK), to assess the fold change in protein 

abundance between two groups. The level of differential expression was analysed by 

ANOVA with p-values of ≤ 0.05 considered statistically significant for changes in protein 

abundance.  

 

2.6.6.2 Trypsin reconstitution buffer 

 

Sequencing grade trypsin (Promega) (20 µg) was dissolved in 100 µl trypsin 

resuspension buffer. Trypsin was transferred in 20 µl aliquots and stored at -20 °C until 

required. To 20 µl trypsin, 980 µl trypsin reconstitution buffer (1ml 10 mM Ammonium 

bicarbonate, (Table. 2.6), 1 ml acetonitrile and 8 ml ddH2O) was added to give a final 

volume of 10 ng/µl.  

 

Table 2.6 Trypsin reconstitution buffer 

Ammonium bicarbonate (100 mM) 395 mg dissolved in 50 ml ddH2O 

Ammonium Bicarbonate (10 mM) 1 ml Ammonium bicarbonate (100 mM) in 9 ml ddH2O 
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2.6.6.3 In-gel digestion and analysis of SDS-PAGE samples 

 

In-gel digestion of SDS-PAGE samples was carried out according to the protocol 

of Shevchenko et al. (Shevchenko et al., 2007). Briefly, selected bands or spots from 

SDS-PAGE gels were excised using a needle soaked in acetonitrile and placed in 

individual labelled 1.5 ml Eppendorf tubes. Gel pieces were destained by addition of 100 

µl of 100 mM ammonium bicarbonate (Table 2.3) acetonitrile (1:1 v/v). Samples were 

vortexed periodically for 30 min. Acetonitrile (500µl) was added to samples, followed by 

vortexing until the gel pieces became white and shrunk. Acetonitrile was removed and 

replaced with trypsin in reconstitution buffer (~ 30 µl or more to ensure full coverage of 

gel piece) (section 2.6.6.2), Samples were incubated at 37 °C overnight. The tryptic digest 

supernatant was transferred to Eppendorf tubes. Samples were dried to completion using 

a speedy vac (DNA Speedy Vac Concentrator, Thermo Scientific) and resuspended in 

ddH2O containing 0.1% formic acid (20 µl). The samples were filtered through 0.22 µm 

Cellulose Spin-filters (Costar) before transfer to polypropylene vials. Care was taken to 

ensure there was no air trapped in the vials. Peptide mixtures generated from in-gel 

digestion of protein spots were analysed using a 6340 Model Ion Trap LC-Mass 

Spectrometer (Agilent Technologies, Ireland) using electrospray ionisation with an 

acetonitrile elution gradient. 
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2.7 Protein preparation for Label Free Mass Spectrometry 

 

2.7.1 Protein sample digestion 

Precipitated protein samples in acetone were centrifuged for 10 minutes at 14,000 

g and acetone was removed from pelleted protein samples. When the acetone had 

completely evaporated, resuspension buffer (section 2.5.1) (25 µl) was added to each 

sample. The sample was resuspended by vortexing and with the aid of a pipette. Sample 

(5 µl) was removed; 2 µl was reserved for quantification by Qubit (section 2.5.3) and 3 

µl was reserved for 1D SDS PAGE (section 2.6). Ammonium bicarbonate (50 mM) (105 

µl) (Table 2.7.1) was added to the remaining 20 µl. The protein sample was reduced by 

adding 1 µl dithiothreitol (DTT) (Table 2.7.1) and incubating on hotplate at 56 °C for 20 

minutes. Samples were cooled to room temperature, and alkylated by the addition of 2.7 

μl iodoacetamide (IAA) (0.55 M) (Table 2.7.1) and incubated at room temperature in the 

dark for 15 minutes. Following reduction and alkylation, 1 μl ProteaseMAX™ Surfactant 

Trypsin Enhancer stock (Promega) (1%, w/v stock) (Table 2.7.1), and 1 μl sequencing 

grade trypsin (Promega) (0.5 μg/μl) (Table 2.7.1) was added to each protein sample, and 

incubated at 37°C overnight. 

 

Table 2.7.1 Components for protein sample digestion 

Ammonium bicarbonate (50 mM) 0.099g 25 ml ddH2O 

DTT (0.5 M) 0.039 g 0.5 ml Ammonium Bicarbonte (50 mM) 

IAA (0.55 M) 0.102 g 0.25 ml Ammonium Bicarbonte (50 mM) 

ProteaseMAX 1 mg 0.1 ml ddH2O 

Sequencing Grade Trypsin 20 µg 40 µl trypsin resuspension buffer 
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Table 2.7.2 Solvents for C18 Spin column clean-up 

 

Sample Buffer 1 

Acetonitrile (20 %) 

TFA (2 %) 

ddH2O (78 %) 

200 µl 

20 µl 

780 µl 

Activation Solution Acetonitrile (50 %) 

ddH2O (50 %) 

2.5 ml 

2.5 ml 

Equilibration Buffer 

& 

Wash Buffer 

TFA (0.5 %) 

Acetonitrile (5 %) 

ddH2O (94.5 %) 

25 µl 

250 µl 

4.725 ml 

 

Elution Buffer 

Acetonitrile (70 %) 

ddH2O (30 %) 

700 µl 

300 µl 

 

2.7.2 C-18 Spin Column Clean Up  

Trifluoroacetic acid (TFA) (1 μl) was added to each tryptic digest sample, and 

incubated at room temperature for 5 minutes. The samples were centrifuged at 10,000 x 

g for 10 minutes, and the supernatant was aliquoted into sterile Eppendorf tubes. Tryptic 

digested peptide samples were mixed with sample buffer 1 (Table 2.7.2) at ratio of three: 

one (peptide sample: sample buffer 1). Pierce® C-18 spin columns (Thermo Scientific, 

Life Technologies, Rockford, IL, USA) containing C-18 reverse-phase resin were used 

for the recovery, and purification of tryptic digested peptides.  

The C-18 spin columns were placed in receiver tube (1.5 ml Eppendorf  tube) and first 

activated with the addition of 200 μl activation solution (Table 2.7.2) to each column to 

rinse the walls of the column, and wet the resin, followed by centrifugation at 1500 x g 

for 1 minute. The flow-through was discarded and the column activation step was 

repeated. The flow-through was discarded, 200 μl equilibration solution (Table 2.7.2) was 

added to the C-18 column, and the columns were centrifuged at 1500 x g for 1 minute. 

The flow-through was discarded, and the equilibration step was repeated.  

Tryptic digest sample/sample buffer 1 solution (3:1) was loaded to the top of the C-18 

resin bed, and the column was transferred to a new receiver tube. The samples in the 

column were centrifuged at 1500 x g for 1 minute. The flow-through was collected, re-

applied to the C-18 resin bed, and the columns were centrifuged at 1500 x g for 1 minute 

twice more, to ensure complete sample binding to the C-18 resin. The columns were 

transferred to new sterile receiver tubes, and 200 μl wash buffer (Table 2.7.2) was added, 
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and the columns were centrifuged at 1500 x g for 1 minute. The flow-through was 

discarded, and the wash step was repeated to remove contaminants. 

The columns were transferred to new receiver tubes, and 25 μl elution buffer (Table 2.7.2) 

was added, and the columns were centrifuged at 1500 x g for 1 minute. The elution step 

was repeated twice more and the eluent (75 μl) was transferred to a new Eppendorf tube. 

The samples were lyophilised using a vacuum centrifuge (Savant DNA120 SpeedVac 

Concentrator, Thermo Fisher Scientific Inc., Dublin, Ireland) for approximately two 

hours at medium drying rate setting or until complete lyophilisation of the peptides had 

occurred. Dried peptide extracts were stored at -20°C.  

 

2.7.2.1 Peptide preparation for analysis by mass spectrometry 

 

Protein samples resuspended in acetonitrile (2% v/v) and TFA (0.05% v/v). To 

aid resuspension, samples were sonicated for 5 min and centrifuged at 13,000 x g. The 

supernatant (10 µl) was transferred into vials (VWR) and used for mass spectrometry. 

The remaining supernatant was stored at -20 °C. 

 

2.8 Mass Spectrometry Analysis  

 

2.8.1 Mass Spectrometry parameters for A549 protein analysis 

Digested sample (1 µg) was loaded onto a QExactive (ThermoFisher Scientific) 

high-resolution accurate mass spectrometer connected to a Dionex Ultimate 3000 

(RSLCnano) chromatography system. Peptides were separated by an increasing 

acetonitrile gradient on a BioBasic™ C18 Picofrit™ column (100 mm length, 75 mm 

inner diameter), using a 180-minute reverse phase gradient at a flow rate of 250 nL/min-

1. All data were acquired with the mass spectrometer operating in an automatic dependent 

switching mode. A full MS scan at 140,000 resolution and a range of 300 – 1700 m/z, was 

followed by an MS/MS scan at 17,500 resolution, with a range of 200-2000 m/z to select 

the 15 most intense ions prior to MS/MS. Quality control measures were taken before, 

and after each sample group was analysed by MS. HeLa cell lysate(250 ng/µl) was 

analysed to ensure that MS paramters were maintained throughout the MS run time. 
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2.8.1.1 MS/MS Data analysis for A549 cell study 

 

Protein quantification and LFQ normalization of the MS/MS data was performed 

using MaxQuant version 1.5.3.3 (http://www.maxquant.org). The Andromeda search 

algorithm incorporated in the MaxQuant software was used to correlate MS/MS data 

against the Uniprot-SWISS-PROT database for Homo sapiens (55651 entries), A. 

fumigatus Af293 (9647 entries) and P. aeruginosa PAO1 (5564 entries) (downloaded 

16/09/2016).  

 

2.8.1.2 Search Parameters  

 

The following search parameters were used: first search peptide tolerance of 20 

ppm, second search peptide tolerance 4.5 ppm with cysteine carbamidomethylation as a 

fixed modification and N-acetylation of protein and oxidation of methionine as variable 

modifications and a maximum of two missed cleavage sites allowed. False discovery rate 

(FDR) was set to 1 % for both peptides and proteins, and the FDR was estimated 

following searches against a target-decoy database. Peptides with minimum length of 

seven amino acid length were considered for identification and proteins were only 

considered identified when observed in three replicates of one sample group.  

 

2.8.2 Mass Spectrometry parameters for P. aeruginosa and A. fumigatus protein 

analysis 

Digested P. aeruginosa protein samples (750 ng) was loaded onto a Q Exactive 

as described in 2.8.1. A 133-minute reverse phase gradient at a flow rate of 300 nL/min-1 

was applied. All data were acquired with the mass spectrometer operating in an automatic 

dependent switching mode. A full MS scan at 70,000 resolution and a range of 400 – 1600 

m/z, was followed by an MS/MS scan at 17,500 resolution, with a range of 200-2000 m/z 

to select the 15 most intense ions prior to MS/MS.  

 

 

 

 

 

http://www.maxquant.org/
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2.8.2.1  MS/MS Data analysis for the P. aeruginosa and A. fumigatus studies 

 

Protein quantification and LFQ normalization of the MS/MS data was performed 

using MaxQuant version 1.5.3.3 (http://www.maxquant.org). The Andromeda search 

algorithm incorporated in the MaxQuant software was used to correlate MS/MS data 

against the Uniprot-SWISS-PROT database for P. aeruginosa PAO1 (5564 entries) or A. 

fumigatus Af293 (9647 entries) respectively (downloaded 11/09/2018). Search 

parameters applied are described in section 2.8.1.2. 

 

2.8.3 Proteomic analysis 

Perseus v.1.5.5.3 (www.maxquant.org/) was used for data analysis, processing 

and visualisation for all studies. Normalised LFQ intensity values were used as the 

quantitative measurement of protein abundance for subsequent analysis. The data matrix 

was first filtered for the removal of contaminants and peptides identified by site. This step 

involves searching the raw data against a fasta file incorporated in MaxQuant that 

contains hundreds of contaminant proteins commonly found in laboratory-processed 

samples. Contaminant proteins are highlighted in the results file and were removed from 

the analysis. LFQ intensity values were log2 transformed and each sample was assigned 

to its corresponding group. Proteins not found in three out of three (in chapter 3, 5 and 6), 

or four out of four samples (chapter 4) in at least one group were omitted from the 

analysis. A data-imputation step was conducted to replace missing values with values that 

simulate signals of low abundant proteins chosen randomly from a distribution of log2 

transformed LFQ intensities for all proteins. Imputated values were specified by a 

downshift of 2 times the standard deviation (SD) of the mean LFQ intensity of all 

measured values and a width of 0.3 times this SD. The replacement of missing intensities 

permitted principal component analysis and hierarchical clustering. 

 

Normalised intensity values were used for a principal component analysis (PCA). 

Exclusively expressed proteins (those that were uniquely expressed or completely absent 

in one group) were identified from the pre-imputation dataset and included in subsequent 

analyses, i.e. the statistically significant set of proteins. This was permitted because the 

mean values and variance of these proteins were assessed to be significantly different to 
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the low abundant values that replaced the missing values in other samples during the 

imputation step.  

 

Gene ontology (GO) mapping was also performed in Perseus using the UniProt 

gene ID for all identified proteins to query the Perseus annotation file and extract terms 

for biological process, molecular function and Kyoto Encyclopaedia of Genes and 

Genomes (KEGG) names. Perseus annotation files for H. sapiens were downloaded in 

October 2016. Perseus annotation files for P. aeruginosa PAO1 and A. fumigatus Af293 

were downloaded in October 2018.  

 

To visualise differences between two samples, pairwise Student’s t-tests were 

performed for all using a cut-off of p<0.05 on the post-imputated dataset. Volcano plots 

were generated in Perseus by plotting negative log p-values on the y-axis and log2 fold-

change values on the x-axis for each pairwise comparison. The ‘categories’ function in 

Perseus was utilized to highlight and visualise the distribution of various pathways and 

processes on selected volcano plots. Statistically significant (ANOVA, p<0.05) and 

differentially abundant proteins (SSDA), i.e. with fold change of plus or minus 1.5 were 

chosen for further analysis.  The log2 transformed LFQ intensities for all SSDA proteins 

were Z-score normalised and used for hierarchical clustering of samples and SSDA 

proteins using Euclidean distance and average linkage. GO and KEGG term enrichment 

analysis was performed on the major protein clusters identified by hierarchical clustering 

using a Fisher’s exact test (a Benjamini-Hochberg corrected FDR of 4%) for enrichment 

in Uniprot Keywords, gene ontology biological process (GOBP), gene ontology cellular 

component (GOCC) and KEGG (FDR < 4 %).  

 

2.8.3.1 Parameters for analysis on multi-sample tests 

 

Prior to hierarchical clustering on sequentially exposed groups (described in 

section 2.4.7)  an analysis of variance (ANOVA) was performed for multiple-samples 

across all four groups using a permutation based false discovery rate of 5 % and below to 

indicate statistically significant differentially abundant (SSDA) proteins to be included 

for Z-score normalization and hierarchical clustering. 
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2.8.3.2 STRING and KEGG analysis 

 

The Search Tool for the Retrieval of INteracting Genes/Proteins (STRING) 

(Jensen et al., 2009) v11 (http://string-db.org/) was used to map known and predicted 

protein:protein interactions. UniProt gene lists (extracted from Perseus) were inputted and 

analysed in STRING using the high confidence (0.700) setting to produce interactive 

protein networks for each group in all comparisons.  GO term enrichment analyses for 

biological process, molecular function and cellular compartment were conducted to 

identify potential pathways and processes that warranted further analysis. Such pathways 

were examined using the KEGG pathways analysis 

(https://www.genome.jp/kegg/tool/map_pathway2.html) using the ‘KEGG Mapper—

SearchandColor Pathway’ tool. The equivalent KEGG identifiers were obtained using the 

UniProt ‘Retrieve/ID mapping’ function (http://www.uniprot.org/uploadlists/) with the 

organism set to “has” (H. sapiens) for the A549 cell protein analysis, “pae” (P. 

aeruginosa) for the P. aeruginosa protein analysis and “afm” (A. fumigatus) for the A. 

fumigatus protein analysis. Retrieved KEGG IDs were used to identify the most 

represented pathways.  

 

2.8.4 Mass Spectrometry analysis of A. fumigatus culture filtrate protein 

 

2.8.4.1 Mass Spectrometry parameters 

 

Digested proteins samples (500 ng) collected from A. fumigatus CuF (section 

2.5.8) was loaded onto the Q Exactive (as described in section 2.7).  A 65-minute reverse 

phase gradient at a flow rate of 300 nL/min-1 was applied. The remaining parameters are 

described in section 2.8.2). 

 

2.8.4.2 Protein analysis of A. fumigatus culture filtrate 

 

Proteins present in A. fumigatus CuF were identified using Proteome Discoverer 

1.4 and Sequest HT (SEQUEST HT algorithm, Thermo Scientific) and searched against 

the UniProtKB database (taxonomy: Neosartorya fumigata).  Search parameters applied 

for protein identification were as follows (i) peptide mass tolerance set to 10 ppm, (ii) 

https://www.genome.jp/kegg/tool/map_pathway2.html
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MS/MS mass tolerance set to 0.02 Da, (iii) an allowance of up to two missed cleavages, 

(iv) carbamidomethylation set as a fixed modification and (v) methionine oxidation set 

as a variable modification. Peptide probability was set to high confidence and peptides 

with minimum (Xcor) score of two and fewer than three unique peptides were excluded 

from further analysis. 

 

2.9 Gliotoxin analysis 

 

2.9.1 Gliotoxin extraction from A. fumigatus culture filtrates 

A. fumigatus hyphae were separated from culture filtrates with miracloth. The wet 

weight of the hyphae was obtained. The culture filtrate was filter-sterilized using 0.45 µm 

membrane filters followed by 0.2 µm membrane filters (Filtropur S, Sarstedt, Germany). 

The culture filtrate (20 ml) was mixed with equal volumes of chloroform (20 ml) and 

placed on a rocker for two hours at room temperature.  

The chloroform (organic layer containing the gliotoxin), was separated from the aqueous 

layer using a Pasteur pipette. Care was taken not to collect lipids or aqueous solution with 

the pipet. The chloroform fraction was collected and dried by rotary evaporation in a 

Büchi rotor evaporator (Brinkmann Instruments; Westbury, NY). Dried extracts were 

dissolved in 500 µl methanol. The resuspended extract was centrifuged at 14,000 x g for 

5 min. The supernatant was transferred to a fresh 1.5 ml Eppendorf tube and stored at – 

20 °C. 

 

2.9.2 Quantification of gliotoxin by RP-HPLC 

Gliotoxin was detected by Reversed Phase-HPLC (Shimadzu) with UV detection. 

The mobile phase (solvent A) was ddH2O and 0.1% (v/v) TFA and (solvent B) acetonitrile 

and 0.1% (v/v) (Table 2.8.1). Gliotoxin extract (20 μl) was injected onto a Lunar Omega, 

5 µm polar C18, LC column (Phenomenex) at a flow rate of 1 ml/min. Gradient conditions 

are described in Table 2.8.2 Analysis was performed at an absorbance of 254 nm. A 

standard curve of peak area versus gliotoxin concentration was constructed using 

gliotoxin standards (0.1, 0.25, 0.5, 1.0 μg/10 μl) dissolved in methanol (Fig. 2.1). 
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                               Table 2.8.1 RP-HPLC mobile phase solvents 

Solvent A 1 ml TFA / 1L ddH2O 

Solvent B 1 ml TFA/ 1L Acetonitrile 

 

Table 2.8.2 RP-HPLC gradient conditions for gliotoxin analysis 

Time (min) % Solvent B 

0 5 

5 5 

20 100 

30 100 

40 5 

50 5 

 

 

2.10 Detection of amino acids by ninhydrin 

Culture filtrates from A. fumigatus, P. aeruginosa and Co-cultures were filter 

sterilized and analysed for free amino acids using 2 % ninhydrin (Sigma) dissolved in 

ethanol (Yemm et al., 1955). A standard curve of absorbance (OD570) versus 

concentration was constructed using amino acid standards (glycine and serine) (Fig. 2.2). 
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Fig. 2.1 Gliotoxin standard curve Gliotoxin concentrations (µg/ml) were measured 

against the area under the curve. Analysis of gliotoxin was performed in the absorbance 

mode at 254 nm. 

 

 

 

 

 

 

 

 

 

Fig. 2.2 Amino acid standard curve. Concentration (mg/ml) of glycine (blue) and 

concentration of serine (orange) were measured against the absorbance (570 nm).  
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2.11 Preparation of A. fumigatus antibacterial compound 

 

2.11.1 Culture conditions 

A. fumigatus (5 x 105 conidia/ml) was cultured in Sabouraud Liquid Medium 

(SAB) (section 2.3.1) for between 48 and 72 hours in a shaker at 200 rpm at 37°C. The 

hyphae and the culture filtrate was separated through miracloth. The culture filtrate was 

filter sterilized using 0.45 µm membrane filters followed by 0.2 µm membrane filters. 

The filtrates were stored in 40 ml aliquots at -20°C. 

 

2.11.2 Culture filtrate-processing method 

 

2.11.2.1 Freeze drying culture filtrates 

 

Frozen filtrates were placed in liquid nitrogen for five minutes (with the lids of 

the tubes slightly open) prior to being placed on the freeze dryer to be lyophilized. Dried 

samples were removed from the freeze dryer after about four days or when the moisture 

was completely gone. The powder was stored in the fridge at 4°C. 

 

2.11.2.2 Separation of compound by RP-HPLC 

Dried material (40 ml starting) was resuspended in 2 ml of ddH2O and filtered 

through 0.22 µm cellulose acetate spin filter tubes (Spin-X®, Costar) and transferred to 

250 µl vials (Agilent). Samples were detected and fractions were collected by HPLC 

(Shimadzu). Samples (50 µl) were injected onto a Lunar Omega, 5 µm polar C18, LC 

column (Phenomenex) at a flow rate of 0.5 ml/minute. Gradient conditions are described 

in Table 2.9. Fractions (250 µl) were collected between 4.5 and 5.5 minutes. Fractions 

were pooled together and stored at -20°C. 
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Table 2.9 RP-HPLC gradient conditions for A. fumigatus compound analysis 

Time (min) % Solvent B 

0 0 

5 0 

15 100 

18 100 

20 0 

28 0 

 

2.11.2.3 Separation of compound by size 

  

Pooled fractions were separated by size through centrifugal filters (Vivaspin 20, 

3kDa MWCO PES, Sartorius). Sample were centrifuged at 4000 x g. The filtrate and the 

retentate were collected and stored at - 20°C. 

 

2.11.2.4 Separation of compound by polarity  

 

C18 Sep-Pak cartridges (Sep-Pak Vac 3cc 200 mg, Waters) were prepared by 

passing through methanol (2 x 3 ml aliquots). ddH2O (3 x 3 ml aliquots) was passed 

through the column to remove methanol before the filtered sample was applied. Samples 

were pulled through the column manually with a syringe and were applied to the column 

twice in total. The flow through (polar component) was collected.  

Clean Screen DAU C8 columns (UCT) was prepared by passing through methanol (2 x 5 

ml aliquots) followed by ddH2O (3 x 5 ml aliquots) before loading sample onto the 

column. The sample was pulled through manually with a syringe and applied to the 

column twice in total. The flow through (hydrophilic, anionic component) was collected. 

The samples were stored at -20 °C. Processed samples were lyophilized as described in 

section 2.11.2.1, and separated by HPLC (section 2.11.2.2) two more times. After the 

final fractionation, samples were lyophilized and analysed by mass spectrometry and 

NMR.  
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2.11.3 Mass Spectrometry analysis of A. fumigatus antibacterial compound  

Fractions collected from separation by RP-HPLC (section 2.11.2.2) were 

lyophilized and resuspended in ddH2O/1 % formic acid. Samples were analysed on a 

Dionex Ultimate 3000 (RSLCnano) chromatography system coupled to a QExactive 

(ThermoFisher Scientific) high-resolution accurate mass spectrometer. Peptides were 

separated by an increasing acetonitrile gradient on a Hypersil Gold aQ C18 polar 

endcapped column (100 mm length, 2.1 mm inner diameter, 1.9 µm particles), using a 

10-minute reverse phase gradient of acetonitrile/0.1% formic acid (5 – 70 % gradient). 

Samples were analysed in positive mode and negative mode using a top 3 MS/MS 

method.  

 

2.12 NMR analysis of A. fumigatus antibacterial compound  

Nuclear Magnetic Resonance (NMR) spectroscopy was performed on fractions 

collected by RP-HPLC (described in section 2.11.2.2) 

NMR spectra were obtained on a Bruker Ascend 500 MHz spectrometer operated at 500 

MHz. The samples were found to be fully soluble in deuterium oxide (or mixtures of 

deuterium oxide:water 10:90) and spectra were recorded at ambient temperature. The 

signal at 4.7 from HOD was used as reference peak for calibration. Chemical shifts () 

were reported in ppm. 

A series of 1D (1H NMR, 13C NMR and 31P NMR) and 2D experiments, including  

Correlation Spectroscopy; COSY, Total Correlation Spectroscopy; TOCSY, 

heteronuclear single quantum correlation; HSQC, Heteronuclear Multiple Bond 

Correlation; HMBC and Distortionless Enhancement by Polarization Transfer; DEPT) 

were performed on the samples in order to attempt signal assignation and structure 

identification. 
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3.1 Introduction 

 

The average healthy (resting) adult inhales in excess of 7,000 litres of air daily 

and with this, airborne fungal spores and bacteria are taken into the respiratory tract 

(Dickson et al., 2016).  For immunocompetent individuals, inhaled microbes are swiftly 

cleared by the pulmonary immune system. Microorganisms become trapped in the mucus 

secreted by goblet cells and are propelled towards the oropharyngeal junction by ciliary 

beating and either swallowed or exporated. Those that evade the effects of the mucociliary 

elevator are phagocytosed and killed by cells of the immune system such as macrophages 

and neutrophils (Balloy and Chignard, 2009).  

The lungs of individuals with cystic fibrosis (CF) are lined with a thick sticky 

mucus layer and a dehydrated airway surface liquid (ASL) caused by an ion imbalance 

arising from defects in the CFTR protein (Verkman et al., 2003). These conditions 

compromise the actions of the mucociliary elevator and thus provide an environment 

conducive to microbial growth. As a result, the CF airways are colonised by a variety of 

bacterial and fungal pathogens, which severely affect pulmonary function and contribute 

to mortality (Tang et al., 2014). The cells of the pulmonary epithelium are the first point 

of contact with pathogens as they enter the lungs. Understanding how host cells respond 

to these pathogens and how these microorganisms interact with each other is key to 

understanding how pulmonary infection develops in the lung (Harriott and Noverr, 2011; 

Filkins and O’Toole, 2015; Reece et al., 2017a).  

 

The microbial ecology of the CF airways displays an age-related profile that is 

characterized by colonization with a range of pathogens from infancy, and reduced 

microbial diversity in adulthood (Coburn et al., 2015). In the first decade of life, the most 

common detectable pathogens are Staphylococcus aureus, Haemophilus influenza, 

Streptococcus spp. and Stenotrophomonas maltophilia. The mould, Aspergillus fumigatus 

is also detected in the airways from childhood and remains the most prominent fungal 

pathogen in the CF airways (Reece et al., 2019).  

 

In the second decade of life, the Gram-negative bacterium, Pseudomonas 

aeruginosa, succeeds as the predominant pathogen and alongside members of the 

Burkholderia cepacia complex, these bacteria are most associated with poor clinical 
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outcome (Govan and Deretic, 1996; Koch, 2002).  P. aeruginosa is recognized as the 

primary cause of morbidity and mortality within the CF community and it is estimated 

that 80% of CF sufferers are chronically infected with P. aeruginosa by the age of 20 

years (Goldberg and Pier, 2000; Koch, 2002; Parkins et al., 2018). Its ability to survive 

in the CF environment give P. aeruginosa a distinct advantage over other microbial 

species within the lung and once established, chronic infection by this pathogen is rarely 

eradicated (Govan and Deretic, 1996; Goodman et al., 2004; Winstanley et al., 2016). To 

survive in the CF lung, P. aeruginosa must overcome several challenges from the host 

immune response including evasion of pulmonary immune cells, oxidative stress, osmotic 

stress due to an abnormal airway surface liquid (ASL) and exposure to antibiotics 

(Breidenstein et al., 2011). A consequence of long-term exposure to antibiotics is the 

emergence of antibiotic resistant strains of P. aeruginosa (Breidenstein et al., 2011). 

These factors, combined with the arsenal of secreted virulent exoproducts such as 

pyocyanin, rhamnolipids, hemolysin, proteases and elastase, mediate P. aeruginosa 

pathogenesis in the CF airway (Caldwell et al., 2009; Moradali et al., 2017). 

 

The most prevalent fungal pathogen associated with the CF lung is Aspergillus 

fumigatus, which is detected in up to 57% of CF patients (Stevens et al., 2003b; Pihet et 

al., 2009). A. fumigatus is ubiquitous in the environment where it forms and releases 

airborne conidia which measure 2-3µm in diameter and are thus easily transported 

through the respiratory tract when inhaled. In the immunocompromised airways, conidia 

that avoid elimination can germinate and provoke a proinflammatory immune response 

triggered by the secretion of toxins and allergens from the developing fungus. This can 

result in the manifestation of a hypersensitivity disorder, allergic bronchopulmonary 

aspergillosis (ABPA), which affects up to 13% of asthmatics and CF patients (Daly and 

Kavanagh, 2001; Kraemer et al., 2006; Agarwal et al., 2014). A. fumigatus is a versatile 

pathogen and several factors contribute to persistent infection within the CF lung 

including its ability to adapt to the hypoxic environment and to acquire nutrients from the 

host (Dagenais and Keller, 2009). The production of A. fumigatus secondary metabolites 

such as gliotoxin and fumagillin impede the mucociliary elevator and inhibit macrophage 

and neutrophil activity thereby impairing the primary immune response (Amitani et al., 

1995; Fallon et al., 2010; Schlam et al., 2016a). A. fumigatus is reported to be the only 

species associated with increased risk of P. aeruginosa colonization in CF and co-

infection with these microorganisms is more detrimental to the host than infection by 
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either pathogen alone (Amin et al., 2010; Leclair and Hogan, 2010; Hector et al., 2016; 

Reece et al., 2017a). This may be due in part, to an increase in the secretion of toxic 

compounds resulting from pathogen-host and inter-species interactions (Smith et al., 

2015; Sass et al., 2019). 

 

The aim of the work presented in this chapter was to investigate the cellular 

response to a co-infection of A. fumigatus and P. aeruginosa, with a view to 

understanding why P. aeruginosa eventually becomes the predominant pathogen. The 

A549 cell line is a well-established in vitro model system for studying pathogen-host 

interactions on the alveolar cell surface of the lung, particularly in the context of A. 

fumigatus and P. aeruginosa infection (Ichikawa et al., 2000; Wasylnka, 2003; Hawdon 

et al., 2010; Wang et al., 2013; Amin et al., 2014; Chen et al., 2015). Research to date 

has focused on the response of A549 cells to either A. fumigatus or P. aeruginosa 

exposure, however, a better understanding of the cellular response to co-infection is 

required, as this may inform future therapeutic strategies. 

 

To address this knowledge gap, label-free quantitative (LFQ) proteomics was 

chosen to explore the response of A549 cells to exposure with A. fumigatus or P. 

aeruginosa and to co-exposure with both pathogens.  The proteomic data presented here 

provides an explanation as to why, in the context of co-infection, P. aeruginosa 

predominates over A. fumigatus and reveals an important role for A549 cells in facilitating 

bacterial survival and proliferation. This whole-system approach provides novel insights 

into the cellular response to poly-microbial challenges and the potential strategies 

employed by pathogens to modulate and manipulate their hosts. 

 

The primary objective in this study was to investigate the effect that co-exposure 

to A. fumigatus and P. aeruginosa had on A549 cells and to compare this with exposure 

to each pathogen alone. The goal was to understand why P. aeruginosa, and not A. 

fumigatus, predominates as the primary pathogen and what role if any, A549 cells have 

to play in this outcome by analysing their response to different types of pathogen-

exposure.  
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3.2 Results 

3.2.1 Part one - Analysis of the proteomic response of A549 cells to exposure by A. 

fumigatus and P. aeruginosa for 12 hours 

 

To compare the proteomic response of A549 cells to A. fumigatus or P. 

aeruginosa, shotgun proteomics was performed on A549 cells that had been exposed to 

either A. fumigatus (2 x 104 conidia/ml) or P. aeruginosa (1 x 106 CFU/ml) for 12 hours 

(n = 3). The control groups were left unexposed to pathogens. LFQ proteomic analysis 

(as described in section 2.8.3) identified 2036 proteins post-imputation of the dataset 

(Table A3.1A). Proteins identified in Perseus as being of non-human origin (i.e. with 

Uniprot IDs for A. fumigatus or P. aeruginosa), were considered contaminants and 

removed from further analysis. Statistically significant (p<0.05) proteins arising from 

pairwise Student’s t-tests performed on the different comparisons were determined to be 

differentially abundant if the fold change was greater than 1.5 and are referred to as 

statistically significant differentially abundant (SSDA). All SSDA proteins identified in 

A549 cells following exposure to A. fumigatus are listed in Table A3.1B. Of these, 199 

SSDA proteins were identified in the A. fumigatus-exposed group, of which 142 proteins 

were increased and 57 proteins were decreased in abundance. All SSDA proteins 

identified in A549 cells following exposure to P. aeruginosa are listed in Table A3.1C. 

In these groups, 159 SSDA proteins were identified, of which 95 were increased, and 64 

were decreased in abundance. All SSDA proteins were searched against the STRING and 

KEGG databases and used to identify biological pathways and processes over-represented 

in a particular group. 

A principal component analysis (PCA) of all identified proteins resolved distinct 

differences between the proteomes of each groups (Fig. 3.1A). Components 1 and 2 

accounted for 47.6% of the total variance within the data, and all replicates resolved into 

their corresponding samples. The control sample displayed a clear divergence to those 

that were challenged with A. fumigatus or P. aeruginosa.  

Hierarchical clustering was performed on the z-scored normalised LFQ intensity 

values for the 625 SSDA proteins arising from pairwise Student’s t-tests (p < 0.05). All 

three biological replicates resolved into their respective sample and six protein clusters 

(A-F) based on protein-abundance profile similarities (Fig. 3.1B) were resolved. 

Similarities and distinct differences in the response of the host to each pathogen were 
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identified (Fig. 3.1B). GO and KEGG term enrichment analysis was performed on all 

protein clusters with five clusters having enriched terms (Fig. 3.1B; Cluster A and C-F), 

with each cluster having a representative process or pathway characteristic to that group 

(Fig. 3.1C). These include processes associated with the endoplasmic reticulum (ER) and 

Golgi apparatus (Cluster A), processes involving lysosome, mitochondrial membrane and 

transmembrane transporter activity (Cluster C), processes involving ribonucleotide 

binding (Cluster D), transcription post-transcriptional regulation (Cluster E) and 

translation and cellular adhesion (Cluster F). Details of all clusters are included in Table 

A3.2A and Table A3.2B. 

 

Fig. 3.1 PCA, hierarchical clustering and enrichment analysis of A549 cell proteins display 

distinct differences between the three infection groups (A) Principal component analysis 

(PCA) of untreated A549 cells (squares), A549 cells treated with P. aeruginosa (circles) or A. 

fumigatus (stars). A clear distinction can be observed between each of the treated groups and the 

control. (B) Clusters based on protein-abundance profile similarities were resolved by hierarchical 

clustering on t-test significant (p<0.05) and exclusively expressed proteins from comparisons 

between the three sample groups of A549 cells. Six clusters (A-F) were resolved comprising 

proteins that display similar expression profiles across treatments. Of these, five clusters (A, C-

F) had statistically enriched gene ontology and KEGG terms associated with them (Table A3.2B) 

and the main terms are summarised for each in Fig. 3.1C 
 

Cluster
ID

Gene Ontology 
Term

P-value Enrichment

A Endoplasmic reticulum membrane
Golgi membrane

1.95E-09
8.15E-06

3.97
3.85

C
lytic vacuole

Mitochondria membrane
Transmembrane transporter activity

1.46E-05
6.14E-05
6.89E-05

4.9
2.24
2.71

D microtubule
ribonucleotide binding

3.61E-05
1.17E-04

3.51
1.9

E
transcription, DNA-dependent

RNA metabolic process
mRNA processing

1.29E-07
8.18E-07
4.37E-05

2.82
1.91
2.60

F
Ribosome
translation

cell junction
cell-substrate adherens junction

1.41E-10
7.32E-07
7.33E-07
2.41E-05

4.1
2.53
2.11
2.2

A

C

Control     P. aeruginosa A. fumigatus

A

B

C
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E

F
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Within Cluster A, 75 proteins with the GOCC term “endoplasmic reticulum” and 

“Golgi Apparatus” were resolved. Compared to the control, the abundance of these 

proteins were increased in the P. aeruginosa-exposed cells but not in the A. fumigatus-

exposed cells. The major protein groups included in Cluster B, in which 124 proteins were 

detected, were associated with the mitochondria and the lysosome. The relative 

abundance of the proteins included in this cluster were increased in A. fumigatus- and P. 

aeruginosa-exposed cells compared to control groups. In Cluster D, which contained 98 

proteins, terms associated with ATP binding, ribonucleotide binding and microtubules 

were identified. The relative abundance of proteins in this cluster were increased 

primarily in P. aeruginosa-exposed A549 cells compared to the control and A. fumigatus-

exposed cells.  

 

In Cluster E, 77 proteins were identified and were involved in transcriptional and 

post-transcriptional processes. GOBP terms including “DNA binding, transcription, RNA 

processing, RNA splicing, mRNA processing” and were associated in this cluster. The 

greatest decrease in the relative abundance of the proteins included in this cluster was 

observed in A. fumigatus-exposed cells compared to P. aeruginosa-exposed cells and the 

control.  

 

In the final enriched cluster, Cluster F, 121 proteins were resolved. Protein groups 

involved in this cluster were associated with the KEGG and GOCC term “Ribosome”.  

Numerous GOBP and GOCC terms were identified relating to ribosomal activity (e.g. 

large ribosomal subunit, small ribosomal subunit and protein complex disassembly), 

translation (e.g. translational initiation, translational elongation and translational 

termination) and post-translational activity (e.g. co-translational protein targeting to 

membrane and protein targeting to ER). Proteins associated with the actin cytoskeleton, 

cytoskeleton organization, adherens junction and anchoring junction were also identified 

within this cluster. Proteins groups included in Cluster F were decreased in both 

pathogen-exposed cells compared to the control.  

 

Volcano plots were produced to show the differences in protein expression 

between two samples and to depict the changes in pathways and processes that those 

proteins are involved in (Fig. 3.2A and 3.2B). Proteins involved in the processes and 

pathways of interest (identified in the “categories function” in Perseus) were displayed 
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on the volcano plots. In general, the relative abundance of proteins associated with the 

terms “stress response, metal ion binding and mitochondrial activity” were significantly 

increased in A549 cells exposed to A. fumigatus and P. aeruginosa (Fig. 3.2A and 3.2B). 

A greater number of proteins associated with the term “immune system process” were 

identified in A549 cells exposed to P. aeruginosa compared to A. fumigatus-exposed 

cells. Although the relative abundance of proteins associated with an immune response 

were upregulated upon exposure to both pathogens, the relative abundance of a significant 

number of proteins involved in this pathway were decreased in cells exposed to P. 

aeruginosa (Fig. 3.2B). 
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Fig. 3.2 Differential abundance of proteins identified in A549 cells exposed to A. fumigatus 

or P. aeruginosa Volcano plots derived from pairwise comparisons between A549 cells and A. 

fumigatus-exposed A549 cells (A) and P. aeruginosa-exposed A549 cells (B). The distribution 

of quantified proteins according to p value (−log10 p-value) and fold change (log2 mean LFQ 

intensity difference) are shown. Proteins above the line are considered statistically significant (p-

value <0.05). Protein components involved in metal ion binding (yellow), mitochondrial activity 

(blue) and a cellular stress response were most abundant in both pathogen-exposed groups 

compared to the control. The abundance of proteins involved in an immune response (orange) 

was slightly lower in P. aeruginosa-exposed groups compared to the A. fumigatus-exposed 

groups. 

A

B
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Copper transport protein ATOX was the most SSDA protein with the greatest fold 

increase in both A. fumigatus-exposed and P. aeruginosa-exposed A549 cells and had a 

fold-change of 36.09 and 26.10 respectively. Half of the top ten most differentially 

abundant proteins with a fold increase between the two groups were the same, although 

the fold changes were different (Table. 3.1). These results indicate a similar host cell 

response is upregulated when exposed to either A. fumigatus or P. aeruginosa, suggesting 

a general pathogen-mediated response by A549 cells. On the other hand, none of the top 

ten SSDA proteins that had reduced abundance were the same in the fungal-exposed cells 

as the bacterial-exposed cells (Table 3.2). In the A. fumigatus-exposed group, the greatest 

decrease in abundance was observed in catenin alpha (26.62-fold decrease) and in the P. 

aeruginosa-exposed group, the greatest decrease was detected in Ubiquitin-like modifier-

activating enzyme 5 (11.57-fold decrease). These results indicate that the attenuation or 

downregulation of host biological pathways caused by A. fumigatus or P. aeruginosa, are 

pathogen-dependent.  
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Table 3.1 Top ten most increased SSDA proteins identified in A549 cell exposed to A. fumigatus or P. 

aeruginosa. Top ten most increased SSDA proteins in A549 cells exposed to A. fumigatus or P. aeruginosa 

arising from Student’s t-tests on comparisons between the unexposed groups and the A. fumigatus – or P. 

aeruginosa-exposed groups. 

 

Pathogen-exposure Gene Proteins Fold 

change 

 

 

 

 

A. fumigatus 

ATOX1 

CPLX2 

UFM1 

SCO1 

ACADSB 

DOHH 

CREG1 

GCN1L1 

COX6A1 

ENSA 

Copper transport protein ATOX1 

Complexin-2 

Ubiquitin-fold modifier 1 

Protein SCO1 homolog, mitochondrial 

Acyl-CoA dehydrogenase, mitochondrial 

Deoxyhypusine hydroxylase 

Protein CREG1 

Translational activator GCN1 

Cytochrome c oxidase subunit 6A1 

Alpha-endosulfine 

36.09 

21.53 

17.24 

12.46 

11.06 

11.04 

9.40 

9.27 

7.39 

7.00 

 

 

 

 

 

P. aeruginosa 

 

 

 

 

 

 

 

ATOX1 

SCO1 

GCN1L1 

KTN1 

EMC1 

CPLX2 

UFM1 

SCARB2 

ACOX1 

COX6A1 

 

Copper transport protein ATOX1 

Protein SCO1 homolog, mitochondrial 

Translational activator GCN1 

Kinectin 

ER membrane protein complex subunit 1 

Complexin-2 

Ubiquitin-fold modifier 1 

Lysosome membrane protein 2 

Peroxisomal acyl-coenzyme A oxidase 1 

Cytochrome c oxidase subunit 6A1 

 

26.10 

20.22 

15.12 

13.90 

13.87 

12.62 

11.10 

10.11 

8.58 

8.40 
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Table 3.2 Top ten most decreased SSDA proteins identified in A549 cell exposed to A. fumigatus or P. 

aeruginosa.Top ten most decreased SSDA proteins in A549 cells exposed to A. fumigatus or P. aeruginosa 

arising from Student’s t-tests on comparisons between the unexposed groups and the A. fumigatus – or P. 

aeruginosa-exposed groups. 

 

Pathogen-

exposure 

Gene Proteins Fold 

change 

 

 

 

 

 

A. fumigatus 

 

CTNNA2 

PPL 

RPAP3 

RPRD2 

HDGFRP2 

DDX23 

SCAF4 

ABCF3 

PARD3 

MYLK 

 

Catenin alpha-2 

Periplakin 

RNA polymerase II-associated protein 3 

Regulation of nuclear pre-mRNA domain-containing protein 2 

Hepatoma-derived growth factor-related protein 2 

Probable ATP-dependent RNA helicase DDX23 

Splicing factor, arginine/serine-rich 15 

ATP-binding cassette sub-family F member 3 

Partitioning defective 3 homolog 

Myosin light chain kinase, smooth muscle 

 

-26.62 

-5.58 

-3.78 

-3.67 

-3.31 

-3.13 

-2.79 

-2.61 

-2.60 

-2.58 

 

 

 

 

 

P. aeruginosa 

 

UBA5 

IMP3 

IFI16 

BAIAP2 

ERI1 

PPP4C 

SCCPDH 

COMMD3 

KIAA0020 

VAMP3;2 

 

Ubiquitin-like modifier-activating enzyme 5 

U3 small nucleolar ribonucleoprotein protein IMP3 

Gamma-interferon-inducible protein 16 

BAI1-associated protein 2 

3-5 exoribonuclease 1 

Serine/threonine-protein phosphatase 4 

Saccharopine dehydrogenase-like oxidoreductase 

COMM domain-containing protein 3 

Pumilio domain-containing protein KIAA0020 

Vesicle-associated membrane protein 2;3 

 

-11.57 

-6.41 

-5.47 

-5.31 

-5.06 

-4.76 

-4.49 

-4.10 

-3.96 

-3.95 
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Enrichment analysis was performed, using STRING on SSDA proteins arising 

from comparisons between pathogen-exposed and unexposed A549 cells using Student’s 

t-tests (p<0.05). The protein networks generated by STRING identified a number of 

upregulated and downregulated pathways and processes in A549 cells resulting from 

exposure to A. fumigatus (Fig. 3.3A and 3.3B) and P. aeruginosa (Fig. 3.3C and 3.3D). 

Compared to the control, the relative abundance of proteins associated with oxidative 

stress, the mitochondria, protein folding, lysosomes and mRNA metabolism was 

increased in A. fumigatus-exposed cells (Fig. 3.3A) while proteins involved in RNA 

processing and the ribosome made up the vast majority of proteins that were decreased in 

abundance (Fig. 3.3B) 

 

In the P. aeruginosa-exposed group, there was an increase in the relative 

abundance of proteins associated with the immune system, detoxification and protein 

transport (Fig. 3.3C) and a decrease in RNA processing, translation and endocytosis (Fig. 

3.3D. Thus, while some responses appear to be a generalized response to pathogens, A. 

fumigatus and P. aeruginosa also illicit a pathogen-specific response in A549 cells. 
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Ribosome

RNA processing

RNA processing

SSDA - DecreasedB

Oxidative 
phosphorylation

Lysosome

Lysosome

Oxidative stress/Apoptosis

Chaperone 
binding

mRNA 
metabolism

Ribosome

Mitochondria

A SSDA - Increased

 

 

 

 

Fig. 3.3 Interaction network analysis of proteins identified in unexposed and pathogen-

exposed A549 cells. Protein interaction information was obtained from the STRING database 

using gene lists extracted from SSDA proteins from Student’s t tests (p< 0.05). Each node 

represents a protein and each connecting line represents an interaction, the extent of evidence 

for which is represented by the width of the line. A high confidence minimum interaction score 

(0.700) was applied. Statistically enriched KEGG and Gene Ontology (GO) descriptors were 

examined to identify clusters of proteins enriched between unexposed A549 cells and A549 cells 

exposed to A. fumigatus (A and B) and P. aeruginosa (C and D). 
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Enrichment analysis on SSDA proteins between A. fumigatus-exposed or P. 

aeruginosa-exposed groups and unexposed groups identified changes in several pathways 

and processes. These pathways are depicted in KEGG maps (Fig. 3.4A-3.5D) and the 

names of proteins affected in the processes and included in the KEGG maps are listed in 

Table 3.3A-3.4D Changes in the differential abundance of these proteins are included in 

Table A 3.3B-D. The “Huntington’s disease” pathway, which represents mitochondrial 

stress, and the lysosome pathway were upregulated in both pathogen-exposed groups 

compared to the control (Fig. 3.4A and 3.4B, Tabe 3.3A and 3.3B and Fig. 3.5A and 3.5B, 

Table 3.4A and 3.4B). A decrease in the relative abundance of proteins associated with 

the “ribosome” pathway was evident in both pathogen-exposed groups compared to the 

controls (Fig. 3.4C and 3.5C, Table 3.3C and Table 3.5C). In the P. aeruginosa-exposed 

groups, but not the A. fumigatus-exposed groups, the relative abundance of several 

proteins involved in the “endocytosis” pathway were increased (Fig. 3.5D, Table 3.4D). 

The networks and pathways generated in STRING and KEGG respectively highlight the 

similarities and differences that occur in A549 cells in response to the fungus and the 

bacteria.  
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A B

A B
Fig. 3.4A 

Fig. 3.4B 
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C

Fig. 3.4 KEGG mapping depicting proteins associated with Huntington’s disease, the lysosome pathway and the ribosome. A distinct increase 

(red) in levels of SSDA proteins involved in the Huntington’s disease pathway (A) and the lysosome pathway (B) in A. fumigatus-exposed A549 cells 

compared unexposed A549 cells was observed. The relative abundance of proteins associated with the ribosome was decreased (blue) (C). 

 

 

 

Fig. 3.4C 
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Table 3.3A List of proteins involved in Huntington’s disease. SSDA proteins arising 

from comparisons between A. fumigatus-exposed A549 cells and unexposed cells and 

highlighted in the KEGG map depicting Huntington’s disease are listed. 

 

Gene name Protein name 

ACTR1A 

ATP5PD 

CLTA 

CLTB 

CLTC 

COX6A1 

NDUFA8 

NDUFV2 

SOD1 

SOD2 

COX5A 

actin related protein 1A 

 ATP synthase peripheral stalk subunit d 

 clathrin light chain A 

 clathrin light chain B 

 clathrin heavy chain 

 cytochrome c oxidase subunit 6A1 

 NADH:ubiquinone oxidoreductase subunit A8 

 NADH:ubiquinone oxidoreductase core subunit V2 

 superoxide dismutase 1 

 superoxide dismutase 2 

 cytochrome c oxidase subunit 5A 

  

Table 3.3B List of proteins involved in lysosomes. SSDS proteins arising from 

comparisons between A. fumigatus-exposed A549 cells and unexposed cells and 

highlighted in the KEGG map depicting the lysosome are listed. 

 

Gene name Protein name 

CLTA 

  CLTB 

  CLTC 

  CTSD 

  CTSL 

  HEXB 

  PSAP 

clathrin light chain A 

 clathrin light chain B 

 clathrin heavy chain 

 cathepsin D 

 cathepsin L 

 hexosaminidase subunit beta 

 prosaposin 
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Table 3.3C List of proteins involved in Ribosomes. SSDS proteins arising 

from comparisons between A. fumigatus-exposed a549 cells and unexposed 

cells and highlighted in the KEGG map depicting ribosomes are listed. 

 

Gene name Protein name 

RPL9 

  RPL17 

  RPL18A 

  RPL24 

  RPL30 

  MRPL12 

  RPS8 

  RPS9 

  RPS12 

  RPS17 

  RPS21 

  RPS26 

  RPS27A 

  RPS28 

  MRPL17 

ribosomal protein L9 

 ribosomal protein L17 

 ribosomal protein L18a 

 ribosomal protein L24 

 ribosomal protein L30 

 mitochondrial ribosomal protein L12 

 ribosomal protein S8 

 ribosomal protein S9 

 ribosomal protein S12 

 ribosomal protein S17 

 ribosomal protein S21 

 ribosomal protein S26 

 ribosomal protein S27a 

 ribosomal protein S28 

 mitochondrial ribosomal protein L17 
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A B

A B

Fig. 3.5A 

Fig. 3.5B 
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C D

Fig. 3.5 KEGG mapping depicting proteins associated with Huntington’s disease, the lysosome pathway, the ribosome and endocytosis A distinct increase (red) in 

levels of SSDA proteins involved in the Huntington’s disease pathway (A) and the lysosome pathway (B) in P. aeruginosa-exposed A549 cells compared unexposed A549 

cells was observed. The relative abundance of proteins associated with the ribosome were decreased (C) and the endocytosis pathway (D) were decreased (blue). 

 

C DFig. 3.5C Fig. 3.5D 
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Table 3.4A List of proteins involved in Huntington’s disease. SSDA proteins arising from 

comparisons between P. aeruginosa-exposed A549 cells and unexposed cells and highlighted 

in the KEGG map depicting Huntington’s disease are listed. 

 

Gene name Protein name 

CLTC 

COX6A1 

COX2 

  BAX 

SOD2 

VDAC3 

clathrin heavy chain 

 cytochrome c oxidase subunit 6A1 

 cytochrome c oxidase subunit II 

 BCL2 associated X, apoptosis regulator 

 superoxide dismutase 2 

 voltage dependent anion channel 3 

 

 

Table 3.4B List of proteins involved in the Lysosome. SSDA proteins arising from 

comparisons between P. aeruginosa-exposed A549 cells and unexposed cells and highlighted 

in the KEGG map depicting the lysosome are listed. 

 

Gene name Protein name 

CLTC 

  CTSD 

  HEXB 

  LAMP1 

  LAMP2 

  M6PR 

  SCARB2 

clathrin heavy chain 

 cathepsin D 

 hexosaminidase subunit beta 

 lysosomal associated membrane protein 1 

 lysosomal associated membrane protein 2 

 mannose-6-phosphate receptor, cation dependent 

 scavenger receptor class B member 2 

 

 

Table 3.4C List of proteins involved in the Ribosome. SSDA proteins arising from 

comparisons between P. aeruginosa-exposed A549 cells and unexposed cells and highlighted 

in the KEGG map depicting the ribosome are listed. 

 

Gene name Protein name 

RPL18A 

RPL30 

RPL36AL 

RPS3 

RPS4X 

RPS9 

RPS11 

RPS17 

RPS23 

RPS26 

RPS27A 

ribosomal protein L18a 

 ribosomal protein L30 

 ribosomal protein L36a like 

 ribosomal protein S3 

 ribosomal protein S4 X-linked 

 ribosomal protein S9 

 ribosomal protein S11 

 ribosomal protein S17 

 ribosomal protein S23 

 ribosomal protein S26 

 ribosomal protein S27a 
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Table 3.4D List of proteins involved in Endocytosis. SSDA proteins arising from 

comparisons between P. aeruginosa-exposed A549 cells and unexposed cells and highlighted 

in the KEGG map depicting endocytosis are listed. 

 

Gene name Protein name 

CLTC 

  EGFR 

  CHMP2B 

  EPN1 

  NEDD4 

  TFRC 

  RAB11B 

clathrin heavy chain 

 epidermal growth factor receptor 

 charged multivesicular body protein 2B 

 epsin 1 

 NEDD4 E3 ubiquitin protein ligase 

 transferrin receptor 

 RAB11B, member RAS oncogene family 

 

 

A distinct change in the morphology of cells exposed to A. fumigatus or P. aeruginosa 

for 12 hours was observed using an inverted microscope (Fig 3.6A-C). The typical 

morphology of A549 cells under normal conditions is characterized by flat, spread-out, 

cobble stone-like shaped cell, adhered to the surface of the flask. Unexposed A549 cells 

displayed this morphology (Fig. 3.6A). Cells exposed to A. fumigatus for 12 hours (Fig. 

3.6B), appear to retain their shape, many had begun to contract, but remained adhered to 

the surface of the flask. Cells exposed to P. aeruginosa for 12 hours (Fig. 3.6C) had 

contracted, become rounded and were beginning to detatch from the surface of the flask.  

 

 

Fig. 3.6 The morphological response of A549 cells to pathogen exposure The morphology of 

unexposed A549 cells (A) and post (12 hours) - exposure to A. fumigatus (B) and P. aeruginosa 

(C) show distinct differences in the way host cells respond to each pathogen. Unexposed cells are 

large and spread out in comparison to pathogen-exposed cells. Many of the cells exposed to A. 

fumigatus were beginning to contract but remained adhered to the surface. Most cells exposed to 

P. aeruginosa had contracted and were beginning to detach from the surface. (Magnification 

power 40X). 

A                                                           B                                                         C 
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3.3.2 Part two - Analysis of the proteomic response of A549 cells to sequential 

exposure by A. fumigatus and P. aeruginosa 

 

With a view to comparing the proteomic response between A549 cells exposed to 

A. fumigatus or P. aeruginosa with that of exposure to both pathogens simultaneously, 

A549 cells were co-exposed to A. fumigatus and P. aeruginosa and incubated for 12 hours 

(n = 3). LFQ proteomics performed on A549 cells exposed to the co-culture revealed that 

a significant proportion (40.7 %) of the protein identified in co-culture samples were of 

bacterial origin. In total, 2824 proteins were identified, 1,720 were of H. sapiens origin, 

1163 were of P. aeruginosa origin and one was of A. fumigatus origin.  The abundance 

of bacterial proteins detected in the samples treated with P. aeruginosa only for 12 hours 

was 3.1% (63 bacterial proteins out of 2099 proteins detected). 

 

Histograms were generated based on log2 transformed LFQ intensity values for 

all identified proteins in Perseus to determine the distribution of the data. The high 

frequency of bacterial protein abundance observed in the co-culture samples (Fig. 3.7A 

ii), compared to that of the samples treated with P. aeruginosa only (Fig. 3.7A iii), suggest 

an increase in replication occurs when P. aeruginosa is co-cultured with A. fumigatus. To 

validate this finding, colony forming unit (CFU) counts were performed on samples taken 

from the A549 cell cultures, in the presence or absence of A. fumigatus. There was a 78-

fold increase in bacterial burden when P. aeruginosa was incubated with A. fumigatus 

and A549 cells compared to that found when P. aeruginosa was incubated with A549 

cells alone (Fig. 3.7B).  
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Fig. 3.7 Histograms displaying proportion of P. aeruginosa proteins and increases in 

bacterial burden Histograms (i-v) of log2 transformed LFQ intensity values displaying the 

proportion of P. aeruginosa proteins (red) present in representative samples comprising A549 

proteins (blue) (A). Bacterial proteins were not present in unexposed A549 cells (i). Of the total 

number of proteins identified, 41 % were of bacterial origin after A549 cells were exposed to P. 

aeruginosa and A. fumigatus for 12 hours (ii).  Of the total number of proteins identified, 3.1 % 

were of bacterial origin where A549 cells were exposed to P. aeruginosa for 12 hours (iii). Of 

the total number of proteins identified, 0.26 % were of bacterial origin where A549 cells were 

exposed A. fumigatus for 8 hours and P. aeruginosa for 4 hours, respectively (iv) or P. 

aeruginosa for 4 hours (v). A549 cells were incubated with P. aeruginosa or with P. aeruginosa 

and A. fumigatus for 12 hours (B). A CFU count performed on aliquots taken from the cultures 

at zero hours and 12 hours revealed a 78-fold increase in the rate of bacterial replication where 

P. aeruginosa was co-cultured with A. fumigatus than on its own. 

 

 

A B 

A549 + Co-culture (12h)  Unexposed A549 cells 

Unexposed A549 
A549 cells + P. aeruginosa (12h) 

i) ii)

iii) iv)

v) A549 cells + P. aeruginosa (4h) 

A549 cells + A. fumigatus (8h) 
+ P. aeruginosa (4h)
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To investigate whether the increase in bacterial density observed in the co-culture 

was a growth-promoting effect mediated by the fungus or due to lack of killing by the 

A549 cells, P. aeruginosa was cultured in cell culture medium for 12 hours without the 

presence of A549 cells or A. fumigatus, and separately, in co-culture with A. fumigatus 

conidia (n = 4). There was a five-fold increase in the replication of P. aeruginosa when 

A. fumigatus was present (Fig. 3.8A). To determine if the physical presence of A. 

fumigatus conidia, or the secretome of the fungus post-contact with P. aeruginosa, was 

responsible for inducing bacterial-growth proliferation, P. aeruginosa was incubated for 

12 hours in the supernatant from a 12-hour co-culture of A. fumigatus and P. aeruginosa 

and in the supernatant from a 12-hour P. aeruginosa culture (n = 4). CFU counts 

performed after 12 hours revealed no growth-promoting effect on the bacteria incubated 

with the supernatant from the co-culture and a slight increase in bacteria cultured in its 

own supernatant (Fig. 3.8B). These findings suggest that A. fumigatus conidia promote 

bacterial growth under these conditions and that their presence is necessary to mediate 

this growth-promoting effect. 

 

In order to examine the proteomic effect of P. aeruginosa and A. fumigatus on 

A549 cells, it was imperative to determine the time-point at which P. aeruginosa begins 

to grow exponentially in co-culture so that the impact of bacterial proliferation would not 

influence the proteomic analysis of the A549 cells. CFU counts were performed at two-

hour time intervals from cultures of P. aeruginosa in the absence and presence of A. 

fumigatus (n = 4). By four hours, the rate of bacterial replication had begun to increase 

rapidly when co-cultured in the presence of A. fumigatus (Fig. 3.8C). Based on these 

findings, an alternative experimental protocol was designed, which took into 

consideration the point at which P. aeruginosa begins to proliferate in the presence of A. 

fumigatus. Because the negative impact of A. fumigatus conidia on A549 cells was far 

less drastic than that of P. aeruginosa after 12 hours (Fig. 3.6C), the length of time in 

which the A549 cells could be exposed to conidia while maintaining cellular integrity 

was longer than that of P. aeruginosa. 

 



111 
 

 

 

****
***

1

10

100

1000

P.a. 0 hr P.a. 12 hr P.a. & A. f.
0hr

P.a. & A. f.
12hr

****

***

1

10

100

1000

P.a. 0 hr P.a. 12 hr P.a. & A. f.
0hr

P.a. & A. f.
12hr

P. a.

0hr

ns

*
*

ns

***

***

1

10

P. a.

2hr

P. a.

4hr

P. a.

& A. f.

0hr

P. a.

& A. f.

2hr

P. a.

& A. f.

4hr

A B

C

Fo
ld

 c
h

an
ge

 C
FU

 
Fo

ld
 c

h
an

ge
 C

FU
 

Fo
ld

 c
h

an
ge

 C
FU

 

Fig. 3.8 P. aeruginosa CFU counts. P. aeruginosa (P. a.) was cultured with and without A. fumigatus (A. 

f.) for 12 hours in the absence of A549 cells. CFU counts performed at zero and 12 hours revealed a five-

fold increase in the replication of P. aeruginosa cultured in the presence of A. fumigatus than alone (A). P. 

aeruginosa was cultured in supernatant produced in a 12-hour P. aeruginosa culture or a in co-culture with 

A. fumigatus. Compared to that cultured in the co-culture supernatant, bacterial growth rate increased two-

fold when cultured in its own supernatant (B). P. aeruginosa was cultured with and without A. fumigatus 

for 4 hours in the absence of A549 cells. CFU counts were performed at zero, two and four hours. By four 

hours, the growth of P. aeruginosa had increased by 15-fold when cultured with A. fumigatus compared to 

that when cultured alone (C). * p < 0.05  **p < 0.01 *** p < 0.00 ns: not significant 
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With this in mind, A549 cells were incubated with A. fumigatus conidia for eight 

hours, at which time P. aeruginosa was added to the culture and incubated for a further 

four hours (n = 3). LFQ proteomics was performed on A549 cells following the sequential 

exposure to A. fumigatus and P. aeruginosa. The proteomic profile was compared with 

that of cells exposed to A. fumigatus for eight hours and P. aeruginosa for four hours and 

unexposed cells (control) (n = 3). The proportion of bacterial proteins detected on this 

occasion was 0.26% (Fig. 3.5 iv and v). 

 

Proteomic analysis was performed as described in section 2.8.3. In total, 4048 

proteins were identified initially, of which 2264 remained after filtering and processing 

(Table A3.3A). Proteins identified in Perseus as being of non-human origin (i.e. with 

Uniprot IDs for A. fumigatus or P. aeruginosa), were considered contaminants and 

removed from further analysis. Of the 2264 proteins identified post-imputation, 285 

proteins in the A. fumigatus-exposed group (Table A 3.3B), 497 proteins in the P. 

aeruginosa-exposed group (Table A 3.3C) and 254 proteins in sequentially exposed 

group (Table A3.3D) were determined to be statistically significant (p<0.05) 

differentially abundant (SSDA) with a fold change of +/- 1.5. SSDA protein identified 

from the pair wise Student’s t-tests were searched against the STRING and KEGG 

databases and used to identify biological pathways and processes over-represented in a 

particular group. 

 

A principal component analysis (PCA) of all identified proteins resolved distinct 

differences between the proteomes of each groups (Fig. 3.9A). Components 1 and 2 

accounted for 48.2% of the total variance within the data, and all replicates resolved into 

their corresponding samples. The control sample displayed a clear divergence to those 

that were challenged with A. fumigatus and/or P. aeruginosa. A distinct difference was 

also observed between the sequentially exposed A549 cells and cells exposed to A. 

fumigatus or P. aeruginosa.  

 

Hierarchical clustering was performed on the z-scored normalised LFQ intensity 

values for the 618 SSDA proteins identified as described in section 2.8.3.1 (ANOVA; 

Benjamini Hochberg procedure, FDR cut-off value of ≤ 0.05). All three biological 

replicates resolved into their respective sample. Nine (A-I) protein clusters based on 

protein abundance profile similarities (Fig. 3.9B) were also resolved. GO and KEGG term 
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enrichment analysis was performed on all protein clusters with five clusters having 

enriched terms (Cluster B, F-I), with each cluster having a representative process or 

pathway characteristic to that group (Fig. 3.9C). These include RNA metabolic 

processing (Cluster B), protein processing (Cluster F), carbon metabolism (Cluster G), 

mitochondrial processes (Cluster H), pathogen uptake and processing (Cluster I). Details 

of all clusters are included in Table A3.4A and Table A3.4B. 

 

 

 

 

Fig. 3.9 PCA, hierarchical clustering and enrichment analysis of A549 cell proteins display 

distinct differences between the three infection groups Principal component analysis (PCA) 

of untreated A549 cells (triangles), A549 cells treated with P. aeruginosa (stars), A. fumigatus 

(squares) or sequential exposure to both pathogens (circles) (A). A clear distinction can be 

observed between each of the treated groups and the control. Clusters based on protein-abundance 

profile similarities were resolved by hierarchical clustering of multi-sample comparisons between 

the four sample groups of A549 cells (B). Nine clusters (A-I) were resolved comprising proteins 

that display similar expression profiles across treatments. Of these, five clusters (B, F-I) had 

statistically enriched gene ontology and KEGG terms associated with them (Table A3.4) and the 

main terms are summarised for each in Fig. 3.9C. 
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Within cluster B, GO terms and KEGG pathway analysis resolved 256 proteins 

with terms associated with RNA processes including gene expression, post-

transcriptional regulation, mRNA splicing, translation initiation, ribosomes and transport. 

Proteins involved in these processes were distinctly less abundant in P. aeruginosa-

exposed A549 cells as compared to the other groups, indicating attenuation of mRNA 

processing and translational machinery in A549 cells treated with the bacteria only. 

Proteins present in cluster F were primarily involved with protein modifications, protein 

folding, protein degradation and export from the endoplasmic reticulum (ER). The 

relative abundance of proteins associated with protein processing in the ER was greater 

in A. fumigatus- and P. aeruginosa-exposed A549 cells compared to the sequentially 

infected group and the controls. This trend is reflected in the KEGG pathway analysis. 

The relative abundance of proteins involved in protein trafficking and vesicle-mediated 

transport, was higher in all infection groups compared to the control (Cluster G). These 

processes are depicted in KEGG pathways (Fig. 3.10A-M). The names of proteins 

affected in the processes included in the KEGG maps are listed in Table 3.5A-3.3M. 

Changes in the differential abundance of these proteins are included in Table A 3.3B-D. 

 

The relative abundance of proteins associated with energy production by 

carbohydrate and fatty acid metabolism, and energy derivation by oxidation was 

increased in the three infected groups compared to the control (Fig. 3.10A-D, Table 3.5A-

D). These pathways were most prominent in the P. aeruginosa-exposed group (Fig. 3.9B, 

Cluster G). Amongst the GO terms included in this cluster was oxoacid, cellular ketone 

and carbohydrate metabolic process and the KEGG glycolysis/gluconeogenesis pathway.
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A.1) A.2) A.3)

Fig. 3.10A KEGG maps depicting to changes to glycolysis and gluconeogenesis in A549 

cells exposed to A. fumigatus, P. aeruginosa and sequential exposure to A. fumigatus 

and P. aeruginosa. Similarities in the increased levels of SSDA proteins involved in 

glycolysis and gluconeogenesis pathways between (1) A. fumigatus-, (2) P. aeruginosa-, and 

(3) sequentially-exposed A549 cells and the control are identified. Changes to the relative 

abundance of proteins between the three infected groups of A549 cells were not significant 

and are thus not depicted here. 

 

A.3  
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Table 3.5A List of proteins involved in glycolysis & gluconeogenesis. SSDA 

proteins arising from comparisons between the different infection groups of A549 

cells and highlighted in the KEGG map depicting glycolysis and gluconeogenesis 

are listed.  

 

Gene name Protein name 

DLD 

ALDH2 

ALDH1B1 

ALDH3B1 

ALDH9A1 

ALDH3A2 

GPI 

HK1 

LDHA 

PCK2 

PDHA1 

PFKL 

PGM1 

MINPP1 

 dihydrolipoamide dehydrogenase 

 aldehyde dehydrogenase 2 family member 

 aldehyde dehydrogenase 1 family member B1 

 aldehyde dehydrogenase 3 family member B1 

 aldehyde dehydrogenase 9 family member A1 

 aldehyde dehydrogenase 3 family member A2 

 glucose-6-phosphate isomerase 

 hexokinase 1 

 lactate dehydrogenase A 

 phosphoenolpyruvate carboxykinase 2, mitochondrial 

 pyruvate dehydrogenase E1 subunit alpha 1 

 phosphofructokinase, liver type 

 phosphoglucomutase 1 

 multiple inositol-polyphosphate phosphatase 1 

 

 

 

  

 

 

Table 3.5B List of proteins involved in fatty acid degradation. SSDA proteins 

arising from comparisons between the different infection groups of A549 cells and 

highlighted in the KEGG map depicting fatty acid degradation are listed. 

Gene name Protein name 

ACAA2 

ECI1 

ALDH2 

ACSL3 

ACSL4 

ALDH1B1 

ALDH9A1 

ALDH3A2 

HADHA 

HADHB 

HADH 

ACADSB 

ACADVL 

ACAT1 

acetyl-CoA acyltransferase 2 

 enoyl-CoA delta isomerase 1 

 aldehyde dehydrogenase 2 family member 

 acyl-CoA synthetase long chain family member 3 

 acyl-CoA synthetase long chain family member 4 

 aldehyde dehydrogenase 1 family member B1 

 aldehyde dehydrogenase 9 family member A1 

 aldehyde dehydrogenase 3 family member A2 

 hydroxyacyl-CoA dehydrogenase complex subunit alpha 

 hydroxyacyl-CoA dehydrogenase complex subunit beta 

 hydroxyacyl-CoA dehydrogenase 

 acyl-CoA dehydrogenase short/branched chain 

 acyl-CoA dehydrogenase very long chain 

 acetyl-CoA acetyltransferase 1 
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C.1) C.2) C.3)

B.1) B.2) B.3)

C.1) C.2) C.3)

B.1) B.2) B.3)

C.1) C.2) C.3)

B.1) B.2) B.3)

Fig. 3.10B KEGG maps depicting changes to fatty acid degradation in A549 cells exposed to A. fumigatus, P. aeruginosa and 

sequential exposure to A. fumigatus and P. aeruginosa. Similarities in the increased levels of SSDA proteins involved in the fatty acid 

degradation pathways between (1) A. fumigatus-, (2) P. aeruginosa-, and (3) sequentially exposed A549 cells and the control were 

identified. Changes in the abundance of proteins between the three infected groups of A549 cells were not significant and are thus not 

depicted here. 

B.1  B.2  B.3 
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C.1) C.2) C.3)

B.1) B.2) B.3)

Fig. 3.10C KEGG maps depicting changes to the TCA cycle between A549 cells exposed to A. fumigatus, P. aeruginosa and sequential exposure to A. fumigatus and P. 

aeruginosa. Similarities in the increased levels of SSDA proteins involved in the Citric Acid (TCA) cycle pathways between (1) A. fumigatus-, (2) P. aeruginosa-, and (3) 

sequentially-exposed A549 cells and the control were identified. Changes in the relative abundance of proteins between the three infected groups of A549 cells were not significant 

and are thus not depicted here.  
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The relative abundance of mitochondrial proteins and mitochondria-related 

processes were increased across all three infected groups of A549 cells compared to the 

control (Cluster H). This is reflected in the KEGG pathways (Fig. 3.10D and 3.10E, Table 

3.5D and 3.3E). GO terms for the mitochondria and associated processes included 

mitochondrion, oxidoreductase activity, oxidative phosphorylation and the respiratory 

electron transport chain (ETC) were included in this cluster. Proteins associated with 

these GO terms were most abundant in the P. aeruginosa-exposed group, and sequentially 

infected group respectively, compared to the A. fumigatus-exposed group and the control. 

Differential changes in the relative abundance of proteins associated with protein 

processing pathways was detected between the A549 cells exposed to A. fumigatus or P. 

aeruginosa compared to sequentially exposed groups and the control. The relative 

abundance of proteins involved in protein processing in the ER were increased in the 

groups exposed to A. fumigatus or P. aeruginosa compared to sequentially exposed cells 

and the control (Fig. 3.10F, Table 3.5F). The relative abundance of proteins involved in 

ubiquitin-mediated proteolysis was significantly decreased in cells exposed to P. 

aeruginosa compared to the other groups (Fig.3.10G, Table 3.10G). 

Table 3.5C List of proteins involved in the TCA cycle. SSDA proteins arising from 

comparisons between the different infection groups of A549 cells and highlighted in 

the KEGG map depicting the TCA cycle are listed. 

 

Gene name Protein name 

CS 

DLD 

DLST 

IDH2 

IDH3A 

IDH3B 

MDH2 

ACLY 

ACO1 

ACO2 

PCK2 

PDHA1 

SDHA 

SUCLG2 

SUCLG1 

SUCLA2 

citrate synthase 

 dihydrolipoamide dehydrogenase 

 dihydrolipoamide S-succinyltransferase 

 isocitrate dehydrogenase (NADP(+)) 2 

 isocitrate dehydrogenase (NAD(+)) 3 catalytic subunit alpha 

 isocitrate dehydrogenase (NAD(+)) 3 non-catalytic subunit beta 

 malate dehydrogenase 2 

 ATP citrate lyase 

 aconitase 1 

 aconitase 2 

 phosphoenolpyruvate carboxykinase 2, mitochondrial 

 pyruvate dehydrogenase E1 subunit alpha 1 

 succinate dehydrogenase complex flavoprotein subunit A 

 succinate-CoA ligase GDP-forming subunit beta 

 succinate-CoA ligase GDP/ADP-forming subunit alpha 

 succinate-CoA ligase ADP-forming subunit beta 
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D.1)

D.5)D.4)

D.3)D.2)

Fig. 3.10D KEGG maps depicting changes to the OXPHOS pathway in 

A549 cells exposed to A. fumigatus, P. aeruginosa and sequential exposure 

to A. fumigatus and P. aeruginosa. Similarities in the the increased levels of 

SSDA proteins involved in the oxidative phosphorylation pathways between 

(1) A. fumigatus-, (2) P. aeruginosa-, and (3) sequentially-exposed A549 cells 

and the control are identified. Compared to (5) A. fumigatus-, and (4) P. 

aeruginosa-exposed A549 cells, the abundance of proteins associated with 

oxidative phosphorylation was higher in sequentially exposed cells.  
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Fig. 3.10E KEGG maps depicting changes to the Huntington’s disease pathway between A549 cells exposed to A. fumigatus, P. aeruginosa 

and sequential exposure to A. fumigatus and P. aeruginosa. Increased (red) and decreased (blue) levels of SSDA proteins involved in the 

Huntington’s Disease pathway (ultimately resulting in apoptosis) were identified between (1) A. fumigatus, (2) P. aeruginosa, and (3) sequentially 

exposed A549 cells and the control. The abundance of proteins associated with complex I – V of the mitochondrial respiratory transport chain was 

greater in the sequentially infected A549 cells compared to the other pathogen-exposed groups (4, 5).  
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Table 3.5D List of proteins involved in the oxidative phosphorylatin 

pathway. SSDA proteins arising from comparisons between the different 

infection groups of A549 cells and highlighted in the KEGG map depicting the 

oxidative phosphorylation are listed. 

 

Gene name Protein name 

ATP5MG 

  COX5B 

  CYC1 

  NDUFA5 

  NDUFB4 

  NDUFB9 

  NDUFS2 

  NDUFS3 

  NDUFV1 

  NDUFS8 

  NDUFV2 

  ATP5F1A 

  ATP5F1C 

  NDUFA13 

  ATP5F1D 

  ATP5PB 

  ATP6V1H 

  ATP5PO 

  SDHA 

  UQCRC1 

  UQCRC2 

  COX5A 

ATP synthase membrane subunit g 

 cytochrome c oxidase subunit 5B 

 cytochrome c1 

 NADH:ubiquinone oxidoreductase subunit A5 

 NADH:ubiquinone oxidoreductase subunit B4 

 NADH:ubiquinone oxidoreductase subunit B9 

 NADH:ubiquinone oxidoreductase core subunit S2 

 NADH:ubiquinone oxidoreductase core subunit S3 

 NADH:ubiquinone oxidoreductase core subunit V1 

 NADH:ubiquinone oxidoreductase core subunit S8 

 NADH:ubiquinone oxidoreductase core subunit V2 

 ATP synthase F1 subunit alpha 

 ATP synthase F1 subunit gamma 

 NADH:ubiquinone oxidoreductase subunit A13 

 ATP synthase F1 subunit delta 

 ATP synthase peripheral stalk-membrane subunit b 

 ATPase H+ transporting V1 subunit H 

 ATP synthase peripheral stalk subunit OSCP 

 succinate dehydrogenase complex flavoprotein  

 ubiquinol-cytochrome c reductase core protein 1 

 ubiquinol-cytochrome c reductase core protein 2 

 cytochrome c oxidase subunit 5A 
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Table 3.5E List of proteins involved in the Huntigton’s Disease pathway. SSDA 

proteins arising from comparisons between the different infection groups of A549 

cells and highlighted in the KEGG map depicting the Huntington’s disease pathway 

are listed. 

 

Gene name Protein name 

CLTC 

  COX5B 

  CYC1 

  AP2B1 

  SLC25A5 

  SLC25A6 

  NDUFA5 

  NDUFB4 

  NDUFB9 

  NDUFS2 

  NDUFS3 

  NDUFV1 

  NDUFS8 

  NDUFV2 

  ATP5F1A 

  ATP5F1C 

  NDUFA13 

  ATP5F1D 

  ATP5PB 

  ATP5PO 

  CYCS 

  POLR2A 

  SDHA 

  TFAM 

  TGM2 

  UQCRC1 

  UQCRC2 

  VDAC3 

  TUBA1A 

  CASP8 

  COX5A 

clathrin heavy chain 

 cytochrome c oxidase subunit 5B 

 cytochrome c1 

 adaptor related protein complex 2 subunit beta 1 

 solute carrier family 25 member 5 

 solute carrier family 25 member 6 

 NADH:ubiquinone oxidoreductase subunit A5 

 NADH:ubiquinone oxidoreductase subunit B4 

 NADH:ubiquinone oxidoreductase subunit B9 

 NADH:ubiquinone oxidoreductase core subunit S2 

 NADH:ubiquinone oxidoreductase core subunit S3 

 NADH:ubiquinone oxidoreductase core subunit V1 

 NADH:ubiquinone oxidoreductase core subunit S8 

 NADH:ubiquinone oxidoreductase core subunit V2 

 ATP synthase F1 subunit alpha 

 ATP synthase F1 subunit gamma 

 NADH:ubiquinone oxidoreductase subunit A13 

 ATP synthase F1 subunit delta 

 ATP synthase peripheral stalk-membrane subunit b 

 ATP synthase peripheral stalk subunit OSCP 

 cytochrome c, somatic 

 RNA polymerase II subunit A 

 succinate dehydrogenase complex flavoprotein subunit A 

 transcription factor A, mitochondrial 

 transglutaminase 2 

 ubiquinol-cytochrome c reductase core protein 1 

 ubiquinol-cytochrome c reductase core protein 2 

 voltage dependent anion channel 3 

 tubulin alpha 1a 

 caspase 8 

 cytochrome c oxidase subunit 5A 
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Fig. 3.10F KEGG maps depicting changes in the protein-processing pathway in the ER between A549 cells exposed to A. fumigatus, P. aeruginosa and sequential 

exposure to A. fumigatus and P. aeruginosa. Compared to the control, the abundance of proteins acting within the ER was increased (red) in (1) A. fumigatus-, (2) P. 

aeruginosa and (3) sequentially-exposed A549 cells. The protein abundance in this pathway was lower (blue) in sequentially exposed cells compared to the (4) A. fumigatus- 

and (5) P. aeruginosa-exposed A549 cells. The levels of proteins associated with the ubiquitin ligase complex were decreased in all pathogen-exposed groups compared to 

the control (1-3) and increased in the sequentially exposed A549 cells compared to P. aeruginosa-exposed cells (5). 
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Fig.3.10G KEGG maps depicting changes in the ubiquitin-mediated proteolysis pathway between A549 cells exposed to A. fumigatus, P. aeruginosa and sequential 

exposure to A. fumigatus and P. aeruginosa. A distinct increase (red) in levels of SSDA proteins involved in the ubiquitin-mediated proteolytic pathway in (1) A. fumigatus 

were detected.  This response is decreased in P. aeruginosa- exposed A549 cells compared to the control (2). The response of sequentially exposed cells (3) compared to 

the control resembled that of the P. aeruginosa exposed group. There were few significant differences between sequentially exposed cells and A. fumigatus-exposed cells 

(4). Comparison between sequentially exposed cells and P. aeruginosa-exposed cells indicated a higher abundance in proteins associated with this pathway in sequentially 

exposed cells (5). 
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Table 3.5F List of proteins involved in protein processing in the ER. 

SSDA proteins arising from comparisons between the different infection 

groups of A549 cells and highlighted in the KEGG map depicting protein 

processing in the ER are listed. 

 

Gene name Protein name 

BCAP31 

DNAJA2 

SEC23B 

SEC23A 

CKAP4 

DDOST 

GANAB 

ERO1A 

DNAJA1 

HSPA6 

P4HB 

DNAJC3 

UGGT1 

RAD23B 

RPN1 

RPN2 

SKP1 

SSR1 

SSR4 

HSP90B1 

UBE2D1 

UBE2G1 

UBE2G2 

CANX 

CAPN1 

PDIA4 

SEC24C 

RBX1 

B cell receptor associated protein 31 

 DnaJ heat shock protein family (Hsp40) member A2 

 SEC23 homolog B, COPII coat complex component 

 Sec23 homolog A, COPII coat complex component 

 cytoskeleton associated protein 4 

 dolichyl-diphosphooligosaccharide 

 glucosidase II alpha subunit 

 endoplasmic reticulum oxidoreductase 1 alpha 

 DnaJ heat shock protein family (Hsp40) member A1 

 heat shock protein family A (Hsp70) member 6 

 prolyl 4-hydroxylase subunit beta 

 DnaJ heat shock protein family (Hsp40) member C3 

 UDP-glucose glycoprotein glucosyltransferase 1 

 RAD23 homolog B, nucleotide excision repair protein 

 ribophorin I 

 ribophorin II 

 S-phase kinase associated protein 1 

 signal sequence receptor subunit 1 

 signal sequence receptor subunit 4 

 heat shock protein 90 beta family member 1 

 ubiquitin conjugating enzyme E2 D1 

 ubiquitin conjugating enzyme E2 G1 

 ubiquitin conjugating enzyme E2 G2 

 calnexin 

 calpain 1 

 protein disulfide isomerase family A member 4 

 SEC24 homolog C, COPII coat complex component 

 ring-box 1 
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Table 3.5G List of proteins involved in ubiquitin-meidated proteolysis. SSDA proteins 

arising from comparisons between the different infection groups of A549 cells and 

highlighted in the KEGG map depicting ubiquitin-mediated proteolysis are listed. 

 

Gene name Protein name 

HUWE1 

UBE2C 

DDB1 

MID1 

SKP1 

ELOC 

ELOB 

UBA1 

UBE2D1 

UBE2G1 

UBE2G2 

CUL4B 

UBA3 

RBX1 

HECT, UBA and WWE domain containing E3 ubiquitin protein ligase 1 

 ubiquitin conjugating enzyme E2 C 

 damage specific DNA binding protein 1 

 midline 1 

 S-phase kinase associated protein 1 

 elongin C 

 elongin B 

 ubiquitin like modifier activating enzyme 1 

 ubiquitin conjugating enzyme E2 D1 

 ubiquitin conjugating enzyme E2 G1 

 ubiquitin conjugating enzyme E2 G2 

 cullin 4B 

 ubiquitin like modifier activating enzyme 3 

 ring-box 1 

 

 

 

GO term enrichment analysis within Cluster I, identified key biological processes, 

molecular functions and cellular components involved with the uptake and processing of 

pathogens and activation of an immune response. The protein abundance profile of the 

sequentially exposed groups was comparable to that of the control but distinctly different 

to that of the A. fumigatus and P. aeruginosa exposed groups in which the relative 

abundance of proteins was greater compared to the sequentially exposed A549 cells. 

Biological processes included cellular response to stimuli, cell motility, vesicle-mediated 

transport and signal transduction. Catalytic activity involving hydrolases, 

pyrophosphatases and nucleoside-triphosphatase were among the molecular functions 

included in this cluster. Proteins involved in parts of the cell that form cell projections, 

endosome, lysosome and receptor complexes formed a significant proportion of the 

proteins found in this cluster.  This trend was reflected in the KEGG maps (Fig. 3.10H-

M), where the levels of proteins in several pathways associated with pathogen uptake and 

processing including endocytosis, phagosome and lysosome activity were reduced in the 

sequentially exposed groups.   
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 Fig. 3.10H KEGG maps depicting changes to the classical MAPK pathways and JNK 

and p38 MAPK pathways between A549 cells exposed to A. fumigatus, P. aeruginosa 

and sequential exposure to A. fumigatus and P. aeruginosa. An increase (red) and 

decrease (blue) in levels of proteins associated with the MAPK pathway was identified. 

The level of protein abundance is mostly increased in (1) A. fumigatus- and (2) P. 

aeruginosa, and (3) sequentially exposed A549 cells compared to the control. Changes to 

the relative abundance of proteins between the three infected groups of A549 cells were 

not significant and are thus not depicted here. 

H.1) H.2) H.3)H.3  
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Fig. 3.10I KEGG maps depicting changes to the endocytosis pathway between A549 cells exposed to A. fumigatus, P. aeruginosa and 

sequential exposure to A. fumigatus and P. aeruginosa. An increase (red) and decrease (blue) in levels of proteins associated was identified. 

The level of protein abundance is mostly increased in (1) A. fumigatus- and (2) P. aeruginosa, and (3) sequentially-exposed A549 cells compared 

to the control. Compared to (4) A. fumigatus- and (5) P. aeruginosa-exposed cells, the level of proteins associated with endocytosis are reduced 

sequentially exposed cells.   
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Table 3.5H List of proteins involved in the MAPK pathway. SSDA proteins 

arising from comparisons between the different infection groups of A549 cells and 

highlighted in the KEGG map depicting the MAPK pathway are listed.  
Gene name Protein name 

MAPK14 

HSPA6 

  STMN1 

  PRKCA 

  MAPK1 

  MAPK3 

  MAP2K3 

  RAC1 

RPS6KA3 

  IKBKG 

LAMTOR3 

  CDC42 

mitogen-activated protein kinase 14 

 heat shock protein family A (Hsp70) member 6 

 stathmin 1 

 protein kinase C alpha 

 mitogen-activated protein kinase 1 

 mitogen-activated protein kinase 3 

 mitogen-activated protein kinase kinase 3 

 Rac family small GTPase 1 

 ribosomal protein S6 kinase A3 

 inhibitor of nuclear factor kappa B kinase regulatory subunit gamma 

 late endosomal/lysosomal adaptor, MAPK and MTOR activator 3 

 cell division cycle 42 
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Table 3.5I list of proteins involved in the endocytosis pathway. SSDA proteins 

arising from comparisons between the different infection groups of A549 cells and 

highlighted in the KEGG map depicting the endocytosis pathway are listed. 

 

GENE NAME Protein name 

   ARPC4 

  ARPC1B 

  RAB10 

  CLTC 

  AP2B1 

  DNM2 

  EHD4 

  EHD3 

  HSPA6 

  ARF6 

  RHOA 

  SMAD3 

  VPS28 

  VPS35 

  PARD3 

  RAB5C 

  SRC 

  TFRC 

  RAB11FIP1 

  STAM 

  ACAP1 

  CDC42 

 

actin related protein 2/3 complex subunit 4 

 actin related protein 2/3 complex subunit 1B 

 RAB10, member RAS oncogene family 

 clathrin heavy chain 

 adaptor related protein complex 2 subunit beta 1 

 dynamin 2 

 EH domain containing 4 

 EH domain containing 3 

 heat shock protein family A (Hsp70) member 6 

 ADP ribosylation factor 6 

 ras homolog family member A 

 SMAD family member 3 

 VPS28 subunit of ESCRT-I 

 VPS35 retromer complex component 

 par-3 family cell polarity regulator 

 RAB5C, member RAS oncogene family 

 SRC proto-oncogene, non-receptor tyrosine kinase 

 transferrin receptor 

 RAB11 family interacting protein 1 

 signal transducing adaptor molecule 

 ArfGAP with coiled-coil, ankyrin repeat and PH domains 1 

 cell division cycle 42 
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J.1) J.3)J.2)

J.4) J.5)

Fig. 3.10J KEGG map depicting changes to the actin 

cytoskeleton between A549 cells exposed to A. fumigatus, P. 

aeruginosa and sequential exposure to A. fumigatus and P. 

aeruginosa. Increased (red) and decreased (blue) levels of 

SSDA proteins involved in the regulation of actin cytoskeleton 

between (1) A. fumigatus, (2) P. aeruginosa, and (3) 

sequentially exposed A549 cells and the control were 

identified. Compared to the A. fumigatus- (4), and P. 

aeruginosa-exposed cells (5), this pathway was downregulated 

in the sequentially exposed group of A549 cells as indicated by 

the number of proteins highlighted in blue. 

J.5  
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Table 3.5J List of proteins involved in the regulation of the actin cytoskeleton. SSDA proteins 

arising from comparisons between the different infection groups of A549 cells and highlighted in the 

KEGG map depicting the regulation of the actin cystoskeleton are listed  
Gene name Protein name 

ARPC4 

ARPC1B 

MYL12A 

DIAPH1 

ITGB1 

RHOA 

MYH9 

MYH10 

MYLK 

PPP1R12C 

ENAH 

MAPK1 

MAPK3 

RAC1 

SRC 

TMSB4X 

ARHGEF1 

CDC42 

actin related protein 2/3 complex subunit 4 

 actin related protein 2/3 complex subunit 1B 

 myosin light chain 12A 

 diaphanous related formin 1 

 integrin subunit beta 1 

 ras homolog family member A 

 myosin heavy chain 9 

 myosin heavy chain 10 

 myosin light chain kinase 

 protein phosphatase 1 regulatory subunit 12C 

 ENAH actin regulator 

 mitogen-activated protein kinase 1 

 mitogen-activated protein kinase 3 

 Rac family small GTPase 1 

 SRC proto-oncogene, non-receptor tyrosine kinase 

 thymosin beta 4 X-linked 

 Rho guanine nucleotide exchange factor 1 

 cell division cycle 42 

Table 3.5K List of proteins involved in bacterial invasion of epithelial cells. SSDA proteins 

arising from comparisons between the different infection groups of A549 cells and highlighted in 

the kegg map depicting bacterial invasion of epithelial cells are listed  
Gene name Protein name 

ARPC4 

ARPC1B 

CLTC 

CTNNA2 

DNM2 

CTTN 

ITGB1 

RHOA 

RAC1 

SRC 

CDC42 

actin related protein 2/3 complex subunit 4 

 actin related protein 2/3 complex subunit 1B 

 clathrin heavy chain 

 catenin alpha 2 

 dynamin 2 

 cortactin 

 integrin subunit beta 1 

 ras homolog family member A 

 Rac family small GTPase 1 

 SRC proto-oncogene, non-receptor tyrosine kinase 

 cell division cycle 42 
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Fig.3.10K KEGG maps depicting a pathway of bacterial 

invasion of epithelial cells in A549 cells exposed to A. 

fumigatus, P. aeruginosa and sequential exposure to A. 

fumigatus and P. aeruginosa. Increased (red) and decreased 

(blue) levels of SSDA proteins involved in the bacterial 

invasion pathway between (1) A. fumigatus, (2) P. aeruginosa, 

and (3) sequentially exposed A549 cells and the control were 

identified . Compared to A. fumigatus- (4) and P. aeruginosa 

exposed cells (5), this pathway was clearly downregulated in 

the sequentially exposed A549 cells as indicated by the number 

of proteins highlighted in blue. 
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Fig. 3.10L KEGG maps depicting changes in phagosome-

associated proteins between A549 cells exposed to A. fumigatus, P. 

aeruginosa and sequential exposure to A. fumigatus and P. 

aeruginosa. A distinct increase (red) in levels of SSDA proteins 

involved in the phagosome pathway in (1) A. fumigatus, (2) P. 

aeruginosa- exposed A549 cells and the control was identified. The 

response of sequentially exposed cells and the control were similar with 

the exception of one protein, Rab5, which was decreased in abundance 

(3). Compared to A. fumigatus- (4) and P. aeruginosa exposed cells (5), 

this pathway was clearly downregulated in the sequentially exposed 

A549 cells as indicated by the number of proteins highlighted in blue.  
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Fig. 3.10M KEGG maps depicting changes to the lysosome pathways 

between A549 cells exposed to A. fumigatus, P. aeruginosa and 

sequential exposure to A. fumigatus and P. aeruginosa. Increased (red) 

and decreased (blue) levels of SSDA proteins involved in the lysosome 

between (1) A. fumigatus, (2) P. aeruginosa, and (3) sequentially exposed 

A549 cells and the control were identified. Compared to A. fumigatus- (4) 

and P. aeruginosa exposed cells (5), this pathway was clearly 

downregulated in the sequentially exposed A549 cells as indicated by the 

number of proteins highlighted in blue. 
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Table 3.5M List of proteins involved in phagosomes. SSDA proteins arising from 

comparisons between the different infection groups of A549 cells and highlighted in the kegg 

map depicting proteins associated with phagosomes are listed.  
Gene name Protein name 

DYNC1H1 

ITGB1 

LAMP1 

ATP6V1H 

RAB5C 

RAC1 

TFRC 

TUBA1A 

CANX 

dynein cytoplasmic 1 heavy chain 1 

 integrin subunit beta 1 

 lysosomal associated membrane protein 1 

 ATPase H+ transporting V1 subunit H 

 RAB5C, member RAS oncogene family 

 Rac family small GTPase 1 

 transferrin receptor 

 tubulin alpha 1a 

 calnexin 

Table 3.5L list of proteins involved in lysosomes. SSDA proteins arising from comparisons 

between the different infection groups of A549 cells and highlighted in the KEGG map depicting 

processes associated with the lysosome are listed.  
Gene name Protein name 

CLTC 

AP1B1 

GAA 

GGA1 

AP3M1 

LAMP1 

ATP6V1H 

AP3B1 

AP1M1 

AP3D1 

clathrin heavy chain 

 adaptor related protein complex 1 subunit beta 1 

 glucosidase alpha, acid 

 golgi associated, gamma adaptin ear containing, ARF binding protein 1 

 adaptor related protein complex 3 subunit mu 1 

 lysosomal associated membrane protein 1 

 ATPase H+ transporting V1 subunit H 

 adaptor related protein complex 3 subunit beta 1 

 adaptor related protein complex 1 subunit mu 1 

 adaptor related protein complex 3 subunit delta 1 
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 Volcano plots were produced to determine the differences in protein abundance 

between two samples and to depict the changes in pathways and processes those proteins 

are involved in (Fig. 3.11A-E). Increases in the relative abundance of proteins associated 

with mitochondrial-related processes including, oxidative phosphorylation and the TCA 

cycle, were observed in all pathogen-exposed groups, which supports the profile observed 

in the heatmap (Fig. 3.9B, Cluster H). Immune system processes and protein transport 

were increased in A. fumigatus- and P. aeruginosa- exposed groups to a greater extent 

than sequentially exposed cells (Fig. 3.11B). A decrease in the relative abundance of 

proteins associated with RNA metabolic processes was most evident in P. aeruginosa-

exposed cells although this process was also observed to a lesser extent in A. fumigatus- 

and sequentially exposed cells (Fig. 3.11A-C; Fig. 3.12A-C). A similar trend in the 

downregulation of this pathway was observed in Fig. 2B, Cluster B.  
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Fig. 3.11 Differential abundance of proteins identified in A549 cells exposed to A. fumigatus 

or P. aeruginosa Volcano plots derived from pairwise comparisons between unexposed A549 

cells and cells exposed to A.fumigatus for 8 hours (A), A549 cells exposed to P. aeruginosa for 4 

hours (B), and (C) sequentially exposed A549 cells (8 hour exposure to A. fumigatus followed by 

4 hour exposure to P. aeruginosa for 4 hours). Pairwise comparisons were also made between 

sequentially exposed A549 cells and A. fumigatus-exposed A549 cells (D) and P. aeruginosa-

exposed A549 cells (E). The distribution of quantified proteins according to p value (−log10 p-

value) and fold change (log2 mean LFQ intensity difference) are shown. Proteins above the line 

are considered statistically significant (p-value <0.05). Protein components of the immune system 

(blue) and of intracellular transport (green) are most abundant in all pathogen-exposed groups 

compared to the control.  



152 
 

A greater immune response is observed in A. fumigatus- and P. aeruginosa-exposed groups than 

in sequentially exposed groups. Proteins associated with mitochondrial activity including redox 

reaction and oxacid metabolic processes (orange) are more abundant in pathogen exposed-groups 

compared to the control, but less abundant in sequentially exposed groups when compared to A. 

fumigatus- and P. aeruginosa-exposed cells. A decrease in the relative abundance of proteins 

associated with RNA metabolic processes (yellow) was most evident in P. aeruginosa-exposed 

cells although also observed to a lesser extent in A. fumigatus- and sequentially exposed cells. 

 

 

Enrichment analysis was performed using STRING on SSDA proteins arising 

from comparisons between pathogen-exposed and unexposed A549 cells using Student’s 

t-tests (p<0.05) (Fig. 3.12). The protein networks generated by STRING identified a 

number of upregulated and downregulated pathways and processes in A549 cells, which 

supported the findings identified in the volcano plots in Fig. 3.11 and the dataset arising 

from hierarchical clustering (Fig. 3.9B).   Compared to the control, the relative abundance 

of proteins associated with oxidative stress, the mitochondria increased in all pathogen-

exposed groups (SSDA Increase, Fig. 3.12A-C) while proteins involved in RNA 

processing and the ribosome made up the vast majority of proteins that were decreased in 

abundance (SSDA Decrease, Fig. 3.12A-C). Increases in immune system processes were 

detected in A. fumigatus-exposed and P. aeruginosa-exposed groups compared to 

sequentially exposed cells and the controls (Fig. 3.12A and B). Pathways associated with 

transcription and translation were most affected in P. aeruginosa-exposed groups 

compared to the other groups (3.12B). Pathways involved with intracellular protein 

transport were more affected in A. fumigatus-exposed and sequentially exposed groups 

compared to P. aeruginosa- exposed groups and the control (Fig. 3.12A and C). 
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Supplemental File 3 STRING interaction network analysis of SSDA proteins identified in pairwise t-tests
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Fig. 3.12 Interaction network analysis of proteins identified in unexposed and pathogen-exposed A549 cells. Protein 

interaction information was obtained from the STRING database using gene lists extracted for statistically significant 

differentially abundant (SSDA) proteins from pair wise t-tests (p< 0.05). Each node represents a protein and each connecting 

line represents an interaction, the extent of evidence for which is represented by the width of the line. A high confidence 

minimum interaction score (0.700) was applied. Statistically enriched KEGG and Gene Ontology (GO) descriptors were 

examined to identify clusters of proteins enriched between untreated A549 cells and A549 cells treated with A) A. fumigatus, 

B) P. aeruginosa, C) a sequential infection with A. fumigatus and P. aeruginosa. 

 

SSDA Decrease 

SSDA Increase 

Fig. 3.12 C 
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Taken together, the results from this study demonstrate a role for A.fumigtaus in 

promoting the growth of P. aeruginosa. The impact of this interaction on A549 cells is 

reflected by the proteomic analysis, which reveal deficient pathogen-uptake and killing 

mechanisms in the host cells. These results are summarized in Fig. 3.13.  

 

 

 

 

 

 

 

 

 

 

Fig. 3.13. Response of A549 cells to exposure by A. fumigatus and P. aeruginosa. Increased 

phagocytosis and pathogen killing via lysosomes are characteristic of A549 cells when exposed to P. 

aeruginosa. In contrast, the pathogen-uptake and killing ability of A549 cells exposed to A. fumigatus and 

P aeruginosa simultaneously are inhibited, leading to greater bacterial burden.  

 

 

Unexposed A549 cells retained their typical morphology (flat, cobblestone 

shaped) (Fig. 3.14A). A549 cells exposed to A. fumigatus for eight hours retained their 

shape and remained adhered to the surface of the flask as expected given the maintenance 

of morphology after exposure to conidia for 12 hours (Fig. 3.14B). Cells exposed to P. 

aeruginosa for four hours also retained their shape although some cells were beginning 

to contract slightly although this may be due to the initiation of cell division (Fig. 3.14C). 

In general, cells exposed to A. fumigatus for eight hours and P. aeruginosa for four hours, 

retained their shape and were remained adhered to the flask prior to trypsinization, 

although some cells were beginning to become isolated from other cells (Fig. 3.14D).  

The morphology of dividing A549 cells (A) and dying A549 cells (B) is also depicted in 

fig. 3.15  
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Fig. 3.14 Changes in morphology of A549 cells in response to A. fumigatus and/or P. 

aeruginosa. Unexposed A549 cells (A) and cells exposed to A. fumigatus conidia (black arrows) 

for eight hours (B) retained their shape. Some cells exposed to P. aeruginosa (blue arrows) for 

four hours (C) began contract and adopt a rounded shape while others maintained their regular 

shape. Some cells separated and became isolated. Cells exposed to A. fumigatus followed by P. 

aeruginosa (D) retained their shape although some cells began to adopt a rounded shape and 

became isolated from other cells. 

 

 

 

 

 

 

 

 

 

Fig. 3.15 A549 cell morphology. Non-dividing or “resting” A549 cells take on a “squashed 

cobblestone” type shape. Mitotic cells (black arrows) contract before they begin to divide (Fig. 

A). Cells become rounded as they divide before adopting the typical “resting” shape again. Cells 

undergoing oxidative stress, dead or dying cells (red arrows) contract, become rounded and detach 

from the surface (B) (Magnification 40X). 

 

 

A B C D
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3.3 Discussion – Part one 

  

3.3.1 Characterizing the response of A549 cells to a 12 hours exposure of A. 

fumigatus or P. aeruginosa 

 

 While many studies have investigated the proteomic response of a host to a single 

pathogen, few have examined the response of the host to co-infection by more than one 

pathogen. The reason for this, at least in part, lies in the complexity of multi-organism 

systems and the significant challenges that arise when analysing the resulting datasets. 

This study aimed to address some of these challenges so that the cellular response of a 

model system to infection by two pathogens could be characterized. The experiment was 

designed with a view to characterizing the proteomic response of A549 cells to exposure 

to A. fumigatus or P. aeruginosa for 12 hours, and to compare the resulting proteomic 

profile with the one created when co-exposed to both pathogens. The response of A549 

cells to exposure by A. fumigatus for greater than 12 hours while maintaining cell viability 

has been reported (Wasylnka, 2003). However, it was not possible to expose A549 cells 

to P. aeruginosa for more than 12 hours while retaining cell viability. As the purpose of 

the study was to compare how active A549 cells respond to each pathogen, it was 

important to expose the cells for the greatest, but also a similar length of time while 

ensuring maintenance of cell viability. LFQ proteomics revealed similarities and 

differences in the proteomic response of A549 cells to exposure with either pathogen for 

12 hours.  

 

3.3.2 A. fumigatus and P. aeruginosa infections alter ribosome activity in A549 cells 

 

Ribosome activity was severely impacted by exposure to by either A. fumigatus 

or P. aeruginosa with a decrease in the relative abundance of proteins associated with the 

ribosome, RNA processing and translation (Fig. 3.1B; Fig. 3.2A-D; Fig. 3.4C and 3.5C). 

Thus, this appears to be a general response to infection rather than a pathogen-specific 

response. Downregulation of translation is a protective mechanism by which host 

epithelia alert surrounding cells to danger (Mohr and Sonenberg, 2012).  However,  

pathogens may also influence and manipulate the host environment by targeting host 
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translational machinery in an attempt to limit the translation of mRNAs that code for 

immune effectors (Mohr and Sonenberg, 2012). The host may respond by increasing 

activity of posttranscriptional mediators including eukaryotic translation initiation factors 

(eIFs), elongation factors and their respective regulators that are required to meet the 

demands of orchestrating an appropriate immune response or, by activating other 

elements of immune signalling such as the MAPK signalling cascade (Mohr and 

Sonenberg, 2012; Fontana et al., 2012). It has been well documented that the P. 

aeruginosa exotoxin A, ExoA, is an inhibitor of host protein synthesis and inhibits 

translation by ADP-ribosylation of elongation factor 2 (eEF2) (Pollack, 1983; Fontana et 

al., 2011). Translation inhibition by ExoA alerts the host to infection, which responds by 

activating an immune response (Fontana et al., 2012).  

 

RNA splicing of host transcripts encoding immune mediators is integral in 

orchestrating an appropriate immune response to pathogens (Chauhan et al., 2019). The 

synergistic effect of translation inhibition and activation of an immune response has been 

demonstrated in a number of model organisms including mice, macrophages and 

Caenorhabditis elegans (Fontana et al., 2011; Dunbar et al., 2012; Fontana et al., 2012; 

McEwan et al., 2012).  Some pathogens may interfere with host RNA splicing machinery 

thereby derailing the immune response to evade killing (Kalam et al., 2017; Chauhan et 

al., 2019). In this study, the abundance of several proteins involved with RNA splicing 

was altered (e.g. Peptidyl-prolyl cis-trans isomerase H and Spliceosome-associated 

protein CWC15 homolog increased in A. fumigatus- and P. aeruginosa-exposed cells 

respectively) (Table A 3.1 and Table A 3.1B).  

 

 

3.3.3 A. fumigatus and P. aeruginosa infection upregulate oxidative stress and 

detoxification pathways  in A549 cells 

 

Cellular energy can be produced through glycolysis and through the degradation 

of fatty acids by β-oxidation in the mitochondria and peroxisomes. The latter is a high 

energy yielding process in which long, medium and short chain fatty acids are converted 

to acetyl-CoA, which then feeds into the tricarboxylic acid cycle (TCA cycle) in the 

mitochondria or used for lipid metabolism in peroxisomes (Quijano et al., 2016).  

Reactive oxygen species (ROS) are by-products of energy metabolism and β-oxidation of 
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fatty acids that occur in the mitochondria. ROS such as superoxide anion (O2
-) or 

hydrogen peroxide (H2O2) are produced during a series of redox reactions when oxygen 

is converted to superoxide radicals resulting from oxidative phosphorylation (OXPHOS) 

that occurs during the TCA cycle. ROS regulate a vast range of intracellular signalling 

networks and play a critical role in modulating physiological behaviours induced by 

pathogens including apoptosis and innate immune responses.  Excessive levels of ROS 

induce oxidative stress. This is an indicator of mitochondrial dysfunction, often 

associated with diseases such as Huntington’s disease (Ott et al., 2007). ROS  are key 

components of the innate immune response and production is intensified during microbial 

infection whereby it is directly and indirectly, involved in combating infectious agents 

through direct killing of the pathogen and by activating inflammatory pathways, 

respectively  (Ivanov et al., 2017). 

 

In this study, the relative abundance of mitochondrial proteins was increased in 

A549 cells exposed to A. fumigatus or P. aeruginosa compared to unexposed cells. 

Oxidative stress and metal ion binding pathways were upregulated, indicating a 

detoxification response (Fig. 3.1B; Fig. 3.2A and 3.2B; Fig. 3.3A, C). Copper transport 

protein ATOX1 and Protein SCO1 were two of the most differentially abundant proteins 

in A549 cells treated with A. fumigatus and P. aeruginosa (post-imputation) (Table 3.1 

and 3.2). These proteins play a major role in copper homeostasis and are involved in 

energy production and removal of superoxides (Hatori and Lutsenko, 2016). Copper is an 

essential co-factor of Superoxide dismutase (SOD1), a ROS scavenging enzyme that 

converts superoxide anions into oxygen and hydrogen peroxide in a process termed 

“dismutation” (Banks and Andersen, 2019). The relative abundance of SOD1 and SOD2 

was increased in A. fumigatus-exposed cells, but only SOD2 was statistically SSDA in P. 

aeruginosa-exposed cells compared to unexposed cells. The levels of catalase were 

increased in both pathogen-exposed groups (Table A 3.1A and A3.B).  
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3.3.4 A. fumigatus and P. aeruginosa infection induce an immune response in A549 

cells 

 

The immune response of the pulmonary epithelia has been well described in the 

context of A. fumigatus and P. aeruginosa infection, both in vivo and in vitro (Vos et al., 

2005; Dagenais and Keller, 2009; Hawdon et al., 2010; Lavoie et al., 2011). Previous 

studies have employed gene expression techniques, RNA-Seq and immunoassays to 

demonstrate the immune response of A549 cells to A. fumigatus and P. aeruginosa. A549 

cells respond to these pathogens by upregulating an immune response through the 

production of inflammatory mediators such as IL-1β, TNF-α, IL-6 and IL-8 (Carterson et 

al., 2005b; Bellanger et al., 2009; Hawdon et al., 2010; Cigana et al., 2011; Chen et al., 

2015).  

The proteomic results from this study demonstrate that A. fumigatus and P. 

aeruginosa induce a pro-inflammatory response in A549 cells mediated in part through 

NLR signalling via PYCARD, which was exclusive to the pathogen-exposed groups only 

(Table A 3.1A and Table A 3.1B). PYCARD is a component of the inflammasome and 

acts as an adaptor for caspase-1, which when activated has multiple functions including 

the cleavage of pro-IL1β into its mature form (Martinon et al., 2002). Caspase-1 is also a 

key mediator of apoptosis (Tsuchiya et al., 2019). Thus, activation of this enzyme in 

pathogen-exposed groups indicates A549 cells may upregulate an inflammasome-

mediated pro-inflammatory response and/or apoptosis.  

In general, the immune response was more profound in cells exposed to P. 

aeruginosa (Fig. 3.2B; Fig.3.3C). This was reflected in the number of proteins detected 

and their relative increase in abundance in P. aeruginosa-exposed A549 cells. The 

relative abundance of Gamma-interferon-inducible protein 16 (IFI16) showed the greatest 

decrease in abundance in P. aeruginosa-exposed cells. This protein is a negative-

regulator of the inflammasome (Veeranki et al., 2011), thus its downregulation increases 

inflammasome-mediated immune response or apoptosis in these cells.  

Pathogens that enter host cells are trafficked to lysosomes, vesicles in which the 

acidic environment creates unfavourable conditions for pathogen survival (Escoll et al., 

2015). Lysosomes also play an important role in cellular proteostasis by degrading 

misfolded proteins, including those unable to be degraded by the proteasome (Jackson 

and Hewitt, 2016). A consequence of infection is an increase the demand for protein 

folding as peptide biosynthesis is upregulated to mount defence against the pathogen (van 
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‘t Wout et al., 2015). In this study, there was an increase in the relative abundance of 

proteins associated with lysosomes in both pathogen-exposed groups compared to the 

controls, which is indicative of a cellular stress response (Fig. 3.3A and 3.3C; Fig. 3.4B 

and 3.5B).  

 

3.3.5 P. aeruginosa infection alters the proteome in the endoplasmic reticulum of 

A549 cells 

 

The endoplasmic reticulum (ER) is a large membrane bound organelle responsible 

for protein synthesis, folding and posttranslational modification (PTM). When the protein 

folding capacity of the ER is exceeded, the accumulation of unfolded or misfolded 

polypeptides induce ER stress, thereby activating the unfolded protein response (UPR). 

The UPR is cyto-protective mechanism that functions in the restoration of ER 

homeostasis through a series of signalling pathways (So, 2018). Activation of the UPR 

can be triggered by multiple stimuli including oxidative stress, imbalance in calcium and 

iron content, nutrient depletion, and viral infection (So, 2018). Microbial infection 

increases demand for the biosynthesis and folding of inflammatory proteins, thereby 

contributing to ER stress and activation of UPR resulting from a build-up of unfolded 

proteins in the ER lumen (van ‘t Wout et al., 2015). 

Induction of the UPR pathway results in attenuation of mRNA translation, increasing the 

protein folding capacity by upregulating gene expression of molecular chaperones and 

enzymes involved in PTM and ensuring the degradation of permanently misfolded 

proteins by the proteasome via the ER-associated degradation pathway (ERAD) (Celli 

and Tsolis, 2015). In the event that ER homeostasis cannot be restored, the cell can initiate 

autophagy and undergo a programme of apoptosis (Ron and Walter, 2007). 

A number of bacterial pathogens including Listeria monocytogenes, Brucella 

melitensis and Mycobacterium tuberculosis activate the UPR through various organism-

dependent mechanisms (Seimon et al., 2010; Pillich et al., 2012; Smith et al., 2013b). P. 

aeruginosa possess multiple mechanisms that induce ER stress and activate the UPR 

pathway (van ‘t Wout et al., 2015; Jiang et al., 2016; Kim et al., 2018). The P. aeruginosa 

exotoxin pyocyanin, and a phospholipase effector protein TpIE, induce splicing of XBP-

1 mRNA, whose protein product is involved in positively regulating expression of UPR-
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associated genes including chaperones BiP/GRP78 and Hsp90/GRP94 (Uemura et al., 

2009; van ‘t Wout et al., 2015; Jiang et al., 2016). 

The proteomic data in this study revealed an increase in the relative abundance of 

proteins associated with the ER and Golgi apparatus in P. aeruginosa-exposed cells 

compared with A. fumigatus-exposed cells and the control groups (Fig. 3.1B). A number 

of proteins in this group were associated with the UPR including Vesicle-associated 

membrane protein-associated protein B/C and Reticulon 3, indicating an ER stress 

response to bacterial exposure (Kanekura et al., 2006; Wan et al., 2007). This stress 

response may have in part, triggered apoptotic events as evidenced by the increase in a 

number of pro-apoptotic proteins including DnaJ homolog subfamily C member 10 and 

Apoptosis-inducing factor 1 (Kim et al., 2006; Thomas and Spyrou, 2009).  

 

3.3.6 A. fumigatus and P. aeruginosa infection alter A549 cell morphology 

 

In this study, A549 cells were cultured as a monolayer. The morphology of these 

“resting” (i.e. non-dividing) cells under such conditions are typically characterized by a 

flattened, “squashed cobblestone” type shape (Fig. 3.15A). Changes from this 

morphology to a contracted rounded shape indicates stress (Smit-de Vries et al., 2007). 

Cells contract before dividing and take a more rounded shape. However, cells undergoing 

apoptosis also contract and become rounded. These cells eventually detach from the flasks 

as they die. Unexposed A549 cells and cells exposed to A. fumigatus for 12 hours did not 

appear stressed. However, cells exposed to P. aeruginosa for 12 hours had contracted, 

become rounded and were beginning to detach from the surface. These results are 

somewhat reflective of what occurs in the CF airways whereby A. fumigatus can persist 

in the airways without inducing the same acute inflammatory response and cellular 

damage as P. aeruginosa.   
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3.3.7 P. aeruginosa growth rate is increased in the presence of A. fumigatus.  

 

Co-infection with A. fumigatus and P. aeruginosa is not uncommon (Zhao et al., 

2018a), thus, a better understanding of the host cellular response is important for making 

decisions as how to treat such infection. In this study, LFQ proteomics was used to 

investigate the proteomic response of A549 cells to co-infection with A. fumigatus and P. 

aeruginosa. The proteomic data revealed that the rate of bacterial replication increased 

when A. fumigatus conidia were co-cultured with P. aeruginosa for 12 hours. This was 

reflected in the high abundance of bacterial proteins detected by the mass spectrometer 

where A. fumigatus was present compared to when P. aeruginosa was cultured with A549 

cells alone for the same length of time (Fig. 3.5A, i and ii). CFU counts confirmed the 

finding observed in the proteomics data, and determined that A. fumigatus conidia must 

be present for bacterial replication to escalate, as the secretome from a co-culture of A. 

fumigatus and P. aeruginosa did not induce the same growth effect (Fig. 3.5B). For this 

reason, further experiments were performed to determine the point at which P. aeruginosa 

began to proliferate exponentially so that the pathogens could be removed from the A549 

cell culture and protein extraction could be performed before this began to occur.  

Several studies have reported antagonism between A. fumigatus and P. aeruginosa 

(Shirazi et al., 2016; Briard et al., 2017; Sass et al., 2018; Briard et al., 2019). In general, 

these studies report that P. aeruginosa outcompetes A. fumigatus by affecting the growth 

and development of the fungus by the secretion of a range of secondary metabolites. In 

this study, A. fumigatus conidia appeared to induce the replication rate of P. aeruginosa, 

potentially by altering the environment, thereby making it more conducive to bacterial 

replication. This of course has implications in vivo, where co-infection occurs.  

 

 

 

 

 

 



165 
 

3.4 Discussion – Part two 

 

3.4.1 The proteomic response of A549 cells to sequential exposure by A. fumigatus 

and P. aeruginosa 

 

The presence of A. fumigatus conidia were determined influence the increase in 

bacterial growth rate when in culture with P. aeruginosa and A549 cells. Where conidia 

were present, bacterial density was greater compared to that which occurred in the 

absence of the fungus after the same incubation time (12 hours). Having determined the 

point at which P. aeruginosa began to replicate exponentially in the presence of A. 

fumigatus, the experimental design in part one of this chapter was revisited so that the 

proteomic response of A549 cells to sequential exposure by A. fumigatus and P. 

aeruginosa could be investigated. Cells were exposed to A. fumigatus and P. aeruginosa 

sequentially, for eight hours and four hours respectively. The resulting proteome was 

compared with the proteomic profile of cells exposed to A. fumigatus (for eight hours) or 

P. aeruginosa (for four hours). LFQ proteomics was used to compare the individual 

proteins and pathways, which contribute to the response of A549 cells when exposed to 

A. fumigatus or P. aeruginosa with those observed in the sequentially exposed A549 cells. 

Based on the analysis of the proteomic profile, distinct similarities and differences were 

observed between the three infection groups. These findings may explain why P. 

aeruginosa predominates in the presence of A. fumigatus. 

 

3.4.2 A. fumigatus and/or P. aeruginosa infection alter the abundance of proteins 

associated with energy output in A549 cells 

 

It is well established that host cells respond to the presence of pathogens by 

altering their metabolic processes (Eisenreich et al., 2013) A clear signature of microbial 

infection is an alteration in carbohydrate and amino acid metabolism by the host 

(Eisenreich et al., 2017).  In this study, comparative analysis between the untreated group 

and the three infection models demonstrated a clear increase in the relative abundance of 

proteins associated with carbohydrate and amino acid metabolism in the three pathogen-

exposed groups of A549 cells compared to the unexposed cells. An increase in host 

metabolic processes was greatest in P. aeruginosa-exposed A549 cells suggesting that P. 
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aeruginosa induce a more drastic alteration to host cell energy metabolism than A. 

fumigatus (Fig. 3.9B, Cluster G). Compared to the fungal and bacterial-exposed groups, 

these same metabolic changes were not detected in sequentially exposed cells, as reflected 

by the fewer number of proteins associated with this pathoway in this group. Thus, it is 

possible that prior exposure to fungal conidia has a debilitating effect on the host cells 

such that they are unable to alter their metabolism in a way the meets the demands of 

countering a bacterial infection. 

 

3.4.3 A. fumigatus and/or P. aeruginosa infection alter the abundance of proteins associated 

with mitochondrial stress in A549 cells 

 

An increase in the relative abundance of proteins associated with mitochondrial 

activity and oxidative stress were indicative of a mitochondrial stress response pathway 

across all pathogen-exposed groups. Processes relating to oxidative stress including fatty 

acid degradation and the TCA cycle (Fig. 3.10B and C), the OXPHOS pathway (Fig. 

3.10D) and Huntington’s Disease pathway (Fig. 3.10E), were enriched across all treated 

groups of A549 cells (Fig. 3.9B, Cluster H; Figure 3A-C). The abundance of proteins 

associated with mitochondrial activity, as determined by hierarchical clustering (Fig. 

3.9B, Cluster H), was greatest in the P. aeruginosa- and sequentially treated cells 

compared to the A. fumigatus-treated cells. These results indicate that P. aeruginosa are 

the cause of the heightened oxidative stress response observed in the sequentially exposed 

A549 cells. 

Several protein groups identified in the A549 cells analysed in part one and part 

two of this chapter, include terms associated with “mitochondria”. Although there was an 

increase in the relative abundance of proteins associated with mitochondrial activity in 

both groups, the profile of these proteins was somewhat different (Table A 3.1-3.4). For 

example, ATOX1, which was the most differentially abundant protein in the 12-hour 

pathogen –exposed groups were not SSDA in any of the groups in part two. SCO1 was 

present in all pathogen-exposed groups but with a three-fold decrease compared to the 

12-hour pathogen exposures. The relative abundance of superoxide dismutase was 

increased in the 12-hour pathogen exposure but were not SSDA in the pathogen-exposed 

groups in part two. These results indicate temporal changes in the cellular stress response 

mediated by different proteins as exposure to the pathogen persists.  
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Pyocyanin (PCN) is a cytotoxic, redox-reactive phenazine produced by most 

strains of P. aeruginosa, including PAO1, the strain used in this study (Mavrodi et al., 

2001).  PCN is a known inducer of oxidative stress in epithelial cells (Liu et al., 2013; 

Rada and Leto, 2013), and its effect on the decline of respiratory health and lung function 

is well-documented,(Hunter et al., 2012; Rada and Leto, 2013). Therefore, it is probably 

not surprising that an increase in the relative abundance of proteins and pathways 

associated with oxidative activity in the mitochondria of P. aeruginosa-exposed and 

sequentially challenged A549 cells were detected in the proteomic data. Further studies 

to establish the presence of, and quantify the amount of pyocyanin produced in this 

infection model are required to determine the role of pyocyanin in affecting the A549 cell 

proteome.  

Aside from the immune response, few studies have focused on the effect of A. 

fumigatus on mammalian cells, and in the context of infection, more is known about the 

host response to P. aeruginosa. In this chapter, an increase in the relative abundance of 

proteins and pathways associated with the mitochondria in A. fumigatus-exposed A549 

cells for eight hours, indicate that A. fumigatus induce mitochondrial stress in the host. 

This response is less intense than that caused by the four-hour exposure to P. aeruginosa.   

One consequence of mitochondrial stress is apoptosis. This can be activated in 

response to stress-induced danger signals, such as microbial infection (Galluzzi et al., 

2012). Several studies have demonstrated that A. fumigatus can inhibit apoptosis in 

epithelial cells and thus survive and germinate in the host, evading detection by the 

immune system (Daly et al., 1999; Berkova et al., 2006; Heinekamp et al., 2013; Amin 

et al., 2014). The ability to survive in the host while inhibiting apoptosis has been 

attributed to the pigment, DHN melanin, a pigment found in conidia (Amin et al., 2014). 

The results here show that a number of pathways associated with mitochondrial stress are 

not as significantly increased in A. fumigatus-exposed A549 cells compared to P. 

aeruginosa- and sequentially exposed cells. This may be due to the ability of conidia to 

evade host detection, or modulate or the signals required for host cells to carry out a 

program of apoptosis (Berkova et al., 2006; Féménia et al., 2009; Amin et al., 2014). 

Furthermore, this may be the reason that the A549 cells in this study retained their shape 

and appeared “less stressed” in comparison to P. aeruginosa exposed cells (Fig. 3.4 and 

3.10). 
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3.4.4 Exposure to A. fumigatus or P. aeruginosa results in a decrease in the 

abundance of ribosomal proteins in A549 cells 

 

The mRNA processing pathways were significantly decreased in P. aeruginosa-

exposed A549 cells and less so in A. fumigatus-exposed cells compared to the control and 

the sequential infection groups. Reductions in the relative abundance of proteins 

associated with transcription, the ribosome and translation were identified (Fig. 3.9B, 

Cluster B, Table A 3.2). The synergistic effect of translation inhibition and activation of 

an immune response has been demonstrated in a number of model organisms including 

mice, macrophages and Caenorhabditis elegans (Fontana et al., 2011; Dunbar et al., 

2012; McEwan et al., 2012; Fontana et al., 2012). This may explain the findings in our 

results, whereby the decrease in the relative abundance of proteins involved in translation 

correlate with an increase in the relative abundance of proteins associated with immune 

system processes (Fig. 3.11, Fig. 3.9B, Cluster A).  

Compared to bacteria, very little is known about the relationship between fungal 

pathogens and host translational machinery (Alves, 2014; Bignell et al., 2018). 

Interestingly, exposure of A549 cells to P. aeruginosa, subsequent to A. fumigatus, did 

not appear to affect translational processing despite the additional four-hour incubation 

with P. aeruginosa (Fig. 3.9B). By not interfering with protein synthesis in the host, it is 

possible that A. fumigatus creates an environment in which P. aeruginosa can also avoid 

triggering an immune response, allowing the pathogen time to establish infection. These 

findings may provide one explanation as to why the proteomic response of A549 cells to 

sequential exposure of A. fumigatus and P. aeruginosa resemble that of the fungal 

infection and not of the bacterial infection both in the context of the proteomic profile and 

morphology (Fig. 3.9B and Fig. 3.10H-M) 

 

3.4.5 A. fumigatus and P. aeruginosa infection alter the abundance of proteins 

associated with protein processing in the ER of A549 cells 

 

The relative abundance of multiple proteins associated with protein processing in 

the ER was increased in A. fumigatus- and P. aeruginosa-exposed groups compared to 

the controls and sequentially exposed A549 cells (Fig. 3.9B, Cluster F; Fig. 3.10F).  These 

included proteins involved in co-translational and post-translational modifications (ptm), 
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protein folding (e.g. ER oxidoreductin 1 and protein disulphide isomerase), protein 

transport from the ER, (DNAJC3, glycoprotein glucosyltransferase, calnexin, members 

of the TRAP complex and regulators of ER-stress induced apoptosis. On the other hand, 

Hsp70, a chaperone that plays a central role in detecting, refolding, or destroying 

misfolded proteins, was decreased in abundance by 6.8 fold (post-imputation) in all 

infection groups (Table A 3.2B-D). The role of Hsp70 in cell survival and division has 

been well studied and its downregulation is associated with apoptosis in cancer cells and 

bacterial infection models (Frese et al., 2003; Gurbuxani et al., 2003; Liu et al., 2011). 

This suggests a generic response to infection in which the cell attempts to undergo a 

programme of apoptosis, possibly resulting from the ER stress imposed by the fungus and 

bacteria.  

The role of the ER is not limited to protein processing, and this organelle is 

becoming more recognized as key modulator of the host immune response (Zhang and 

Kaufman, 2008; Blohmke et al., 2012; van ‘t Wout et al., 2015; Lee et al., 2016; So, 

2018; Jeong et al., 2018; Kim et al., 2018). In vivo and in vitro studies have demonstrated 

an increase in ER stress markers in murine lungs and tracheal epithelial cells challenged 

with A. fumigatus antigens, respectively and it has recently been suggested that ABPA-

related symptoms may be attributed to A. fumigatus-induced ER stress (Lee et al., 2016; 

Jeong et al., 2018). P. aeruginosa secretes virulence factors including pyocyanin and 

TpIE that are known to induce ER stress and activate UPR via the p38 MAPK pathway 

(van ‘t Wout et al., 2015; Jiang et al., 2016; Kim et al., 2018). The p38 MAPK signalling 

pathway is central to integrating the ER stress response and the immune response to P. 

aeruginosa infection, as has been demonstrated in several studies (Balloy et al., 2008; 

Sharon et al., 2011; Lee et al., 2016). The data in this study revealed a significant increase 

in the levels of multiple proteins associated with the MAPK pathway in both A. fumigatus 

and P. aeruginosa-exposed A549 cells compared to un-exposed cells (Fig. 3.10H). 

Specifically, MAPK14, one of four p38 MAPKs for which the ER stress response is 

largely dependent (van ‘t Wout et al., 2015) increased four-fold in A549 cells exposed to 

each pathogen. In contrast, fewer significant differences in the MAPK pathway were 

observed between sequentially exposed cells and the control.  

ROS are by-products of the intra- and intermolecular disulphide bond formation, 

which takes place in the ER under oxidizing conditions. The transport of electrons 

required for disulphide-bond formation is mediated by ER oxidoreductin 1 (ERO1), and 

protein disulphide isomerase (PDI). In addition to these enzymes, the antioxidant, 
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glutathione reduces disulphide bonds, an important step to ensuring correct folding of 

some proteins. During infection, the accumulation of misfolded proteins in the ER can 

result in the depletion of reduced glutathione as it is consumed during the reduction of 

misfolded proteins (Zhang & Kaufman, 2008). Consequently, oxidative stress is induced 

and this can in turn promote inflammation (Mytilineou et al., 2002). In this study, the 

abundance of ERO1 and PDI were significantly increased in A. fumigatus- and P. 

aeruginosa-exposed cells but not in sequentially exposed cells. This finding suggests 

increased oxidation-reduction activity in the ER of cells exposed to A. fumigatus or P. 

aeruginosa, which in turn indicates increased levels of ROS formation within these cells 

(Fig. 3.9B, Cluster B; Fig. 3.10F). However, the response of sequentially exposed cells 

was distinctly different and resembled the control more-so than the other infection groups 

despite experiencing a greater microbial load.   

Based on these observations, A. fumigatus and P. aeruginosa are more likely to 

induce ER stress and consequently ER-stress induced inflammation in A549 cells 

exposed to the cells separately than sequentially. This response, or lack thereof, in 

sequentially exposed cells may influence the way in which the host challenges the 

pathogen.  

 

3.4.6 P. aeruginosa but not A. fumigatus downregulate the ubiquitination pathway 

in A549 cells 

 

Ubiquitin-dependent proteasomal degradation and ubiquitin-associated 

autophagy play a central role during and post pathogen-induced infection by eliminating 

misfolded, damaged or short-lived regulatory proteins (Lapaquette et al., 2015; Li et al., 

2016). These pathways are crucial in maintaining protein homeostasis, as sustained 

inflammation has detrimental outcomes for host tissue. Some pathogens have evolved 

mechanisms to deliver virulence factors into the host. These effector proteins can hijack 

elements of the ubiquitination system, causing alterations to the host proteome, and 

allowing the pathogen to evade the immune system (Bomberger et al., 2011; Bomberger 

et al., 2014; Li et al., 2016; Maculins et al., 2016; Malet et al., 2018). 
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In this chapter, one of the most noticeable differences in the ubiquitination 

pathway was a decrease in the relative abundance of several proteins in P. aeruginosa-

exposed cells compared to the controls and the other infection groups (Fig 3.10G). Key 

components of E2 ubiquitin conjugating enzymes (e.g. UBE2C and UBE2G) and 

ubiquitin ligase complexes (SKP1 and RBX1) were decreased in P. aeruginosa-exposed 

A549 cells and to a lesser extent, in sequentially exposed cells. These results indicate an 

alteration in the protein degradation pathway in sequentially exposed A549 cells mediated 

by P. aeruginosa. Given the central role of the ubiquitination pathway in regulating 

inflammation, this may have significant consequences for the outcome of the cellular 

response to infection by this pathogen.   

 

3.4.7 A. fumigatus or P. aeruginosa infection induce increases in the abundance of 

proteins associated with an immune response in A549 cells 

 

In general, the whole-cell proteomic analysis in this study showed that A. 

fumigatus- and P. aeruginosa, separately and sequentially, activated an immune response 

in A549 cells (Figure 3.8A-C). Compared to A. fumigatus-exposed cells, the relative 

abundance of many immune system proteins in the sequentially exposed group was 

decreased (Figure 3.8D). This suggests that certain elements of the immune response are 

downregulated by P. aeruginosa but not by A. fumigatus. Thus, the immune response of 

A549 cells when exposed to A. fumigatus or P. aeruginosa is distinctly different to that 

when cells are exposed to these pathogens sequentially. This may be due to initial 

activation of the immune system caused by A. fumigatus, which is subsequently 

attenuated by the presence of P. aeruginosa.  

 

Despite the heightened immune response observed in cells exposed to P. 

aeruginosa, the relative abundance of several proteins associated with an inflammatory 

response were decreased in bacterial-treated A549 cells, including NF-kappa-B essential 

modulator (NEMO), HMG-1 and HMG-2. This is not entirely surprising as there is 

evidence to show that virulence factors secreted by some pathogenic bacteria, including 

P. aeruginosa, can inhibit elements of the immune system from activating a pro-

inflammatory response (Zhou et al., 2005; Ashida et al., 2010; Zhao et al., 2019). For 

example, Yersinia YopJ effector protein de-ubiquitinates TRAF6, thereby blocking the 
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activating signal for NF-κB activity (Zhou et al., 2005). Shigella IpaH9.8, an E3 ubiquitin 

ligase-like protein, targets NEMO, a regulator of NF-κB inhibtors, for degradation, 

thereby inhibiting NF-κB activity (Ashida et al., 2010). More recently, a P. aeruginosa 

secreted virulence factor, TesG was found to target and inhibit the activity of small 

GTPases including RhoA, Rac2 and Rap1 (Zhao et al., 2019). Since these GTPases play 

an important role in regulating the immune response to infection, it is possible that P. 

aeruginosa suppresses the immune system through the secretion of TesG (Zhao et al., 

2019). 

 

3.4.8 Sequential exposure to A. fumigatus and P. aeruginosa alter the abundance of 

proteins associated with actin formation and pathogen processing in A549 cells 

 

Many studies have demonstrated that A. fumigatus and P. aeruginosa can be 

internalized by, and trafficked within A549 cells in an actin-dependent process (Chi et 

al., 1991; May and Machesky, 2001; Wasylnka and Moore, 2002; Wasylnka, 2003; 

Zhang et al., 2005a; Hawdon et al., 2010; Amin et al., 2014; Zhao et al., 2019). In this 

study, the relative abundance of proteins associated with endocytosis and the actin 

cytoskeleton, including the small GTPases Rab, Rho Rac and Cdc42, were increased in 

A. fumigatus- and P. aeruginosa-exposed A549 cells in comparison to the control groups 

and sequentially exposed cells (Fig. 3.10J-L). This indicates that A549 cells are capable 

of initiating phagocytosis when exposed to A. fumigatus or P. aeruginosa, however 

sequential exposure to both pathogens appears to interfere with this process. There is 

evidence to show that A. fumigatus and P. aeruginosa can inhibit phagocytosis through 

various mechanisms (Bertout et al., 2002; Krall et al., 2002; Deng and Barbieri, 2008; 

Akoumianaki et al., 2016). The data here suggest a greater interference with the process 

of phagocytosis in cells that were sequentially exposed to the fungus and bacteria, 

respectively (Fig. 3.10I-K). The inability to take up bacteria may explain in part, why so 

many bacterial proteins were present in the initial co-infection model. Because bacteria 

replicate every 20 minutes under optimal conditions (Cole et al., 1999), the inability of 

host cells to phagocytose and digest bacterial cells would enable the pathogen population 

to expand rapidly.  
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Once internalized pathogens become engulfed in phagosomes. These vacuoles 

become progressively more acidified by vATPase activity until they fuse with a lysosome 

to form phagolysosomes, which are characterized by degradative enzyme activity and the 

production of ROS (Uribe-Quero and Rosales, 2017).  A. fumigatus and P. aeruginosa 

can survive and replicate within A549 cells by interfering with phagosome acidification 

and hijacking proteins involved in vesicle trafficking, respectively (Chi et al., 1991; 

Wasylnka et al., 2005; Angus et al., 2008; Hawdon et al., 2010; Amin et al., 2014). The 

proteomic data in this study show that the relative abundance of proteins involved in the 

phagosomal and lysosomal pathways was greater in the fungal- and bacterial-exposed 

A549 cells compared to the control and sequentially exposed cells. The relative 

abundance of vATPases was increased in P. aeruginosa-exposed and sequentially 

exposed A549 cells, suggesting that bacteria induced lysosomal acidification in host cells 

(Fig. 3.9B, Cluster I; Fig. 3.10L and Fig. 3.10M).  

 

Taken together, these results indicate that A549 cells respond to infection by A. 

fumigatus or P. aeruginosa by initiating a pathway of phagocytosis and pathogen 

degradation. In contrast, sequentially challenged cells were unable to upregulate a similar 

process of pathogen elimination. This inability to clear microbial infection could be 

detrimental to the host and favour pathogen survival and proliferation. The data described 

here should form the basis for future studies, which may include an analysis of the effect 

on phagocytosis in epithelial cells such as A549, and alveolar epithelial cells lines (e.g 

PAEpiC) when sequentially exposed to A. fumigatus and P. aeruginosa. Alternative 

model organisms to human epithelial cells include haemocytes derived from the larvae of 

the Greater Wax Moth, Galleria mellonella. These phagocytic cells have many 

similarities to human granulocytes such as neutrophils and thus may prove useful for in 

vitro studies such as phagocytosis assays (Bergin et al., 2005; Tomiotto-Pellissier et al., 

2016; Maguire et al., 2017). 
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3.5 Conclusion 

 

In this chapter, the proteomic response of A549 cells to A. fumigatus and P. 

aeruginosa was characterised and revealed novel insights into the molecular responses to 

infection and co-infection of host cells. The results highlight a specific series of proteomic 

responses when cells were exposed to a single pathogen including inhibition of 

translation, infection-mediated protein processing in the ER and upregulation of the 

immune response. In contrast, initially exposing cells to A. fumigatus and then to P. 

aeruginosa lead to an intrinsically different response characterised by inhibition of 

phagocytosis and the pathogen degradation pathway involving the phagosome and 

lysosome.  These results suggest that pre-exposure to A. fumigatus render the A549 cells 

unable to destroy P. aeruginosa and thus become more susceptible to colonisation by 

bacteria.  

 

In the CF airways, pathogens such as A. fumigatus and Staphylococcus aureus 

predominate in the early years of life, but P. aeruginosa and Burkholderia cepacia 

become the dominant pathogens in the later years of life and contribute to death. The 

results presented here suggest that pre-exposure to A. fumigatus alters the response of 

cells to P. aeruginosa exposure and thus lead to increased development of disease 

symptoms in vivo. This indicates that in the lungs of CF patients, A. fumigatus 

colonisation may cause the cells of the alveolar surface to become more susceptible to 

subsequent colonisation and infection by P. aeruginosa thus leading to increased 

morbidity and mortality.   
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4.1 Introduction 

 

With the advent of high throughput technologies such as mass spectrometry based 

proteomics, RNA-seq and next generation sequencing, our understanding of 

polymicrobial interactions has been greatly improved over the past decade (Short et al., 

2014). Although the microbial ecology of the cystic fibrosis airways is diverse, P. 

aeruginosa predominates as the primary opportunistic pathogen and is the main cause for 

morbidity and mortality among cystic fibrosis patients (Harrison, 2007; Filkins and 

O’Toole, 2015; Reece et al., 2017a; Zhao and Yu, 2018). 

A. fumigatus is detected with P. aeruginosa in the cystic fibrosis airways from 

early childhood and begins to peak during adolescence (Cystic Fibrosis Trust, 2017; CF 

Registry of Ireland 2017 Annual Report, 2017). Where co-colonization exists, disease 

prognosis is poor (Reece et al., 2017a; Zhao et al., 2018a). Despite the prevalence and 

persistence of A. fumigatus throughout childhood and into adulthood, P. aeruginosa 

eventually predominates from adolescence onwards (Reece et al., 2017; Zhao et al., 2018; 

Reece et al., 2019). This suggests that interactions with other pathogens such as A. 

fumigatus may influence the pathogenicity of P. aeruginosa by altering its virulence and 

the host environment, to pave the way for chronic P. aeruginosa infection (O’Brien and 

Fothergill, 2017).  

 

Analysis of the interactions between A. fumigatus and P. aeruginosa have 

revealed several antifungal mechanisms by which P. aeruginosa can outcompete A. 

fumigatus (Smith et al., 2006; Mowat et al., 2010; Briard et al., 2015; Shirazi et al., 2016; 

Sass et al., 2018). P. aeruginosa isolates taken from patients with cystic fibrosis have a 

greater antifungal capacity than non-cystic fibrosis isolates. Non-mucoid isolates are 

more inhibitory than mucoid isolates, which may explain why A. fumigatus is detected at 

higher levels in older cystic fibrosis patients where chronic (non-mucoid) P. aeruginosa 

infections are more common (Bargon et al., 1999; Aaron et al., 2012; Ferreira et al., 2015; 

Briard et al., 2019).  Many of these interaction studies have focused on the direct effects 

of P. aeruginosa on A. fumigatus-biofilm formation, on the effects of bacterial 

biosynthetic products (e.g. phenazines) on the fungal growth and development or, of 

fungal metabolites on P. aeruginosa (Briard et al., 2015; Briard et al., 2016; Shirazi et 

al., 2016; Briard et al., 2017; Reece et al., 2018). How A. fumigatus shapes an 
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environment that may influence P. aeruginosa growth however, remains poorly 

understood.  

 

A. fumigatus secretes a range of degradative enzymes that contribute to the 

ubiquity of the fungus in nature by supporting fungal growth on plant matter (de Vries 

and Visser, 2001; Tekaia and Latge, 2005; Wang et al., 2018). Many of these biological 

determinants also play a role in establishing disease in humans and are associated with 

virulence and pathogenesis (Tekaia and Latge, 2005; Behnsen et al., 2010; Wartenberg 

et al., 2011; Paulussen et al., 2017; Wang et al., 2018; Vivek-Ananth et al., 2018). How 

these enzymes directly or indirectly influence bacterial growth has not yet been 

investigated in detail.  In this chapter, the secretome of A. fumigatus (i.e. the set of proteins 

secreted out of the cell) contained in the filtrates produced by cultures grown in a nitrate-

rich and nutrient-poor medium were extracted. The effect on P. aeruginosa growth was 

also investigated. Proteomics was used to dissect the proteome of P. aeruginosa as a 

means to provide a global analysis of the pathways and biological processes activated 

under a set of conditions created by A. fumigatus. 

 

The objective of this study was to investigate the effect of culturing P. aeruginosa 

in the presence of A. fumigatus culture filtrate (CF) by measuring differences in bacterial 

growth rate and the overall proteome of the bacteria.  It was hypothesized that A. 

fumigatus creates an environment that promotes a metabolic-driven increase in P. 

aeruginosa and results in it outcompeting the fungus. Proteomics was used to analyse this 

environment and to characterize the contents of the A. fumigatus CuF in which P. 

aeruginosa growth proliferated. The molecular basis of the increased proliferation was 

investigated further using LFQ proteomics to characterize the proteome changes in P. 

aeruginosa when exposed to the culture filtrate of i) A. fumigatus alone ii) the culture 

filtrate of an A. fumigatus-P. aeruginosa Co-culture and iii) the culture filtrate of P. 

aeruginosa alone.  

 

 

 

 

 

 



178 
 

4.2 Results 

 

4.2.1 Analysis of the effect of A. fumigatus culture filtrate on P. aeruginosa growth  

 

To investigate the effects of the A. fumigatus secretome on P. aeruginosa growth, 

A. fumigatus culture filtrates (herein referred to as CuF) were isolated from cultures 

grown in Czapek-Dox media for 24, 48, 72 and 96 hours. Toxicity assays (section 2.2.5) 

revealed that the 24, 48 and 72-hour A. fumigatus CuF had a growth promoting effect on 

P. aeruginosa compared to the control, but supernatants from the 96-hour CuF had a 

growth inhibiting effect (Fig. 4.1A). Czapek-Dox is frequently used as a growth medium 

for A. fumigatus for the production of gliotoxin. Because of this, the levels of gliotoxin in 

the A. fumigatus CuF used for the toxicity assays here were quantified by HPLC. The 

highest concentration of gliotoxin (2.29 µg ±0.06/mg hyphae, p<0.05) was detected in 

the 96 hours CuF (Fig. 4.1B) and correlated with the growth inhibition of P. aeruginosa 

in Fig. 4.1A. As the 48-hour CuF produced in Czapek-Dox induced the greatest increase 

in growth of P. aeruginosa, this was chosen for further investigation. 
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Fig. 4.1A. P. aeruginosa growth in A. fumigatus culture filtrates Change in growth of P. 

aeruginosa (OD 1 ~3 x 108 CFU/ml) incubated with Sterile Czapek-Dox media (control), 24-hour, 

48-hour, 72-hour and 96-hour A. fumigatus CuF for 24-hours. Maximum growth increase was 

observed from bacteria exposed to the 48-hour CuF and growth inhibition was observed in 

bacteria incubated with 96-hour CuF. Fig. 4.1B. Gliotoxin production by A. fumigatus 

Gliotoxin levels were highest in A. fumigatus cultures grown in Czapek-Dox for 96 hours.  

***: p<0.001 **: p<0.01 *: p<0.05 ns: not significant  

 

 

To investigate whether the interactions with P. aeruginosa would alter the 

secretome of A. fumigatus, and to determine what, if any effects this may have on bacterial 

growth, A. fumigatus was co-cultured with P. aeruginosa for 24 hours (section 2.3.9), 

after which the microbes were separated from the medium. The culture filtrate was filter 

sterilized and the pH was measured (pH 4.2). P. aeruginosa was cultured in Czapek-Dox 

for 24 hours before exposure to the resulting culture filtrates (Co-culture CuF). To 

determine that the growth promoting effect was caused by A. fumigatus and not the culture 

medium, P. aeruginosa was also exposed to the culture filtrates produced by the bacteria 

(P. aeruginosa CuF) in Czapek-Dox (section 2.3.8). The effect on growth of P. 

aeruginosa when exposed to A. fumigatus CuF, Co-culture CuF and P. aeruginosa CuF 

was obtained by measuring the OD600, where OD 1 equates to approximately 3 x 108 

CFU/ml. The growth of P. aeruginosa increased by four-fold and eight-fold when 

cultured in Czapek-Dox supplemented with A. fumigatus CuF and Co-culture CuF 

respectively compared to that which was cultured in Czapek-Dox supplemented with P. 

aeruginosa CuF (Fig. 4.2).  
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Fig. 4.2 P. aeruginosa growth in culture filtrates produced in Czapek-Dox Growth of P. 

aeruginosa (CFU/ml) cultured in Czapek-Dox media for 48 hours compared to growth of P. 

aeruginosa cultured in Czapek-Dox media supplemented with P. aeruginosa  CuF, A. fumigatus 

CuF and Co-culture CuF. Change in bacterial growth is greatest where P. aeruginosa is cultured 

in Co-culture filtrate. ***: p<0.001 **: p<0.01 *: p<0.05 ns: not significant 

 

 

To assess whether this growth-enhancing effect was media-specific, P. 

aeruginosa was cultured for 24 hours in minimal media (MM) supplemented with P. 

aeruginosa CuF and/or A. fumigatus CuF produced in MM. There were no significant 

changes in growth when the bacteria were cultured in P. aeruginosa CuF, A. fumigatus 

CuF and Co-culture CuF (Fig. 4.3A). P. aeruginosa was cultured in an amino acid-rich 

defined medium, synthetic cystic fibrosis medium (SCFM), supplemented with P. 

aeruginosa CuF or Co-culture CuF produced in SCFM. This medium was designed by 

Palmer et al., (2007) using the average concentration of ions, amino acids, glucose and 

lactate identified in sputum samples of individuals with CuF and therefore may be used 

to study the response of microbes to the nutrient content of CuF sputum. There was no 

significant difference between P. aeruginosa growth in Co-culture CuF and P. 

aeruginosa CuF (Fig. 4.3B), although growth was substantially greater in P. aeruginosa 

cultured for 48 hours in sterile SCFM compared to sterile Czapek-Dox or MM (Fig. 4.3B). 
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Fig. 4.3 P. aeruginosa growth in culture filtrates produced in minimal media and SCFM. (A) Growth 

of P. aeruginosa  (CFU/ml) cultured in MM for 48 hours, compared to growth of P. aeruginosa  cultured 

in P. aeruginosa  CuF,  A. fumigatus CuF and Co-culture produced in MM. Significant fold change (p > 

0.05) exists between the P. aeruginosa  cultured in minimal media for 48 hours and Co-culture CuF for 48 

hours. (B) Growth of P. aeruginosa (CFU/ml) cultured in SCFM for 48 hours compared to growth of P. 

aeruginosa cultured in P. aeruginosa CuF and Co-culture CuF produced in SCFM. No significant change 

existed in the growth between P. aeruginosa cultured in P. aeruginosa CuF and Co-culture CuF. 

***: p<0.001 **: p<0.01 *: p<0.05 ns: not significant  

 

 

4.2.2 Proteomic analysis of A. fumigatus 48 hour culture filtrate  

 

Mass spectrometry-based proteomics was performed on proteins collected from 

the 48 hr-A. fumigatus CuF in order to investigate the components that may be influencing 

bacterial growth. The top 25 proteins are listed in Table 1 and the full list can be found in 

Table A4.1. The majority of proteins detected were enzymes associated with amino acid 

metabolism (e.g. L-amino acid oxidase, Tripeptidyl-peptidase sed2), cell wall 

biosynthesis (e.g. Protein ecm33, 1,3-beta-glucanosyltransferase Bgt1, Secreted beta-

glucosidase sun1), gluconeogenesis (Triosephosphate isomerase, phosphoglucomutase 

PgmA, Glucose-6-phosphate isomerase, oxidative stress (e.g. Peroxiredoxin, Asp f3, 

Superoxide dismutase) and gliotoxin production (e.g. Thioredoxin reductase gliT, 

Cobalamin-independent methionine synthase). A number of proteins detected were 

involved in sugar metabolism (e.g. Beta-fructofuranosidase, Mannitol-1-phosphate 5-

dehydrogenase, Glucooligosaccharide oxidase), and several proteins were associated with 

virulence (Alkaline protease 2, Aspergillopepsin-1, Major allergen Asp f 2). Additionally, 

a number of glucanases were detected in this culture filtrate. 
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Table 4.1: Proteins identified in A. fumigatus culture filtrates. Proteins (> 3kDa) identified 

in the culture filtrates produced by A. fumigatus grown in Czapek- Dox for 48 hours. The top 

25 proteins detected are listed. 

 

No. 

 

Protein Name 

 

Score 

Coverage 

(%) 

 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

 

L-amino acid oxidase LaoA 

Thioredoxin reductase, putative 

1,3-beta-glucanosyltransferase Bgt1 

Tripeptidyl-peptidase sed2 

Alkaline protease 1 

Glycosyl hydrolase, putative 

Mannosyl-oligosaccharide alpha-1,2-mannosidase 1B 

Malate dehydrogenase 

Uncharacterized protein 

FAD/FMN-containing isoamyl alcohol oxidase MreA 

Thioredoxin reductase gliT 

Probable glycosidase crf1 

Amidase, putative OS 

Endonuclease/exonuclease/phosphatase 

Formate dehydrogenase 

FAD-dependent oxygenase 

IgE-binding protein 

Aspergillopepsin-1 

Triosephosphate isomerase 

Secreted beta-glucosidase sun1 

Probable glucan endo-1,3-beta-glucosidase eglC 

1,3-beta-glucanosyltransferase gel1 

Aminopeptidase 

Uncharacterized protein 

Transaldolase 

 

146.19 

125.88 

113.73 

70.44 

70.10 

68.22 

62.48 

60.74 

58.82 

58.60 

58.02 

51.96 

51.79 

49.83 

49.25 

48.20 

48.13 

46.92 

46.46 

45.68 

40.13 

39.59 

38.20 

35.63 

34.41 

 

44.33 

47.67 

44.26 

38.54 

39.45 

57.34 

39.55 

63.82 

50.75 

25.39 

53.59 

46.58 

27.17 

31.44 

39.23 

34.12 

29.06 

35.19 

44.92 

19.81 

23.54 

25.66 

26.23 

41.78 

39.81 
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4.2.3 A. fumigatus generates an amino acid-rich environment in Czapek-Dox 

 

Since Czapek-Dox does not contain amino acids in the original medium 

preparation, it was hypothesized the abundance of peptidases in the A. fumigatus CuF 

(Table 4.1 and Table A4.1) was causing elevated levels of free amino acids in the culture 

filtrates, thereby providing P. aeruginosa was additional nutrients and promoting 

bacterial growth. The amino acid concentration in the culture filtrates was measured by 

the ninhydrin assay (4.4A and C). The ninhydrin test detected an amino acid concentration 

of 40 µg ±2.1 /ml in the A. fumigatus CuF and 28 µg ±1.2 /ml in the Co-culture CuF (Fig. 

4.3B). Amino acids were not detected in the P. aeruginosa CuF or in the A. fumigatus 

CuF produced in MM which may explain why increased rates of bacterial growth were 

not observed in these media (Fig. 4.4B). 

 

 

Fig. 4.4. Amino acid concentration in culture filtrates Amino acid concentration detected in 

48-hour A. fumigatus CuF and Co-culture CuF produced in Czapek-Dox was greater in A. 

fumigatus CuF (A). Comparison of the growth between P. aeruginosa (OD600) cultured in (i) 

Czapek-Dox, MM and SCuFM for 48 hours. Maximum growth was observed in P. aeruginosa 

cultured in SCuFM (B).  ***: p<0.001 **: p<0.01 *: p<0.05 ns: not significant  
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4.2.4 The effect of A. fumigatus CuF and Co-culture CuF on the proteome of P. 

aeruginosa  

 

Label free quantitative (LFQ) proteomics was employed to examine the whole 

cell proteomic response of P. aeruginosa exposed to P. aeruginosa  CuF, A. fumigatus 

CuF or  Co-culture CuF (n = 4) and to investigate the proteins and pathways involved in 

regulating bacterial growth under these conditions.  In total, 2317 proteins were initially 

identified, of which 1665 remained after filtering and processing (Table A4.2A). Of the 

1665, proteins identified post-imputation, 677 proteins in the A. fumigatus CuF-treated 

group (Table A4.2B) 611 in the Co-culture CuF-treated group (Table A4.2C) were 

determined to be statistically significant (p<0.05) differentially abundant (SSDA) with a 

fold change of +/- 2. A principal component analysis (PCA) was performed on all filtered 

proteins and identified distinct proteomic differences between the groups (Fig 4.5A). 

Components 1 and 2 accounted for 71.3% of the total variance within the data, and all 

replicates resolved into their corresponding samples, with little variability between each 

sample. The groups exposed to P. aeruginosa CuF (control) displayed a clear divergence 

to those that were challenged with A. fumigatus CuF or Co-culture CuF. A distinct 

separation between the groups cultured in A. fumigatus CuF or Co-culture CuF was also 

observed. 

Hierarchical clustering was performed on the z-scored normalised LFQ intensity 

values for the 1005 SSDA proteins identified (ANOVA; Benjamini Hochberg procedure, 

FDR cut-off value of ≤0.05). All four biological replicates resolved into their respective 

sample. Based on protein abundance profile similarities, nine protein clusters (A-I) were 

also resolved (Fig. 4.4B). GO and KEGG term enrichment analysis was performed on all 

protein clusters. Six clusters contained enriched terms (Cluster A, C, D, G-I; Table 

A4.3B), with each cluster having a representative process or pathway characteristic to 

that group (Fig. 4.5B and 4.5C). Details of all clusters are included in the Table A4.3A.  
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Fig. 4.5 PCA, hierarchical clustering and enrichment analysis of P. aeruginosa proteins 

display distinct differences in groups according to type of CuF exposure. Principal 

component analysis (PCA) of P. aeruginosa exposed to Co-culture CuFs (green) A. fumigatus 

CuF (orange) and P. aeruginosa CuF (blue) (A). A clear distinction can be observed between 

each of the treated groups and the control. Clusters based on protein-abundance profile similarities 

were resolved by hierarchical clustering of multi-sample comparisons between the three sample 

groups of P. aeruginosa (B). Nine clusters (A-I) were resolved comprising proteins that display 

similar expression profiles across treatments. Of these, six clusters (A, C, D, G-I) had statistically 

enriched Gene Ontology (GO) and KEGG terms associated with them (Table A4.3) and the main 

terms are summarised for each in Fig. 4.5 C. 
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Enriched terms contained in the clusters in Fig. 4.5B included membrane and 

integral to membrane (Cluster A), ABC transporters and periplasmic space (Cluster C), 

periplasmic space, (Cluster D), membrane and outer membrane proteins (Cluster G), 

nucleotide binding (Cluster H) and transcription, cell division and amino acid 

biosynthesis (Cluster I).  

 

In Cluster A, 46 proteins associated with the GOCC term, membrane, were 

identified. Proteins within this group were increased the most in P. aeruginosa cultured 

in A. fumigatus CuF compared to bacteria cultured in P. aeruginosa CuF and Co-culture 

CuF  respectively. Within Cluster C, GO terms and KEGG pathway analysis resolved 99 

proteins with terms associated with the periplasmic space and ABC transporters, 

respectively. Compared to P. aeruginosa  cultured in P. aeruginosa  CuF and A. fumigatus 

CuF, the abundance profile of proteins from bacteria cultured in Co-culture CuF were 

distinctly lower. Periplasmic proteins included in this group were associated with 

transport and protein folding in the periplasm. The main categories of ABC transporters 

observed were those involved with iron transport and phosphate and amino acid transport. 

In Cluster D (112 proteins), one GO enrichment term for the periplasmic space, was 

identified. The protein-abundance profile showed a decrease in the relative abundance of 

several proteins associated with the periplasmic space from bacteria cultured in A. 

fumigatus CuF and Co-culture CuF compared to the control. Periplasmic proteins in this 

group were involved with amino acid biosynthesis and transport. 

 

Within Cluster G (130 proteins), seven enriched GO terms were identified, 

including membrane, outer membrane and external encapsulating structure part. The 

relative abundance of proteins associated with these terms were increased significantly in 

bacteria cultured in A. fumigatus CuF compared to Co-culture CuF or P. aeruginosa  CuF. 

Proteins included in this cluster were involved with carbon metabolism, amino-acyl tRNA 

biosynthesis (tRNA ligases), amino acid biosynthesis, and the chemotaxis family of the 

two-component system. 

 

Enriched GO and KEGG terms identified in Cluster H (192 proteins) were 

primarily associated with DNA replication, transcription, purine and pyrimidine 

metabolism and amino acid metabolism. These protein clusters included the GO terms 

hydrolase activity, adenylnucleotide binding, ribonucleotide binding, ATP binding. The 
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abundance of proteins associated with these pathways and processes were significantly 

greater in P. aeruginosa cultured in A. fumigatus CuF and Co-culture CuF compared to 

that exposed to P. aeruginosa CuF. Cluster I (147 proteins) contained a number of 

enriched terms associated with key biological processes and molecular functions involved 

with nitrogen metabolism, oxidoreductase activity, small molecule biosynthesis, 

transcription, protein folding, and cell wall formation. These pathways and processes 

were most increased in bacteria cultured in Co-culture CuF. 

 

Volcano plots were produced by pairwise Student’s t-tests (p <0.05) to determine 

the differences in protein abundance between two samples and to depict the changes in 

pathways and processes in which those proteins are involved (Fig. 4.6A-C). SSDA protein 

names arising from the pair wise t-tests were inputted into the STRING and KEGG 

database and used to identify biological pathways and processes over-represented in a 

particular group. The changes in biological pathways and processes observed in the 

volcano plots mirror the trends in the heat map (Fig. 4.5B). 

 

 

 

 

 

 

 

 

 

 

 

 

 



188 
 

 

 

 

Fig. 4.6 Differential abundance of proteins detected in P. aeruginosa exposed to culture 

filtrates Volcano plots derived from pairwise comparisons between P. aeruginosa cultured in A. 

fumigatus CuF and P. aeruginosa CuF (A), Co-culture CuF and A. fumigatus CuF (B) and Co-

culture CuF and P. aeruginosa  CuF (C). The distribution of quantified proteins according to p 

value (−log10 p-value) and fold change (log2 mean LFQ intensity difference) are shown. Proteins 

above the line are considered statistically significant (p-value <0.05). Protein components of 

amino acid (green) and nucleotide biosynthetic process (blue) and response to stress (orange) are 

more abundant in bacteria cultured in A. fumigatus CuF and Co-culture CuF than in P. aeruginosa 

CuF. The relative abundance of proteins associated with the periplasmic space and ABC 

transporters (purple) was decreased in bacteria cultured in A. fumigatus CuF and Co-culture CuF 

compared to P. aeruginosa CuF. The relative abundance of outer membrane proteins (yellow) 

was greater in bacteria exposed to A. fumigatus CuF compared to P. aeruginosa CuF and lower 

in Co-culture CuF compared to A. fumigatus CuF and P. aeruginosa CuF.  

 

 

 

biosynthesis
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The proteomic data arising from Student’s t-tests (p < 0.05) identified a significant 

increase in the relative abundance of proteins associated with cell division and cell wall 

formation in bacteria cultured in A. fumigatus CuF and Co-culture CuF, compared to 

bacteria exposed to P. aeruginosa CuF. No significant changes in these processes were 

observed between bacteria cultured in A. fumigatus CuF and Co-culture CuF. The most 

SSDA proteins associated with these processes are listed in Table 4.2. The relative 

abundance of several components from the nucleotide biosynthesis pathway was 

increased in bacteria cultured in A. fumigatus CuF and Co-culture CuF compared to that 

exposed to P. aeruginosa CuF. SSDA proteins included in this pathway are listed in Table 

4.3 and are highlighted in Fig. 4.5A-C. There were no statistically significant changes in 

the relative abundance of proteins associated with this pathway between bacteria cultured 

in A. fumigatus CuF and Co-culture CuF. These comparisons are therefore not included 

in the table 4.3.  

 

Table 4.2. Proteins associated with replication. Statistically significant (T-test, p < 0.05) 

proteins associated with cell division and cell wall biosynthesis and relative fold differences 

between P. aeruginosa cultured in A. fumigatus CuF and P. aeruginosa CuF (Af v Pa), and 

between Co-culture CuF and P. aeruginosa CuF (Cc v Pa) and between Co-culture CG and A. 

fumigatus CuF (Cc v Af). 

  Fold change 

Gene Protein name Af v Pa Cc v Pa Cc v Af 
     

ftsZ Cell division protein FtsZ 23.1 26.7 ns 

gyrB DNA gyrase subunit B 18.7 9.77 ns 

glmM Phosphoglucosamine mutase 4.8 8.54 ns 

kdsB 3-deoxy-manno-octulosonate cytidylyltransferase 1.7 1.9 ns 

lpxC UDP-3-O-acyl-N-acetylglucosamine deacetylase 3 2.8 ns 

lpxD UDP-3-O-acylglucosamine N-acyltransferase ns 2.4 ns 

murA UDP-N-acetylglucosamine 1-carboxyvinyltransferase 1.6 2 1.23 

murC UDP-N-acetylmuramate--L-alanine ligase ns 3.5 ns 

murE UDP-N-acetylmuramoyl-L-alanyl-D-glutamate-2,6-

diaminopimelate ligase 

6.4 7.5 ns 

ZapE Cell division protein ZapE 20.7 19.1 ns 
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Table 4.3. Proteins associated with nucleotide biosynthesis. Statistically significant (T-test, 

p < 0.05) proteins associated with nucleotide biosynthesis and relative fold differences between 

P. aeruginosa cultured in A. fumigatus CuF and P. aeruginosa CuF (Af v Pa), and between Co-

culture CuF and P. aeruginosa CuF (Cc v Pa). 

 

  Fold change 

     Gene                                                          Protein name                                       Af v Pa     Cc v Pa 

amn AMP nucleosidase 2.8 2.4 

dut Deoxyuridine 5'-triphosphate nucleotidohydrolase 2.5 ns 

folA Dihydrofolate reductase 4.2 ns 

guaA GMP synthase 7.1 5.2 

nadD Probable nicotinate-nucleotide adenylyltransferase 4.5 ns 

nrdA Ribonucleoside-diphosphate reductase 66.9 44.2 

nrdB Ribonucleoside-diphosphate reductase subunit beta 16.1 6.7 

prs Ribose-phosphate pyrophosphokinase 2.2 2.3 

purB Adenylosuccinate lyase 8.1 5.6 

purC Phosphoribosylaminoimidazole-succinocarboxamide synthase 2.2 2 

purF Amidophosphoribosyltransferase 3.3 4.8 

purL Phosphoribosylformylglycinamidine synthase 3.7 3.1 

purT Phosphoribosylglycinamide formyltransferase 2 2.6 2.6 

pyrB Aspartate carbamoyltransferase 2 2 

pyrE Orotate phosphoribosyltransferase 2.2 1.7 

pyrG CTP synthase 3.1 3.9 

pyrH Uridylate kinase 2.4 2.4 

tmk Thymidylate kinase 4.0 3.0 

 

Paired t-tests between the groups identified an increase in the relative abundance 

of SSDA proteins with the KEGG term cellular amino acid biosynthesis in bacteria 

exposed to A. fumigatus CuF and Co-culture CuF compared to P. aeruginosa  CuF. This 

included the biosynthesis of valine, leucine, isoleucine, lysine, glutamine, cysteine, 

proline, serine and arginine (Table 4.4, Fig. 4.6A and 4.6C). There was a statistically 

significant change in 11 differentially expressed proteins associated with this pathway 

between bacteria cultured in Co-culture CuF and A. fumigatus CuF (Table 4.4). 
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Table 4.4 Proteins associated with amino acid metabolism. Statistically significant (T-test, p < 

0.05) proteins associated with amino acid biosynthesis and relative fold differences between P. 

aeruginosa cultured in A. fumigatus CuF and P. aeruginosa CuF (Af v Pa), between Co-culture CuF 

and P. aeruginosa CuF (Cc v Pa) and between Co-culture CuF and A. fumigatus CuF (Cc v Af). 

 

                                                        Fold change 

     Gene                                         Protein name                                    Af v Pa   Cc v Af   Cc v Af                                                                                                                       

leuC 3-isopropylmalate dehydratase large subunit 5.1 13.8 2.7 

bauC Putative 3-oxopropanoate dehydrogenase 5.7 11.9 ns 

PA1750 Phospho-2-dehydro-3-deoxyheptonate aldolase 9.4 11.2 ns 

trpE Anthranilate synthase component 1 7.7 10.7 ns 

serC Phosphoserine aminotransferase 8.5 10.2 ns 

metZ O-succinylhomoserine sulfhydrylase 5.1 9.3 1.6 

PA1752 2-dehydropantoate 2-reductase ns 8.6 2.2 

panD Aspartate 1-decarboxylase 11.1 8.1 ns 

asd Aspartate-semialdehyde dehydrogenase 9.5 8 ns 

PA0399 cystathionine beta-synthase 7 7.7 ns 

leuA 2-isopropylmalate synthase 4.5 6.3 ns 

proB Glutamate 5-kinase 4 6.3 1.6 

lysA Diaminopimelate decarboxylase 2.9 4.6 ns 

argH Argininosuccinate lyase 2.8 4.1 ns 

serA D-3-phosphoglycerate dehydrogenase 2.6 3.9 ns 

argA Amino-acid acetyltransferase ns 3.8 5.2 

glnA Glutamine synthetase 1.5 3.2 2.1 

hom Homoserine dehydrogenase 3.6 3.1 ns 

PA2843 Phospho-2-dehydro-3-deoxyheptonate aldolase 2.5 3.1 ns 

glyA2 Serine hydroxymethyltransferase 3 2.7 3.1 ns 

hisC1 Histidinol-phosphate aminotransferase 1 4.4 3 -1.5 

ilvD Dihydroxy-acid dehydratase ns 2.6 1.9 

hisZ ATP phosphoribosyltransferase regulatory subunit 2.5 2.5 ns 

argG Argininosuccinate synthase 2.5 2.4 ns 

leuB 3-isopropylmalate dehydrogenase 2.6 2.4 ns 

mtnB Methylthioribulose-1-phosphate dehydratase 2 2.3 ns 

proC Pyrroline-5-carboxylate reductase 3.4 2.3 ns 

leuD 3-isopropylmalate dehydratase small subunit 2 2.2 ns 

gltB Glutamate synthase large chain 3.7 2.2 ns 

ilvI Acetolactate synthase 2 2.1 ns 

metF Methylenetetrahydrofolate reductase ns 2 2 

lysC Aspartokinase 2.6 2 -1.3 

cysB Transcriptional regulator CysB -2.1 -2.7 ns 

ggt Gamma-glutamyltranspeptidase -2.4 -5.5 -2.2 

cysE O-acetylserine synthase -2.5 ns ns 
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Table 4.5. Proteins associated with ABC transporters. Statistically significant (T-test, p < 

0.05) proteins associated with ABC transporters and relative fold differences between P. 

aeruginosa cultured in Co-culture CuF and P. aeruginosa CuF  (Cc v Pa) between and A. 

fumigatus CuF and P. aeruginosa CuF (Af v Pa). 

 

 

Gene 

 

Protein 

 

Substrate 

         Fold change 

    Cc v Pa       Af v Pa 

nasS/PA1786 Nitrate ABC transporter 

substrate-binding protein 

Nitrate 23.9 8.5 

PA4862 Probable ATP-binding 

component 

Urea 13.2 4.1 

metN2 Methionine import ATP-

binding protein 

D-Methioine 3.5 4.7 

modC Molybdenum import ATP-

binding protein 

Molybdate 2.7 1.4 

rbsB Binding protein component of 

ABC ribose transporter 

Ribose -57.7 -3.9 

PA5217 Probable binding protein 

component of ABC iron 

transporter 

Iron -38.6 -4.0 

PA3858 Probable amino acid-binding 

protein 

Amino acid -17.1 -2.9 

PA4496 Probable binding protein 

component of ABC transporter 

Dipeptide/nickel -16.1 -3.1 

PA4502 Probable binding protein 

component of ABC transporter 

Dipeptide/nickel -13.8 ns 

PA5103 ABC transporter substrate-

binding protein 

Amino acid -13.7 ns 

PA4497 Probable binding protein 

component of ABC transporter 

Peptide -13 -3.3 

braC Branched-chain amino acid 

transport ATP-binding protein 

Branched-chain -8.3 -4.2 

PA2338 Probable binding protein of 

maltose/mannitol transporter 

maltose/mannitol -7.8 -1.6 

braF Branched-chain amino acid 

transport ATP-binding protein 

Branched-chain -7.7 -1.7 

PA2711 Probable periplasmic 

spermidine/putrescine-binding 

protein 

Polyamine -7.1 -2.2 

pstS Phosphate-binding protein 

PstS 

Phosphate -6 -1.3 

PA3236 Probable glycine betaine-

binding protein 

glycine betaine -5.1 -2.2 

PA596 Probable binding protein 

component of ABC transporter 

Amino acid -4.6 3.9 

braG Branched-chain amino acid 

transport ATP-binding protein 

Branched-chain -4.4 -2.5 

PA4913 Probable binding protein 

component of ABC transporter 

Branched-chain -3.6 -6.1 

PA1342 Probable binding protein 

component of ABC transporter 

Glutamate/Aspartate -3.6 -2.9 
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PA5388 Choline ABC transporter 

substrate-binding protein 

Choline -3.4 -4.6 

PA3931 Methionine ABC transporter 

substrate-binding protein 

Methionine -3.3 -1.8 

PA5378 Choline ABC transporter 

substrate-binding protein 

Choline -3.2 -2.3 

PA5317 Binding protein component of 

ABC dipeptide transporter 

Amino Acid -3.2 -2.1 

PA1339 Amino acid ABC transporter 

ATP binding protein 

Glutamate/Aspartate -2.3 -4.0 

PA3313 Phosphate-import protein 

PhnD 

Phosphate -2.3 -2.5 

aotJ Arginine/ornithine binding 

protein 

Arginine/ornithine -2.3 -1.7 

aotP Arginine/ornithine transport 

ATP-binding protein 

Arginine/ornithine -2 -2.3 

PA1810 Probable binding protein 

component 

Amino acid -1.7 ns 

cysP Sulphate-binding protein Sulphate -1.5 1.4 

PA5076 Probable binding protein 

component 

Amino acid -1.5 ns 

spuD Putrescine-binding periplasmic 

protein 

Putrescine -1.4 -1.6 

spuE Spermidine-binding 

periplasmic protein 

Spermidine -1.4 -1.3 

PA2812 Probable ATP-binding 

component 

Amino acid -1.3 1.1 

 

 

In general, there was a greater decrease in the relative abundance of proteins 

associated with ABC transporters in the bacteria cultured in Co-culture CuF compared to 

bacteria cultured in A. fumigatus CuF and P. aeruginosa  CuF (Table 4.5). The majority 

of these proteins were substrate binding proteins and ATP binding components of ABC 

transporters involved with the transport of amino acids, carbohydrates and lipids. Within 

this group, the three proteins with the greatest decrease in relative abundance were 

probable amino acid binding protein (PA3858; -17.1-fold), probable binding protein 

component of ABC iron transporter (PA5217; -38.6-fold) and binding protein component 

of ABC ribose transporter (rbsB; -57.7-fold). Of the 35 ABC-transport proteins listed, 

four were increased in abundance. Three of these, nitrate ABC transporter substrate-

binding protein (nasS;+23.9-fold), probable ATP-binding component (PA4862; +13.2-

fold) and molybdenum import ATP-binding protein (modC; +2.7-fold) are associated 

with the import of nitrate, urea and molybdate respectively. These proteins are listed in 

Table 4.5. 
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Pairwise t-tests identified increases and decreases in the relative abundance of 

proteins associated with a stress response and DNA damage repair in P. aeruginosa  

cultured in A. fumigatus CuF and Co-culture CuF compared to bacteria cultured in P. 

aeruginosa  CuF (Table 4.6). Xenobiotic reductase B (Xen B), Lon protease (lon), Alkyl 

hydroperoxide reductase subunit F (ahpF) and Bifunctional enzyme CysN/CysC (CysNC) 

showed the greatest fold-change in P. aeruginosa  cultured in A. fumigatus CuF and Co-

culture CuF compared to P. aeruginosa  CuF. With the exception of Xen B, there were 

no changes in protein abundance between these two groups. Catalase HPII (katE), magD 

(magD) and cold-shock protein (CspD) had the greatest decrease in relative abundance in 

the bacteria cultured in A. fumigatus CuF and Co-culture CuF compared to P. aeruginosa  

CuF. There were no significant changes in the abundance of these proteins between P. 

aeruginosa  cultured in A. fumigatus CuF and Co-culture CuF. 

 

The proteomic data arising from the paired Student’s t-tests (p < 0.05) identified 

a significant increase in the abundance of proteins associated with anaerobic respiration 

including denitrification enzymes, and a decrease in the levels of proteins associated with 

aerobic respiration in bacteria exposed to Co-culture CuF and A. fumigatus CuF compared 

to that exposed to P. aeruginosa  CuF. A comparison of the proteome between bacteria 

cultured in Co-culture CuF and A. fumigatus CuF showed few significant differences in 

the relative abundance of proteins than when compared to bacteria cultured in P. 

aeruginosa  CuF. Nonetheless, some changes in the abundance of proteins associated 

with these pathways were observed between these groups. Functionally annotated SSDA 

proteins with the greatest differential increase or decrease in abundance involved in 

anaerobic or aerobic respiration respectively are listed in Table 4.7.  
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Table 4.6 Proteins associated with a stress response. Statistically significant (T-test, 

p < 0.05) proteins associated with a stress response and DNA damage repair and 

relative fold differences between P. aeruginosa cultured in Co-culture CuF and P. 

aeruginosa CuF  (Cc v Pa) between and A. fumigatus CuF and P. aeruginosa CuF (Af 

v Pa) and between Co-culture CuF and A. fumigatus CuF. 

 

Gene Protein Fold change 

   Af v Pa         Cc v Pa    Cc v Af 

xenB Xenobiotic reductase B 304.4 156 -1.9 

lon Lon protease 14.2 18.6 ns 

ahpF Alkyl hydroperoxide reductase 

subunit F 

20 16.5 ns 

cysNC Bifunctional enzyme CysN/CysC 15.4 13.8 ns 

uvrB UvrABC system protein B 15.1 12.6 ns 

cysI Sulfite reductase 12.2 10 ns 

recA Protein RecA 5.35 7.6 ns 

trxB2 Thioredoxin reductase 6.5 5.5 ns 

polA DNA polymerase I 6.8 4.9 ns 

ppx Exopolyphosphatase 5.1 4.7 ns 

ruvB Holliday junction ATP-dependent 

DNA helicase RuvB 

4.5 3.5 ns 

katE Catalase HPII -6.3 -13.6 ns 

magD magD -3 -12.2 ns 

cspD Cold-shock protein CspD -7.6 -9.7 ns 

msrB Peptide methionine sulfoxide 

reductase 

-7 -5.3 ns 

SenC SenC ns -5 ns 

osmC Osmotically inducible protein 

OsmC 

-5 -4.3 ns 

phoB Phosphate regulon transcriptional 

regulator 

ns -3.8 ns 

PA0838 Glutathione peroxidase -2.1 -2.3 ns 

gor Glutathione reductase -2 -1.7 ns 

lexA LexA repressor -1.4 -1.6 ns 
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Table 4.7 Proteins associated with respiration. Statistically significant (T-test, p < 0.05) 

proteins associated with aerobic and anaerobic respiration and relative fold differences between 

P. aeruginosa cultured in A. fumigatus and P. aeruginosa CuF  (Af v Pa) between Co-culture 

CuF and P. aeruginosa CuF (Cc v Pa) and between Co-culture CuF and A. fumigatus CuF (Cc v 

Af). 

 

Gene 

 

Protein 

Fold change 

Af v Pa          Cc v Pa     Cc v Af 

PA5190 Probable nitroreductase 38.8 58.5 1.5 

narG Respiratory nitrate reductase alpha chain 30.3 53.8 ns 

ccoO2 Cytochrome c oxidase, cbb3-type, CcoO subunit 20.53 48.5 2.4 

moaB1 Molybdenum cofactor biosynthesis protein B 21.3 43.2 ns 

nosZ Nitrous-oxide reductase 20.54 39 ns 

hemN Oxygen-independent coproporphyrinogen-III oxidase 14.7 29.7 2 

nirB Assimilatory nitrite reductase large subunit 6.6 25.6 3.9 

narH Respiratory nitrate reductase beta chain 9.5 19.3 ns 

nirD Assimilatory nitrite reductase small subunit Ns 11.2 3.9 

moeA1 Molybdopterin molybdenum transferase 5.6 8.98 ns 

exaB Cytochrome c550 -447.6 -286.3 ns 

exaA Quinoprotein alcohol dehydrogenase (cytochrome c) -13 -47.6 -3.7 

PA2171 Hemerythrin-domain containing protein -73.9 -90.5 ns 

napA Periplasmic nitrate reductase -7 -34.8 -5 

napB Periplasmic nitrate reductase, electron transfer 

subunit 

-9.9 -5.83 ns 

bkdB Lipoamide acyltransferase -2.7 -24.1 -9 

bkdA1 2-oxoisovalerate dehydrogenase subunit alpha Ns -4.9 -5.2 

pdhA Pyruvate dehydrogenase E1 component subunit alpha -16.4 -7 -2.4 

PA3415 Dihydrolipoamide acetyltransferase -3.4 -16.4 -4.7 

lpdV Dihydrolipoyl dehydrogenase -1.9 15.4 -8.2 

 

 

Pairwise t-tests on the post-imputation dataset revealed distinct changes in the 

relative abundance of outer membrane proteins and efflux pumps between P. aeruginosa  

cultured in A. fumigatus CuF and P. aeruginosa  CuF, Co-culture CuF and P. aeruginosa  

CuF and Co-culture CuF and A. fumigatus CuF. There was a clear increase in the 

proportion of, and the relative abundance of several SSDA outer membrane proteins in 

P. aeruginosa  exposed to A. fumigatus CuF (Table 4.8, Fig. 4.5C). 
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Table 4.8 Proteins associated with OMPs. Statistically significant (T-test, p < 0.05) proteins 

associated with bacterial cell membrane and efflux, and relative fold differences between P. 

aeruginosa cultured in A. fumigatus and P. aeruginosa CuF  (Af v Pa) between Co-culture CuF 

and P. aeruginosa CuF (Cc v Pa) and between Co-culture CuF and A. fumigatus CuF (Cc v Af). 

 

Gene Protein Fold change 

Af v Pa    Cc v Pa      Cc v Af 

MexE RND multidrug efflux membrane fusion protein 132.3 47.27 ns 

oprC Outer membrane efflux protein OprC 38.6 ns -15.7 

oprG Outer membrane protein OprG 17.3 4.9 -3.5 

oprM Outer membrane protein OprM 15 ns -16.3 

MexF Efflux pump membrane transporter 10.2 ns ns 

oprE Anaerobically-induced outer membrane porin 

OprE 

3.2 ns -3.1 

oprJ Outer membrane protein OprJ 2.7 ns -3.2 

oprO Porin O 2.45 ns -2.9 

opr86 Outer membrane protein assembly factor BamA 2.3 ns ns 

opmH Channel protein TolC 2 ns -1.9 

MexC RND multidrug efflux membrane fusion protein 1.6 ns -3.1 

oprF Outer membrane porin F 1.2 ns ns 

oprQ Outer membrane protein OprQ -2.6 -23.5 -9.1 

opdQ Outer membrane porin OpdQ -2.1 -13.7 -6.5 

oprD Porin D -9.7 -5.6 ns 

oprI Major outer membrane lipoprotein -6.6 -3.5 ns 

oprH PhoP/Q & low Mg2+ inducible outer membrane 

protein 

ns -3.5 -3.8 

MexB Multidrug resistance protein MexB -2.28 ns ns 

 

 

4.2.5 Physical interactions between P. aeruginosa and A. fumigatus 

To investigate the ability or otherwise of P. aeruginosa to compete with A. 

fumigatus on a solid surface, a bacterial or conidial suspension was streaked diagonally 

across an agar plate. The inoculum was allowed to dry for four hour prior to the next 

streak in the (opposite direction) to avoid dragging the spores along the path of the 

bacteria. The plates were incubated for 24 hours at 37°C and bacterial and fungal growth 

was assessed visually. To remove any potential bias that may have arisen based on the 

growth medium used, nutrient agar, which supports P. aeruginosa growth, and Sabouraud 

agar (SAB), which support A. fumigatus growth, were used. The results showed that P. 

aeruginosa grew over the spores independently of which cell suspension was applied to 

the surface first and of which growth media was used (Fig. 4.7A-D).  
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Fig. 4.7 P. aeruginosa vs. A. fumigatus X assays P. aeruginosa (red arrow), followed by A. 

fumigatus conidia (blue arrow) were streaked across a SAB agar plate (A) or nutrient agar (B) in 

an “X” shape and visualized after 24 hours. A. fumigatus, followed by P. aeruginosa was streaked 

across a SAB agar plate (C) or a nutrient agar plate (D) in an “X” shape and visualized after 24 

hours.   

 

 

The ability of P. aeruginosa to replicate faster than conidia may have introduced 

a bias to these observations. Thus, this assay was alternated somewhat to investigate the 

ability of P. aeruginosa to compete with an established culture of A. fumigatus. A conidial 

suspension was streaked horizontally across an agar plate. The inoculum was incubated 

for 24 hours so that the fungus could become established on the surface. A second 

inoculation with P. aeruginosa cells was performed by streaking the bacterial suspension 

perpendicularly to the fungus leaving a gap of about 1 cm between the fungus and the 

bacteria. This process was repeated with the conidial inoculum being streaked vertically 

and the bacterial inoculum streaked horizontally. The plate was incubated for a further 24 

hours and examined visually. Visual assessment of the plate after incubation showed that  

P. aeruginosa grew towards A. fumigatus. After a further 24 hours, the bacteria 

had begun to migrate through the fungus, again irrespective of what growth medium was 

used (Fig. 4.8A). Where the P. aeruginosa was streaked horizontally and A. fumigatus 

A

C D

B

P. aeruginosa  

A. fumigatus  
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was streaked perpendicularly, the fungus did not migrate towards the bacteria but the 

bacteria did begin to grow out (Fig. 4.8B).  

 

 

Fig. 4.8 P. aeruginosa vs. A. fumigatus T assays A “T - assay” shows P. aeruginosa (1) 

migrating through the path of A. fumigatus (A). A. fumigatus (2) did not migrate across the path 

of P. aeruginosa (B) 

 

 

 

P. aeruginosa are mobile bacteria that use flagella for motility. A swim assay was 

performed to investigate the migration of P. aeruginosa towards A. fumigatus on a semi-

solid surface. A drop of A. fumigatus conidial suspension was applied at one pole of the 

agar plate and incubated overnight to allow the fungus to become established. A drop of 

P. aeruginosa was applied at the other pole and the plate was incubated for a further 12 

hours (Fig. 4.9A). After a further 12 hours, P. aeruginosa had begun to produce 

pyocyanin and spread towards the original focal point of A. fumigatus but the fungus did 

not spread towards the bacteria (Fig. 4.9B). The bacterial cells made contact with, and 

spread around the fungal colony (Fig. 4.9C). Where A. fumigatus was not present, P. 

aeruginosa spread throughout the plate at a slower rate as evidenced by the reduced 

amount of spreading over the same time-frame (Fig. 4.9D and E). 

A B

1
2
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Fig. 4.9. Swim assays Swimming motility assays indicate P. aeruginosa (1) began to migrate 

towards A. fumigatus (2) by 12 hours post-inoculation with the bacteria (A). By 24 hours, the 

bacteria (3) spread closer to the fungal colony and began to produce pyocyanin (B). The A. 

fumigatus colony had grown larger and was beginning to spread out (4). By 36 hours, the bacteria 

(5) had surrounded the fungus. The fungal colony remained the same size (C). Bacteria (6 and 7) 

cultured in the absence of the A. fumigatus began to grow at a similar rate to A but by 36 hours 

growth appeared to have slowed as observed by incomplete coverage by the bacteria of the agar 

plate (D). 
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The agar plates were visualized under an inverted microscope 36 hours post-

inoculation with P. aeruginosa. Bacterial cells were densely populated before reaching 

hyphal tips of A. fumigatus but became more dispersed as it reached the fungus (4.10A). 

The bacteria interacted directly with mycelia and conidia (Fig. 4.10B). 

 

 

                                            

Fig. 4.10 Visualizing the interactions between P. aeruginosa and A. fumigatus by microscopy 

Agar plates containing P. aeruginosa (36 hours-post inoculation) and A. fumigatus (60 hours post-

inoculation). P. aeruginosa migrated towards A. fumigatus and dispersed as they reached fungal 

hyphae (A). Bacterial cells interact directly with conidia and hyphal strands (B). (Magnification 

x 40). 
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4.3 Discussion 

 

The objective of the work performed in this chapter was to characterize the 

determinants that enable P. aeruginosa to predominate over A. fumigatus in a mixed 

culture. The results presented here suggest that A. fumigatus creates an environment that 

promotes the growth of P. aeruginosa. To meet its own nutritional needs, A. fumigatus 

secretes a range of degradative enzymes which breakdown substrates in the growth 

medium allowing for nutrient assimilation (Amich and Krappmann, 2012). In doing so, 

the fungus appears to be providing the bacteria with nutrients to which it otherwise may 

not have access. Thus, the findings in this chapter demonstrate a role for A. fumigatus in 

directly promoting the growth of P. aeruginosa by altering the composition of the 

environment.  

The medium used for this study, Czapek-Dox, is a defined synthetic media used 

for the cultivation of microorganisms that can utilize sodium nitrate as the only source of 

nitrogen and provides a nutrient-limiting, nitrogen-rich environment. Due to the poor 

nutritional content, it is frequently used for inducing the production of secondary 

metabolites, such as fumagillin and gliotoxin (Dhingra et al., 2013; Owens et al., 2014). 

This medium alone did not promote the growth of P. aeruginosa. However, the culture 

filtrates (CuF) produced by A. fumigatus grown in this medium for 48-hours did induce a 

significant increase in bacterial growth (Fig. 4.1A). Bacterial growth was attenuated when 

exposed to A. fumigatus CuF produced after 96 hours in Czapek-Dox (Fig. 4.1A). The A. 

fumigatus secondary metabolite, gliotoxin, which has known anti-P. aeruginosa activity,  

is produced at this time-point under these conditions (Owens et al., 2015; Reece et al., 

2019). Thus, the A. fumigatus CuF was analysed for gliotoxin. HPLC analysis determined 

that gliotoxin concentrations were highest in the 96-hours, which may explain why P. 

aeruginosa growth was inhibited at this time-point (Fig. 4.1B). 

To investigate if the CuF produced by a co-culture of A. fumigatus and P. 

aeruginosa had a different effect on bacterial growth than that of CuF produced by A. 

fumigatus, the bacteria and fungus were co-cultured for 24 hours. P. aeruginosa was 

exposed to the resulting CuF, herein termed Co-culture CuF and the effect on growth was 

significantly greater than that when the bacteria was exposed to A. fumigatus CuF alone 

(Fig. 4.2).  
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Mass spectrometry-based proteomics was used to characterize the secretome of 

the 48-hour A. fumigatus CuF with a view to identifying the secreted proteins that may 

influence the growth of P. aeruginosa (Table 4.1; Table A4.1). A large proportion of the 

proteins detected were enzymes associated with peptide metabolism i.e. proteases and 

peptidases (Table 4.1; Table A4.1). A. fumigatus assimilates exogenous amino acids via 

membrane transporters and thus secretes a range of proteases to digest larger peptides and 

proteins prior to import into the cell (Farnell et al., 2012). Analysis of CF sputum has 

shown that it contains higher concentrations of amino acids than control sputum (Barth 

and Pitt, 1996; Sriramulu, 2010). Synthetic cystic fibrosis medium (SCFM) contains an 

amino acid content comparable to that found in the sputum of CF patients (Palmer et al., 

2007a). In this study, the growth rate of P. aeruginosa was significantly greater when 

cultured in SCFM than that in Czapek-Dox, suggesting that the amino acid content of the 

culture media influences the rate of bacterial growth.  

The abundance of peptide-metabolising enzymes present in the 48-hour A. 

fumigatus CuF, such as aminopeptidase and amidase, suggested high levels of amino 

acids in the medium (Table 4.1). This was confirmed by the ninhydrin test, a common 

method used to detect amino acids or peptides in a solution (Friedman, 2004). This assay 

detected free amino acids in the A. fumigatus CuF and in the Co-culture CuF (Fig. 4.4C). 

The reduction in levels of free amino acids in the Co-culture CuF may be indicative of 

amino acid consumption by P. aeruginosa during co-culture with A. fumigatus (Fig. 

4.4C). Amino acids were not detected by the ninhydrin test in the P. aeruginosa CuF or 

in any culture filtrates produced in minimal media (MM). This may explain why the same 

rate of bacterial growth observed in A. fumigatus and Co-culture CuF was not observed 

in P. aeruginosa CuF or in culture filtrates produced in MM. These results indicate that 

A. fumigatus creates an environment in which P. aeruginosa thrive, possibly by 

metabolizing the media to produce substrates more easily assimilated by the bacteria. This 

was a media-specific effect, as the same results were not observed using culture filtrates 

produced in minimal media. In the cystic fibrosis lung, allergens such as 

Aspergillopepsin, alkaline protease, Asp f 2 and Asp f 4 proteases are major contributors 

to allergic responses and virulence in ABPA (Banerjee et al., 1998; Knutsen et al., 2004; 

Farnell et al., 2012). Gliotoxin may also have detrimental effects to patient health (Reece 

et al., 2018). These proteins were in the 48-hour A. fumigatus CuF by mass spectrometry 

(Table A4.1).  
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A label-free quantitative (LFQ) proteomics approach was utilised to investigate 

changes in the P. aeruginosa proteome that enable these bacteria  to proliferate in an 

environment containing A. fumigatus secondary metabolites, degradative enzymes and 

limited nutrients.  The increase in growth of P. aeruginosa cultured in A. fumigatus CuF 

and Co-culture CuF compared to P. aeruginosa CuF is reflected by the increase in the 

relative abundance of proteins associated with DNA replication (DNA gyrase subunit B 

and Ribonucleoside-diphosphate reductase), cell division (e.g. Cell division protein FtsZ 

and ZapE) and cell wall biosynthesis (Mur enzymes) (Table 4.2). There was no significant 

difference in the relative abundance of these proteins between bacteria cultured in A. 

fumigatus CuF and Co-culture CuF.   

Nucleotide biosynthesis was increased in bacteria exposed to A. fumigatus CuF 

and Co-culture CuF (Fig. 4.6; Table 4.3). Nucleotides not only provide the precursors 

necessary for DNA synthesis, but also play an important role in biofilm formation and 

quorum sensing (Pesavento and Hengge, 2009; Kalia et al., 2013; An and Ryan, 2016). 

The amino acid biosynthetic pathway was increased in bacteria cultured in A. fumigatus 

CuF and Co-culture CuF compared to bacteria cultured in P. aeruginosa CuF (Table 4.4).  

The enzymes responsible for the biosynthesis of amino acids are essential for bacterial 

growth and survival. Amino acids are required for the intracellular synthesis of quorum 

sensing (QS) molecules and for the biosynthesis of secondary metabolites such as 

phenazine-1-carboxylic acid and pyocyanin (Sriramulu, 2010; Jagmann and Philipp, 

2018; Sterritt et al., 2018; Defoirdt, 2019).  

 Despite the increased rate of bacterial growth in A. fumigatus CuF and Co-culture 

CuF, distinct changes were observed in the proteome of P. aeruginosa depending on the 

culture filtrate to which they were exposed. The relative abundance of proteins associated 

with ATP-binding cassette (ABC) transporters was significantly less in P. aeruginosa 

exposed to Co-culture CuF compared to bacteria exposed to P. aeruginosa CuF. In 

comparison, there was less of a decrease in the relative abundance of these proteins 

between bacteria cultured in A. fumigatus CuF and P. aeruginosa CuF (Fig. 4.5B; Table. 

4.5). The majority of the ABC transporters decreased in the groups exposed to Co-culture 

CuF were importers associated with the import of nutrients such as amino acids and 

carbohydrates into the cell. The import of substrates is tightly regulated and the 

expression of ABC transporters is increased or decreased depending on the nutritional 

requirements of the organism (Tankana, K. J., Song, S., 2018). Differences in the relative 
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abundance of amino acid ABC transporters in bacteria exposed to Co-culture CuF versus 

A. fumigatus CuF and P. aeruginosa CuF indicate a greater need for uptake of nutrients 

from the environment in P. aeruginosa exposed to the latter and suggests tight regulation 

of ABC transporter-dependent import of amino acids in P. aeruginosa cultured in Co-

culture CuF. 

Interestingly, ABC transporters involved in the uptake of nitrate and molybdate 

were two of the four ABC transporters increased in P. aeruginosa exposed to Co-culture 

CuF compared to P. aeruginosa CuF. This increase in nitrate and molybdate ABC 

transporters indicate anaerobic growth. Molybdate is required for the formation of 

molybdoenzymes such as nitrate reductases, which are essential for the use of nitrates 

during anaerobic respiration (Iobbi-Nivol and Leimkühler, 2013), so much so that 

mutants for molybdate ABC transporters (ModABC) are unable to grow anaerobically 

and are less virulent under aerobic and anaerobic conditions (Périnet et al., 2016). 

The CF airways are characterized by low oxygen availability and high nitrate 

content due to oxygen consumption by pro-inflammatory immune cells (Jensen, 2014). 

The pH of CF sputum is also slightly lower than normal sputum due to impaired 

bicarbonate transport through defective CFTR (Ahmad et al., 2019). Where normal 

sputum has a pH of ~ 7.2, the pH of CF sputum is  ~ 6.8 (Ahmad et al., 2019). The CF 

airway pH (pH 5.32-5.88) is also lower than that of normal airways (pH 6.1) (Tate et al., 

2002). The sole source of nitrogen in Czapek-Dox is sodium nitrate (NaNO3) and the pH 

of sterile Czapek-Dox is ~6.8. The results in this chapter demonstrated that P. aeruginosa 

grew poorly in Czapek-Dox and in P. aeruginosa CuF (Fig. 4.2). However, an increase 

in the relative abundance of proteins associated with nitrogen metabolism in bacteria 

exposed to A. fumigatus CuF and Co-culture CuF suggest that A. fumigatus may 

metabolize the sodium nitrate into a form more easily assimilated by P. aeruginosa and 

may explain why P. aeruginosa growth proliferates in the presence of the fungus.  P. 

aeruginosa is a facultative anaerobe that can perform denitrification under anaerobic 

conditions and in the presence of nitrate (Jensen, 2014). Additonally, P. aeruginosa can 

grow in environments with a pH as low as 4.5 (Klein et al., 2009). In this study, bacterial 

growth was greatest in Co-culture CuF where the pH was reduced to ~ pH 5.  

The reduction of nitrate to nitrite by nitrate reductases contributes to energy 

production more so than nitrite reduction (Berks et al., 1995; Van Alst et al., 2009). 
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Membrane nitrate reductases (NarGHI) are essential for anaerobic growth and are 

expressed at the expense of periplasmic nitrate reductases (NapAB) (Van Alst et al., 

2009). Based on the data produced here an increase in the relative abundance of NarG 

and NarH, and a decrease in the relative abundance of NapA and NapB in bacteria 

exposed to A. fumigatus CuF and Co-culture CuF compared to P. aeruginosa CuF (Table 

4.7) were identified. NarG and NarH levels were highest in P. aeruginosa exposed to Co-

culture CuF.  The assimilatory nitrite reductases NirB and NirD catalyse the reduction of 

nitrite to ammonium (Berks et al., 1995). The relative abundance of these proteins were 

greatest in bacteria exposed to Co-culture CuF. Taken together, these data suggest that 

co-incubation of A. fumigatus and P. aeruginosa create a nitrate-rich environment under 

which P. aeruginosa can adapt by upregulating the denitrification pathway.  

Cystic fibrosis sputum contains levels of nitrate sufficient to support anaerobic 

growth of P. aeruginosa (Line et al., 2014).  Membrane nitrate reductases are essential 

for bacterial survival under these levels of nitrates (Palmer et al., 2007; Line et al., 2014). 

High levels of nitric oxide (resulting from denitrification) can result in nitrosative stress 

which P. aeruginosa counteracts through a variety of detoxification systems (Arai et al., 

2005). Among the most abundant proteins detected in P. aeruginosa exposed A. 

fumigatus CuF and Co-culture CuF were the RND family efflux membrane protein MexE 

and xenobiotic reductase (XenB) (Table 4.6 and 4.8). These proteins are induced by 

nitrosative stress thereby suggesting a defensive mechanism against high NO levels that 

occur during denitrification (Choi et al., 2006; Fetar et al., 2011). 

The ability of P. aeruginosa to endure intense environmental stresses such as 

those found in the cystic fibrosis lung is indispensable for its success as a human 

pathogen. P. aeruginosa has a remarkable capacity to overcome stresses induced by ROS 

or antibiotics.  The proteomic data in this study identified an increase in the relative 

abundance of several enzymes associated an “SOS” response, i.e. an inducible response 

to DNA-damage such as that caused by antibiotics (Michel, 2005). An SOS response was 

upregulated in bacteria exposed to A. fumigatus CuF and Co-culture CuF as evidenced by 

the number of proteins known to be increased upon DNA damage, including Lon protease 

and RecA (Table 4.7). Lon protease and RecA upregulate the SOS response to antibiotics 

such as ciprofloxacin, which target DNA (Breidenstein et al., 2012). Alkyl hydroperoxide 

reductase protects the cell against DNA damage caused by peroxides and is associated 
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with detoxification of benzene derivatives and increased tolerance to zinc-containing 

compounds (Ochsner et al., 2000; Mu et al., 2013).  

Changes in the relative abundance of several proteins associated with detoxification 

indicate similar mechanisms employed by P. aeruginosa to overcome the challenges 

associated with exposure to A. fumigatus CuF and Co-culture (Table 4.7). An increase in 

the relative abundance of thioredoxin reductase and sulfite reductase indicate a 

requirement to reduce redox-active disulphide bonds, for example, those formed by 

gliotoxin (Dolan et al., 2015).  

The differential abundance of outer membrane proteins (OMP) involved in P. 

aeruginosa exposed to A. fumigatus CuF compared to Co-culture CuF suggest different 

regulatory response to the contents of the two CuF (Table 4.8). OMPs regulate the influx 

and efflux of nutrients and potentially toxic compounds in and out of the cell. The greatest 

differences in the relative abundance of OMP were observed in OprC, OprG and OprM. 

OprC regulates the influx of copper ions into the cell (Yoneyama and Nakae, 1996; 

Quintana et al., 2017). OprG is upregulated under anaerobic conditions and is associated 

with amino acid import (Mcphee et al., 2009; Reddy et al., 2018). OprM forms the 

ejection component of the MexAB-OprM efflux system and is responsible for resistance 

against β-lactams and quinolones, amongst others (Wang et al., 2010; Horna G., López 

M., Guerra H., 2018). In bacteria cultured in A. fumigatus CuF and Co-culture CuF, the 

relative abundance of OprD was decreased. Downregulation of this protein has been 

associated with resistance to carbapenems (Farra et al., 2008). An increase in the relative 

abundance of OMPs in bacteria exposed to A. fumigatus CuF indicates a greater need to 

expel potentially potent compounds from the bacterial cell. An increase in the relative 

abundance of OMPs in P. aeruginosa exposed to A. fumigatus CuF suggest a more toxic 

secretome than that found in the Co-culture CuF (Table 4.8). This suggests that the 

presence of P. aeruginosa during the co-culture process may have influenced anti-

bacterial toxin production by A. fumigatus resulting in a less toxic growth medium for the 

bacteria. 

Plate assays revealed a number of interesting results in the context of the physical 

interactions that occur between P. aeruginosa and A. fumigatus. P. aeruginosa was able 

to grow over and migrate through established colonies of A. fumigatus (Fig. 4.7 and 4.8). 

It is possible that proteases secreted by P. aeruginosa degrade A. fumigatus conidia, 
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enabling the bacteria to create a path over or through the wall of spores (Smith et al., 

2015).  

Swim assays were performed to investigate whether P. aeruginosa would migrate 

towards A. fumigatus. P. aeruginosa had begun to migrate towards A. fumigatus 12 hours 

post-inoculation (Fig. 4.9A). The growth was not dependent on A. fumigatus as the same 

rate of growth was observed on plates where the fungus was absent (Fig. 4.9D). By 24 

hours, (36 for A. fumigatus) both pathogens had more than doubled in size (Fig. 4.9B). 

By 36 hours post-inoculation, P. aeruginosa had covered all the space on the agar plate 

and surrounded the A. fumigatus colony which had not increased in size since 12 hours 

previous (Fig. 4.9C). Where A. fumigatus was absent, P. aeruginosa was slower to cover 

the agar. Pyocyanin production began to occur 24 hours post-inoculation as evidenced by 

the typical green pigment (Fig. 4.9 B, C and E). On closer inspection by microscopy, P. 

aeruginosa was making contact with the fungal hyphae and conidia by 36 hours (Fig. 

4.10 A and B). Interestingly, bacterial cells were more densely packed further away from 

the hyphae. Closer to and surrounding the hyphae, bacterial cells were more dispersed. P. 

aeruginosa has less effect on hyphae than on conidia or germlings (Manavathu et al., 

2014). This may be due to the secretion of fungal metabolites such as gliotoxin (Reece et 

al., 2018).  

Onward studies are necessary to perform further analysis on the A. fumigatus CuF 

with a view to determining which factors contained within this media may be promoting 

the rapid growth of P. aeruginosa. Mutant strains of A. fumigatus lacking genes for certain 

peptidases and proteases identified in this study may be used to alter the nutrional content 

of the CuF. Because the pH of the environment has an influence on the secretome of A. 

fumigatus (Sriranganadane et al., 2011), alterations to the pH of the growth medium may 

force the fungus to generate an alternative environment, which may alter bacterial growth 

to give different results to those detected in this study. 
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4.4 Conclusion 

 

In this study, LFQ proteomics was employed to characterize the response of P. 

aeruginosa to an environment previously inhabited by A. fumigatus and/or P. aeruginosa. 

The culture medium chosen for this study is rich in sodium nitrates and sugars but lacks 

amino acids and in itself, proved unsuitable for sustaining bacterial growth. However, A. 

fumigatus altered this environment to favour the growth of, and confer fitness to P. 

aeruginosa under conditions known to exist in the cystic fibrosis airways, such as high 

nitrate and amino acid content. Thus, it would seem that the presence of A. fumigatus 

enhances growth of P. aeruginosa in co-culture. Additionally, analysis of the physical 

interactions that occurred between these pathogens on a solid or semi-solid surface 

showed that P. aeruginosa could outcompete A. fumigatus by growing over or through 

conidia. However, the development of hyphae somewhat halted this process. 

Understanding the strategies and the environmental conditions that permit P. aeruginosa 

to dominate as the primary pathogen in the cystic fibrosis lung is crucial for the 

development of novel therapeutic targets and for designing therapeutic programmes for 

patients affected by infections caused by these bacteria.   
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Chapter Five 
 

 

Characterization of the response  

of Aspergillus fumigatus  
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5.1 Introduction 

 

Many of the determinants that contribute to the success of A. fumigatus as a 

ubiquitous saprophyte, are the same factors that enable to be a successful opportunistic 

human pathogen (Tekaia and Latge, 2005). Among these attributes are the wide range of 

biosynthetic gene clusters (>30) responsible for the production of secondary metabolites 

that confer advantages to A. fumigatus in its natural habitat, including protection against 

UV stress, desiccation and competition with other microorganisms (Inglis et al., 2013; 

Bignell et al., 2016; Raffa and Keller, 2019). In the context of human infection, some of 

these secondary metabolites are involved in evading or subverting the host immune 

response in vivo. Thus, owing to their clinical relevance, A. fumigatus secondary 

metabolites and their effects on the host have been well characterized (Fallon et al., 2010; 

Amin et al., 2014; Schlam et al., 2016a; Bignell et al., 2016; Raffa and Keller, 2019).  

From an early age, A. fumigatus is frequently detected in the airways of 

individuals with cystic fibrosis (Amin et al., 2010; Reece et al., 2019). Co-infection with 

A. fumigatus and P. aeruginosa occurs intermittently and to a lesser extent persistently, 

however when co-infection exists, lung function deteriorates (Reece et al., 2017a; Zhao 

et al., 2018b). Where these two pathogens have been studied in the context of co-

infection, P. aeruginosa was shown to inhibit A. fumigatus growth in vivo and in vitro 

(Yonezawa et al., 2000; Mowat et al., 2010; Briard et al., 2015; Ferreira et al., 2015; 

Shirazi et al., 2016; Sass et al., 2018). In contrast to the findings from these direct 

interaction studies, indirect interaction studies have shown that the secondary metabolite, 

gliotoxin, isolated from A. fumigatus and dimethyl sulphide, a volatile organic compound 

derived from P. aeruginosa, inhibit P. aeruginosa growth or promote A. fumigatus growth 

respectively (Briard et al., 2016; Reece et al., 2018). How one pathogen impacts the 

metabolome of another may have serious implications for the host, as competition 

between microorganisms can often lead to an altered secretion profile that increases 

damage to host tissue (Smith et al., 2015; Sass et al., 2019). 

Although numerous interaction studies have been performed between these 

pathogens, the influence of P. aeruginosa on the A. fumigatus proteome and secondary 

metabolite production has not been well studied to date. The objective of the study 
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presented in this chapter was to address this knowledge gap. The effect on A. fumigatus 

of direct and indirect interactions between the fungus and the bacteria was investigated. 

LFQ proteomics was employed to gain better insights into how A. fumigatus responds to 

P. aeruginosa and its secretome in co-culture and to elucidate the mechanisms that allow 

the fungus to persist or desist in the presence of the dominant bacterial pathogen. 
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5.3 Results 

 

5.3.1 The effect of P. aeruginosa on A. fumigatus growth and gliotoxin production  

 

To investigate the effect of P. aeruginosa on A. fumigatus growth, different 

concentrations of P. aeruginosa (1 ml OD 1.0, which equates to approximately 3 x 108 

cells/ml, OD0.5 and OD0.1) were added to a 48-hour A. fumigatus culture grown in 

Czapek-Dox (100 ml). The co-culture was incubated for 24 hours after which the wet 

weight of the fungus was obtained (Fig. 5.1A). Gliotoxin was extracted from each group 

of bacterial-exposed A. fumigatus cultures and detected by RP-HPLC (Fig. 5.1B). The 

decrease in wet weight and an increase in gliotoxin production correlated with the 

increase in P. aeruginosa density levels (Fig. 5.1A and 5B). The wet weight of fungal 

cultures exposed to the highest concentration of P. aeruginosa (OD 1.0) (9.1 ±0.3 mg/ml) 

were 46% lower than the controls (16.7 ± 3.1 mg/ml). The levels of gliotoxin produced 

by A. fumigatus exposed to these bacterial densities was 2.82 ± 0.3 µg/mg. In contrast, 

gliotoxin levels produced by unexposed fungal cultures was three-fold lower (0.96 ± 0.03 

µg/mg) 
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Fig. 5.1 The effect of P. aeruginosa on A. fumigatus growth and gliotoxin production. A. 

fumigatus growth decrease with increasing P. aeruginosa inoculum (A). A. fumigatus 

produced more gliotoxin in response to higher densities of P. aeruginosa (B). 
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To investigate the effect of the P. aeruginosa secretome on A. fumigatus growth 

and gliotoxin production, A. fumigatus conidia were cultured in Czapek-Dox (50 ml) for 

24 hours. Czapek-Dox/PBS (50 ml, 1:1) was added to one group (controls), and P. 

aeruginosa culture filtrate (CuF) (50 ml) produced in a 72 –hour culture was added to the 

other group (treatment). The fungal cultures were incubated for 24 hours. The wet weights 

were measured and gliotoxin was extracted for analysis by HPLC. The wet weight of A. 

fumigatus was greater when cultured in Czapek-Dox and PBS (7.8 ±1.1 mg/ml) than when 

cultured in the presence of P. aeruginosa CuF (4.0 ± 0.65 mg/ml). In contrast, the 

concentration of gliotoxin was greater in fungal cultures exposed to P. aeruginosa CuF 

than the controls (2.6 ±0.5 µg/ml compared to 1.58 ± 0.22 µg/ml) (Fig. 5.2). 

 

 

 

 

 

 

 

 

 

 

Fig. 5.2 The effect of P. aeruginosa CuF on A. fumigatus hyphal growth and gliotoxin 

production. In response to P. aeruginosa CuF A. fumigatus hyphal growth decreased and 

gliotoxin production increased in comparison to A. fumigatus cultured in Czapek-Dox. 

 

To investigate the effect of P. aeruginosa on conidial growth and development, 

P. aeruginosa was cultured for 48 hours in Czapek-Dox and filter-sterilized to make P. 

aeruginosa CuF. The pH of this CuF was determined to be pH 8.0. The P. aeruginosa 

CuF was used as the growth medium for freshly harvested conidia. To investigate the 

effect of co-culture culture filtrates on fungal growth and development, A. fumigatus and 

P. aeruginosa were grown in Czapek-Dox for 24 hours after which the cultures were 
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combined and grown for a further 24 hours. The culture filtrates were filter-sterilized and 

the pH was determined (pH 4.2). This CuF was termed Co-culture CuF. To produce A. 

fumigatus CuF (control) A. fumigatus conidia were cultured in Czapek-Dox for 48 hours 

after which the hyphae were harvested. The culture filtrates sterilized by filtration and the 

pH was determined (pH 4.4). The wet weights of A. fumigatus hyphae that produced these 

culture filtrates was recorded (Fig. 5.3A). There was a 12-fold difference between the wet 

weight of the hyphae that produced the Co-culture CuF (0.46 ± 0.07 mg/ml) compared to 

that which produced the A. fumigatus CuF (5.6 ± 0.05 mg/ml). Conidia (5 x105/ml) were 

added to each of the culture filtrates (50 ml) and incubated for 24 hours. Conidia did not 

germinate in the flasks containing Co-culture CuF. Aliquots were removed from the Co-

culture CuF and applied to MEA plates. Colonies formed after 24 hours and a total of 4.2 

x 105 ± 0.24 x 105 CuFUs/ml were counted (data not shown).  

This study was repeated, however the experimental designed was altered slightly 

to allow conidia to germinate prior to exposure to culture filtrates. Conidia were cultured 

in 25 ml Czapek-Dox for four hours until A. fumigatus germlings could be visualised. A. 

fumigatus CuF, P. aeruginosa CuF or and Co-culture CuF (50 ml) was added to flasks 

containing germinating conidia. The cultures were incubated for 24 hours. The wet 

weights of hyphae after exposure to the culture filtrates was measured (Fig. 5.3A). In 

contrast to the wet weight of hyphae obtained from the cultures having been co-cultured 

with P. aeruginosa (0.46 ± 0.07 mg/ml), A. fumigatus growth was greater after exposure 

to Co-culture CuF (7.3 ± 0.36 mg/m) and P. aeruginosa CuF (6.93 ± 0.25 mg/ml) 

compared to growth in A. fumigatus CuF (3.5 ± 0.21 mg/ml) (Fig. 5.3A). The workflow 

for this experimental design is outlined in Figure 5.4 

Gliotoxin was extracted from the fungal cultures exposed to the different CuF and 

analysed by HPLC (Fig. 5.3B). The highest levels of gliotoxin were detected in the 

supernatants of the fungal cultures exposed to A. fumigatus CuF (2.1 ± 0.27 µg/mg 

hyphae). In the supernatants of fungal cultures exposed to Co-culture CuF and P. 

aeruginosa CuF, the levels of gliotoxin detected were 1.3 ± 0.26 µg/ml and 0.24 ±0.07 

µg/ml respectively.. 
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Fig. 5.3A The effect of P. aeruginosa and P. aeruginosa CuF on A. fumigatus growth. The 

wet weight of A. fumigatus cultured in Czapek-Dox for 48 hours was 12 times greater than the 

wet weight of A. fumigatus cultured in Czapek-Dox for 24 hours followed by co-culture with P. 

aeruginosa for 24 hours. The wet weight of A. fumigatus cultured for 24 hours in A. fumigatus 

CuF, P. aeruginosa CuF and Co-culture CuF was greater than that of A. fumigatus cultured in 

Czapek-Dox only, for 48 hours. Fig. 5.3B The effect on gliotoxin production in A. fumigatus 

exposed to A. fumigatus CuF, Co-culture CuF and P. aeruginosa CuF. The levels of gliotoxin 

production was greatest where A. fumigatus was cultured in A. fumigatus CuF and lowest when 

cultured in P. aeruginosa CuF. 
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Fig. 5.4 Experimental design workflow. A. fumigatus conidia or P. aeruginosa were cultured in 

Czapek-Dox media 48 hours. The filtrates were filter-sterilized and the hyphae from the A. 

fumigatus culture were weighed. A. fumigatus and P. aeruginosa 24-hour cultures were co-

incubated for 24 hours. The filtrates were filter-sterilized and the hyphae from the co-culture were 

weighed. Conidia were cultured for 4 hours until germination occured. The filter-sterilized 

cultured filtrates were added to the germinated conidia and incubated for 24 hours after which 

hyphae were weighed. 

 

5.3.2 The proteomic response of A. fumigatus to P. aeruginosa culture filtrates 
 

Changes to the proteome of A. fumigatus in response to P. aeruginosa were 

investigated by LFQ proteomics, which was performed on A. fumigatus exposed to P. 

aeruginosa CuF, Co-culture CuF and A. fumigatus CuF (control) (n = 3). In total, 3403 

proteins were initially identified, of which 1291 remained after filtering and processing 

(Table A5.1A). Of the 1291, proteins identified post-imputation, 228 proteins in the Co-

culture CuF-treated group (Table A5.1B) and 193 in the P. aeruginosa CuF-treated group 

(Table A5.1C) were determined to be statistically significant (p<0.05) differentially 

abundant (SSDA) with a fold change of +/- 1.5. A principal component analysis (PCA) 

was performed on all filtered proteins and identified distinct proteomic differences 

between the groups (Fig 5.5). Components 1 and 2 accounted for 62.2% of the total 

variance within the data, and all replicates resolved into their corresponding samples. The 

groups exposed to A. fumigatus CuF (control) displayed a clear divergence to those that 
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were challenged with P. aeruginosa CuF or Co-culture CuF. A distinct separation 

between the groups cultured in P. aeruginosa CuF and Co-culture CuF was also observed. 

Volcano plots were produced by pairwise Student’s t-tests (p <0.05) to determine 

the differences in protein abundance between two samples and to depict the changes in 

pathways and processes in which those proteins are involved (Fig. 5.6A-C). SSDA protein 

names arising from the pair wise t-tests were inputted into the STRING and KEGG 

database and used to identify biological pathways and processes over-represented in a 

particular group. 

 

 

 

 

 

 

 

 

 

Fig. 5.5 PCA of A. fumigatus proteins groups Principal component analysis (PCA) of A. 

fumigatus exposed to A. fumigatus CuF (yellow stars) Co-culture CuFs (green circles) and P. 

aeruginosa CuF (blue hexagons). A clear distinction can be observed between each of the groups 

exposed to P. aeruginosa CuF and Co-culture CuF and the control (A. fumigatus CuF). 
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Fig 5.6 Differential abundance of proteins in the A. fumigatus proteome. Volcano plots 

derived from pairwise comparisons between A. fumigatus cultured in P. aeruginosa CuF and A. 

fumigatus CuF (A), Co-culture CuF and A. fumigatus CuF (B) and Co-culture CuF and P. 

aeruginosa  CuF (C). The distribution of quantified proteins according to p value (−log10 p-value) 

and fold change (log2 mean LFQ intensity difference) is shown. Proteins above the line are 

considered statistically significant (p-value <0.05). In general, protein components associated 

with hydrolase activity (orange) and transport (green) are more abundant in fungus cultured in P. 

aeruginosa CuF compared to A. fumigatus CuF and Co-culture CuF. The relative abundance of 

proteins associated with the transport activity (green) and transferase activity was decreased in A. 

fumigatus cultured in P. aeruginosa CuF and Co-culture CuF compared to A. fumigatus CuF.  

 

 

 

 

 

A 
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The proteomic data arising from Student’s t-tests (p < 0.05) identified several 

pathways that were most affected by fungal culture conditions. Although many of the 

proteins involved in such pathways were identified in both groups, significant differences 

in the relative abundance of these proteins were also identified, indicating distinct 

differences in the proteomic response of A. fumigatus depending on the CuF to which it 

was exposed. There was a significant increase in the relative abundance of proteins 

associated with secondary metabolite biosynthesis in A. fumigatus cultures exposed to P. 

aeruginosa CuF and to Co-culture CuF. The relative abundance of proteins involved in 

pseurotin A biosynthesis (Methyltransferase psoC and PKS-NRPS hybrid synthetase 

psoA), verruculogen and fumitremorgin biosynthesis (Verruculogen synthase) were 

increased significantly (Table 5.1; Fig. 5.10D). In contrast, the relative abundance of 

several proteins involved in gliotoxin biosynthesis were significantly decreased in fungal 

cultures exposed to P. aeruginosa CuF compared to A. fumigatus CuF and the Co-culture 

CuF. These included the protein products of gliF, gliG, gliN and gliT (Table 5.1). 

 

Table 5.1 Proteins associated with secondary metabolite biosynthesis. SSDA (t-test, p < 

0.05) proteins associated secondary metabolite biosynthesis, and relative fold differences 

between A. fumigatus cultured in Co-culture CuF and A. fumigatus CuF (Cc v Af), and between 

P. aeruginosa CuF and A. fumigatus CuF (Pa v Af). 

 

Gene Protein name Fold change 

 Cc v Af     Pa v Af                               

    

AFUA_8G00550 Methyltransferase psoC 11.0 40.3 

NRPS14 PKS-NRPS hybrid synthetase psoA ns 30.6 

ftmOx1 Verruculogen synthase ns 27.3 

ftmPT1 Tryprostatin B synthase ns 5.9 

AFUA_8G00440 Dual-functional monooxygenase/methyltransferase 

psoF 

3.7 14.4 

AFUA_6G09690 Glutathione S-transferase gliG ns -18.4 

AFUA_6G09720 N-methyltransferase gliN -9.2 -19.9 

AFUA_6G09730 Cytochrome P450 monooxygenase gliF ns -23.3 

AFUA_6G09740 Thioredoxin reductase gliT ns -106.6 
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While the majority of SSDA proteins associated with a stress-response and 

detoxification were increased in Co-culture CuF and P. aeruginosa CuF-exposed A. 

fumigatus there was a decrease in the relative abundance of several proteins involved in 

these pathways (Table 5.2). Changes in this pathway were most pronounced in the groups 

exposed to Co-culture CuF as evidenced by the frequency of changes occurring in the 

protein groups.   

Table 5.3 lists the SSDA proteins associated with transcriptional regulation. In 

general, the relative abundance of proteins associated with transcriptional regulation was 

increased in groups exposed to Co-culture CuF and P. aeruginosa CuF (Table 5.3; Fig. 

5.6A). Compared to A. fumigatus CuF, the most differentially abundant protein identified 

by Student’s t-tests (p < 0.05) in A. fumigatus cultures exposed to Co-culture CuF or P. 

aeruginosa CuF was histone H3. Proteomic analysis detected no significant decrease of 

proteins associated with transcriptional regulation in fungal cultures exposed to P. 

aeruginosa CuF, however a decrease in the relative abundance of six proteins associated 

with this process were identified in A. fumigatus cultures exposed to Co-culture CuF 

(Table 5.3).  

Student’s t-tests identified 57 SSDA proteins associated with ribosomes and 

translation (Table A5.1B and 5.1C). Of these, the relative abundance of 13 proteins were 

increased and 16 proteins were decreased in A. fumigatus exposed to Co-culture CuF 

(Table A5.1B)  and the relative abundance of 13 proteins was increased and 16 proteins 

were decreased in A. fumigatus exposed to P. aeruginosa CuF (Table A5.1C). The 

changes in protein abundance associated with these pathways are depicted in KEGG maps 

(Fig. 5.7A and B).  
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Fig. 5.7 KEGG pathway analysis depicting changes in ribosomes. The relative abundance of several 

SSDA proteins associated with the ribosome were increased (red) and decreased (blue) in A. fumigatus 

exposed to Co-culture CuF (A) and P. aeruginosa CuF (B).  
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Compared to the fungal cultures exposed to A. fumigatus CuF and Co-culture CuF, 

very few statistically significant changes in the relative abundance of proteins were 

identified in pathways associated with intracellular transport in A. fumigatus exposed to 

P. aeruginosa CuF (Table 5.4; Fig. 5.6). The relative abundance of several proteins 

involved in intracellular transport were decreased in A. fumigatus exposed to Co-culture 

CuF (Table 5.4). 

The relative abundance of proteins associated with aerobic respiration was 

decreased while the relative abundance of proteins associated with anaerobic respiration 

such as nitrate reductase and nitrate/nitrite transporters were increased in A. fumigatus 

exposed to P. aeruginosa CuF and to a lesser extent Co-culture CuF (Table 5.5). A 

decrease in the relative abundance of several SSDA proteins associated with the oxidative 

phosphorylation (OXPHOS) pathway was observed in both groups. Proteins affected in 

this process are depicted in KEGG maps showing the oxidative phosphorylation pathway 

(Fig. 5.8). The groups exposed to P. aeruginosa CuF were more affected by the decreased 

levels of proteins involved in the OXPHOS pathway (Fig. 5.8B) than groups exposed to 

Co-culture CuF (Fig. 5.8A) 

 

Table 5.2 Proteins associated with response to stress. SSDA (t-test, p < 0.05) proteins 

associated with a stress response and detoxification, and relative fold differences between A. 

fumigatus cultured in Co-culture CuF and A. fumigatus CuF (Cc v Af), and between P. 

aeruginosa CuF and A. fumigatus CuF (Pa v Af). 

 

 

Gene 

 

Protein 

Fold change 

CC v Af    Pa v Af 

AFUA_5G03540 Thioredoxin reductase, putative 5.2 44.9 

AFUA_5G09330 CipC-like antibiotic response protein, putative 38.1 11.4 

AFUA_6G04920 Formate dehydrogenase 15.1 ns 

AFUA_3G14540 Heat shock protein Hsp30/Hsp42 ns 8.4 

AFUA_7G02070 AIF-like mitochondrial oxidoreductase 3.1 2.3 

fes1 Hsp70 nucleotide exchange factor fes1 2.6 ns 

AFUA_2G11750 Mitochondrial DnaJ chaperone (Mdj1), putative 2.1 ns 

AFUA_5G04250 Homocysteine synthase CysD 2.2 2.7 

AFUA_5G11430 Quinone oxidoreductase, putative 3.3 ns 

mia40 Mitochondrial intermembrane space import and 

assembly protein 40 

3.7 6.4 

AFUA_3G12270 Glutathione peroxidase ns 2.2 

AFUA_6G13490 Glutamate decarboxylase 2 ns 

katG Catalase-peroxidase 2 2.5 
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AFUA_4G11250 Carbonic anhydrase ns 2.6 

AFUA_3G12560 Allantoicase Alc ns 2.3 

thiA Thiamine thiazole synthase ns 1.6 

AFUA_4G03900 Peroxisomal multifunctional beta-oxidation protein ns 1.6 

AFUA_3G10190 Peroxisomal membrane anchor protein ns 1.5 

AFUA_2G04620 Hsp70 chaperone BiP/Kar2, putative 1.9 ns 

AFUA_1G15050 Hsp70 family chaperone Lhs1/Orp150, putative 1.5 ns 

AFUA_2G08750 Mitochondrial inner membrane nuclease Nuc1, putative 1.5 ns 

AFUA_2G05500 NADH-ubiquinone oxidoreductase 18 kDa subunit 1.8 1.6 

AFUA_7G01860 Heat shock protein (Sti1), putative 1.7 1.3 

AFUA_1G12290 NADH-ubiquinone oxidoreductase 1.5 ns 

AFUA_2G09850 Oxidoreductase, 2-nitropropane dioxygenase family, 

putative 

1.5 ns 

AFUA_7G00350 Pyr_redox_2 domain-containing protein 1.5 ns 

AFUA_4G03650 Ribosome associated DnaJ chaperone Zuotin, putative 1.5 ns 

AFUA_3G00730 GST N-terminal domain-containing protein -4.3 ns 

AFUA_2G03140 Peptide methionine sulfoxide reductase -2.9 -3.0 

AFUA_2G15180 Glutaredoxin domain-containing protein -2.5 -3.0 

AFUA_5G07780 Squalene monooxygenase Erg1 -2.5 ns 

AFUA_6G14330 5-oxo-L-prolinase, putative -2.3 -1.9 

pim1 Lon protease homolog, mitochondrial -2.1 ns 

AFUA_1G11180 Heat shock protein/chaperonin HSP78, putative -2.1 ns 

AFUA_2G15180 Glutaredoxin domain-containing protein -2.5 -3.0 

AFUA_2G03140 Peptide methionine sulfoxide reductase 2.9 -3.0 

AFUA_6G14330 5-oxo-L-prolinase, putative 2.3 -1.9 

AFUA_3G01400 ABC multidrug transporter, putative -3.4 -26.8 
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Table 5.3 Proteins assoictaed with transcription. SSDA (t-test, p < 0.05) proteins associated 

with transcriptional regulation, and relative fold differences between A. fumigatus cultured in 

Co-culture CuF and A. fumigatus CuF (Cc v Af), and between P. aeruginosa CuF and A. 

fumigatus CuF (Pa v Af). 

Gene Protein Fold change 

Cc v Af     Pa v Af 

hhtA Histone H3 72.4 39.0 

htz1 Histone H2A.Z 4.2 ns 

AFUA_6G02520 Eukaryotic translation initiation factor eIF-1A subunit ns 6.4 

cef1 Pre-mRNA-splicing factor cef1 ns 3.5 

AFUA_1G10960 Mago nashi domain protein ns 3.1 

AFUA_2G11840 Transcriptional corepressor Cyc8, putative ns 3 

AFUA_1G14680 DNA-directed RNA polymerase subunit 2.8 3 

AFUA_2G07410 Pre-mRNA splicing factor (Srp1) 2.3 1.5 

AFUA_6G13330 RNA binding protein, putative ns 2.5 

AFUA_5G11390 APSES transcription factor, putative 2.0 1.8 

AFUA_1G04550 HMG box protein, putative 1.5 1.8 

AFUA_2G13720 DNA-directed RNA polymerase I and III subunit Rpc40, 

putative 

2.2 2.2 

AFUA_1G11190 Eukaryotic translation elongation factor 1 subunit Eef1-

beta 

ns 1.8 

AFUA_6G10620 Nuclear pore complex subunit, putative 2.1 2.7 

AFUA_5G07890 SsDNA binding protein, putative 1.7 ns 

AFUA_5G13860 RNA annealing protein Yra1, putative 1.7 1.4 

AFUA_2G05610 RNA binding protein Jsn1, putative 1.6 ns 

AFUA_3G12290 Spliceosomal protein DIB1 4.0 2.0 

AFUA_1G11190 Eukaryotic translation elongation factor 1 subunit Eef1-

beta 

ns 1.8 

AFUA_5G02030 Cleavage and polyadenylation specific factor 5 ns 1.7 

AFUA_7G05510 RSC complex subunit (RSC8 ns 1.5 

rvb2 RuvB-like helicase 2 ns 1.5 

AFUA_1G06190 Histone H4 arginine methyltransferase RmtA -3.7 ns 

AFUA_4G10540 Transcription regulator BDF1, putative -2.5 ns 

AFUA_1G09020 Nuclear pore complex protein (SonA), putative -2.7 ns 

AFUA_5G10770 Topisomerase II associated protein (Pat1), putative -1.9 ns 

rvb1 RuvB-like helicase 1 -1.9 ns 

AFUA_7G01920 DNA-directed RNA polymerase subunit beta -1.8 ns 
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Table 5.4 Proteins associated with transport. SSDA (t-test, p < 0.05) proteins involved with 

protein transport, and relative fold differences between A. fumigatus cultured in Co-culture 

CuF and A. fumigatus CuF (Cc v Af), and between P. aeruginosa CuF and A. fumigatus CuF 

(Pa v Af). 

 

Gene 

 

Protein name 

Fold change 

  Cc v Af    Pa v Af 

AFUA_2G12870 Vesicular-fusion protein sec17 8.1 ns 

AFUA_2G15240 Small oligopeptide transporter, OPT family 7.2 ns 

AFUA_2G03860 Plasma membrane low affinity zinc ion 

transporter, putative 

1.9 ns 

AFUA_1G04890 Translocon protein Sec61beta, putative 1.8 ns 

AFUA_7G01510 SNARE domain protein 1.6 ns 

AFUA_3G10740 RAB GTPase Vps21/Ypt51 1.8 1.6 

AFUA_2G09830 ARF GTPase activator (Glo3) ns 1.6 

AFUA_7G01840 Membrane bound C2 domain protein (Vp115) 1.3 1.5 

AFUA_1G15720 Importin beta-1 subunit -8.0 ns 

AFUA_1G04850 Dynein light chain -5.4 ns 

AFUA_1G08790 Exportin KapK -4.0 ns 

AFUA_1G09030 Coatomer subunit zeta, putative -4.0 ns 

AFUA_5G03260 Endosomal cargo receptor (Erp3), putative -3.0 ns 

AFUA_8G02840 Dynamin-like GTPase Dnm1, putative -3.0 ns 

AFUA_4G09520 SNARE protein Ykt6, putative -2.6 ns 

AFUA_1G13260 Coatomer subunit epsilon -2.4 ns 

AFUA_5G08130 Protein transport protein Sec61 alpha subunit, 

putative 

-2.3 ns 

AFUA_2G13760 Plasma membrane SNARE protein (Sec9) -2.1 -3.5 

AFUA_6G06900 Rho GTPase Rho1 ns -2.0 

AFUA_1G11730 ADP-ribosylation factor, putative ns -1.6 
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Table 5.5 Proteins associated with respiration. SSDA (t-test, p < 0.05) proteins associated 

with respiration, and relative fold differences between A. fumigatus cultured in Co-culture CuF 

and A. fumigatus CuF (Cc v Af), and between P. aeruginosa CuF and A. fumigatus CuF  (Pa v 

Af). 

Gene Protein name Fold change 

Cc v Af   Pa v Af 

AFUA_4G11390 Ubiquinol-cytochrome c reductase complex -2.5 -6.9 

AFUA_5G09680 Succinate dehydrogenase cytochrome b560 subunit ns -6.5 

AFUA_7G02020 Uncharacterized protein -2.8 -4.3 

AFUA_6G12550 Mitochondrial carrier protein, putative -2.2 -3.6 

AFUA_5G03640 Mitochondrial export translocase Oxa1, putative ns -2.4 

AFUA_3G06190 Cytochrome c oxidase subunit VIa, putative ns -1.8 

AFUA_1G17470 Nitrate/nitrite transporter ns 5.3 

AFUA_1G12830 Nitrate reductase 1.8 1.6 

AFUA_2G09130 NADH-ubiquinone dehydrogenase 24 kDa subunit ns 1.5 

AFUA_5G06540 NADH dehydrogenase [ubiquinone] 1 alpha 

subcomplex subunit 

ns 1.5 

AFUA_4G11250 Carbonic anhydrase ns 2.6 
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Fig. 5.8 KEGG map depicting changes in the OXPHOS pathways. The relative abundance of 

several SSDA proteins associated with the OXPHOS pathway were increased (red) and decreased 

(blue) in A. fumigatus exposed to Co-culture CuF (A) and P. aeruginosa CuF (B). 

A

B
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Although the relative abundance of proteins involved in cell wall biosynthesis was 

affected in A. fumigatus cultures that had been exposed to Co-culture CuF and P. 

aeruginosa CuF, there was a greater decrease in the relative abundance of proteins 

involved with the β-glucan biosynthetic pathway (e.g. 1,3-beta-glucan synthase catalytic 

subunit FksP and 1,3-beta-glucanosyltransferase Bgt1) in A. fumigatus exposed to Co-

culture CuF (Table A5.1A and B). Similarly, a greater decrease in the relative abundance 

of proteins involved in proteasome-mediated degradation was observed in the group 

exposed to Co-culture CuF (Table A5.1A and B). These included proteins of the 

proteasome such as proteasome subunit beta, proteasome regulatory particle subunit 

(RpnI) and 26S proteasome regulatory subunit S5A.  

 

Fig. 5.9 KEGG maps depicting changes in RNA transport. The relative abundance of several 

SSDA proteins associated with RNA transport were decreased (blue) and few were increased 

(red) in A. fumigatus exposed to Co-culture CuF. 
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Fig. 5.10 Proteins detected by 2D SDS PAGE. Proteins detected by 2D SDS PAGE in A. 

fumigatus exposed to A. fumigatus CuF (control) (A) were compared with proteins detected in A. 

fumigatus exposed to Co-culture CuF (B) and P. aeruginosa CuF (C). SSDA Protein names and 

fold changes (p < 0.05) are listed in (D.) Red and black arrows indicate a decrease and increase 

in the relative abundance of proteins compared to the control 
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C Heat shock protein Sti1 ns +3.2

D Catalase B +5.7 ns
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H Methyltransferase psoC +4.7 ns
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C D Fold changes in proteins between different groups 
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5.4 Discussion 

 

Interaction studies performed between A. fumigatus and P. aeruginosa have 

consistently shown that P. aeruginosa and its secondary metabolites inhibit A. fumigatus 

growth in vitro and in vivo (Yonezawa et al., 2000; Briard et al., 2015; Briard et al., 2017; 

Briard et al., 2019). While the effect of P. aeruginosa on A. fumigatus biofilm-formation 

and its ability to inhibit fungal growth and development is well established, the proteomic 

response of A. fumigatus to P. aeruginosa remains largely uncharacterized. The findings 

presented in this chapter contribute to the current knowledge surrounding these 

interactions. 

P. aeruginosa exposure to 48-hour cultures of A. fumigatus grown in Czapek-Dox 

resulted in reduced fungal growth. This growth decrease was dependent on the 

concentration of bacteria to which A. fumigatus was exposed, as lower hyphal wet weights 

correlated with higher inocula of P. aeruginosa (Fig. 5.1A). In contrast, RP-HPLC 

detected increased levels of gliotoxin in fungal cultures exposed to higher bacterial 

inocula (Fig. 5.1B). Similar observations were made when 24-hour A. fumigatus cultures 

were exposed to the culture filtrates produced by P. aeruginosa in Czapek-Dox (Fig. 5.2).  

The growth inhibiting effect of P. aeruginosa on A. fumigatus has been reported 

previously (Briard et al., 2015; Sass et al., 2018; Sass et al., 2019). Rhamnolipids are a 

family of glycolipids produced by P. aeruginosa and other Pseudomonas species (Abalos 

et al., 2001). Dirhamnolipids produced by P. aeruginosa inhibit β 1, 3-glucan synthase 

thereby interfering with fungal cell-wall architecture (Briard et al., 2017). Other 

mediators of growth inhibition include pyoverdin, a bacterial siderophore that sequesters 

iron from the environment and the fungus and pyocyanin which disrupts the redox balance 

in the environment (Briard et al., 2015; Sass et al., 2018).  

However, the effect of P. aeruginosa on secondary metabolite production is less 

well explored. The observations made during this study indicate that P. aeruginosa 

creates an environment that forces A. fumigatus to increase gliotoxin production. Because 

gliotoxin is responsible for maintaining redox homeostasis in the fungus, an increase in 

gliotoxin production may be indicative of bacterial-mediated induction of ROS, which is 

known to compromise fungal growth and survival (Briard et al., 2015).  Gliotoxin is a 

signature virulence factor of A. fumigatus with immunosuppressive effects on host cells 
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(Stanzani et al., 2005; Orciuolo et al., 2007; Schlam et al., 2016) thus, in the context of 

co-infection, the propensity of P. aeruginosa to promote gliotoxin production in A. 

fumigatus, may have serious implications for host health. 

To understand the biological pathways and processes adopted by A. fumigatus in 

response to P. aeruginosa, a proteomic approach was employed. A. fumigatus conidia 

were cultured in the culture filtrates produced by a) A. fumigatus (A. fumigatus CuF), b) 

P. aeruginosa (P. aeruginosa CuF) and c) a co-culture of A. fumigatus and P. aeruginosa 

(Co-culture CuF). Preliminary results showed that conidia were unable to germinate in 

Co-culture CuF. Conidia were not killed in this culture filtrate as when spread on agar 

plates, growth resumed, thus suggesting that the environment created in the co-culture 

was not conducive to germination.  

While the inability of A. fumigatus to germinate in the presence of P. aeruginosa 

may have implications for its potential to become invasive, these results also highlight 

the capacity of conidia to withstand stress conditions imposed by P. aeruginosa. In the 

cystic fibrosis lung, A. fumigatus rarely becomes invasive (Massam et al., 2011), although 

A. fumigatus is often cultured from the sputum samples of cystic fibrosis patients (Burgel 

et al., 2016) suggesting that although hyphae may not form, viable spores do exist. 

In order for a proteomic analysis on the effect of P. aeruginosa on developing 

hyphae to be performed, conidia were incubated for four hours in Czapek-Dox. Under 

optimal conditions, conidia should begin to germinate after approximately two hours 

(Hagiwara et al., 2016). Differential gene expression is paramount for the transition from 

resting conidia to germinating conidia. The expression of genes associated with resting 

conidia include those encoding the A. fumigatus allergens Asp f3, Asp f13, Asp f22, Asp 

f27 and CatA, encoding catalase, which is responsible for enabling conidia to withstand 

ROS-induced stress. By contrast, the expression of the allergens Asp f1, Asp f4 and Asp 

f7 are associated with germinating conidia and hyphae but silent in resting conidia 

(Hagiwara et al., 2016). Exposure to immune cells such as neutrophils also result in 

differential gene expression between conidia and hyphae (Sugui et al., 2008). The 

environment in which conidia are exposed influences the programme of gene expression 

in developing A. fumigatus conidia. The changes in gene expression lead to changes in 

the proteomic profile which is the ultimate determinant of a phenotype and dictates the 
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response of the fungus to a particular environment (Vödisch et al., 2011; Barker et al., 

2012; Briard et al., 2015; Schmidt et al., 2018; Raffa and Keller, 2019). 

In this chapter, LFQ proteomics was employed to characterize the changes in the 

A. fumigatus proteome when exposed to the culture filtrate of i) P. aeruginosa alone ii) 

the culture filtrate of an A. fumigatus-P. aeruginosa co-culture and iii) the culture filtrate 

of A. fumigatus alone. One of the most remarkable findings in the proteomic dataset, was 

a significant decrease in the relative abundance of four proteins associated with the 

gliotoxin biosynthetic gene-cluster in A. fumigatus that had been exposed to P. 

aeruginosa CuF compared to A. fumigatus CuF or Co-culture CuF. These proteins were 

Glutathione S-transferase gliG (-18.4-fold), N-methyltransferase gliN (-19.9-fold), 

Cytochrome P450 monooxygenase gliF (-23.3-fold) and Thioredoxin reductase gliT (-

106.6-fold). The only significant change in the relative abundance of proteins in this 

group detected in A. fumigatus exposed to the Co-culture CuF compared to A. fumigatus 

CuF was observed in GliN (-9.2-fold).   

To investigate whether the decrease in proteins involved in gliotoxin biosynthesis 

resulted in decreased gliotoxin titre, gliotoxin levels in the culture filtrates from the three 

groups were determined by RP-HPLC. The highest level of gliotoxin was detected in the 

culture filtrates from A. fumigatus exposed to A. fumigatus CuF, followed by Co-culture 

CuF and the lowest level of gliotoxin was detected in the fungus exposed to P. aeruginosa 

CuF (Fig. 5.3B). The wet weight of A. fumigatus was not affected by exposure to the Co-

culture CuF or the P. aeruginosa CuF. On the contrary and in contrast to earlier 

observations, an increase in growth was observed in both of these groups when compared 

to that, which occurred in the A. fumigatus CuF (Fig. 5.3A).   

The wet weight of hyphae taken from the 24- hour culture that was incubated with 

P. aeruginosa and which produced the Co-culture CuF, was significantly lower than that 

of the fungus cultured alone in Czapek-Dox for 48 hours (Fig. 5.3A). The substantial 

decrease in growth observed here compared to previous experiments (Fig. 5.1) where 

growth was decreased less drastically, may be accounted for by the volume of bacterial 

suspension co-cultured with A. fumigatus (i.e. 1:1 ratio compared to 1 ml P. aeruginosa 

suspension in 50 ml A. fumigatus suspension). Furthermore, previous experiments (Fig. 

5.1) used 48-hour cultures of A. fumigatus whereas on this occasion, A. fumigatus was 
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only grown for 24 hours prior to the addition of bacteria, thus the fungal density was 

lower at the time of co-culture. 

Taken together, these findings suggest that 1) germination is delayed in A. 

fumigatus conidia when exposed to an environment previously occupied by P. aeruginosa 

and A. fumigatus in co-culture, 2) A. fumigatus growth is inhibited by direct interactions 

with P. aeruginosa (Fig. 5.2), 3) P. aeruginosa CuF has an influence gliotoxin production 

in A. fumigatus and 4) under the conditions investigated here, gliotoxin production is 

correlated with low wet weight of fungal hypha (Fig. 5.1 – 5.3). In essence, the effect of 

P. aeruginosa on A. fumigatus development and gliotoxin production is dependent upon 

the stage of fungal growth.   

Comparisons of the A. fumigatus proteome in response to exposure of P. 

aeruginosa CuF and A. fumigatus CuF and to exposure of Co-culture CuF and A. 

fumigatus CuF revealed differential proteomic response largely mediated by changes in 

transcriptional regulation (Fig. 5.6, Table 5.3), ribosomal activity (Fig. 5.6), protein 

transport (Table 5.4), secondary metabolite production (Table 5.1) and detoxification 

(Table 5.2).  

An increase in the relative abundance of proteins associated with the biosynthesis 

of A. fumigatus secondary metabolites pseurotin A, verruculogen, fumitremorgin b and 

tryprostatin B was detected in fungal cultures exposed to P. aeruginosa CuF (Table 5.1). 

The relative abundance of proteins associated with the biosynthesis of pseurotin A was 

increased to a lesser extent in fungal cultures exposed to Co-culture CuF, but no 

significant changes in the abundance of proteins associated with other secondary 

metabolites were detected in this group (Table 5.1). In comparison to gliotoxin, little is 

known about the effect of these mycotoxins on host cells. Pseurotin A is a competitive 

inhibitor of chitin synthase and has been reported to have cytotoxic activity against anti-

cancer activities, thereby highlighting its potentially cytotoxic effect on host cells (Wenke 

et al., 1993; Martínez-Luis et al., 2012; Bladt et al., 2013). Verruculogen and 

fumitremorgin b are known to affect the central nervous system in vivo and in vitro, 

verruculogen alters the electrophysiological properties of human nasal epithelial cells 

suggesting this metabolite may participate in fungal colonization of the airways (Tepšič 

et al., 1997; Khoufache et al., 2007). An increase in the relative abundance of proteins 

associated with the biosynthesis of these metabolites in A. fumigatus coupled with a 
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decrease in the relative abundance of gliotoxin biosynthetic proteins indicate that P. 

aeruginosa creates an environment that causes A. fumigatus to alter secondary metabolite 

production to adapt to the conditions created by the bacteria. This may be in part, driven 

by the changes in the pH of the culture filtrates produced by P.aeruginosa where the pH 

of this medium was almost twice that found in the A. fumigatus CuF and the Co-culture 

CuF. The pH of an environment is known to be a contributing factor to mycotoxin 

production in Aspergillus species including A. fumigatus (Calvo et al., 2002; Bertuzzi et 

al., 2014). 

Upregulation of pseurotin A has been reported in A. fumigatus cultured under 

hypoxic conditions (Vödisch et al., 2011). In this study an increase in the abundance of 

several protein groups were observed, including nitrate/nitrite transporter and nitrate 

reductase (Table 5.5), suggesting hypoxic conditions in the environment where A. 

fumigatus was exposed to P. aeruginosa CuF. Moreover, the relative abundance of 

several proteins associated with aerobic respiration was decreased, particularly in the 

fungus exposed to P. aeruginosa CuF.  

The increases and decreases in the relative abundance of proteins associated with 

detoxification, DNA damage repair and oxidative stress response in A. fumigatus exposed 

to Co-culture CuF and P. aeruginosa CuF compared to A. fumigatus CuF highlights the 

ability of A. fumigatus to differentially regulate protein synthesis in response to 

environmental stresses imposed by competitors.  

Interestingly, and perhaps reflective of fungal growth increase in the culture 

filtrates produced by P. aeruginosa, the relative abundance of many of the proteins 

involved in an oxidative stress response did not change drastically (Table 5.2). One 

exception was an increase in the relative abundance of thioredoxin reductase (TrxR). The 

levels of this protein increased by 44.9-fold in A. fumigatus exposed to P. aeruginosa 

CuF compared to A. fumigatus CuF. Thioredoxin reductase is a member of the thioredoxin 

system in A. fumigatus and along with thioredoxin, it is essential for fungal viability and 

is involved in a number of responses including neutralizing ROS, regulation of several 

transcription factors and mediating disulphide bond insertion into proteins as they 

entering the ER (Marshall et al., 2019).  

It is interesting to note the substantial increase in this TrxR (Table 5.2) and the 

contrasting decrease in GliT, another TrxR (Table 5.1). A clear disparity in the relative 
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abundance of numerous stress-response proteins was identified between A. fumigatus 

exposed to Co-culture CuF, P. aeruginosa CuF and A. fumigatus CuF (Table 5.2). For 

example, a 2.9-fold increase in methionine sulfoxide reductase was detected in fungal 

cultures exposed Co-culture CuF whereas the relative abundance of the same protein had 

decreased three-fold in A. fumigatus exposed to P. aeruginosa CuF (Table 5.2). Similar 

occurrences were observed in various heat shock proteins between the different groups.  

Changes in the abundance of proteins associated with a variety of stress responses, 

highlights the capacity of A. fumigatus to adapt proficiently in response to different 

environmental conditions, a property of the fungus that has been studied in detail under a 

combination of various environmental stresses (Albrecht et al., 2010; Kurucz et al., 

2018).  

The ability of A. fumigatus to adapt rapidly to changing environments is regulated 

by a tight programme of transcriptional regulation at the histone level. Modifications to 

histones have been extensively studied and have major implications in fungal growth and 

development (Brosch et al., 2008; Palmer et al., 2008). Heterochromatin and 

transcriptional activation states are influenced by methylation of various lysine residues 

on histone 3. Data analysis in this study identified histone 3 as the most differentially 

abundant protein associated with transcriptional regulation in A. fumigatus cultures 

exposed to Co-culture CuF and P. aeruginosa CuF (Table 5.3). The high levels of this 

protein in both groups potentially indicate significant alterations in transcriptional 

activity. 

A characteristic of the proteomic profile of A. fumigatus exposed to Co-culture 

CuF was a general decrease in the relative abundance of proteins associated with transport 

and the proteasome (Table 5.4; Table A5.1B). This was reflected in the downregulation 

of RNA transport as depicted by KEGG (Fig. 5.9). There were fewer significant changes 

to proteins associated with this pathway in A. fumigatus exposed to P. aeruginosa CuF. 

The differential responses in protein transport between the groups of A. fumigatus 

exposed to A. fumigatus CuF, Co-culture CuF and P. aeruginosa CuF suggest the 

potential requirement to conserve energy or specific proteomic requirements in various 

parts of the cell depending on the environmental conditions.  

In the CF airways, A. fumigatus rarely becomes invasive as germinating spores 

are targeted by cells of the immune system (Dagenais and Keller, 2009; Burgel et al., 
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2016). However, conidia that germinate release antigens, proteases and other factors that 

induce an inflammatory response (Dagenais and Keller, 2009). Because P. aeruginosa is 

prevelant in the CF airways, it is important to understand the role of these bacteria in 

influencing fungal growth and development. In this study, A. fumigatus hyphae were 

allowed to develop for 24 hours prior to proteomic analysis in response to P. aeruginosa 

CuF. Onward studies should assess the impact of the P. aeruginosa secretome on conidial 

germination and the proteomic response of germinating conidia exposed to P. aeruginosa 

CuF. These studies would close the knowledge gap that exists in relation to the 

inetractions that occur between these pathogens and perhaps form the basis for the 

development of novel therapeutic targets to prevent microbial colonization of the 

immuncompromized airways.  

 

 

5.5 Conclusion 

 

A. fumigatus has a remarkable capacity to adapt to a range of environmental 

conditions in order to survive. In the cystic fibrosis airways, A. fumigatus rarely becomes 

invasive, yet the fungus is frequently cultured from the sputum of patients. The data 

presented in this study show that under certain environmental conditions, A. fumigatus 

conidia do not germinate but do remain viable – undoubtedly, a key feature of an 

opportunistic pathogen. However, once established and conidia germinate, even P. 

aeruginosa does not fully succeed in inhibiting fungal growth. The proteomic profile 

generated by A. fumigatus in response to the secretome of P. aeruginosa is characterized 

by a series of increases and decreases in the relative abundance of proteins involved in 

enabling the pathogen to survive under potentially challenging conditions.  
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Chapter Six 

 

Characterization of a novel 

Aspergillus fumigatus compound 

that displays anti-bacterial activity 
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6.1 Introduction 

 

Filamentous fungi are an exceptionally rich source of bioactive products, many of 

which are secondary metabolites, many of which have been exploited for industrial and 

medicinal purposes in the past century (Hoffmeister and Keller, 2007; Alberti et al., 

2017). Most notably, β-lactam antibiotics (penicillin and cephalosporin C) produced by 

Penicillium species have revolutionized modern medicine. Ironically, a number of 

filamentous fungi that cause disease are also the source of compounds that are beneficial 

to human health. For example, Aspergillus terreus, the third most common causative 

agent of invasive aspergillosis, and a source of food-spoiling mycotoxins, is also a 

producer of several pharmacologically important secondary metabolites including 

lovastatin (Kück et al., 2014; Hachem et al., 2014). Lovastatin is a polyketide derivative, 

also produced by Penicillium species, which, due to its cholesterol-lowering properties is 

used to treat cardiovascular disease (Seenivasan et al., 2008). 

Secondary metabolites originate from the products of primary metabolism. Amino 

acids form the building blocks for the synthesis of non-ribosomal peptide (NRP) 

secondary metabolites (e.g. gliotoxin, penicillin and cyclosporine), while acyl-CoAs are 

required for the synthesis of polyketides (e.g. lovastatin) and terpenes (e.g. terrecyclic 

acid) (Bladt et al., 2013; Keller, 2019). The genes encoding enzymes that regulate the 

biosynthesis of secondary metabolites (i.e. polyketide synthases, non-ribosomal peptide 

synthetases, terpene synthases and terpene cyclases) are arranged in biosynthetic gene 

clusters (Keller, 2019;Romsdahl and Wang, 2019) 

Traditionally, novel compounds with therapeutic potential have been discovered 

by screening individual species (Kück et al., 2014). A classic example is the discovery of 

the immunosuppressive agent, cyclosporin A, which was discovered in a soil sample in 

the 1970s (Ruegger et al., 1976). In light of the advances made in the area of 

bioinformatics there is recognition that the arsenal of secondary metabolites produced by 

filamentous fungi may be far greater than once perceived (Bladt et al., 2013; Keller, 2019; 

Romsdahl and Wang, 2019). Many of the genes associated with secondary metabolite 

production are silent or difficult to activate under laboratory conditions (Romsdahl and 

Wang, 2019). However, the wealth of undiscovered bioactive molecules with potentially 

important medicinal properties has driven the effort to activate these silent gene clusters.  
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Transcriptional activation of biosynthetic gene clusters is regulated by 

environmental cues and is dependent on the stage of fungal development. Secondary 

metabolite production is crucial for fungal survival and governs its interactions 

(synergistic or antagonistic) with other microorganisms (Calvo et al., 2002; Keller, 2019). 

For example, gliotoxin is essential for maintaining redox homeostasis and its secretion is 

induced in response to bacterial PAMPs  and ROS (Gallagher et al., 2012; Svahn et al., 

2014; Dolan et al., 2015). 

A. fumigatus share a similar niche with P. aeruginosa, both environmentally and 

in the cystic fibrosis airways (Briard et al., 2016). The close proximity in which these 

pathogens exist indicate that competitive interactions exist between the two organisms. 

Numerous studies have identified anti-fungal secondary metabolites produced by P. 

aeruginosa, however, with the exception of gliotoxin, the anti-bacterial compounds 

produced by A. fumigatus have been less well characterized (Briard et al., 2015; Briard 

et al., 2017; Reece et al., 2018; Sass et al., 2018). 

The ubiquitous nature of Aspergillus species in the environment points towards a 

versatile microbe that possesses a range of survival mechanisms to ensure dominance 

(Bignell et al., 2016; Raffa and Keller, 2019). Secondary metabolite production occurs in 

monocultures as a mechanism of inhibiting the growth of other species, however co-

cultivation of Aspergillus species with other filamentous fungal species induces increased 

secondary metabolite production (Losada et al., 2009). Moreover, a shift in temperature 

from 30°C to 37°C favours metabolite production of some species over others. For 

example, A. flavus outcompetes A. fumigatus and A. terreus at 30°C but the roles are 

reversed at 37°C. The culture medium was also a factor in these studies as A. oryzae could 

outcompete A. flavus, typically a stronger competitor, in nutrient rich conditions (Losada 

et al., 2009).   

The “One strain-Many compounds (OSMAC) approach” was described by Zeek 

and colleagues (2002) as a method for investigating the production of novel secondary 

metabolites by varying the fermentation conditions of the organism in question (Bode et 

al., 2002). By manipulating the growth medium, level of aeration and rate of shaking the 

culture flasks, the number of secondary metabolites that could be isolated from a fungal 

cultures substantially altered (Bode et al., 2002; Scherlach and Hertweck, 2006; Bills et 

al., 2008). 
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Aspergillus is a reservoir for bioactive metabolites with a range of potentially therapeutic 

activities (Furtado et al., 2002; Losada et al., 2009; Raffa and Keller, 2019). With the 

rapidly evolving emergence of antimicrobial resistant fungal and bacterial pathogens, the 

need to discover novel antibiotics is becoming more urgent. This urgency has prompted 

the revival of cell-based screening platforms, more commonly known as Waksman 

platform whereby microbes are screened for their ability to produce antimicrobial 

compounds (Ribeiro da Cunha et al., 2019). This screening method formed the basis for 

the results presented in the chapter.  

A. fumigatus culture filtrates were analysed for their effect on the growth of P. 

aeruginosa and a range of other bacterial pathogens. This screening method lead to the 

identification of a novel compound, which is believed to have anti-bacterial properties. 

Characterization of the compound was performed by SPE column separation, HPLC, 

TLC, NMR and MS/MS. LFQ proteomics was performed on P. aeruginosa exposed to a 

sub-lethal dose of the compound to investigate its effect on the bacterial proteome. 
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6.2 Results 

 

6.2.1 Analysing the effect of A. fumigatus culture filtrates on P. aeruginosa growth 

 

To investigate the effect of the A. fumigatus secretome on P. aeruginosa growth, 

A. fumigatus was cultured in; Czapek-Dox, Dulbecco’s Modified Eagle Medium 

(DMEM) or Sabouraud Liquid Medium (SAB) for 24, 48, 72 and 96 hours. The culture 

filtrates (CuF) were filter sterilized and exposed to P. aeruginosa (100 µl CuF to 100 µl 

bacterial suspension, OD 0.1). Bacterial growth was measured (OD600) after 24 hours. 

The results demonstrated differential effects on bacterial growth depending on the 

composition of the growth medium and the stage of fungal growth (Fig. 6.1).  

Where P. aeruginosa was cultured in Czapek-Dox, there was an increase in 

growth in bacteria exposed to 24, 48 and 72-hour CuF compared to bacteria exposed to 

sterile Czapek-Dox, and a 12.6-fold decrease in the growth of bacteria exposed to 96-

hour CuF (Fig. 6.1A). A 0.4-fold decrease in P. aeruginosa growth was observed in 

bacteria exposed to fungal CuF produced in DMEM for 48 and 72 hours compared to 

sterile DMEM (Fig. 6.1B). The greatest effect on bacterial growth was observed in 

bacteria exposed to CuF produced in SAB for 48, 72 and 96 hours. There was a 16.8 fold 

decrease in growth where bacteria was exposed to these A. fumigatus CuF produced in 

SAB by 72 hours (6.1C). Because the anti-bacterial effect was most pronounced in the 

culture filtrates produced in SAB by 72 hours, this was chosen for further analysis and 

characterization and is referred to herein as “72 hr SAB”. 

To determine whether the antimicrobial activity was an A. fumigatus-specific 

compound or if other Aspergillus species could produce the same antibacterial effect 

under these conditions, the CuF from A. flavus and A. nidulans grown in SAB for 72 

hours were exposed to P. aeruginosa (Fig. 6.1D). The results indicate that although the 

other Aspergillus species do have anti-bacterial activity against P. aeruginosa, the 

greatest effect was observed in the CuF produced by A. fumigatus. 
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Fig 6.1 Effect of Aspergillus sp. culture filtrates on P. aeruginosa growth. The effect on P. 

aeruginosa growth of A. fumigatus culture filtrates produced at 24, 48, 72 and 96 hours in Czapek-Dox (A), 

DMEM (B) and SAB (C) compared with sterile Czapek-Dox, DMEM or SAB respectively (control). 

Compared to the controls, P aeruginosa growth (OD600) was most reduced when exposed to the CuF 

produced in Czapek-Dox by 96 hours and when exposed to CuF produced in SAB by 48 hours, 72 hours 

and 96 hours. The effect of P. aeruginosa growth of culture filtrates produced in SAB at 72 hours by sterile 

SAB (control), A. flavus, A. nidulans and A. fumigatus (D). * p < 0.05 ** p <0.01 *** p < 0.001 ns: not 

significant. 
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6.2.2 Characterization of 72 hour SAB by solid phase extraction and TLC  

 

To determine the polarity of the compound, 72 hour SAB (20 ml) was passed 

through C18 Sep-Pak cartridges to isolate the polar component from the non-polar 

component. The retentate (2 ml) was eluted from the column with methanol and 

resuspended in sterile SAB (40 ml). Activity assays were performed to investigate 

whether the anti-bacterial properties were retained in the polar or non-polar fractions. 

Anti-bacterial activity was retained against P. aeruginosa in the polar fraction of the 72-

hour SAB (Fig. 6.2A). Some activity was observed in the non-polar fraction however this 

may be due to partial retention of the polar compound in the non-polar fraction during the 

separation process. The polar fractions were collected from CuF produced at 24, 48, 72 

hours and assessed for their anti-bacterial properties on P. aeruginosa. A decrease in the 

growth of P. aeruginosa (OD600) exposed to unfractionated CuF (whole SAB) and 

fractionated CuF (polar SAB) from 48 and 72 hour fungal cultures compared to 24 hour 

CuF and sterile SAB revealed that antibacterial activity was retained in the polar fractions 

from the later fungal cultures. Anti-bacterial activity was not lost during the fractionation 

process (Fig. 6.2B). 

 

Fig. 6.2A. Antibacterial effect of polar fraction on P. aeruginosa. The effect on bacterial growth (OD600) 

of the polar and non-polar fractions of CuF produced by A. fumigatus in SAB at 72 hours (A) showed that 

the antimicrobial activity was greatest in the polar fraction compared to the non-polar fraction of the CuF 

and sterile SAB (control). Fig. 6.2B. Comparison of antibacterial effect of CuF produced at different 

time-points. The polar fraction of the CuF produced at 24, 48 and 72 hours was compared with non-

fractionated (whole) material. The antibacterial activity observed in CuF produced at 48 and 72 horus in 

the whole material and polar material, but less so in the CuF produced at 24 hours. * p < 0.05 ** p <0.01 

*** p < 0.001 ns: not significant 
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To investigate whether the anti-bacterial activity was caused by proteins or 

smaller peptides or metabolites, the polar fractions were separated by size using 

centrifugal column filters with a molecular cut-off weight of 3 kDa. Activity assays 

performed on P. aeruginosa revealed that the active component was retained in the lower 

molecular weight fraction of less than 3 kDa (Fig. 6.3).  

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.3 Effect on P. aeruginosa growth of SAB fractions. CuF produced at 72 hours was fractionated 

and the tested for anti-bacterial activity on P. aeruginosa growth (OD600). Compared to sterile SAB (polar 

< 3 kDa) there was activity in all fractions. The greatest level of antimicrobial activity was observed in 

unfractionated SAB, the polar fraction, and in the polar fraction with components > 3kDa removed. There 

was very little activity in the fraction containing components > 3 kDa. This activity was returned when the 

fraction containing components < 3 kDa were recombined with the > 3 kDa fraction. * p < 0.05 ** p <0.01 

*** p < 0.001 ns: not significant. 

 

 

To investigate the activity of the (polar, < 3 kDa) SAB on other Gram-negative bacteria, 

a multidrug resistant (MDR) strain of E. coli, PEK499 was exposed to the compound 

for 24 hours. The compound was shown to have anti-bacterial activity against this MDR 

strain, with most activity observed in the 72-hour SAB (Fig. 6.4). 
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Fig. 6.4 The effect on growth of SAB on MDR E. coli PEK499. The polar (< 3 kDa) fractions of CuF 

produced by A. fumigatus at 72 hours in SAB had the greatest anti-bacterial effect on E. coli growth (OD600) 

compared to the control (sterile SAB, polar, < 3kDa). * p < 0.05 ** p <0.01 *** p < 0.001 ns: not significant 

 

 In an effort to further separate the components of the 72 hour-SAB (polar, < 3 

kDa), the CuF was lyophilized to concentrate the compound, and prepared for thin layer 

chromatography (TLC). The solid material did not solubilize in methanol (MeOH) and 

instead, it was gradually dissolved in methanol and ddH2O (1 ml, 1:1 ratio). The dissolved 

material (250 µl) was spotted onto TLC plates containing silica as the solid phase. The 

plates were placed in a mobile phase of dichloromethane (DCM) and 5 % methanol (Fig. 

6.5A) or 10 % methanol (Fig. 6.5B). The plates were scanned at 254 nm (Fig. 6.5). The 

compound did not move from the starting point on the plate. The material was scraped 

off and dissolved in methanol and ddH2O (400 µl, 1:1 ratio). The scrapings were 

centrifuged at 14000 x g for 10 minutes. The supernatant was removed and was diluted 

in sterile SAB to give a 1/5 and 1/10 dilution. The diluted compound (50 µl) was used for 

an activity assay against P. aeruginosa (50 µl, OD600 0.05). Methanol and ddH2O (1:1 

ratio) was diluted in SAB to a 1/5 and 1/10 dilution and used as a control for the activity 

assay.  The results of this assay indicate that the anti-bacterial activity was retained in the 

material that did not move from the starting point of the TLC plate (Fig. 6.5C). 

**

***
***

***

***
***

0.5

1

1.5

Control 24-hour 72-hour 96-hour

Fo
ld

 c
h

an
ge

 g
ro

w
th

 o
f 

E.
 c

o
li 



247 
 

 

Fig. 6.5  TLC performed on 72-hour SAB. The material did not move from the starting point in DCM 

with 5 % MeOH (A) or 10 % MeOH (B). The material was removed from the TLC plate and diluted (1/5 

and 1/10) in sterile SAB and assessed for anti-bacterial activity against P. aeruginosa. Both dilutions had 

retained activity (C). * p < 0.05 ** p <0.01 *** p < 0.001 ns: not significant 

 

The lyophilized 72-hour SAB was also tested for its anti-bacterial activity against other 

Gram-negative bacteria, Klebsiella pneumonia and Gram-positive bacteria, 

Staphylococcus aureus. The solid material was resuspended in ddH2O and diluted with 

sterile SAB in a 1:1 ratio. The lyophilized compound had anti-bacterial activity against 

both bacteria compared to the control (sterile SAB) (Fig. 6.6). 
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Fig. 6.6 Effect of 72 hours SAB on 

K. pneumonia and S. aureus growth. 

72-hour lyophilized SAB was tested 

for anti-bacterial activity against K. 

pneumonia and S. aureus. The 

compound showed strong activity 

against both bacteria compared to the 

control. * p < 0.05 ** p <0.01 *** p < 

0.001 ns: not significant. 
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6.2.3 Analysis of the 72-hour SAB by HPLC 

 

Lyophilized 72-hour SAB (20 ml) was dissolved in ddH2O (1 ml) and 50 µl was 

loaded onto the HPLC. Fractions were collected every minute at a flow rate of 1 

ml/minute.  The gradient conditions were as follows: 0.01 – 10 minute: 0 % acetonitrile, 

10-20 minutes: 0 % acetonitrile, 20 -25 minutes: 30 % acetonitrile and 100 % acetonitrile 

thereafter. The HPLC chromatographic profile (254 nm) revealed a number of peaks 

between 2.5 minutes and 10 minutes and between 16.5 minutes and 25 minutes over a 28-

minute run time in total (Fig. 6.7).  

 

 

 

 

 

 

 

 

Fig. 6.7 HPLC chromatograms 72-hour SAB. Lyophilized CuF (produced at 72 hours) was 

resuspended in ddH2O was loaded onto the HPLC (50 µl). Fractions were collected every minute for 20 

minutes at a flow rate of 1 ml/min.  

 

 The fractions collected from the HPLC were diluted with sterile SAB 

(1:1) to reduce the level of TFA from in the mobile phase from 0.1 % to 0.05 % and tested 

for activity against P. aeruginosa. To ensure the antibacterial activity, the procedural 

control consisted of ddH2O/0.1 % TFA diluted with sterile SAB in a 1:1 ratio. Fractions 

collected between 4 and 5 minutes (#5) and fractions collected between 16.5 and 17.5 

minutes (#17) showed activity against P. aeruginosa (100 µl, OD600 0.05) after 24 hours 

(Fig. 6.8). Because of the intrinsic polar nature of the compound, the early retention time 

at which the fraction with the greatest level of activity was detected, and the high level of 

antimicrobial activity, fraction #5 was chosen for further comprehensive analysis by 

NMR and mass spectrometry. 
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Fig. 6.8 Assessment of the anti-bacterial effect of 72-hour SAB HPLC fractions. Fractions collected 

from the HPLC were tested for activity against P. aeruginosa. Antimicrobial activity was observed in 

fraction #5, #17 - #20. * p < 0.05 ** p <0.01 *** p < 0.001 ns: not significant. 

 

 

 To separate the compound by charge the 72-hour SAB (polar, < 3 kDa) was passed 

through cation exchange columns. The flow-through maintained activity against P. 

aeruginosa. This material (herein referred to as processed SAB) was lyophilized and 

resuspended in ddH2O. Processed SAB (100 µl) was loaded onto the HPLC and run on 

the following gradient: 0.01-15 minutes: 0% acetonitrile: 16 to 18 minutes: 100% 

acetonitrile and 19 minutes to 28 minutes: 0 % acetonitrile. The flow rate was reduced to 

0.5 ml/min to obtain better separation. These parameters were used for subsequent HPLC 

experiments in this chapter. 

Fractions were collected between four minutes and 6.5 minutes (Fig. 6.9A). The 

fractions from each time-point were pooled together and lyophilized. Each group of 

fractions (20 ml lyophilized) was resuspended in ddH2O (2 ml). The fractions were 

diluted in sterile SAB (1:1 ratio) and tested for activity against P. aeruginosa. The anti-

bacterial activity was detected in fraction three, which had a retention time (RT) of 4.838, 

and this fraction was chosen for further analysis.  
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Fraction 3 (100 µl) was loaded onto the HPLC. Fractions were collected as 

previously described and pooled together in 20 ml aliquots prior to lyophilisation. As 

before, lyophilized material was resuspended in 2 ml ddH2O and used to determine anti-

bacterial activity. Activity was detected in the second fraction (RT 5.178) and this was 

fractionated once again by HPLC. In the final group of fractions collected, activity was 

detected in the second fraction (RT 5.182) (Fig. 6.9C and D). The first, second and third 

fractions from this group were analysed further by NMR and mass spectrometry.  

   

Fig. 6.9 Chromatographic profiles and anti-bacterial activity of processed SAB. Fractions were 

collected and tested for anti-bacterial activity. The third fraction (RT 4.838 minutes) (A) retained anti-

bacterial activity and was subjected to another round of fractionation by HPLC. The second fraction (RT 

5.178) (B) retained activity and was fractionated a third time. Fractions collected between five and six 

minutes (RT 5.182) (C) were determined to contain anti-bacterial activity (D). * p < 0.05 ** p <0.01 *** p 

< 0.001 ns: not significant 
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 Because initial NMR analysis revealed an abundance of free glucose (Fig. 6.10) 

in the fractionated samples (Sobolev et al., 2003), the sequence of compound preparation 

for NMR was altered with a view to removing free glucose from the material. This 

approach involved performing the initial fractionation by HPLC prior to separating the 

material by SPE (Sep-Pak columns and cation exchange columns) and through centrifuge 

filters. The purpose of this was to avoid potentially concentrating the SAB, hence the 

glucose, when passing the material through the SPE columns and through the centrifuge 

filters. After the first round of fraction collecting, fractions were pooled together, 

lyophilized and tested for anti-bacterial activity. The fraction containing activity (fraction 

2) was subjected to three more rounds of fractionation, lyophilisation (Fig. 6.11). The 

final fractions were tested for anti-bacterial activity against P. aeruginosa (Fig. 6.12). 

Fraction 1 was not tested as this has already been established not to have anti-bacterial 

activity. Fraction 2 showed some activity compared to the control (sterile SAB:ddH2O/0.1 

% TFA, 1:1 ratio). Fraction 3 and fraction 4 showed the greatest amount of activity (Fig. 

6.12A). The anti-bacterial activity was observed in these fractions after 48 hours of 

incubation (Fig. 6.12B).  The fractions obtained from the final (fourth) round of 

fractionation were analysed by NMR and mass spectrometry, however free glucose could 

not be completely removed from the sample (as detected by 1H NMR).   

Fig. 6.10. NMR spectra of glucose 

detected in HPLC fractions. An 

abundance of glucose was detected by 

NMR in all fractions collected by 

HPLC. The black arrows point to 

signals that are typical of glucose. 

Both samples in the figure had anti-

bacterial activity. 
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Fig. 6.11 HPLC Fractions of 72-hour SAB. Unprocessed 72-hour SAB was fractionated into 

two fractions. The first fraction (RT 4.790) had anti-bacterial activity (A). Fraction 1 was 

fractioneated into a further two fractions, the second of which (RT 5.170) had antimicrobial 

activity (B). Fraction 2 was fractionated into another 2 fractions (C), the second of which had 

anti-bacterial activity (RT 5.123). This fraction was fractionated into four fractions (D). Fraction 

2 had very little anti-bacterial activity. The anti-bacterial activity was retained in the third and 

fourth fractions (RT 5.131, RT 5.549). 

A

B

C

D
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Fig 6.12 Assessing HPLC fractions of 72-hour SAB for anti-bacterial activity P. aeruginosa 

was exposed to fractions 2, 3 and 4 collected from the final (fourth) fractionation process and 

incubated for 24 hours (A). Fraction 3 and 4 contained the most anti-bacterial activity. Fraction 3 

and 4 retained antimicrobial activity after 48 hours (B). * p < 0.05 ** p <0.01 *** p < 0.001 ns: 

not significant 

 

 

6.2.4 NMR analysis of processed SAB 

 

 A series of 1 dimensional/1D (i.e. where the x-axis corresponds to the chemical 

shifts in ppm/frequency and the y-axis corresponds to intensity) experiments were 

performed including 1H, 13C NMR and 31-phosphorus NMR on fractions with and 

without anti-bacterial activity collected from the HPLC. Additionally, 2 dimensional/2D 

(i.e. where the frequency is displayed on the x-axis and y-axis) experiments including 

COSY, TOCSY, HSQ, HMBS and DEPT were performed on these fractions. Glucose 

was detected at high concentrations (Fig. 6.10 and Fig. 6.13) resulting in the overlapping 

of signals of the molecular determinant responsible for the anti-bacterial activity. In an 

effort to remove the glucose, boronic acid immobilized in solid support resin beads was 

attempted although this approach was unsuccessful. Thus, the analysis proceeded with 

the presence of glucose in the samples which resulted in only several signals in the 

aromatic region (6-9 ppm) and the aliphatic region (3-0 ppm) not being overlapped by 

glucose peaks. 
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Fig. 6.13 IH NMR analysis of HPLC fractions 1H NMR of fractions collected by HPLC between 4.5 and 

5.5 minutes. The first eluting fraction (blue) retained most anti-bacterial activity, the second eluting fraction 

(red)  contained some activity and the third eluting fraction (green) contained no activity. All three fractions 

contained glucose as indicated by the black arrows. The red arrows point to signals that suggest double 

bonds, which may indicate signals other than those originating from the free glucose. 

 

 

 

 

 

 

 

 

Fig. 16.14 13C NMR spectra of HPLC fraction with anti-bacterial activity 13C NMR was performed on 

the fraction containing the highest levels of anti-bacterial activity, fraction 4. The signals at 98 ppm 

indicated the presence of anomeric carbons other than glucose, suggesting that the compound may be 

glycosylated. 

 

13C NMR spectrum of fraction 4 (Fig. 6.14) revealed signals at 177 ppm and 175 

ppm, which could potentially indicate an aldehyde carbonyl or an ester. A cluster of 

signals, including two strong signals, at 165 ppm potentially corresponds to amide 

carbonyls. A cluster of signals at 120 including two strong signals, suggest that the signal 

at 7.5 ppm (Fig. 6.13) corresponds to double bonds. A signal at 98 ppm suggest an 

additional anomeric carbon other than glucose and may indicate the presence of 



255 
 

glycosylated products. Overall, 26 significant carbon signals (other than glucose) can be 

appreciated. 

NMR analysis was performed on a total of four groups of fractionated samples 

prepared at different times from 72-hour processed SAB, which tested positive for anti-

bacterial activity. Although samples were prepared at different stages over two years, they 

all retained the same signature characteristics (Fig. 6.15 and Fig. 6.16). These features are 

highlighted in the spectra arising from 1H NMR in the aromatic region and aliphatic 

region respectively. The final fraction (blue) which displayed the most activity from all 

the fractions tested (with or without activity) has the highest peaks. Peak height correlates 

positively with concentration thus this sample had the highest concentration of the 

component of the compound detected in this region of the NMR spectra. In the aromatic 

region of the spectra (Fig. 6.15), the signal detected at 8.5ppm is likely to be an aldehyde 

because the chemical shift matches with what is an aldehyde proton. While in the aromatic 

region, the signal detected at 7.5ppm is likely not to be caused by an aromatic residue and 

is possibly an alkene, which is directly bonded to electro-negative atom. Although it is 

detected in the range for aromatic protons, the integration for this signal is very low to 

account for aromatic proton. Furthermore, this signal couples with a signal in the 13C 

NMR (Fig. 6.14), which is detected at 120 ppm, a characteristic feature of an alkene 

carbon. 

 

 

 

 

 

 

 

 

Fig. 6.15 1H NMR spectra of HPLC samples with anti-bacterial activity in the aromatic region. 1H 

NMR spectra of samples from all processed SAB fractions containing anti-bacterial activity. Spectra shown 

is in the aromatic region. Signals present in the majority of the samples are highlighted with *.  
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Fig. 6.16 1H NMR spectra of HPLC fraction with anti-bacterial activity in the aliphatic region. 1H 

NMR spectra of samples from all processed SAB fractions containing anti-bacterial activity. Spectra shown 

is in the aliphatic region. Signals present in the majority of the samples highlighted with *.  

 

 1H NMR performed on three samples (fraction 1, 2 and 3) obtained from 

HPLC-fractionated processed SAB (See Fig. 6.9C) revealed distinct differences in peaks 

in the aliphatic region (Fig. 6.17A) between the fractions that contained strong anti-

bacterial activity (red; fraction 2) and some (i.e. less than fraction 2) anti-bacterial activity 

(blue; fraction 3) and no anti-bacterial activity (green; fraction 1). The spectra of the 

signals coming from fractions containing the most anti-bacterial activity from this group 

(as represented in Fig. 6.9D) have a strong peak detected in the aliphatic region (black 

arrow). This peak is weaker in the fraction (3) that contained less activity than fraction 2 

and not visible in the fraction that contained no activity against P. aeruginosa (fraction 

1).  

 An expanded 1H NMR spectra of the same three fractions showed several distinct 

peaks, which differed in height depending on the anti-bacterial activity (Fig. 6.17B). The 

middle spectra (red), represents fraction 2, which had the strongest activity against P. 

aeruginosa (Fig. 6.9D). Several peaks observed in this spectra, were lower in the spectra 

representing fraction 3, which had some anti-bacterial activity (blue), and not visible in 

the spectra representing fraction 1, which had no activity against P. aeruginosa (green). 
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Fig. 6.17 1H NMR spectra of HPLC samples with and without anti-bacterial activity in the aliphatic 

region. 1H NMR spectra comparing fractions with and without anti-bacterial activity obtained from HPLC 

fractionations of processed SAB. Differences between the three fractions are indicated by black arrows. 

The middle spectra (red) represents fraction 2, which showed most anti-bacterial activity against P. 

aeruginosa. The bottom spectra (blue) represents fraction 3, which showed some anti-bacterial activity. 

The top spectra, representing fraction 1 (green) had no anti-bacterial activity. The main differences between 

the three spectra are highlighted by black arrows, which point to a peak in the aliphatic region. These peaks 

are highest in the spectra representing fraction 2 (red), lower in fraction 3 (blue) and not visible in fraction 

1 (green). 

 

 1H NMR analysis performed on fractions collected from the final round of 

fractionation by HPLC (Fig. 6.11 and Figure 6.12) revealed distinct differences in peaks 

and peak heights between the active (red and blue; fraction 3 and 4) and non-active 

fractions. Similar peaks were detected in the aliphatic region of the spectra between the 

fraction 3 (red) and fraction 4 (blue) (Fig. 6.17A). However, several peaks were detected 

in fraction 4 that were not present in fraction 3 or fraction 2 (green) (Fig. 6.17B). Fraction 

4 had slightly stronger anti-bacterial activity compared to fraction 3, which lasted past the 

48 hours measured (as measured by observation). These peaks were not detected in the 

fraction that contained no anti-bacterial activity (i.e. fraction 2). 

A

B
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Fig. 6.18 1H NMR spectra of HPLC samples with antibacterial activity in the aromatic region. 1H 

NMR spectra comparing fractions with and without anti-bacterial activity (at the aliphatic region). Fractions 

with anti-bacterial activity, fraction 3 (red) and fraction 4 (blue) had similar peaks that were missing from 

fraction 2 (green) which had no anti-bacterial activity (A). The presence of these peaks are indicated with 

black arrows. A number of peaks present in fraction 4 were absent in fraction 3 and fraction 2 (A). A number 

of peaks in the alkene region of the spectra were observed in fraction 4 but not in the other fractions (B). 

 

 

 

 

 

A

B
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 The final 1H NMR spectra from this group (Fig. 6.19) revealed distinct peaks 

in the aliphatic region belonging to fraction 4 (blue) including a quartet of doublets (~ 

2.75 ppm), a singlet (~ 2.3 ppm) and a triplet (~ 2.35 ppm). The singlet may be indicative 

of an alanine residue and the triplet may belong to an aliphatic component of the 

compound. The distinctive complex splitting pattern of the quartet of doublets suggests 

the compound has a cyclic structure. While some of these peaks were detected in fraction 

3 (red), the peak heights were much lower than that visible in fraction 4 (blue). Several 

of these peaks were not visible in the spectra, representing fraction 2 (green).  A doublet 

was also detected at 1.25 ppm in fraction 4 but were completely absent from fraction 2 

and fraction 3.  The signals in this region correlate to amino acid side chains and suggest 

a glutamine or lysine residue due to the coupling pattern. This may also account for the 

polarity of the compound. A summary of the peaks common to the fractions with activity 

are included in Table 6.1. 

 

 

 

 

 

 

 

 

 

Fig. 6.19 1H NMR spectra comparing fractions with and without anti-bacterial activity in the 

aliphatic region. Several peaks were detected at higher levels in the spectra, representing fraction 4 

(blue) than fraction 3 (red) and absent in fraction 2 (green). The peak heights of a singlet ( ~2.25 ppm), a 

triplet ( ~2.35 ppm) and a quartet of doubles were greater in fraction 4 than fraction 3 and absent in 

fraction 2.  
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Table 6.1 A summary of the signals detected by NMR analysis. The main signals detected, 

the position on the NMR spectra and some potential characteristics are described 

 

 

Peak 

 

Chemical Shift 

(ppm) 

 

Multiplicity; integration 

 

Coupling 
13C (ppm) 

 

Assignation of 

activity 

 

1 

 

1.3 

 

Doublet; weak -  0.26 

 

 

18 CH 

 

active 

 

2 

1.4 Doublet; weak  -  0.26 

 

12 CH active 

 

3 

1.43 Singlet; weak -   0.26 

 

28 CH active 

 

4 

 

1.6 overlapping 

 

Multiples (quintet) 

Multiples; strong 

 

 

29 CH2 

24 CH2 

 

active and not 

active 

 

5 

 

1.8 overlapping 

 

Triplet or doublet of doubles 

overlapping multiples; 

strong 

 

 

20 CH2 

28 CH2 

30 CH2 

 

active and not 

active 

 

6 

 

2.3 

 

Singlet; weak -  0.26 

 

 

25 CH 

 

active and not 

active 

 

7 

 

2.35 

 

Triplet; strong 

 

 

30 CH2 

 

active 

 

8 

 

2.75 

 

Quintet; strong - 3 

 

 

38 CH2 

2 CH 

 

 

active 

9 2.9 Quintet; strong - 2 

 

39 CH2 active 

10 3.85 

 

Multiples 50 CH active and not 

active 

 

11 

 

4.5 (overlapped 

by H-1 Glucose) 

 

doublet of doubles 

 

65 CH 

 

active and not 

active 

 

12 

 

4.8 (overlap by 

HOD) 

 

Doublet; weak - 0.26 

 

 

75 CH 

 

active 

 

13 

 

4.9 

 

Doublet; weak -  0.15 

 

 

60 CH 

 

active 

14 7.3 Singlet; weak - 0.15 

 

120 CH active 

 

15 

 

8.5 

 

Doublet (very small coupling 

constant); weak - 0.15 

 

 

carbon not 

visible 

 

active 
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6.2.5 Proteomic analysis of anti-bacterial compound  

Proteomic analysis was performed on larger proteins (> 3kDa) extracted from 72-

hour SAB. Proteins present in the CuF were identified using Proteome Discoverer 1.4. 

Peptides with minimum score of two (Xcor) were excluded from further analysis. These 

proteins are listed in Table A6.1. The top ten proteins with the highest score are listed in 

Table 6.2. 

 

Table 6.2. Proteins detected in 72-hour SAB. Proteins (>3 kDa) extracted from 72-hour SAB 

were identified by mass spectrometry. The top ten proteins with the highest scores are included.   

 

Gene Protein name 

Afu4g03490 Tripeptidyl-peptidase sed2 

Afu1g11460 1,3-beta-glucanosyltransferase Bgt1 

Afu1g07440 Molecular chaperone Hsp70 

Afu1g17590 Phosphoesterase superfamily protein 

Afu2g01170 1,3-beta-glucanosyltransferase gel1 

Afu4g13770 Glycosyl hydrolase, putative 

Afu3g14680 Lysophospholipase 3 

Afu5g02330 Ribonuclease mitogillin 

Afu5g10490 Amidase, putative 

Afu7g04210 Tropomyosin, putative 

Afu7g00940 Isoamyl alcohol oxidase, putative 

 

 

 

 

 

 

 



262 
 

Mass spectrometry-based analysis was performed on the same fractions collected 

by HPLC (Fig. 6.9C and 6.11D) that were analysed by NMR. The compound was 

weighed and diluted to concentrations varying from 1 – 10 µg/µl. Fractions with and 

without anti-bacterial activity were applied to a polar endcapped C18 column. Samples 

were surveyed in positive and negative mode to investigate the presence of positive or 

negative ions respectively. A total ion chromatogram was generated and relative 

intensities of candidate ions were measured against a number of base peak ions. Extracted 

ion chromatograms were recovered from the dataset for further analysis by fragmentation 

(Fig.6.20B, Fig.6.21B). Ions from fractions containing anti-bacterial activity were 

compared with ions from fractions containing some or no anti-bacterial activity. 

Additionally, ion maps were generated for each sample displaying the mass-to-charge 

ratio (m/z; y-axis) and retention time (min; x-axis) of all ions detected in the analysis (Fig. 

6.20C, Fig. 6.21C). Ion maps were also generated for negative controls (no 

activity/blanks) to account for solvent and background ions. Following these surveys, no 

distinctive differences were observed between the samples. Although a number of 

potential candidates were considered, these will require additional research to confirm 

identity and activity.  
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Fig. 6.20 Mass spectrometry chromatographs of fractions analysed in positive mode. Fractions with 

(Fraction 3) and without (Fraction 2) anti-bacterial activity were investigated by MS in positive mode (A). 

Ions from fractions were compared (B) and ion maps were generated (C).  

Fraction 3 positive mode

A

B

C

Fraction 2 positive mode

A

B

C
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Fig. 6.21 Mass spectrometry chromatographs of fractions analysed in negative mode. Fractions with 

(Fraction 3) and without (Fraction 2) anti-bacterial activity were investigated by MS in negative mode (A). 

Ions from fractions were compared (B) and ion maps were generated (C). 

 

Fraction 3 negative mode

A

B

C

Fraction 2 negative mode

A

B

C
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6.2.6 Proteomic response of P. aeruginosa to sub-inhibitory concentrations of  

         A. fumigatus culture filtrates produced in SAB by 72 hours. 

 

Label free quantitative (LFQ) proteomics was employed to investigate the 

changes that occur in the P. aeruginosa proteome when exposed to the 72-hour CuF 

produced by A. fumigatus in SAB (72-hour SAB). The bacteria were exposed to neat, 

unprocessed 72-hour SAB (30% v/v) for 24 hours prior to protein extraction (treatment) 

(n = 3). Changes to the proteome were compared with bacteria exposed to sterile SAB 

(30% v/v) (control).  In total, 2,690 proteins were initially identified and 1,952 proteins 

remained after filtering. Post-imputation, 321 proteins were identified as being 

statistically significant (p<0.05) and differentially abundant (relative fold change of +/- 

1.5) (SSDA) (Table A6.2). A principal component analysis (PCA) was performed on all 

filtered proteins and identified distinct proteomic differences between the groups (Fig 

6.22A). Components 1 and 2 accounted for 82.5 % of the total variance within the data, 

and both replicates resolved into their corresponding samples. There was a clear 

divergence between the groups exposed to the culture filtrate (treatment) and those 

unexposed (control).  

Hierarchical clustering was performed on the z-scored normalised LFQ intensity 

values for the SSDA proteins (Fig. 6.22B). The two biological replicates resolved into 

their respective sample. Based on protein-abundance profile similarities, two main 

clusters resolved, although enrichment terms were only contained in the second cluster 

(black). These included the GOCC terms integral to membrane, intrinsic to membrane 

and membrane part, and the GOMF terms tetrapyrrole binding and heme binding (Table 

A6.3A and A6.3B). The relative abundance of proteins associated with this cluster was 

decreased in the group exposed to the A. fumigatus 72-hour CuF. All proteins associated 

with both datasets are included in Table A6.1. 
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Fig. 6.22 PCA and hierarchical clustering of P. aeruginosa proteins. Principal component analysis 

(PCA) of P. aeruginosa exposed to A. fumigatus CuF (treatment) (hexagon) and sterile SAB (circles). A 

clear distinction can be observed between each of the groups exposed to the treatment and the control (A). 

Clusters based on protein-abundance profile similarities were resolved by hierarchical clustering of multi-

sample comparisons between the two sample groups of P. aeruginosa (B). Two main clusters were 

identified. Cluster A did not contain enrichment terms. Enrichment terms for cluster B included intrinsic to 

membrane and tetrapyrrole binding.  

 

 

Volcano plots were produced by pairwise Student’s t-tests (p <0.05) to determine 

the differences in protein abundance between two samples and to depict the changes in 

pathways and processes in which those proteins are involved (Fig. 6.23). There was a 

general increase in the relative abundance of proteins involved in translation and a 

decrease in the relative abundance of proteins associated with the membrane and 

oxidoreductase activity.   

Treatment Control 

A B

A

B
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Fig. 6.23 Comparing the proteome of unexposed and 72-hour CuF-exposed P. aeruginosa.Volcano 

plots derived from pairwise comparisons between P. aeruginosa exposed to 72-hour A. fumigatus CuF 

produced in SAB (Treatment) and P. aeruginosa exposed to sterile SAB (control).  The distribution of 

quantified proteins according to p value (−log10 p-value) and fold change (log2 mean LFQ intensity 

difference) are shown. Proteins above the line are considered statistically significant (p-value <0.05). In 

general, the relative abundance of protein components associated with RNA biosynthetic processes (green) 

and nucleic acid metabolic processes (orange) was greater in bacteria exposed to the treatment than the 

control. The relative abundance of proteins associated with oxidoreductase activity (blue) and membrane 

parts (purple) was lower in bacteria exposed to the treatment than the control. 

 

 

 

 

  SSDA protein names arising from the pair wise t-tests were inputted into the 

STRING and KEGG database and used to identify biological pathways and processes 

over-represented in a particular group. The proteomic data arising from Student’s t-tests 

(p < 0.05) identified several pathways that were most affected by bacterial culture 

conditions (Fig. 6.23, Fig. 6.24A, 6.24B, Table 6.3 and Table 6.4). The relative abundance 

of proteins associated with a stress response, the phenazine and O antigen biosynthetic 

pathways and phosphate transport were increased in the P. aeruginosa groups that had 

been exposed to the A. fumigatus CuF (Fig. 6.24A). Conversely, there was a decrease in 

the relative abundance of proteins associated with quorum sensing (Fig. 6.24B and Fig. 

6.25), heme biosynthesis, pyochelin biosynthesis, sulphur metabolism and phenylalanine 

metabolism (Fig. 6.24B). A selection of SSDA proteins involved with pathways most 

affected by bacterial culture conditions are listed in Table 6.3 and Table 6.4.  
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Fig. 6.24 Analysis of P. aeruginosa proteins by STRING. STRING was used to map known protein-

protein interactions of SSDA proteins arising from Student’s t-tests (p<0.05). Pathways associated with 

phenazine biosynthesis, stress response regulators, O antigen biosynthesis, phosphate and ribose transport 

were upregulated (A). Pathways involving pyochelin biosynthesis, heme biosynthesis, quorum sensing, and 

phenylalanine and sulphur metabolism were downregulated (B). 
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Fig. 6.25 KEGG maps depicting changes to quorum sensing pathways KEGG mapping depicts 

downregulation of the quorum sensing pathway in P. aeruginosa exposed to A. fumigatus CuF. SSDA 

proteins (blue) arising from Student’s t-test involved in this pathway are highlighted.  

 

 

 

 

 

 

 

 

 

 

 

 

Biosynthesis protein Autoinducer Sensing protein
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Table 6.3 Processes affected by exposure to 72-hour SAB. SSDA proteins (p <0.05) and 

associated categories and corresponding increases to the relative fold change in P. aeruginosa 

exposed to A. fumigatus 72-hour CuF produced in SAB. 

 

Category Gene Protein name Fold 

change 

 

Phenazine 

Biosynthesis 

 

 

 

 

 

Amino acid 

metabolism 

 

 

 

 

 

 

 

 

 

 

 

Response to 

antibiotics 

 

 

 

 

 

 

 

 

 

Response to 

stress 

 

 

 

Transcriptional

& 

translational 

phzA2 Phenazine biosynthesis protein PhzA2 12.6 

phzD1 Phenazine biosynthesis protein PhzD1 3.2 

phzB2 Phenazine biosynthesis protein PhzB2 2.8 
   

PA0531 glutamine amidotransferase 10.2 

trpA Tryptophan synthase alpha chain 1.9 

speE1 Polyamine aminopropyltransferase 1 1.7 

alr Alanine racemase, biosynthetic 1.6 

proC Pyrroline-5-carboxylate reductase 1.6 

leuB 3-isopropylmalate dehydrogenase 1.5 

cmoA Carboxy-S-adenosyl-L-methionine synthase 1.5 

pyrC Dihydroorotase 1.5 

PA1307 Glutamine amidotransferase type-2 domain-

containing protein 

1.5 

mmsB 3-hydroxyisobutyrate dehydrogenase 1.5 

aroE Shikimate dehydrogenase (NADP(+)) 1.5 
   

pfpI Protease PfpI 1.9 

PA2915 Lactamase_B domain-containing protein 1.6 
   

algR Positive alginate biosynthesis regulatory protein 1.7 

mucB Sigma factor AlgU regulatory protein MucB 1.5 
   

PA3628 S-formylglutathione hydrolase 2.2 

adhC S-(hydroxymethyl)glutathione dehydrogenase 1.9 

rpoS RNA polymerase sigma factor RpoS 1.6 

hslO 33 kDa chaperonin 1.6 

PA0361 Probable gamma-glutamyltranspeptidase 1.6 
   

xthA Exodeoxyribonuclease III 1.9 

rsmA Ribosomal RNA small subunit methyltransferase 

A 

1.9 

tadA tRNA-specific adenosine deaminase 1.9 

pmpR Transcriptional regulatory protein PmpR 1.8 

purE N5-carboxyaminoimidazole ribonucleotide mutase 1.8 

   

sfsA Sugar fermentation stimulation protein  1.7 

rnk Nucleoside diphosphate kinase regulator 1.7 

xpt Xanthine phosphoribosyltransferase 1.7 
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    regulation 

 

 

 

Transcriptional 

& 

translational 

regulation 

rimM Ribosome maturation factor RimM 1.6 

guaB Inosine-5'-monophosphate dehydrogenase 1.6 

rpoA DNA-directed RNA polymerase subunit alpha 1.6 

rpoS RNA polymerase sigma factor RpoS 1.6 

rsfS Ribosomal silencing factor RsfS 1.6 

zapA Cell division protein ZapA 1.6 

zapE Cell division protein ZapE 1.5 

prfA Peptide chain release factor 1 1.5 

 

* Although pqsD did not meet the threshold for differential abundance (i.e. a fold change of +/-1.5 fold), it 

is included due to its association with pqsB and pqsC. 

 

Table 6.4 Processes affected by exposure to 72-hour SAB. SSDA proteins (p <0.05) and associated 

categories and corresponding decreases to the relative fold change in P. aeruginosa exposed to A. 

fumigatus 72-hour CuF produced in SAB. 

 

Category Gene Protein name Fold change 

 

 

 

 

Iron binding 

proteins 

 

 

 

 

 

 

Sulphur 

metabolism 

 

 

 

Quorum 

sensing 

 

 

Elastase 

 

Membrane 

pchA Salicylate biosynthesis isochorismate synthase -15.4 

pchB Isochorismate pyruvate lyase -8.9 

pchG Pyochelin biosynthetic protein PchG -8.3 

ccoN2 Cytochrome c oxidase, cbb3-type, CcoN subunit -4.4 

ccoP2 Cbb3-type cytochrome c oxidase subunit -3.9 

hemN Oxygen-independent coproporphyrinogen III oxidase -3.5 

ccoN1 Cytochrome c oxidase, cbb3-type, CcoN subunit -2.2 

ccoO2 Cytochrome c oxidase, cbb3-type, CcoO subunit -1.9 

kynA Tryptophan 2,3-dioxygenase -1.7 

pfeR Transcriptional activator protein PfeR -1.6 

  
 

cysI Sulfite reductase -5.9 

cysNC Bifunctional enzyme CysN/CysC -3.5 

antC Anthranilate dioxygenase reductase -1.8 

cysD Sulfate adenylyltransferase subunit 2 -1.8 

thiG Thiazole synthase -1.5 

   

pqsC 2-heptyl-4(1H)-quinolone synthase subunit PqsC -2.7 

pqsB 2-heptyl-4(1H)-quinolone synthase subunit PqsB -1.5 

*pqsD Anthraniloyl-CoA anthraniloyltransferase -1.38 

rhlA 3-(3-hydroxydecanoyloxy)decanoate synthase -3.7 

rhlR Regulatory protein RhlR -1.5 

LasA Protease LasA -8.0 

bamB Outer membrane protein assembly factor BamB -8.5 
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6.3 Discussion 

 

The ubiquitous nature of A. fumigatus is attributed to its extensive range of 

enzymes, which allow it to consume nutrients from a variety of sources and compete with 

a vast number of other species that occupy similar niches. In this chapter, a potentially 

novel anti-bacterial compound produced by A. fumigatus in a low pH (< 5.6), nutrient 

rich medium, Sabouraud dextrose broth (SAB), was investigated. SAB is composed of 

dextrose, which provides a rich carbon source, and pancreatic digest of casein and peptic 

digest of animal tissue, which provides a nitrogen source for fungal growth (Hare, 2013).  

The anti-bacterial compound was produced specifically in this medium during the early 

stationary phase of A. fumigatus growth (between 48 and 72 hours) and not in other 

growth media (Fig. 6.1A-C). Moreover, the compound was not produced with the same 

effect by A. nidulans or A. flavus (Fig. 6.1D). Differences in the production of bioactive 

compounds which mediate competition between the three Aspergillus species have been 

reported (Losada et al., 2009). These variations are largely regulated by environmental 

conditions such as nutrient availability and temperature (Bode et al., 2002; Losada et al., 

2009).   

 The results presented in this chapter describe a natural bioactive compound with 

anti-bacterial activity against a range of pathogens including P. aeruginosa strain PAO1, 

an MDR strain of E. coli (PEK499), K. pneumonia and S. aureus (Fig. 6.1, Fig. 6.4, Fig. 

6.6). The ability of the compound to inhibit the growth of Gram-negative and Gram-

positive bacteria suggest broad-spectrum antibiotic activity.  

The characterization and identification of small molecules such as anti-microbial 

peptides, relies on the collective analysis obtained from analytical tools such as NMR and 

high-resolution MS, in addition to preparative methodologies such as liquid 

chromatography (Xiao et al., 2012). In this chapter, the physiochemical properties of the 

compound were investigated by accordingly. Gradual fractionation of the culture filtrates 

produced by A. fumigatus in SAB was performed with a view to isolating the bioactive 

agent. This process revealed an extremely polar, low molecular weight (<3 kDa) 

metabolite with weak light absorption at 254 nm (Fig. 6.5, 6.9C, 6.11D). However, the 

consistent retention time of the compound (5.0-5.2 minutes) allowed some certainty that 

the compound could be fractionated at this time point. The early retention time also 
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indicated the polar nature of the compound. This feature was exemplified by the mobile 

phase in which the compound was removed from the HPLC column, i.e. water with 0.1 

% TFA and its inability to dissolve in methanol once lyophilised. The polarity was a key 

obstacle to isolating the compound by solid phase extraction (SPE) methods. Thin layer 

chromatography using silica plates as the stationary phase and a polar (methanol) solvent 

in the mobile phase did not separate the compound (Fig. 6.5). As many SPE methods are 

silica-based (Huck and Bonn, 2000), this posed a further challenge in terms of separating 

and concentrating the product based on cation or anion exchange due to the difficulties 

associated with separating the compound from the silica resin. However, the polarity of 

the compound allowed for the separation of polar from non-polar fractions using C18 

Sep-Pak columns as the non-polar component was contained in the column while the 

polar flow through could be collected. Further separation was obtained using cation 

exchange C18 columns, and although the level of ion exchange was unpredictable, these 

columns were relied upon as an extra “cleaning” step as opposed to ion separation 

specifically, and provided better separation on the HPLC column.   

Such was the potency of the compound that several fractionation steps by SPE 

and HPLC did not remove the activity from the compound. However, while several 

fractionation steps were performed on the HPLC to remove non-polar and other 

contaminants, one of the main challenges faced with isolating the active compound was 

the inherent presence of glucose contained within the samples. This raised some 

difficulties during NMR analysis as the signals from the compound were masked by more 

prominent glucose signals (Fig. 6.13). Because glucose is a polar compound, glucose 

removal from the compound by SPE was not an option. Boronic acids are known to have 

affinity for sugar residues (Wu et al., 2013; Awino et al., 2016). As such, removal of 

glucose residues was attempted using boronic acids immobilized in solid supported resin 

beads at various pH. However, this approach was unsuccessful in removing the excess 

sugar from the samples and NMR analysis proceeded in the presence of sugar. 

Comparative analysis by 1H NMR revealed several distinct features that were 

evident in the fractions containing anti-bacterial activity, that were less visible in fractions 

that had some activity and undetectable in the fractions that had no activity. For example, 

fractions isolated from processed SAB and collected by HPLC showed most anti-bacterial 

activity in fraction 2, less in fraction 3 and none in fraction 1 (Fig. 6.9D). Analysis by 1H 

NMR on these fractions (Fig. 6.16), revealed distinct peaks in the aliphatic region of the 
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spectra (0-3 ppm) in fraction 2. Although weaker, these signals were detected in fraction 

3, and absent in fraction 1. As peak height is indicative of concentration, this suggests 

that the peaks observed here belong to the structure that formulates the compound. This 

was somewhat unexpected because aliphatic molecules tend to be hydrophobic and thus 

contradict the strength of hydrophilicity of this compound. However, as anti-microbial 

peptides tend to be amphipathic (similar proportion of polar and non-polar amino acids), 

these findings may account for the non-polar determinant (Jiménez et al., 2018).  

Several peaks that were unique to the biologically active fractions were detected 

between 4.05 ppm and 5.2 ppm on the 1H NMR spectra (Fig. 6.18A and Fig. 6.18B) 

However as this is the region where glucose is detected, it was difficult to ascertain with 

clarity, what these peaks represent. A complex splitting pattern revealed a quartet of 

doublets (Fig. 6.19), a triplet and a singlet, in the aliphatic region of the spectra 

representing the fractions with the greatest amount of antimicrobial activity. These signals 

were weaker in the fraction containing slightly less activity but detectable nonetheless. In 

contrast, these signals were absent in the fraction containing no activity (Fig. 6.19). This 

complex splitting pattern is indicative of a cyclic (ring-like) structure. Due to the coupling 

pattern, the aliphatic signals in this region are indicative of polar amino acid side groups 

and suggest the presence lysine or glutamine. This would account, in part, for the water 

solubility of the compound. Finally, 13 C NMR indicated towards an anomeric carbon 

other than glucose (Fig. 6.14). This suggests the presence of a glycosylated residue and 

may explain in part, the presence of excess glucose signals in the sample (Fig. 6.13). 

Moreover, this may explain the hydrophilic nature of the compound. 

To investigate the identity of the compound further, LC/MS was performed in 

positive and negative mode on several fractions with and without anti-bacterial activity 

(Fig. 6.20 and Fig. 6.21). Comparisons were made between the total ion chromatograms 

generated from the different fractions. A range of concentrations (1- 10 µg/ml) were 

analysed by LC/MS although significant differences between the fractions were not 

detected.  Several potentially interesting ions potential were analysed by MS/MS. Ion 

maps of the various fractions were generated and compared against each other (Fig. 6.20C 

and Fig. 6.21C). However, these analyses did not yield definitive results. Given the high 

concentrations of the compound that was analysed by mass spectrometry, it was expected 

that major differences would be observed between fractions, as was in the NMR analysis. 

One possible explanation for this is that the bioactive compound is not charged. Mass 
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spectrometry measures the mass of charged particles and as such, only ions are detected 

(El-Aneed et al., 2009). Thus, a neutral compound is not suitable for analysis with this 

approach. To overcome this obstacle, a charge can be applied to the sample by chemical 

derivatization with charged groups (Krusemark et al., 2009). However, this requires some 

prior knowledge of the compound structure. 

Analysis of the larger fractions (> 3 kDa) of the 72-hour A. fumigatus CuF by MS 

revealed an abundance of enzymes involved in fungal cell wall biosynthesis and integrity 

and in the breakdown and assimilation of nutrients (Table A6.1). A group of enzymes 

including peptidases and phosphatases involved in protein degradation and catalytic 

activity respectively, at low pH were detected (e.g. Tripeptidyl-peptidase sed2 and sed4, 

acid phosphatase). This highlights a role for environmentally controlled enzymes in the 

fungus, which has implications for the type of anti-bacterial compounds produced 

(Losada et al., 2009).  Acyl-CoA binding protein was also detected in this dataset and, 

given its role in NRP synthesis (Bloudoff and Schmeing, 2017), this may be indicative of 

the type of anti-bacterial compound under investigation. 

Analysis of the bacterial proteome in response to sub-lethal or sub-inhibitory 

levels of antibiotics provides invaluable information as to how bacteria respond to, and 

acquire resistance to antibiotics (Pérez-Llarena and Bou, 2016; Jones-Dias et al., 2017; 

Hashemi et al., 2019; Opoku-Temeng et al., 2019). Moreover, this approach may be 

employed to assess the antibiotic mode of action (Bandow et al., 2003; Lok et al., 2006).  

In this study, a label-free quantitative (LFQ) proteomics approach was employed 

to examine the proteomic response of P. aeruginosa to exposure of the A. fumigatus anti-

bacterial compound and to investigate its mode of action against the bacteria. The 

response of P. aeruginosa to sub-inhibitory levels of the CuF was characterized, in part, 

by an increase in the relative abundance of LPS-producing enzymes, rhamnolipids, stress 

response proteins and phenazine biosynthetic proteins and upregulation of translation 

(Fig. 6.24A; Table 6.3). In contrast, there was a distinct decrease in the relative abundance 

of proteins associated with the membrane, quorum-sensing (QS) regulation, iron binding 

proteins, siderophores biosynthesis and sulphur metabolism (Fig. 6.22B, Fig. 6.24B and 

Fig. 6.25, Table 4). Despite its exposure to a relatively low concentration of A. fumigatus 

CuF (i.e. 30 % v/v compared to 50 % v/ used for toxicity assays), a clear antibiotic-

mediated effect was observed in the bacterial proteome (Fig. 6.19). 
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A classic bacterial response to antibiotics is the upregulation of pathways and 

processes associated with LPS production and alterations to membrane transport proteins 

(Ghai and Ghai, 2018). Here, a decrease in the relative abundance of several membrane 

proteins was observed in the dataset, including protein-export membrane protein SecG, 

outer membrane porin OprE and Na(+)-translocating NADH-quinone reductase 

(decreased by 2.3-, 1.87- and 2.2-fold respectively). In contrast the relative abundance of 

proteins associated with O-antigen biosynthesis, Glucose-1-phosphate 

thymidylyltransferase, dTDP-4-dehydrorhamnose 3,5-epimerase and dTDP-4-

dehydrorhamnose reductase (encoded by rmlA, rmlC and rmlD respectively) was 

increased between 1.7- and 1.74-fold (. O-antigen forms part of the LPS out membrane 

structure of Gram-negative bacteria. The increase in LPS biosynthesis is a well-

established mechanism for maintaining antibiotic resistance by decreasing the 

permeability of the cell membrane to antibiotics (Delcour, 2009; Hashemi et al., 2019; 

Sharp et al., 2019). These proteins are also involved in rhamnolipid production, the 

synthesis of which is increased under iron-limiting conditions (Guerra-Santos et al., 1986; 

Ochsner and Reiser, 1995). Rhamnolipids are important regulators of cell motility, cell-

cell interactions and biofilm formation and possess intrinsic anti-microbial activity 

(Dusane et al., 2010). 

The phenazine biosynthetic pathway was significantly increased in bacteria 

exposed to the A. fumigatus CuF (Fig. 6.24A). A notable fold-increase in several proteins 

involved in this pathway was detected, including Phenazine biosynthesis protein PhzA2 

(12.6-fold), PhzD1 (3.2-fold) and PhzB2 (2.8-fold), and glutamine amidotransferase 

(10.2-fold) (Table 6.3). The latter protein is responsible for supplying ammonia that is 

used to convert chorismate into aminodeoxyisochorismate which is used in the 

biosynthesis of phenazines (Culbertson and Toney, 2013). Phenazines (e.g. pyocyanin) 

are redox active pigments that regulate bacterial redox homeostasis, affect metabolic 

pathways and gene expression and promote resistance against antibiotics in bacterial 

biofilms (Price-Whelan et al., 2007; Schiessl et al., 2019). Phenazine biosynthesis is 

induced in nutrient-depleted environments, such as iron limitations (Nguyen et al., 2015), 

and is deployed as an antimicrobial during competitive interactions with other species 

such as A. fumigatus (Briard et al., 2015).  

The RNA polymerase sigma factor, encoded by RpoS, orchestrates the 

transcription of genes associated with environmental stress response (Lu et al., 2018). 
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This protein and DNA-directed RNA polymerase subunit alpha, encoded by RpoA were 

increased along with several other ribosome-associated proteins, transcriptional and 

translational regulators and antibiotic-degrading enzymes, suggesting the upregulation of 

a stress response to antibiotic exposure (Fig. 6.24A; Table 6.3). An RpoS-dependent small 

regulatory RNA, RgsA is a transcriptional inhibitor of AcpP1, the gene encoding acyl 

carrier protein 1 (Lu et al., 2018). The dataset here revealed a decrease in the relative 

abundance of acyl carrier protein. In the context of QS, this may be important because 

acyl carrier proteins are involved in the synthesis of QS molecules, N-acylhomoserine 

lactones (C4-HSL, 3-oxo-C12-HSL), Pseudomonas quinolone signal (PQS) and 

rhamnolipids. 

This finding was in line with the observation in the dataset, of the decrease in the 

relative abundance of proteins associated with the QS pathway in bacteria exposed to the 

A. fumigatus CuF (Fig. 6.24B, Fig. 6.25, Table 6.4). Specifically, there was a decrease in 

the relative abundance of 2-heptyl-4(1H)-quinolone synthase subunit PqsC (encoded by 

PqsC, decreased by 2.7-fold), 2-heptyl-4(1H)-quinolone synthase subunit PqsB (encoded 

by pqsB, decreased by 1.5-fold), anthraniloyl-CoA anthraniloyltransferase (encoded by 

pqsD, decreased by 1.38-fold), and 3-(3-hydroxydecanoyloxy) decanoate synthase 

(encoded by rhlA, decreased by 3.7-fold). Pqs proteins are required for the biosynthesis 

of the PQS signalling pathway (Gallagher et al., 2002) which utilizes the alkylquinolone 

signals, 2-heptyl-4(1H)-quinolone and 2-heptyl-3-hydroxy-4(1H)-quinolone, to regulate 

biofilm formation and the biosynthesis of phenazines, rhamnolipids and siderophores 

(Heeb et al., 2011). PQS also functions as an iron chelator (Tettmann et al., 2016; Lin et 

al., 2018). Interestingly, the relative abundance of phenazine and rhamnolipid 

biosynthetic proteins were increased in bacteria exposed to A. fumigatus CuF, despite a 

decrease in the levels of proteins associated with the QS pathways that regulate the 

induction of genes encoding these proteins. This highlights the ability of these pathways 

and process to function independently of each other (Farrow et al., 2015). 

Because phenazine biosynthesis is regulated in part, by limited iron availability, 

an increase in the relative abundance of proteins associated with phenazine biosynthesis 

may be explained by a decrease in the relative abundance of proteins associated with the 

synthesis of pyochelin, a P. aeruginosa siderophore (Fig. 6.24B; Table 6.4). Pyochelin is 

also involved in chelating copper and zinc, and thus provides a valuable mechanisms of 

nutrient acquisition for the cell (Brandel et al., 2012). LFQ proteomics revealed a 
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significant decrease in the relative abundance of proteins involved in pyochelin 

biosynthesis in bacteria exposed to the A. fumigatus CuF, including salicylate 

biosynthesis isochorismate synthase (encoded by pchA, decreased by 15.4-fold), 

isochorismate pyruvate lyase (encoded by pchB, decreased by 8.9-fold), and pyochelin 

biosynthetic protein PchG (encoded by pchG, decreased by 8.3-fold). PchA is the first 

enzyme in salicylate formation, and this pathway ultimately concludes with the 

production of pyochelin (Gaille et al., 2003). The reduced levels of this protein in bacteria 

exposed to A. fumigatus CuF may indicate reduced levels of pyochelin (Gaille et al., 

2003). The relative abundance of several other iron-binding proteins was significantly 

decreased in bacteria exposed to A. fumigatus CuF (Table 6.4). These proteins included 

iron-binding oxidases, sulphite reductase and the PfeR (decreased by 1.6-fold), which 

regulates expression of ferric enterobactin,, another P. aeruginosa siderophore (Dean et 

al., 1996; Moynié et al., 2019). Proteins associated with the third P. aeruginosa 

siderophore, pyoverdin were not identified in this dataset.  

It is well established that P. aeruginosa differentially regulates its iron-uptake 

systems depending on the environmental conditions to which it is exposed. Although a 

more efficient uptake system, pyoverdin is more metabolically expensive. In contrast, 

pyochelin is a less efficient system for iron uptake but is also (metabolically) less costly 

(Dumas et al., 2013). Pyochelin-deficient P. aeruginosa, expressing pyoverdin only, 

grows better under iron-limiting conditions than pyoverdin-deficient strains expressing 

pyochelin only. On the other hand, pyoverdin-deficient strains producing pyochelin only, 

grew better under moderate iron limitations than pyochelin-deficient strains expressing 

pyoverdin only (Dumas et al., 2013). This indicates that P. aeruginosa balances iron-

acquisition mechanisms with the energy costs for producing these siderophores.   

Taken together, these results show a decrease in the relative abundance of several 

iron-acquisition proteins and in increase in the relative abundance of proteins induced by 

iron limitations. This suggests that the mechanism of action employed by the A. fumigatus 

CuF may be characterized by its ability to limit iron availability for the bacteria, which 

consequently induces a metabolically expensive stress response and inhibits bacterial 

growth. A. fumigatus produce siderophores that protect the fungus against the anti-fungal 

activity of P. aeruginosa (Sass et al., 2019). Thus, the proteomic response of the bacteria 

to the CuF may hold clues as to the mechanism of action and the identity of the 

antibacterial compound. Further studies using siderophore-deficient strains of A. 



279 
 

fumigatus will be invaluable in determining whether siderophores are responsible for the 

antibacterial effect observed in theis CuF. 

Downregulation of QS pathways also point towards the possibility that the anti-

bacterial compound possesses activity that inhibits QS. QS inhibitors are small molecules 

with the ability to interfere with QS-mediated gene expression (Padder et al., 2018). QS 

inhibitors have been described in a number of fungal species, the classic example being 

the Penicillium species (Rasmussen et al., 2005). Given the close proximity in which A. 

fumigatus and P. aeruginosa reside in the environment and in the cystic fibrosis airways, 

it is not outside the realms of possibility that A. fumigatus possess mechanisms beyond 

our knowledge, with which to subdue bacterial growth.  
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6.4 Conclusion 

 

NMR is an invaluable tool for elucidating peptide structures. Coupled with mass 

spectrometry, this technology plays a major role in anti-microbial peptide discovery and 

design. However, as is evident from the results presented in this chapter, separation of the 

compound from the original source prior to and for the purpose of analysis is imperative 

for successful identification. The success of peptide identification is also governed in 

many ways, by the physiochemical properties that characterize a particular compound. 

Here, the separation of a compound with potent broad-spectrum anti-bacterial was 

contained in a complex liquid filtrate obtained from a fungal culture. A number of 

obstacles prevented complete characterization of the compound within the limitations of 

this research. 1) Compound identity by NMR was obstructed by the intrinsic abundance 

of free glucose, which masked a number of potentially important signals required for 

structural characterization.  2) The polarity of the compound made it difficult to analyse 

by traditional HPLC and mass spectrometry methods, which require the use of non-polar 

solvents. 3) Compound identification by MS/MS methods was not possible without 

altering the charge of the compound, which appeared to be neutral. 4) Altering the charge 

by the addition of a chemical adduct requires knowledge of specific residues contained 

within the compound. Nevertheless, even within these limitations, informative data was 

obtained with collective analysis by HPLC, mass spectrometry and NMR. Further in-

depth analysis by NMR including additional 2D experiments including COSY and 

TOCSY should be performed to account for the observed multiplicities. This may provide 

vital information regarding the characteristics of functional groups that may be amenable 

to chemical modification (e.g. acetylation). The potential for chemical derivatization may 

reintroduce mass spectrometry as an option for investigating the identity of this 

compound and overcome the problems arising from analysis of neutral compounds.  

LFQ proteomics was employed to investigate changes to the proteome of P. 

aeruginosa when exposed to the antibacterial agent contained in the culture filtrates of A. 

fumigatus. The proteomic data arising from this approach provided informative clues as 

to the mechanism of action used by the compound to inhibit bacterial growth. Iron-

dependent processes and QS pathways were processes most affected by exposure to the 

fungal culture filtrates. 
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7.1 General Discussion 

 

By definition, polymicrobial communities are a collection of microbial species 

that co-exist in a particular habitat (Peters et al., 2012).  Arising from co-habitation, 

interspecies interactions occur and these interactions shape the landscape of the 

environment in which the microbial communities reside (Murray et al., 2014). When that 

environment exists in humans, such interactions can influence the health status of an 

individual. In the context of infectious disease, polymicrobial interactions can be 

synergistic, whereby the combined effect of multiple microbial species is worse than that 

where individual species act alone (Murray et al., 2014). On the other hand, antagonistic 

interactions arise due to competition, and occur when one species suppresses the other 

(Gabrilska and Rumbaugh, 2015). The mechanisms employed by microbes as a 

consequence of these interactions is very often detrimental to host health (Peters et al., 

2012). Inter-species interactions may influence microbial pathogenesis by altering 

microbial virulence factors, and ergo, disease progression. Thus, an understanding of how 

polymicrobial communities, interact with each other and with the host is important when 

deciding appropriate therapeutic strategies (Peters et al., 2012; Yang et al., 2015).  

The cystic fibrosis airways are characterized by chronic infection caused by a 

multitude of microbial species, and thus represent an excellent model for elucidating the 

interactions that occur between these species and the outcomes arising from these 

interactions, both for the host and for the pathogens involved (Filkins and O’Toole, 2015; 

Darch et al., 2017). Traditionally, chronic CF infections were associated with a limited 

number of pathogens, which included Haemophilia influenzae, Staphylococcus aureus, 

Pseudomonas aeruginosa and Burkholderia cepacia. With the advent of culture-

independent techniques, there came an appreciation of the diverse nature of the microbial 

community that exists in the CF airways (Harrison, 2007; Filkins et al., 2012). 

Nonetheless, with each annual report published by international CF registries, P. 

aeruginosa is consistently identified as the most common pathogen isolated from the CF 

airways of patients after their first decade of life (Cystic Fibrosis Trust, 2014; CF Registry 

of Ireland 2017 Annual Report, 2017; Cystic Fibrosis Foundation, 2018). Coupled with 

this, Aspergillus fumigatus is the most common fungal pathogen that is isolated from CF 

sputum samples (Sudfeld et al., 2010; Reece et al., 2017b).  
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While the impact on the CF airways by bacterial pathogens, such as S. aureus, P. 

aeruginosa and B. cepacia is well established, less is known about the participation of 

fungal pathogens in disease progression (Govan and Deretic, 1996; Lyczak et al., 2002; 

Leclair and Hogan, 2010; Williams et al., 2016b; Delfino et al., 2019).  However, a 

greater acknowledgment for the role of fungal pathogens in CF pathogenesis is beginning 

to emerge and the impact these microbes have on influencing disease progression is the 

focus of many studies (Williams et al., 2016b; King et al., 2016a). 

A. fumigatus is frequently isolated from the lungs of CF patients, yet despite its 

propensity to cause disease in immunocompromised individuals, this pathogen is 

succeeded by P. aeruginosa as the primary pathogens in the CF airways and persistent 

infection with P. aeruginosa is associated with higher rates of mortality (Ratjen and 

Döring, 2003; Crull et al., 2016).  However, co-colonization by A. fumigatus and P. 

aeruginosa is associated with a greater decline in lung function and higher rates of 

pulmonary exacerbations than colonization by either pathogen alone (Reece et al., 2017). 

Interestingly, A. fumigatus has been reported as the only fungal pathogen associated with 

an increased risk for P. aeruginosa infection to occur (Hector et al., 2016). What drives 

pulmonary exacerbation when the two pathogens are present, remains to be fully 

elucidated  (Williams et al., 2016; Briard et al., 2019).  The purpose of this thesis was to 

close that knowledge gap by providing valuable insights into the molecular mechanisms 

that mediate the interactions between A. fumigatus and P. aeruginosa.  

Advances in high-throughput proteomics and associated computational tools, 

have made this approach a widely accepted method for studying pathogen-host and 

pathogen-pathogen interactions (Graham et al., 2007; Kamath et al., 2015; Yang et al., 

2015; Jean Beltran et al., 2017). However, the complexity that underpins these 

interactions poses several challenges, such as isolating individual species after a period 

of co-incubation, or finding a suitable medium that does not unintentionally support the 

growth of one species over the other (Gabrilska and Rumbaugh, 2015). The experimental 

design applied to the co-infection studies described in Chapter 3, 4 and 5 of this thesis 

aimed to address some of these challenges with a view to gaining a better understanding 

as to the dynamics that occur between A. fumigatus and P. aeruginosa and, in the context 

of infection, how the interactions between these pathogens affect the host. In essence, 

three main questions formed the basis for the first three results Chapters in this thesis: 
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1) What is the response of the host to co-infection and how does this compare when it is 

infected with only one pathogen? 

2) What are the molecular mechanisms that enable P. aeruginosa to become a more 

prolific pathogen in the presence of A. fumigatus? 

3) What are the molecular mechanisms that enable these two pathogens to co-exist in the 

same habitat? 

LFQ proteomics was employed to discover the answers to these questions. With 

this approach, it was possible to delineate how one organism responds to the presence of 

another by investigating the changes that occur in the proteome of that organism. 

 In Chapter 3, the alveolar epithelial cell line, A549, was employed to investigate 

the host cellular proteomic response to exposure with A. fumigatus or P. aeruginosa alone 

and compare this with the response to exposure with both pathogens. The decision to take 

this approach arose from clinical studies which report that co-infection with both 

pathogens results in poorer lung function than infection with either one (Amin et al., 

2010; Reece et al., 2017). LFQ proteomics was employed to investigate changes in the 

proteome of A549 cells that had been exposed to either A. fumigatus or P. aeruginosa for 

12 hours and to compare these changes, with those occurring due to co-exposure with 

both pathogens for 12 hours. Some cellular responses were common to infection caused 

by either pathogen, including an increase in oxidative stress and immune system 

responses, and a decrease in translation and structural integrity.  Other responses appeared 

to be pathogen-specific. For example, proteins associated with processing in the ER 

increased in cells exposed to P. aeruginosa compared to A. fumigatus-exposed cells and 

unexposed cells. These results demonstrate that some host cellular responses to different 

pathogens are distinct from others and are indicative of how a pathogen might initiate 

infection by inducing particular host responses (Bertuzzi et al., 2019). 

A feature of bacterial infection, which was not observed in cells exposed to A. 

fumigatus was the loss of integrity in A549 cells after exposure to P. aeruginosa. The 

morphology of the cells changed from a flat, cobblestone shape, to smaller, rounded 

shaped cells in cells that had been exposed to bacteria for 12 hours. This morphology is 

characteristic of cells undergoing oxidative stress (Smit-de Vries et al., 2007) and the 

absence of such a morphology in cells exposed to A. fumigatus suggest the levels of 

oxidative stress induced by the fungal pathogen are less than that of P. aeruginosa. As a 
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human pathogen, A. fumigatus is known to subvert the host recognition response through 

a molecular mechanism controlled by DHN-melanin, a pigment that coats the conidial 

wall (Amin et al., 2014; Heinekamp et al., 2015). Conidia that enter A549 cells can avoid 

degradation by acidic compartments in the host cell allowing time for conidia to 

germinate (Wasylnka and Moore, 2002; Wasylnka, 2003). Thus, although after 12 hours 

A549 cells looked relatively “unstressed” compared to P. aeruginosa-exposed cells, the 

proteomic analysis of these cells told a different story characterized by alterations to 

ribosome activity, mitochondrial activity, and components of the immune response.  

 In reality, pulmonary epithelial cells are subject to exposure by multiple 

pathogens. Due to difficulties in obtaining information from multi-species interactions, 

the whole cell proteomic response of A549 cells to exposure by more than one pathogen 

has not been characterized. To address this knowledge gap, LFQ proteomics was 

performed on A549 cells that had been co-exposed to A. fumigatus and P. aeruginosa for 

12 hours with a view to comparing this response with that of the response to the individual 

challenges. Preliminary experiments revealed that the replication of P. aeruginosa 

increased exponentially in the presence of A. fumigatus. Consequently, a hypothesis was 

generated that A. fumigatus promotes the growth of P. aeruginosa. This hypothesis was 

subsequently validated. To investigate this further, an alternative approach was chosen, 

whereby A549 cells were exposed to A. fumigatus for eight hours, followed by P. 

aeruginosa for a further four hours. To determine specifically how a sequential infection 

differs from an individual one, comparative LFQ analysis was conducted on A549 cells 

exposed to A. fumigatus or P. aeruginosa or sequential exposure to both pathogens. The 

results revealed distinct changes to the host-cell proteome in response to either or both 

pathogens. Key signatures of infection were retained amongst all pathogen-exposed 

groups, including changes in mitochondrial activity and energy output. However, by 

comparison to cells challenged with A. fumigatus or P. aeruginosa, the response of 

sequentially exposed A549 cells was characterized by a decrease in the relative 

abundance of proteins associated with endocytosis, phagosomes and lysosomes. These 

findings indicate that A549 cells responded to infection with either A. fumigatus or P. 

aeruginosa by initiating a pathway of phagocytosis and pathogen degradation but 

sequentially challenged cells were unable to upregulate a similar process of pathogen 

elimination. The sequence of pathogen exposure suggests that A. fumigatus render A549 

cells unable to internalize bacteria, thereby providing an environment in which P. 
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aeruginosa can proliferate. The ability of A. fumigatus conidia to interfere with pathogen 

up-take and processing by a variety of human cells is well established (Bertout et al., 

2002; Aimanianda et al., 2009; Thywißen et al., 2011; Amin et al., 2014). Thus, an 

inability to clear microbial infection by phagocytosis and reduced intracellular 

degradative abilities could be detrimental to the host and favour pathogen survival and 

proliferation. This research provided novel insights into the whole-cell proteomic 

response of A549 cells to A. fumigatus and P. aeruginosa, and highlights distinct 

differences in the proteome following sequential exposure to both pathogens, which may 

explain why P. aeruginosa can predominate.  

In Chapter 4, question two was addressed, i.e. what are the molecular mechanisms 

that enable P. aeruginosa to become a more prolific pathogen in the presence of A. 

fumigatus? In an effort to characterize the proteomic response of P. aeruginosa to 

exposure by A. fumigatus culture filtrates, the ability of P. aeruginosa to proliferate 

rapidly in what is classically a nutrient-poor liquid medium was analyzed. Czapek-Dox 

is traditionally used to drive A. fumigatus into secondary metabolite production, 

particularly the production of gliotoxin (Gardiner and Howlett, 2005; Thrane et al., 2007; 

Dolan et al., 2014; Owens et al., 2014; Johns et al., 2017). The observations made in this 

Chapter were in agreement with findings from other studies; gliotoxin inhibits the growth 

of P. aeruginosa (Reece et al., 2018). However, exposure of P. aeruginosa to A. 

fumigatus culture filtrates produced prior to high levels of gliotoxin production (i.e. 

between 48 and 72 hours), revealed increased rates of bacterial growth compared to the 

growth of bacteria in sterile Czapek-Dox medium. Mass spectrometry-based proteomic 

analysis of the A. fumigatus culture filtrate (A. fumigatus CuF) produced at 48 hours 

identified an abundance of peptidases and proteases in the medium, suggesting an 

increase in the levels of amino acids resulting from enzymatic degradation. Indeed, a 

hallmark of the A. fumigatus secretome is the abundance of degradative enzymes, which 

facilitate the acquisition of nutrients from a range of different substrates thereby ensuring 

ubiquity in a vast range of environments (de Vries and Visser, 2001; Dagenais and Keller, 

2009; Sharma Ghimire et al., 2016). The hypothesis that A. fumigatus created an 

environment characterized by an abundance of amino acids on which P. aeruginosa could 

thrive, was supported by the ninhydrin assay, a method commonly used for the detection 

of amino acids (Friedman, 2004) which demonstrated increased mounts of free amino 

acids.  
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The objective of this Chapter was in part, to characterize the proteomic response 

of P. aeruginosa to interactions with A. fumigatus. However, as highlighted previously, 

the need to separate multiple species in order to analyse the effect on one is a major 

obstacle for delineating polymicrobial interactions (Darch et al., 2017). To overcome this 

challenge, A. fumigatus and P. aeruginosa were co-cultured to create a culture filtrate 

(CuF) containing the secretome of both organisms generated while in the presence of each 

other. Interestingly, compared to bacteria exposed to the culture filtrate produced in its 

own culture, the Co-culture CuF promoted the growth of P. aeruginosa more than that 

produced by A. fumigatus alone. A prominent feature of the response detected in the 

proteomic comparison between bacteria exposed to its own (P. aeruginosa) CuF and Co-

culture CuF, was a decrease in the relative abundance of several ABC transporters 

involved with the cellular import and export of nutrients. This response is perhaps 

indicative of the nutrient levels available to P. aeruginosa when exposed to a medium 

processed by A. fumigatus. Conversely, this comparison indicates that P. aeruginosa does 

not have the same enzymatic capacity as A. fumigatus to degrade and to extract nutrients 

from Czapek-Dox. Thus, to survive, it must increase the number and abundance of 

transporters required to import nutrients from the nutrient-deprived environment into the 

cell. This highlights the ability of P. aeruginosa to exploit the environment created by A. 

fumigatus, which enables the bacteria to outcompete the fungus under these conditions.   

LFQ proteomics performed on P. aeruginosa revealed a bacterial response to A. 

fumigatus CuF and Co-culture CuF in-line with that produced under anaerobic conditions. 

Coupled with the growth increased observed in the bacteria when exposed to A. fumigatus 

CuF and Co-culture CuF, this was interesting, particular in the context of cystic fibrosis, 

a disease characterized by a nitrate-rich, amino acid rich, anaerobic environment (Barth 

and Pitt, 1996; Palmer et al., 2007b; Line et al., 2014).  

Investigations into the physical interactions of A. fumigatus and P. aeruginosa on 

a solid surface highlighted the ability of P. aeruginosa to compete with A. fumigatus and 

images of the bacteria growing through an established line of fungal spores, suggest P. 

aeruginosa has the molecular capability to inhibit fungal growth when in direct 

competition with conidiophores. However, on a semi-solid surface, P. aeruginosa 

migrated towards the fungal colonies that had formed hyphae in the agar. It is possible 

that the breakdown of nutrients by A. fumigatus mycelia in the semi-sold agar used for 

these swim assays, may promote the chemotaxis of P. aeruginosa towards the hyphae. A. 
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fumigatus adopts a foraging response in a nutrient-poor environment, which involves the 

extension of hyphae to identify a nutrient source (Richie and Askew, 2008). Thus, in the 

process of creating nutrients for itself, the fungus may also be providing a more easily 

assimilated source of nutrients for the bacteria. Polymicrobial interactions between the 

fungal mycelia and bacteria extracted from soil, have identified mycelial exudates as 

growth promoters of bacteria, including Pseudomonas species (Toljander et al., 2007). 

Interestingly, the bacterial density appeared to become reduced the closer P. aeruginosa 

came to the hyphae. P. aeruginosa is thought to inhibit conidial growth and alter, but not 

inhibit hyphal growth, possibly due to the production of secondary metabolites such a 

fumagillin and gliotoxin by A. fumigatus hyphae (Mowat et al., 2010; Manavathu et al., 

2014; Briard et al., 2017).  

In Chapter 5, the response of A. fumigatus to exposure to P. aeruginosa and P. 

aeruginosa culture filtrates (CuF) was investigated with respect to gliotoxin production 

and alterations to the proteome. Inoculation of 48-hour A. fumigatus cultures with varying 

densities of P. aeruginosa cells resulted in an inverse correlation between hyphal mass 

(measured as wet weight) and gliotoxin production. A similar outcome was observed 

when A. fumigatus cultures were exposed to the culture filtrate of P. aeruginosa grown 

in Czapek-Dox for 72 hours. These results suggest what has previously been 

demonstrated, that P. aeruginosa affects the growth of A. fumigatus hyphae (Briard et al., 

2017). Moreover, P. aeruginosa induces oxidative stress to which A. fumigatus responds 

by producing gliotoxin, a redox active metabolite employed by the fungus to neutralize 

reactive oxygen species (Briard et al., 2015; Dolan et al., 2015). However, secondary 

metabolite production comes at the expense of growth, which, explains why hyphal 

growth was reduced in cultures containing high levels of gliotoxin (Ruiz et al., 2010).  

Barring complications, individuals with cystic fibrosis are not affected by invasive 

aspergillosis, suggesting that invasive hyphae do not form in the cystic fibrosis airways 

(Reece et al., 2017; Schwarz et al., 2018). Nevertheless, the fungus is frequently isolated 

from cystic fibrosis sputum. Thus, it may be more appropriate when, characterizing the 

interactions between A. fumigatus and P. aeruginosa in the context of cystic fibrosis, to 

investigate the effect on conidial or germling growth rather than fully developed hyphae, 

which are more characteristic of invasive aspergillosis.  With this in mind, A. fumigatus 

conidia were cultured in the culture filtrate produced by P. aeruginosa in Czapek-Dox 

and in the Co-culture CuF. However, the conidia did not germinate in the culture filtrates. 
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Interestingly, the conidia were not killed and spores retrieved from the cultures grew 

when cultivated on agar plates. Thus, it is possible that in these conditions, A. fumigatus 

conidia remain dormant until such a time that is appropriate to resume growth (Sugui et 

al., 2014).  

 To overcome this, conidia were allowed to germinate before they were exposed 

to P. aeruginosa CuF and Co-culture CuF. With this approach the effect of P. aeruginosa 

on the early stages of A. fumigatus growth could be investigated. Growth was not affected 

and gliotoxin concentrations were not increased relative to the control. Together, these 

finding suggested that the response of A. fumigatus to P. aeruginosa CuF is dependent on 

the stage of fungal growth. LFQ proteomic analysis supported the findings that gliotoxin 

production was decreased in the A. fumigatus cultures that had been exposed to Co-culture 

CuF. The relative abundance of four proteins out of the 12 encoded by genes associated 

with the gliotoxin gene cluster was decreased (Kwon-Chung and Sugui, 2009). 

Unsurprisingly perhaps, given the function of gliotoxin, the levels of proteins involved 

with oxidative phosphorylation was lowered in cultures exposed to Co-culture CuF.   

Interestingly however, the relative abundance of proteins associated with the 

biosynthesis of other secondary metabolites including pseurotin A, verruculogen and 

fumitremorgin were increased in cultures exposed to P. aeruginosa CuF but not 

significantly in Co-culture CuF. In general, alterations to the proteome of A. fumigatus 

cultured in A. fumigatus CuF differed quite significantly between the fungal cultures 

exposed to P. aeruginosa CuF and Co-culture CuF, particularly in terms of secondary 

metabolite production and intracellular transport. These findings indicate the complexity 

of the A. fumigatus proteome and its ability to adapt to different conditions to ensure its 

survival.  

In the final results Chapter, the identity of a potentially novel A. fumigatus 

compound, with significant anti-bacterial activity was investigated. The discovery of this 

compound arose from traditional screening methods, similar to those employed by 

Selman Waksman and his students in the 1940s, from which came the discovery of 

streptomycin (Valiquette and Laupland, 2015).  A. fumigatus was cultured in several types 

of media and the resulting culture filtrates were applied to 96-well plates containing P. 

aeruginosa. The results presented clear inhibition of bacterial growth where exposed to 

the culture filtrate from an A. fumigatus culture grown to early stationary phase (48-72 
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hours) in a nutrient rich, complex media, Sabouraud dextrose broth. Sabouraud dextrose 

broth was formulated specifically for the growth of certain fungi that can grow well in a 

low pH environment. The low pH was initially intended to prevent bacterial 

contamination (pre-antibiotic era) (Hare, 2013). It is characterized as a complex, or 

undefined media based on the formulation, which includes peptone and pancreatic digests 

of casein and peptic digest of animal tissue as the nitrogen source, and glucose or dextrose 

as the carbon source (Hare, 2013).  

In general, antimicrobial compounds are associated with secondary metabolism, 

which begins to occur in the latter stages of the stationary phase when the nutritional 

content of the environment becomes depleted (Ruiz et al., 2010). It was interesting then, 

to discover an antibiotic produced during the early stationary phase of fungal growth, in 

a nutrient rich environment.  

With the level of anti-bacterial activity contained within the culture filtrates, one 

could assume that the compound was gliotoxin however activity assay performed with 

fractions of the culture filtrate collected from the HPLC excluded gliotoxin as a possibility 

and instead revealed a highly polar fraction as the compound with activity. The extreme 

polar nature of the compound posed challenges for obtaining separation using non-polar 

solvents and solvents which some would consider suitable for separating polar 

compounds (e.g. ethyl acetate or methanol) (Cepas et al., 2019). However, separation 

could be obtained using a variety of silica-based solid phase extraction (SPE) columns, 

which allowed the non-polar fraction to be retained and the polar fraction to flow through 

the SPE column.  With each round of separation by HPLC, contaminants surrounding the 

active fraction became less abundant. However, one contaminant that could not be 

removed was free glucose. The abundance of glucose is probably not surprising given the 

high concentration of the product in the starting material. Removing the glucose from the 

sample proved quite difficult, given the extremely polar nature of glucose and the 

compound. Alterations to the fraction method did remove some glucose making the 

compound more amenable to NMR analysis, although its presence hindered analysis of 

the compound in a large region of the NMR spectra.  

NMR is an invaluable tool for elucidating the structure of anti-microbial peptides 

(Daletos et al., 2017) and provided valuable information about the possible structure of 

this compound. Possibly the most standout feature observed was the quartet of doublets 
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in the aliphatic region of the spectra, which may potentially represent a cyclic feature of 

the compound. The number of peaks in the aliphatic region indicate an aliphatic 

component of the compound. This contradicts the evidence that shows the polar nature of 

the compound. However this is not uncommon as naturally occurring antimicrobial 

compounds tend to be amphipathic molecules containing a hydrophilic region and 

hydrophobic region which interact with the bacterial membranes leading to perturbation 

and sometimes internalization and targeting of intracellular compartments (Jiménez et al., 

2018). 

Combined with NMR, mass spectrometry is useful for sequence analysis of 

antimicrobial compounds (Stegemann and Hoffmann, 2008). Unlike the NMR, analysis 

of the compound did not reveal any significant changes between the fractions with or 

without antimicrobial activity. Furthermore, in contrast to NMR, where milligrams of 

material are necessary for analysis, mass spectrometry requires far smaller amounts of 

material (i.e. micrograms or nanograms). Thus, given the high concentration of sample 

that was analysed by mass spectrometry, with few differences in the results, it is possible 

that the compound is uncharged. In general, antimicrobial peptides are charged (Jiménez 

et al., 2018), however, the net charge of the compound may be neutral in this case. 

Because mass spectrometry works on the principle that the mass of charged particles are 

measured, only ions are detected (El-Aneed et al., 2009). However, chemical 

derivatization of compounds, i.e. the addition of a charged molecule, can be used to 

overcome this obstacle. Some prior knowledge of the compound structure must be 

obtained before this can occur (Krusemark et al., 2009).  

Knowledge of the compound structure may be derived in part, by understanding 

how the compound affects the target microbe. The approach employed here focused on 

investigating the effect of the compound on P. aeruginosa. Although the compound did 

show activity against other bacteria including clinical strains of K. pneumonia and S. 

aureus and an MDR strain of E. coli, P. aeruginosa was chosen for further investigation 

because of its close relationship with A. fumigatus. What these activity assays on the other 

bacteria did show however, was that the compound has broad spectrum activity, a useful 

feature to have in an antibiotic during the initial stages of treatment when the causative 

agent of the infection is unknown (Kollef, 2008).  
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LFQ proteomics performed on P. aeruginosa exposed to the compound contained 

in the culture filtrate produced by A. fumigatus revealed significant changes to the 

bacterial proteome. A decrease in the relative abundance of proteins encoded by genes 

regulating the biosynthesis of pyochelin siderophores and other iron-binding proteins 

provide some indication that the compound influences iron availability for the bacteria. 

Iron is an important nutrient for microbial survival and sequestration of this compound 

from the environment is known to inhibit growth and is a common strategy used by a host 

to fight infection (Parrow et al., 2013). Such is the importance of iron in the ability of P. 

aeruginosa to sustain infection in the cystic fibrosis airways, limiting iron availability is 

a potential therapeutic strategy for treating these infections (Smith et al., 2013a).  

A decrease in the relative abundance of proteins associated with quorum sensing 

suggested this may play a role in the antimicrobial activity of the compound. Interfering 

with bacterial cell-cell signalling by targeting quorum-sensing mechanisms is a potential 

therapeutic target for antibiotics (Hirakawa and Tomita, 2013). It is uncertain as to 

whether or not these antibiotics are bacteriocidal or bacteriostatic. Preliminary results 

indicate that the compound has bacteriostatic effects rather than being bacteriocidal, 

although further studies are needed to establish this. The ability to quantify the 

concentration of the compound will allow for assays that determine the minimum 

inhibitory concentration (MIC). While it is preferable that antibiotics possess 

bacteriocidal activity, bacteriostatic agents have a major role to play in the treatment of 

infection and they may function successfully as part of combined therapy by reducing 

bacterial load, modulating virulence and reducing tolerance against antibiotics (Pankey 

and Sabath, 2004; Hirakawa and Tomita, 2013). 

An increase in the relative abundance of redox active proteins encoded by 

phenazine biosynthetic genes and stress response regulators such as RNA polymerase 

sigma factor, indicate the environmental stress conditions forced on P. aeruginosa by this 

compound. Phenazines also play a role in reducing insoluble Fe III to ferrous iron (Fe II) 

(Wang et al., 2011) and thus the significant increase in the phenazine biosynthetic 

pathway may not only be indicative of the redox status of the environment but also of the 

levels of iron availability. These findings may provide some clues as to the mechanism 

of action.  
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7.2 Concluding Remarks 

 

For a long time, bacteria were thought to be the main causes of infections 

associated with the cystic fibrosis airways while fungal pathogens were given less 

attention (Williams et al., 2016). Although frequently isolated from the CF lung, A. 

fumigatus causes disease in the form of ABPA in a relatively small cohort of CF patients 

(1-15 %) (Stevens et al., 2003b). However, where A. fumigatus co-exists with P. 

aeruginosa, lung function declines (Amin et al., 2010; Reece et al., 2017). The findings 

presented in this thesis suggest that rather than just being a bystander, A. fumigatus may 

facilitate the pathogenesis of P. aeruginosa by altering the nutrient content of the 

environment and debilitating the phagocytic abilities of host cells. The discovery-driven 

approach afforded by LFQ proteomics provided an invaluable, un-biased level of 

information as to the molecular mechanisms of the host response to multiple pathogens 

and the pathogen response another pathogenic species.   

There is an irony in the concept that microorganisms, which have the potential to 

cause disease, can also synthesise products to treat disease. Fortuitously for humans, these 

bioactive products can be harvested and harnessed for their many health benefits, 

including their anti-microbial properties. However, the difficulties arising from isolating 

and purifying natural products has encouraged a movement away from traditional 

antibacterial-discovery methods. As we face an era of antimicrobial resistance, the 

necessity to identify novel antimicrobial agents will encourage the return to traditional 

methods of discovery. Combined with the advances in NMR, mass spectrometry and 

associated computational tools, the opportunity to discover and develop novel 

antimicrobials using traditional techniques has never been more accessible. Moreover, as 

our understanding of how microbial communities evolve and adapt to interact with each 

other and with the host, the therapeutic strategies we employ to combat infectious disease 

will also require adaptation and evolution. 

To that end, future work surrounding the identification of the anti-bacterial 

compound should involve further structural analysis by NMR with a view to derivatizing 

the compound and performing additional investigations by mass spectrometry so that the 

structure and identity may be elucidated. The culture filtrates produced in SAB by a 

selection of A. fumigatus mutants should be screened for anti-bacterial activity. 
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Identifying the gene cluster that may be responsible for generating the compound, 

whether intracellularly or extracellularly, may provide some indications as the type of 

compound in question. In vitro studies to assess the cytotoxicity of the compound on a 

mammalian cell line should be considered and the anti-bacterial effect on a range of 

bacteria in the presence of a mammalian cell line should be performed. Additional LFQ 

proteomic-based analysis on P. aeruginosa using varying concentrations of the purified 

compounds would be beneficial so that the mode of action can be investigated further. 

Using proteomic data as a guide, bacteria carrying mutations may be employed for further 

analysis as to the target of the anti-bacterial compound.  
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