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Abstract

Positive systems are important for application such as transportation, popu-
lation dynamics and epidemiology. These systems can sometimes make use of
sensitive personal information, which leads to the challenge of publishing this
information in a way that guarantees individuals’ privacy, while keeping the
data usable. In this thesis, we focus on the problem of applying privacy con-
straints to positive linear systems and observers via differential privacy and
opacity.

After reviewing relevant notation and background, we first tackle the problem
of building a differentially private mechanism that preserves positivity. We
consider two methods of constructing these mechanisms: post-processing and
restriction. We present explicit formulae for the bias and the mean square
error of the mechanisms constructed. We derive two results showing that bias
is unavoidable for both approaches. For post-processing with a ramp function,
we determine the optimal such function that minimises the worst case bias.
We also prove the existence of an optimal post-processing function for mean
square error.

Throughout this thesis, a major focus is on the positive linear observer prob-
lem. Specifically, we derive bounds for both the l1 and l2 sensitivity of Lu-
enberger observers. We also show how these bounds can be used to quantify
the noise required to achieve differential privacy via the Laplace or Gaussian
mechanism. We then study the optimisation problem of minimising these
bounds for positive linear observers and provide methods for computing an
optimal solution for different classes of systems. In particular, we derive the-
oretical results describing optimal observers, in the l1 sensitivity sense, for
compartmental systems with a single output and a subclass of multi-output
compartmental systems. We also consider the trade-off between the l1 sensi-

ix



Abstract

tivity bound of a positive linear observer and the rate at which it converges
to the true system state.

Finally, we present preliminary results on initial state opacity for positive
linear systems. In particular, we consider the problem of initial state opacity
when the secret and non-secret states are defined by convex cones in Rn

+.
Farkas’ Lemma is used to derive a result characterising opacity in this case.
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CHAPTER 1
Introduction

In this chapter, we discuss the motivations behind the work of this thesis and provide
an overview of the material presented in the following chapters.

1.1 Motivation
Within the area of Systems and Control Theory, there has been a significant
amount of interest in the class of Positive Systems over the past 3 decades
[42, 66, 63]. A positive system is one where the state and output variables
take only nonnegative values when the initial state and inputs to the sys-
tem are nonnegative. These systems are important for applications such as
population dynamics, transportation networks, epidemiology, and information
propagation. An important subclass of positive systems is formed by compart-
mental systems which are used to model the flow of material or people between
compartments; these can be used to model the movement of people in a smart
building or a transport system for example [62, 105]. Positive and compart-
mental systems have been studied in continuous and discrete time [104, 106].

The theory of positive linear time-invariant (LTI) systems is now well de-
veloped [42]. Many fundamental results have been established about system
properties such as stability, controllability, observability, and realizability for
positive systems. The results on these properties for positive systems are
often different to those from general systems because of the positivity con-
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1.1. Motivation

straint on the system variables. For example, far stronger stability properties
can be established using the Perron-Frobenius theory of nonnegative matrices
[83, 50]. On the other hand, questions such as controllability can be more
involved as the inputs are constrained for positive systems. Recent work has
focused on extending the basic theory for LTI systems to classes of nonlinear
systems, switched systems, descriptor systems [107, 29], and systems subject
to time-delay [50, 82]. Nonetheless, some of the core questions for positive LTI
systems such as those related to minimal realizations [15], or positive dynamic
observer design [7, 106] are not entirely resolved and still attract the attention
of researchers.

Many of the applications that give rise to positive systems involve the use of
personal data. For example, transport networks or smart buildings rely on
location data for individuals [102]. In the recent past, there has been a lot of
concern over questions of personal privacy where data of this nature is being
used. High-profile privacy breaches such as the Netflix prize dataset [86],
the AOL breach [2], and Massachusetts health records [100] have motivated
the development of formal mechanisms for privacy protection. Building on
earlier work in fields such as statistical disclosure control [60], there has been
a lot of activity in the development and analysis of formal privacy frameworks
such as k-anonymity, l-diversity, and differential privacy. The last of these is
now probably the main mathematical framework used for privacy. As modern
control systems often use personal data, we need to add privacy protection to
the design of such systems. In particular, there has been interest in developing
control methods that satisfy privacy constraints. Differentially private versions
of consensus algorithms, routing algorithms, Kalman filtering, and observer
design have recently been developed [40, 51, 98, 37, 99]. In the light of the
remarks made at the beginning of this paragraph, it seems natural to consider
differentially private versions of some of the main problems in the theory of
positive systems. This observation is the central motivating theme of this
thesis.

Positive systems, positive observers, and privacy

One of the most studied questions in the theory of positive systems is the
positive observer problem [52, 10, 7]. Classical Luenberger observers [79] are
not appropriate for positive systems as they can generate negative values for

2



1.1. Motivation

the state estimate. This has driven many researchers to consider the ques-
tion of how to design dynamic observers for positive systems that respect the
positivity property. For applications such as smart buildings or syndromic
surveillance, the output measurements used to estimate the system state may
be sensitive or personal. One way to address privacy concerns is to add noise
to the state estimate (observer output). If this is done appropriately, then the
mapping from the measured output to the state estimate will be differentially
private [68]. In order to determine the variance required, it is necessary to
compute or estimate a parameter associated with the observer system known
as the sensitivity. In general, calculating system sensitivity is not easy. A lot
of our work concerns novel problems related to positive observer design that
come from the need to estimate and optimise sensitivity. An important issue
here is to make sure that the perturbed/noisy signals still take nonnegative
values.

While the majority of this thesis is concerned with differential privacy and
positive systems, opacity is an alternative framework for questions of privacy.
Opacity was introduced for Discrete Event Systems but has now been studied
for linear systems also. The idea of opacity is that someone looking in from
the outside cannot easily distinguish a ’secret’ system evolution from a ’non-
secret’ one. To date, nothing seems to have been done on the question of
opacity for positive systems. We briefly consider this question in Chapter 8.

Key questions
At a high level, the main questions considered in the thesis are the following.

1. How can we construct differentially private mechanisms which take only
nonnegative values? This is needed to apply the mechanism to positive
systems.

2. How much noise do we need to add to a positive observer to make it
differentially private? For this we need to estimate the sensitivity of the
observer.

3. Can we determine positive observers that are optimal? Here we want to
find an observer that minimises the sensitivity estimate above.

4. How can opacity be applied to positive linear systems?

3



1.2. Overview

1.2 Overview
The structure of this thesis is as follows:

• In Chapter 2, we give an outline of notation and background on positive
systems, positive observers, differential privacy and opacity.

• In Chapter 3, we show how to construct a positive ε differentially pri-
vate mechanism via post-processing and restriction. The main focus is
on the bias and the mean square error of the nonnegative Laplace mech-
anisms. We calculate the bias and mean square error of both approaches
(using a simple ramp function for post-processing). We establish that
bias is inevitable and show how to achieve a lower bias with alternative
ramp functions. We also prove the existence of a square-integrable post-
processing function that minimises the worst case mean square error for
the Laplace mechanism.

• In Chapter 4, we show how to apply the derived nonnegative mechanisms
from Chapter 3 to control systems. We then calculate an upper bound of
the l1 sensitivity for a positive Luenberger observer and present initial
results and methods on the problem of minimising this bound for a
positive linear observer.

• In Chapter 5, we derive expressions for a positive observer that will
minimise the l1 sensitivity bound of a compartmental system, for single-
output and classes of multiple-output systems. We also examine the
trade-off between the l1 sensitivity bound of a positive linear observer
and the rate of convergence to the true system state. Finally, we inves-
tigate the sensitivity for a more general positive observer construction.

• In Chapter 6, we derive an upper for the l2 sensitivity of a Luenberger
observer. This is used to achieve relaxed (ε, δ) differential privacy via
the Gaussian mechanism. We also establish steps for an algorithm to
minimise this bound for a positive observer for a multiple-output system.

• In Chapter 7, we consider initial state opacity for positive linear systems.
For this, we consider the problem when the secret and non-secret states
are defined by convex cones in Rn

+.
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• Concluding remarks and a discussion of possible future work are given
in Chapter 8.

1.3 Outputs
The following papers have been published/submitted contributing to the work
in this thesis.

1. McGlinchey, A. and Mason, O. Differential privacy and the l1 sensitiv-
ity of positive linear observers, IFAC Papers – Online, (IFAC World
Congress), 50 (2017), 3111 – 3116.

2. McGlinchey, A. and Mason, O. Bounding the l2 sensitivity for positive
linear observers, in European Control Conference, 2018.

3. McGlinchey, A. and Mason, O. Some Novel Aspects of the Positive Lin-
ear Observer Problem: Differential Privacy and Optimal l1 Sensitivity.
Journal of Franklin Institute, Submitted July 2020.

4. McGlinchey, A. and Mason, O. On the Bias and Mean Square Error of
Differentially Private Mechanisms for Positive Real-valued Data. Foun-
dations of Data Science, Submitted August 2020.
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CHAPTER 2
Background

In this chapter, we introduce some standard notation that is used throughout the
thesis, and discuss relevant results from the literature in the areas of Positive Sys-
tems Theory, Differential Privacy, and Opacity. Particular attention is given to the
positive linear observer problem.

2.1 Introduction
As mentioned in Chapter 1, the positive observer design problem has been
widely studied in the theory of positive systems. A simple Luenberger observer
for a positive LTI system will typically generate negative state estimates.
Imposing the requirement that all signals in the observer are nonnegative
makes the question of positive observer design more complicated. While much
work has been done on positive observer design, it is only very recently that
privacy has been considered in connection with problems in control theory. In
particular, the paper [67] is the first to have considered differentially private
observers for general, not necessarily positive systems. Adding differential
privacy as a requirement for an observer gives rise to several novel problems
and directions for research; these shall play a central role in this thesis.

Throughout the thesis, we are concerned with problems arising from the com-
bination of positive systems theory with privacy considerations. Hence, the
material in the thesis draws on background from some diverse fields and, to
set the scene for the remainder of the thesis, in this chapter we will present a
variety of relevant definitions and results. In particular, we review well-known
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2.2. Background on nonnegative matrices and positive systems

results on positive linear systems and nonnegative matrices before discussing
the most relevant prior work on the positive observer problem. As differential
privacy is a central concern throughout, we devote a number of sections to
this. We first describe its initial formulation for a static database [38], before
considering more recent work extending it to control systems and observers
[33].

For discrete event systems, the concept of opacity [61] has been widely used
for privacy protection. In the last few years a version of opacity for linear
systems has been developed. This gives an alternative approach to privacy
protection to that of differential privacy and we will briefly consider its use
for positive systems in Chapter 7. For this reason, we also include a brief
discussion on opacity in this chapter.

2.2 Background on nonnegative matrices and
positive systems

Our primary focus in this thesis is on formal definitions of privacy applied to
positive systems [66, 63, 42]. For the most part, we will be concerned with
positive linear systems in discrete time. Before describing relevant results
from the literature on positive linear systems, we first recall some standard
terminology and notation from linear algebra that will be used when we discuss
positive linear systems. Most of the results discussed here are well known, and
further details can be found in the standard references [59, 58, 17, 16, 12, 94,
42] and elsewhere in the literature on linear algebra and positive systems.

2.2.1 Notation and preliminaries on matrices and
graphs

We denote the set of integers by Z. We use Rn to denote the vector space of
n-tuples of real numbers. For vectors x, y ∈ Rn: x ≥ y means that xi ≥ yi for
1 ≤ i ≤ n; x > y means that x ≥ y, x 6= y; x � y means that xi > yi for
1 ≤ i ≤ n. We use Rn

+ to denote the nonnegative orthant

Rn
+ := {x ∈ Rn | x ≥ 0}.

We use Rn×m to denote the space of n × m matrices with real entries. We
say a matrix A ∈ Rn×m is strictly greater (or greater) than B ∈ Rn×m, and
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2.2. Background on nonnegative matrices and positive systems

denote this by A � B (or A ≥ B), if for all 1 ≤ i ≤ n and 1 ≤ j ≤ m,
aij > bij (aij ≥ bij). σ(A) denotes the spectrum of A ∈ Rn×n, the set of all
eigenvalues of A. ρ(A) = max{|λ| : λ ∈ σ(A)} denotes the spectral radius of
A and µ(A) = max{Re(λ) : λ ∈ σ(A)}, the maximal real part of eigenvalues
of A, denote the spectral abscissa of A.

Rn×n
+ is the cone of n × n matrices with nonnegative entries. We say A is a

positive matrix, A � 0, if for 1 ≤ i ≤ n and 1 ≤ j ≤ m, aij > 0, and A is a
nonnegative matrix, A ≥ 0, if for 1 ≤ i ≤ n and 1 ≤ j ≤ m, aij ≥ 0.

Metzler matrices play a key role in the theory of positive linear systems in
continuous time [42] and we now recall their definition.

Definition 2.2.1. A matrix A ∈ Rn×n is a Metzler matrix if its off-diagonal
elements are nonnegative, formally aij ≥ 0, ∀ i 6= j and A = N−αI for N ≥ 0.

Many strong results in the theory of nonnegative matrices concern the class
of irreducible matrices [59], defined as follows.

Definition 2.2.2. A matrix A ∈ Rn×n
+ is reducible if there exists a permuta-

tion matrix P ∈ Rn×n such that

P TAP =
 B C

0 D


with B and D square matrices. A is said to be irreducible if A is not reducible.

Given a nonnegative matrix A ∈ Rn×n
+ , the directed graph, or digraph, of

A, D(A) is defined in the standard fashion. D(A) consists of the vertices
V = {1, . . . , n} and there is an edge (i, j) from vertex i to vertex j if and only
if aij > 0. It is well known that the matrix A ∈ Rn×n

+ is irreducible if and only
if D(A) is strongly connected [13]; the digraph (D(A) is strongly connected if
there exists a directed path from i to j for every pair (i, j) of vertices in D(A).
Another equivalent condition for A to be irreducible is (I + A)n−1 � 0. The
following concept of primitivity is stronger than irreducibility.

Definition 2.2.3. A nonnegative matrix A ∈ Rn×n
+ is primitive if Ak � 0 for

some positive integer k.

8



2.2. Background on nonnegative matrices and positive systems

Some of the results we describe later on the positive observer problem involve
the index of primitivity of a nonnegative matrix.

Definition 2.2.4. For a matrix A ∈ Rn×n
+ , the least k such that Ak � 0 is

the index of primitivity of A.

In the study of positive linear systems, and particularly their stability prop-
erties, the next classical result plays a key role. The first version of this
celebrated result was proved for positive matrices while later work developed
extensions to irreducible and primitive matrices.

Theorem 2.2.1 (Perron-Frobenius [59, 94, 12]). Let A ∈ Rn×n
+ be irreducible

and nonnegative and suppose that n ≥ 2. Then:

a) ρ(A) > 0;

b) ρ(A) is an algebraically simple eigenvalue of A;

c) there is a unique vector x ∈ Rn with x � 0 such that Ax = ρ(A)x and
x1 + . . .+ xn = 1;

d) there is a unique vector y ∈ Rn with y � 0 such that yTA = ρ(A)yT and
y1 + . . .+ yn = 1.

It is a standard result [59] in Perron-Frobenius theory that a primitive matrix
has only one nonzero eigenvalue of maximum modulus.

Induced matrix norms

Later in the thesis, we shall make use of induced matrix norms when discussing
sensitivity in the setting of differential privacy. First recall that given a norm
‖ · ‖ on Rn, the associated induced matrix norm of A in Rn×n is given by

‖A‖ = sup
x∈Rn,x 6=0

‖Ax‖
‖x‖

= max
‖x‖=1

‖Ax‖. (2.1)

The next result (see [59] for a proof) characterises the induced matrix norm
associated with the usual l1 and l2 norms on Rn.

9



2.2. Background on nonnegative matrices and positive systems

Lemma 2.2.2. The l1 induced norm (the maximum column sum matrix norm)
of a matrix A ∈ Rn×n is given by

‖A‖1 = max
1≤j≤n

n∑
i=1
|aij| (2.2)

The l2 induced norm (spectral norm) of a matrix A ∈ Rn×n is given by

‖A‖2 =
√
ρ(ATA) (2.3)

which is the largest singular value of A.

2.2.2 Positive linear systems in continuous and
discrete time

Consider a linear time-invariant (LTI) system [91, 64]:

x(t+ 1) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t) (2.4)

in the discrete time case or

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t) (2.5)

in continuous time. Here the state x ∈ Rn, the input u ∈ Rm, and the output
y ∈ Rp and A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m.

Definition 2.2.5. An LTI system (2.4) or (2.5) is a positive LTI system
[66, 42] if for every nonnegative initial state and for every nonnegative input
its state and output are nonnegative for all times.

Positive LTI systems will be a significant concern throughout this thesis.
Given their practical importance in applications such as epidemiology [30,
105], it is not surprising that positive systems have attracted a significant
amount of attention in the research literature over the years. For general
background on positive systems and their applications, consult the references
[42, 66, 63].

A characterisation of discrete-time positive LTI systems is as follows [42].
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2.2. Background on nonnegative matrices and positive systems

Proposition 2.2.3. The discrete-time LTI system (2.4) is positive if and only
if

A ∈ Rn×n
+ , B ∈ Rn×m

+ , C ∈ Rp×n
+ , D ∈ Rp×m

+ .

A corresponding characterisation of continuous-time positive LTI systems is
as follows [42].

Proposition 2.2.4. The continuous-time LTI system (2.5) is positive if and
only if

B ∈ Rn×m
+ , C ∈ Rp×n

+ , D ∈ Rp×m
+ , and A is a Metzler matrix.

Throughout this work, we are mainly concerned with discrete-time LTI sys-
tems. Also, many of the results to follow concern systems without inputs.
Such an LTI system takes the simpler form:

x(t+ 1) = Ax(t)

y(t) = Cx(t). (2.6)

2.2.3 Stability and positive linear systems
Stability theory is a major topic in Systems and Control Theory and a lot of the
literature on positive systems has been dedicated to determining conditions for
stability of various classes of positive systems. The autonomous LTI system

x(t+ 1) = Ax(t), x(0) = x0 (2.7)

is stable if for every ε > 0 there is some δ > 0 such that ‖x0‖ < δ implies
‖x(t)‖ < ε for all t ≥ 0. If in addition, x(t) → 0 as t → ∞ for any initial
condition x0, we say that the system is (globally) asymptotically stable. For
a general discrete time LTI system (2.7), it is well known that asymptotic
stability is equivalent to ρ(A) < 1. Matrices with this property are referred to
as Schur. Stability is directly relevant to our later discussion on the positive
observer problem as the design of a positive linear observer requires the con-
struction of an observer gain matrix such that the resulting error dynamics
are given by an asymptotically stable system.

The following result characterising the stability of an autonomous positive LTI
system (2.6) is well known; see for instance [5, 42].
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Theorem 2.2.5. Let A ≥ 0 be given. Then the following statements are
equivalent:

1. A is Schur;

2. the system (2.7) is asymptotically stable for every initial condition x0 ∈
Rn;

3. the system (2.7) is asymptotically stable for every non-negative initial
condition x0 ∈ Rn

+;

4. there exists v � 0 such that Av � v;

5. there exists w � 0 such that ATw � w.

Analogous results hold for continuous time systems. While stability theory
is not the focus of this thesis, many researchers are still actively working
on stability questions for positive systems [28, 20, 35]; moreover, stability is
closely related to the problem of observer design, which is a major topic of
our work.

Using the vector w in the 5th point above, we can define a linear copositive
Lyapunov function V (x) = wTx for the system. Copositive Lyapunov func-
tions for various classes of positive systems have been worked on by many
authors. Their application to stability and stabilizability of positive switched
systems has been investigated in numerous papers: for a sample of such work
see, for instance [83, 65, 45, 20, 35]. It is worth noting here that much work
has been done extending conditions such as those in Theorem 2.2.5 to pos-
itive systems subject to time-delay [50, 78, 77, 82] and classes of nonlinear
positive systems [21, 1, 34, 22, 43]. Much of the work on extending stability
results to nonlinear positive systems makes use of the theory of monotone
or order-preserving systems [96]. Another interesting direction in which the
basic theory has been extended is to the class of so-called positive descriptor
systems [29, 107].

Influence graph of a discrete-time system

Now, we introduce the notion of influence graph for a discrete-time dynamic
system. Similarly to how it is described in [42] for a single input/single output

12
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system (p = 1, m = 1), the influence graph of a system (2.4) is a graph G with
n + 2 nodes 0, 1, 2, . . . , n + 1. Nodes (0) and (n + 1) are associated with the
input u and output y of the system and the remaining nodes (i = 1, 2, . . . , n)
are associated with the state variables xi. The edges of the graph point out
the direct interactions among the input, state, and output variables. If G has
an edge (0, j), j = 1, 2, . . . , n, this means the input u(t) influences xj(t + 1).
If there is an edges (i, j), for i, j = 1, 2, . . . , n in the graph G, then the state
variable xj(t+ 1) depends on xi(t). Lastly, an edge (i, n+ 1) indicates direct
influence of xi(t) on y(t).

The influence graph can be described by the matrices of the system. For the
matrix A, if aij > 0 where i, j ∈ {1, 2, . . . , n} then there exists an edge (i, j)
in the graph G. If bj > 0, for j ∈ {1, 2, . . . , n}, then there is an edge (0, j) in
the graph G. Similarly, if ci > 0, for i ∈ {1, 2, . . . , n}, then there is an edge
(i, n+ 1) in the graph G.

2.3 Positive linear observers
In this section, we will give background on the general observer problem and
then discuss the observer problem for positive linear systems, in more detail.
The observer problem is to synthesise a dynamic system, called the observer,
using the output of a linear system as an input, such that difference between
the state of the linear system and the output of the observer converges to zero
asymptotically. The idea for an observer for a dynamic system was introduced
by Luenberger in [79, 80] and later developed in [81].

The classical problem of designing an observer of Luenberger form [79, 81] for
(2.6), consists of constructing a matrix L ∈ Rn×p such that the solution x̂(·)
given by

x̂(t+ 1) = Ax̂(t) + L(y(t)− Cx̂(t)) (2.8)

= (A− LC)x̂(t) + Ly(t)

satisfies ‖x̂(t)− x(t)‖ → 0 as t→∞, where x is the solution of (2.6). In the
absence of additional constraints, the problem, whose solution is classical, is
to construct a matrix L such that A− LC is Schur-stable [97].

In this thesis, we will be dealing mainly with Luenberger type observers for a
linear system and versions of these for positive systems. The positive observer
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problem is to construct an observer that ensures nonnegativity of the estimates
of the nonegative states. However, the classical Luenberger observer can lead
to negative estimates, so it is not adequate for estimating the states of systems
that are inherently nonnegative. For a Luenberger observer to be positive we
need to find an L such that all signals in the observer system are nonnegative.
We now recall the original formulation of this problem in linear algebraic
terms.

Problem 2.3.1. Given A ∈ Rn×n
+ , C ∈ Rp×n

+ , find L ∈ Rn×p
+ such that the

following are satisfied

1. A− LC ∈ Rn×n
+ , and;

2. σ(A− LC) ⊆ {λ ∈ C | |λ| < 1}.

There is now a large literature on positive observers. We shall discuss some
of the most relevant references to our work in some detail later; in particular,
the results in [106, 52, 10, 7] will play an important role. Additional results
can be found in [95, 26, 108, 36]. In [26], the use of positive observers for
general linear time varying systems, for both continuous and discrete time, is
considered. This is based on stable internally positive representations of linear
systems and this observer is used to develop interval observers and controllers
for systems with uncertainties. In [36], a method to design a positive observer
using generalised polar coordinates in the positive orthant is proposed. This
observer’s gain is tuned to maximise the contraction rate of the error as mea-
sured by the Hilbert projective matrix. In [108], the authors design a positive
observer for a discrete time positive system with missing data in the output.
Recently, in [76] a specific form of positive linear observer in discrete time was
considered and sufficient conditions for its existence were derived. These were
expressed as feasibility conditions for a linear program. The basic technique
was then extended to systems with time-delay.

Observers for nonlinear systems and nonlinear positive systems have also been
studied [87, 23, 110]

The classical observer design problem is related to certain key properties such
as observability and detectability. We will now recall the definition of observ-
ability for a general LTI system [91, 31].
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Definition 2.3.1. The time-invariant linear state equation (2.4) with t0 = 0 is
called observable if there is a finite positive integer tf such that any initial state
x(0) = x0 is uniquely determined by the corresponding zero-input response
sequence y(t), t = 0, . . . , tf − 1.

For a discrete-time linear positive system of the from (2.4), with system ma-
trices (A,C) define the obsverability matrix as

obsm(A,C) =


C

CA
...

CAn−1


Theorem 2.3.1. [91] The time-invariant linear state equation (2.4) is ob-
servable if and only if

rank(obsm(A,C)) = n.

Detectability is a related condition to obsverability, and we will describe a
version for positive systems in the next two section 2.3.1 an 2.3.2.

2.3.1 Canonical forms and positive observability
In control theory, observability and detectability are closely related to the
properties of controllability and reachability. We note that these latter prop-
erties have been considered for positive systems by various authors. A survey
of results on reachability and controllability for positive systems can be found
in [27] while, in [103], graph-theoretic methods were used to characterise these
properties for discrete-time positive systems. Related results, which charac-
terise controllability, reachability and essential reachability in terms of the
digraph associated with the system matrix can be found in [24]. It is also
worth noting the work of [32] which describes simplified, graph theoretic, nec-
essary and sufficient conditions for reachability.

Our focus later is on observer design and we now discuss results on positive ob-
servability from [52] in more detail as this paper directly concerns the positive
linear observer problem.
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In [52], the authors extend the classical definition of observability to the case of
a positive linear system and provide a characterisation of positive observability.
In addition, they give extra constraints that need to be satisfied in order for
an observer of Luenberger form to exist for a positive linear system. They
describe in detail how the decomposition of a positive system into irreducible
subsystems depends on an underlying influence graph, as described in Section
2.2.3, associated with the system. This decomposition is then used to define
the observable canonical form for a positive linear system with respect to an
equivalence relation defined by permutations of the state and output sets.

The definition of observability for a positive system is identical to those for a
general system from [91]. A time-invariant discrete-time linear positive system
is observable if and only if

rank(obsm(A,C)) = n.

Within [52], the authors detail a canonical form with respect to a permutation
of the state and output sets. For a system (2.6), the matrix A and matrix C
are transformed to the form,

A =
 Ā1,1 0
∗ Ak2+1,k2+1

 , C =
(
C̄1 0

)

where Ā1,1 and C̄1 are block diagonal matrices. The permutation is done in a
way such that block matrices satisfy rank(obsm((Ai,i, Ci))) = ni, where Ai,i ∈
Rni×ni for i = 1, . . . , k1, i.e. they are observable and rank(obsm((Ai,i, Ci))) <
ni, for i = k1 + 1, . . . , k2. When a system is in this canonical form, we can
easily see whether it is observable or detectable.

In [52], a positive linear system is said to be detectable if when the system
matrices are in canonical form, then σ(Ai,i) ⊆ {λ ∈ C | |λ| < 1} for i =
k1 + 1, . . . , k2 + 1. This is consistent with the definition of detectability for a
general system.

In [52], the authors give details of certain cases where there does exist a stable
linear positive observer for a discrete-time linear positive system. For instance,
if the system matrix A is irreducible and the index of imprimitivity of A is the
same as the size of A, where the index of imprimitivity of A is defined as the
value k ∈ Z+ if A has exactly k different eigenvalues of modulus the maximal
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eigenvalue and rank(obsm(A,C)) = n, then there exists a matrix L satisfying
the conditions in Problem 2.3.1 to form a stable linear positive observer. We
should also note here that it is shown that a stable linear positive observer for
a discrete-time linear positive system may not exist.

The authors also give details of an algorithm for observer synthesis for a linear
positive system if the system matrices A,C are in canonical form and (A,C)
form an observerable pair.

2.3.2 Observers for compartmental systems
A compartmental system is a special type of positive system that arises in ap-
plications in areas such as transport, physiology, and hydrology. The reference
[62] contains a substantial amount of background material on the properties
of compartmental systems. We shall later be interested in designing differen-
tially private observers for compartmental systems in discrete time. We now
recall the main results of a paper by Van den Hof [106] concerning observer
design for compartmental systems. As our interest is in discrete time systems
throughout, we only discuss the results for discrete time observers here. [106]
contains many result on continuous time systems also.

A compartmental system is a system consisting of a finite number of subsys-
tems, which are called compartments, and the system models the transfer or
flow of material between compartments. The variable qi(t) is the amount of
material in the ith compartment at time t. Gij(t) denotes the amount trans-
ferred from the jth compartment to the ith in the time interval t→ t+ 1.

One practical example of this arises in public transport with people moving
from one train to another; similarly, within a building we may be modeling the
number of people moving between different areas of the building. It is assumed
that Gij has a simple, time-invariant linear dependence on qj: formally this
means that Gij = gijqj(t) for some fixed gij ∈ R+.

Motivated by the above system class, a matrix G is said to be compartmental
if it satisfies the following conditions:

1. gij ≥ 0 for all 1 ≤ i, j ≤ n

2. ∑n
i=1 gij ≤ 1 for all 1 ≤ j ≤ n
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If G ∈ Rn×n
+ is a compartmental matrix and L ∈ Rn×p

+ , C ∈ Rp×n
+ are such

that G− LC ∈ Rn×n
+ , then G− LC is also a compartmental matrix.

In [106], the main problem considered is the following: given G ∈ Rn×n
+ and

C ∈ Rp×n
+ determine conditions for the existence of L ∈ Rn×p

+ , L 6= 0 such that

1. G− LC ∈ Rn×n
+ is a compartmental matrix;

2. σ(G− LC) ⊆ {λ ∈ C | |λ| < 1}.

These requirements are the same as those in [52], except with the addition of
G− LC ∈ Rn×n

+ having to be a compartmental matrix.

The following definitions are taken straight from the paper [106] and are
needed for theorems stated later.

Definition 2.3.2. Consider an n-compartmental system. A trap is a com-
partment or a set of compartments from which there are no transfers or flows
to the environment nor to compartments that are not in that set. A trap is
said to be simple if it does not strictly contain a trap.

Definition 2.3.3. Let G ∈ Rn×n
+ be a compartmental matrix and C ∈ Rp×n

+ .
The matrix pair (G, C) is said to be positively modifiable if there exists a
L ∈ Rn×p

+ such that LC 6= 0 and G− LC is a compartmental matrix.

Definition 2.3.4. The matrix pair (G,C) is said to be positively detectable
if there exists a L ∈ Rn×p

+ such that LC 6= 0 and G−LC is an asymptotically
stable compartmental matrix.

These definitions imply that if (G,C) is positively modifiable then
σ(G − LC) ⊆ {λ ∈ C : |λ| ≤ 1} and if (G,C) is positively detectable then
σ(G− LC) ⊆ {λ ∈ C : |λ| < 1}.

This definition for detectability is stronger than the definition of detectability
from [52]. This definition implies there exists a positive observer, whereas that
in [52] does not necessarily imply the existence of a positive observer.

One of the results in [106] characterises positive modifiability in terms of the
entries of G,C. Formally the following is shown:
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Proposition 2.3.2. Let G ∈ Rn×n
+ be a compartmental matrix and C ∈ Rp×n

+ .
(G, C) is positively modifiable if and only if there exists 1 ≤ i ≤ n and
1 ≤ r ≤ k such that the rth row of C is nonzero and for all 1 ≤ j ≤ n with
crj > 0, also gij > 0.

Using this theorem, the author has outlined the details of an algorithm to
construct L such that LC 6= 0 and G− LC is compartmental.

The main theorem (Theorem 4.12) in [106] characterises the relation between
positive modifiability and positive detectability. If a system contains no traps
then (G,C) is positively detectable if and only if (G,C) is positively modifi-
able.

If the system contains one or more traps, then G can be transformed into a
block triangular form by permutation similarity where Gii denotes the blocks
on the diagonal. Then (G,C) is positively detectable if and only if (Gii, Ci) is
positively modifiable for all indices i corresponding to traps.

[106] then gives details of an algorithm to construct a positive linear observer
by checking for modifiability of (Gii, Ci) and then using the previous algorithm
to construct L such that it satisfies the conditions above.

2.3.3 A relaxation of the conditions for positive linear
observers

The authors of [7] note that the initial formulation of Problem 2.3.1 provides
only sufficient, and not necessary, conditions for the existence of positive lin-
ear observers. The proposed numerical method in [7] is based on linear pro-
gramming and follows a previous approach for the regulation problem in [3],
which is further developed in [6]. Preliminary results for the observer prob-
lem for positive systems were presented in [5] for discrete-time and in [4] for
continuous-time systems.

The following theorem from [7] gives necessary and sufficient conditions for
the existence of a positive linear observer.

Lemma 2.3.3. There exists a positive observer of the system (2.6) if and only
there exists L with LC ≥ 0, A− LC ≥ 0 and A− LC is a Schur matrix.
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In [52] and [106], L is required to be a nonnegative matrix but in [7] it is shown
that it necessary and sufficient that LC is nonnegative for the existence of a
positive linear observer. Therefore L is not necessarily nonnegative, except
for p = 1.

The next theorem from [7] gives a computational approach for constructing a
positive observer.

Theorem 2.3.4. The following statements are equivalent:

1. There exists a positive observer for the system (2.6) of the form of (2.8).

2. There exists a matrix L ∈ Rn×p such that LC ≥ 0, A − LC ≥ 0 and
A− LC is a Schur matrix.

3. The following LP problem is feasible:

(AT − I)λ− CT ∑n
i=1 zi < 0

λ > 0

cTi zj ≥ 0 for i, j = 1, ..., n,

aijλj − cTi zj ≥ 0

(2.9)

where A = [aij], C = [c1...cn], λ = [λ1...λn]T and zi ∈ Rp.

The proof of this result given in [7] makes use of Theorem 2.2.5 and Lemma
2.3.3.

Finally, it is also shown in [7] that for a controlled discrete linear system:

x(t+ 1) = Ax(t) +Bu(t), (2.10)

y(t) = Cx(t)

that a positive observer of the form

x̂(t+ 1) = (A− LC)x̂(t) +Bu(t) + Ly(t) (2.11)

cannot asymptotically stabilise System (2.10), when an observer feedback law
u(t) = Kx̂(t) is utilised. They prove the following result.

Theorem 2.3.5. Assume that the matrix A is not Schur. Then, there does
not exist a positive observer of the form (2.11) for system (2.10), such that
the observer feedback law u(t) = Kx̂(t) is asymptotically stabilising.
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2.3.4 Positive linear observers, coordinate
transformations and the realization problem

2.3.4.1 Coordinate transformations and the Sylvester equation

In [10], an alternative approach to the construction of positive linear observers
is considered. Here, the authors make use of the extra flexibility provided
by allowing coordinate transformations to obtain potentially less conservative
results and broaden the class of systems admitting such observers. Essentially,
they suitably adapt the approach to constructing classical observers using the
Sylvester equation; details on this matrix equation can be found in [31, 64]
and elsewhere.

The focus of [10] is on continuous time positive systems

ẋ = Ax (2.12)

y = Cx,

with the matrix C nonnegative and A Metzler. An observer of the following
form is considered:

˙̂z = F ẑ +Gy (2.13)

x̂ = T−1ẑ. (2.14)

To obtain a positive observer where x̂ estimates the state x, it is required that
F is Metzler and Hurwitz, G ∈ Rn×p

+ , and T ∈ Rn×n is inverse-positive. The
existence of an observer of the form (2.13) is equivalent to the existence of
solutions F,G, T to the Sylvester equation

TA− FT = GC (2.15)

where A is Metzler and Hurwitz, G is nonnegative, and T is inverse-positive.
The authors describe a heuristic numerical procedure that can be used to
search for such a solution which is based on first choosing matrices F,G and
then checking whether the solution T obtained is nonnegative.

The general problem of theoretically characterising when solutions exist is
a challenging one. In order to simplify the analysis, the authors of [9] first
restrict attention to low dimensional systems under the assumption that the
matrix F has distinct real, negative eigenvalues and that σ(F )∩σ(A) is empty.
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Under these conditions, for 2-dimensional systems, it is shown that a necessary
condition for the existence of a positive linear observer of the form (2.13) is
that the matrix A has a negative, real eigenvalue. This same condition is
shown to be necessary for the existence of an observer with T a Z-matrix for
the case of 3-dimensional systems. Necessary and sufficient conditions for the
2-dimensional case are also given. These require the observability of (A,C),
and the existence of a simple negative eigenvalue of A that satisfies inequalities
defined by the system matrices.

It is worth noting that the relation of the system class covered in [10] and that
covered by the results of [5] is not straightforward. An example illustrates
this in the paper for a system for which no Luenberger observer exists, but an
observer of the form (2.13) does exist. This example has a single output and
hence no observer would exist for it following the construction of [5].

The work of [9] is significantly developed and expanded in [10]. First, the
case of a single measured output, p = 1, is considered. The existence of
a positive linear observer of the form (2.13) with F diagonal and satisfying
σ(F ) ∩ σ(A) = ∅ implies that A has at least n − 1 distinct negative real
eigenvalues. This naturally extends the result of [9] for 2-dimensional systems.
A separate, related, necessary condition is also given for the more general case
where no restriction is imposed on either the structure of F or its spectrum.
For this case, the existence of a positive linear observer implies that A has at
most 1 nonnegative real eigenvalue. The following sufficient condition is also
proven.

Theorem 2.3.6. Consider the system (2.12) where C ∈ R1×n
+ , A is irre-

ducible, and the pair (A,C) is observable. Suppose that σ(A) = {λ1, . . . , λn}
where

• λi ∈ R for 1 ≤ i ≤ n;

• λ1 > λ2 > · · · > λn;

• 0 > λ2.

Then there exists a positive linear observer of the form (2.13) for (2.12).
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Positive Realisations and Positive Observer

A further relaxation of the problem of positive linear observer design is also
introduced in [10]. The key idea is to make the dimension of the observer
system a design parameter; by contrast, the dimension of the observer (2.13)
is required to equal that of the original system (2.12). With this relaxation,
the authors make use of results on the positive realisation problem (see [15]
for an introduction to this important problem) to provide conditions for the
existence of a positive observer of the form

˙̂z = F ẑ +Gy (2.16)

x̂ = Hẑ,

where F ∈ RN×N
+ , G ∈ RN×p

+ , and H ∈ Rn×N
+ . Allowing the possibility that

N > n gives greater flexibility and may lead to less conservative conditions
for a positive linear observer. In fact, it is shown that the following conditions
are sufficient for the existence of a positive linear observer of the form (2.16).

• The pair (A,C) is detectable.

• There exists a matrix L such that A− LC is Hurwitz (and thus defines
a linear observer for (2.12)).

• The matrix transfer function G(s) = (sI − A − LC)−1L has a positive
realisation.

The core idea behind the previous result is that the observer (2.16) is a positive
realisation of the transfer function G(s). Using this approach, the following
extension of Theorem 2.3.6 is proven.

Theorem 2.3.7. Consider the system (2.12) where C ∈ R1×n
+ , A is irre-

ducible, and the pair (A,C) is detectable. Let µ(A) denote the spectral abscissa
of A. If all eigenvalues λ of A apart from µ(A) satisfy Re(λ) < 0, there exists
a positive observer of the form (2.16) for (2.12).

Compartmental Systems

A natural generalization of (continuous-time) compartmental systems is also
considered in [9, 10]. Here the matrix A is assumed to satisfy

0 ∈ σ(A) ⊂ {0} ∪ {z ∈ C : Re(z) < 0}. (2.17)
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The transformation matrices T considered are given by the product of a pos-
itive definite diagonal matrix and a permutation matrix. With this assump-
tion, extending the work of [106], it is shown that for reducible matrices A, a
necessary condition for the existence of a positive linear observer of the form
(2.13) is that the multiplicity of the zero eigenvalue of A cannot exceed the
dimension of the output space p. This condition, together with a number of
structural requirements on the system matrices, is shown to be necessary and
sufficient.

2.3.5 Variations on the Observer Problem
While we do not analyse these here, interval or bounded observers are another
popular and useful way to estimate the state of a positive linear system [84,
41, 48] or more general systems. An interval observer involves two systems,
giving two estimates, x̂lower and x̂upper, that are designed in such a way that
the real state will always be between these two estimates.

The authors in [7] highlight that an important use of positive observers is to
provide bounds on the observed states when they are adequately initialised.
It can also be used to take into account the uncertainties that affect the
system parameters. If the initial state of the observed system is bounded:
0 ≤ x′1 ≤ x0 ≤ x′2, the evolution of the real state x(t) will always be between
the estimated states x̂lower and x̂upper, where x̂lower has the initial value x′1 and
x̂upper has the initial condition x′2. The interval observers x̂upper and x̂lower

are constructed in a similar way to a classical observer (2.8). So if we know
that the initial state is bounded between two positive values, the two observer
states will be nonnegative and converge to the observed state asymptotically.
Further results on interval observers can be found in [41, 84, 48], while the
reference [76] uses a particular form of positive observer to derive sufficient
conditions for an interval observer to exist.

Finally, we note that the problem of observer design has also been considered
for control systems over the max-plus algebra, which is used in applications
such as scheduling and timetable design [55]. Results on the design of observers
for max-plus systems can be found in [53] and later in [54].
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2.4 Privacy and control systems
Modern cyber-physical systems in domains such as transport, public health
and logistics often require the transmission and processing of sensitive or per-
sonal data. Hence, it is crucial to incorporate privacy into the development of
such systems that protect user privacy while delivering near optimal perfor-
mance in order to maintain public confidence in their adoption.

A vast amount of privacy models have been developed over the years, many
of which are described in [47]. One such privacy model for tabular databases
is k-anonymity [101]. In a k-anonymous table, the record of each individual is
indistinguishable from at least k − 1 other records. l-diversity is an enhance-
ment on k-anonymity, where it introduces diversity within the k-anonymity
class.

In this thesis we will be concentrating on two different types of privacy models,
differential privacy and opacity. In the section, we will outline the details and
results needed for the work done later in the thesis.

2.4.1 Differential Privacy (DP)
Differential Privacy was first introduced in the Computer Science literature by
C. Dwork in [38]. It was initially developed for static, real-valued databases.
It is used for privately answering queries to a database. The overall aim of
DP is to allow inference on a population level but make it difficult to get
information on any individual in the database.

We now recall some formal definitions and results on differential privacy.
(Ω,F ,P) denotes a probability space where F is a σ-algebra of subsets of
Ω and P is a probability measure on Ω.

Given a set D (representing the possible datasets of interest), a static database
is represented as a vector d inDn. The spaceDn is equipped with a symmetric,
reflexive (but not transitive) adjacency relation ∼. In early papers, d, d′ ∈ Dn

were said to be adjacent, d ∼ d′, if their Hamming distance is equal to one,
i.e. if the databases differ in one entry. In later formulations, the adjacency
depends on the database and on what may need to be kept private [40].

A query is a mapping Q : Dn → Rn. Given a query Q, a mechanism is a
collection of random variables {XQ,d : d ∈ Dn} where XQ,d : Ω → Rn is a
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random variable for each d ∈ Dn. In a slight abuse of notation, we shall often
simply refer to the mechanism XQ,d.

Definition 2.4.1. Given ε > 0, the mechanism XQ,d is ε-differentially private
if

P(XQ,d ∈ A) ≤ eεP(XQ,d′ ∈ A) (2.18)

for all d ∼ d′ in Dn and all Borel sets A ⊆ Rn.

The idea is that an adversary would be unable to learn a particular per-
son’s information from an answer to a query, as the answers from two similar
databases are statistically similar.

The concept of relaxed differential privacy is defined by including a second
parameter 0 ≤ δ ≤ 1.

Definition 2.4.2. Given ε > 0, 0 ≤ δ ≤ 1, a mechanism XQ,d is (ε, δ)
differentially private if

P(XQ,d ∈ A) ≤ eεP(XQ,d′ ∈ A) + δ (2.19)

for all d ∼ d′ in Dn and all Borel sets A ⊆ Rn.

To achieve differential privacy, we usually add an appropriate amount of noise
to output of the query on the database. To do this, we first we need to
calculate the sensitivity of the query:

Definition 2.4.3. Let q ≥ 1. The lq-sensitivity of a query Q with respect to
an adjacency relation is defined by:

∆q(Q) = sup
d∼d′
‖Q(d)−Q(d′)‖q (2.20)

‖.‖q is the usual q-norm on Rn and we are interested in the sensitivity for the
cases q = 1 and q = 2.

To produce a differentially private mechanism we often use the following ran-
dom variables defined using the Laplace distribution and Gaussian distribu-
tion. A Laplace random variable with mean q ∈ R and scale parameter b > 0
is a real-valued random variable X with probability density function (pdf)

f(x) = 1
2b exp

(
−|x− q|

b

)
(2.21)
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and its variance is 2b2. The Q-function defined as

Q(x) := 1√
2π

∫ ∞
x

exp(−u
2

2 )du.

Now for ε > 0, 0 ≤ δ ≤ 0.5, let K = Q−1(δ) and define
κδ,ε = 1

2ε(K +
√
K2 + 2ε).

A differentially private mechanism for a database can be defined by

XQ,d = Q(d) + w, (2.22)

where w is defined as either a Laplace distribution or Gaussian distribution.

1. If wi, 1 ≤ i ≤ n, are iid Laplace random variables with mean zero and
scale parameter b ≥ ∆1(Q)

ε
, then (2.22) is ε-differentially private.

2. If w is a white Gaussian noise such that the covarianvce matrix of w is
σ2In with σ ≥ κδ,ε∆2(Q), then (2.22) is (ε, δ)-differentially private.

Much of our work will rely on Laplace and Gaussian mechanisms throughout
this thesis. However, the exponential mechanism is another popular mecha-
nism. This mechanism is not restricted to queries that are numeric and is a
more general mechanism [85, 39].

2.4.2 DP for control systems
Since DP was first developed for static databases, it has been extended in
various ways. For our work, we rely heavily on the results in [69, 70] and most
recently in [72]. Here, following [69] we review the formulation of differential
privacy for a dynamic system. We consider the situation where the private
participants contribute the input signals that drive a dynamic system, and
the output signals of the system correspond to query outputs.

We consider a system as a causal mapping G : U → Y between an input space
U and an output space Y . U will consist of sequences u(t), t ∈ Z+, where
u(t) ∈ Rm for all t; Y consists of sequences y(t), t ∈ Z+ where y(t) ∈ Rp for
all t.

The signals in the space U may contain personal information. We assume that
a binary adjacency relation, u ∼ u′, is defined on U . The precise definition of∼
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will depend on context and reflects changes in input signals that differentially
private mechanisms should render difficult to detect.

Given a system, G : U → Y and an adjacency relation ∼ on U , a mechanism
is a set of measurable mappings Y (u) : Ω→ Y , indexed by u ∈ U .

To make a system differentially private, random noise can be added to the
output, but this can cause the loss of information. Hence, we wish to calculate
as precisely as possible the amount of noise needed to make a mechanism
differentially private. To know how much noise to add we must calculate the
sensitivity of the system.

Definition 2.4.1. The lq sensitivity ∆q(G) of a system G with respect to an
adjacency relation is defined as

∆q(G) := sup
u∼u′
‖G(u)− G(u′)‖q. (2.23)

‖ · ‖q on Y is defined by ‖y‖q =
(∑∞

k=0 ‖y(k)‖qq
)1/q

, where ‖y(k)‖q is the usual
lq norm defined on Rm for q = 1, 2. This definition is a natural extension of
the sensitivity for a database defined in (2.20).

To produce a differentially private signal the mechanism in Theorem 2.4.1
from [69] can be used, following definition of the Laplace distribution and
Gaussian distribution above in Section 2.4.1.

Theorem 2.4.1. Let a system G, with m inputs and p outputs and an ad-
jacency relation be given. The mechanism Y (u) = G(u) + w, where all wi,k,
k ∈ N, 1 ≤ i ≤ p, are independent Laplace random variables with mean zero
and scale parameter b ≥ ∆1(G)

ε
is ε-differentially private. If w is instead a

white Gaussian noise such that the covarianvce matrix of each sample wk is
σ2In with σ ≥ κδ,ε∆2(G), then the mechanism is (ε, δ)-differentially private.

These mechanisms are called the Laplace and the Gaussian mechanisms. Typ-
ically, the l2-sensitivity is smaller than its l1 counterpart, that leads to adding
less noise depending on δ > 0 which is one reason for using a Gaussian mech-
anism.
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2.4.3 DP observers
The above results can also be applied to observers of a dynamic system. Here,
the observer acts as a substitute for the query in a data set. For a system of
the form (2.6) the measurement y that is used to form the observer x̂ of the
form (2.8) may contain sensitive or private information such as an individual’s
location, salary, etc. Therefore, when releasing the observer signal, privacy
prevention needs to be taken into account. One method of achieving this is
to add noise to make the observer differentially private.

Work by Jerome Le Ny in the paper [67] and later expanded on in [68] has
heavily movitivated work in this thesis. In this section, we will describe how
to apply differential privacy to an observer of a system.

The following definition of adjacency from [67], will be used most often in this
thesis.

Let K > 0 and 0 ≤ α < 1 be given. Then two sequences y, y′ are adjacent,
y ∼ y′ if

∃ t0 ≥ 0 s.t.

y(t) = y′(t), t < t0

‖y(t)− y′(t)‖q ≤ Kαt−t0 , t ≥ t0
(2.24)

where q = 1 or q = 2. This adjacency definition corresponds to a change in
signals due to a small number of people at time t0. The initial magnitude of
the change is K and it decays geometrically at a rate of α.

As noted in [72], input and output perturbations can be applied to the ob-
server to make it differentially private. An input perturbation mechanism can
be obtained by adding noise directly to the input y. This method may be
preferred when there is a low privacy level requirement or because sensitive
information is made private before sending to a third party. The disadvantage
of input perturbation is that an unnecessarily large amount of noise may be
added which may lead to poor performance of the observer.

For an output perturbation mechanism, a noise signal proportional to the
sensitivity of the system is added to the output. This is the method used in
[68] and the method we will use throughout this thesis. Adding noise to the
output does not impact stability or bias analysis of the observer so we need
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to design an observer that has both a good tracking performance for the state
trajectory and low sensitivity.

In [68], a differentially private observer for a nonlinear system is designed by
using contraction analysis. Contraction theory is used to bound the sensitivity
of the system and to compute the noise level needed to ensure privacy.

In [68], the author illustrates the methodology by giving two examples involv-
ing the analysis of dynamic data using sensitive information. One of these
examples is a syndromic surveillance system that monitors health related data
for early detection of epidemic outbreaks. For this example, the measurement
y used to form the observer is non-medical data such as searches on a search
engine or posts on social media. Using the correlation between this and the
proportion of people infected can support early detection of an epidemic out-
break. People may wish to keep information posted online private as it can
contain sensitive information.

The syndromic surveillance system is a positive system as it involves the mea-
surement of variables such as a proportion of the population. This is not taken
into account when adding Gaussian noise to the observer as it can cause the
signal to be negative. This fact is the motivation of much of the work in this
thesis.

2.4.4 Other DP applications and Kalman Filter
The choice of adjacency relation depends on the system and the privacy needs
of the users. For example, in [72] a system G : U → Y where the input has
n signals, one per participant is studied. Let u = (u1, . . . , un), with ui ∈ Rm.
An adjacency relation can be defined on U by u ∼ u′ if and only if u and u′

differ by one component signal and this deviation is bounded. Formally, for a
fixed set of nonnegative numbers b = (b1, . . . , bn), we define

u ∼ u′ iff for some i, ‖ui − u′i‖ri ≤ bi, (2.25)

and uj = u′j for all j 6= i

In [72] the authors produce simple mechanisms with two differentially private
versions of G. The first uses input perturbation, which perturbs each input
ui by adding white Gaussian noise and then passing it through the system G.
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The second, output perturbation, is done by adding one source of noise to the
output of G. Both of these methods produce a different mean square error
which depends on the system G and the number of participants, n.

Kalman Filter

In the papers [70, 72] the authors also discuss differentially private Kalman
filtering. With Kalman filtering it is assumed that the dynamics of the pro-
cesses of the individual signals are publicly known. For this we consider a set
of n linear systems,

xi,t+1 = Aixi,t + biwi,t, t ≥ 0, 1 ≤ i ≤ n, (2.26)

where wi is a standard zero-mean Gaussian white noise process with covariance
E[wi,twi,t′ ] = δt−t′ , and the initial condition xi,0 is a Gaussian random variable
with mean x̄i,0. It is assumed that this is independent of the noise wi. Each
system i, for 1 ≤ i ≤ n, sends measurements

yi,t = cixi,t = Diwi,t (2.27)

to a data aggregator.

The data aggregator then wants to release a signal that estimates a linear
combination of the individual states and asymptotically minimises the mean
squared error. That is, we are looking to construct an estimator ẑ of x from
the measurement signals yi. without privacy constraints, the solution is ẑt =∑n
i=1 Lix̂i,t for given matrices Li and x̂i,t comes from the steady-state Kalman

filter estimating the state of the system i from yi.

The adjacency relation used in [70, 72] says that two adjacent state trajecto-
ries differ by the values of a signal participant, say i. Similar to the method
in [69] and in the beginning of [72], we can add noise to different signals to
achieve differential privacy. If the participants did not trust the data aggre-
gator, then an input noise injection mechanism can be used. For this, the
white Gaussian noise is added directly by the participants to the transmitted
signal yi. Next, they detail the method of output noise injection mechanism,
where the white-Gaussian noise is added to the estimate ẑ to guarantee (ε, δ)
differential privacy.

Within the papers [70, 72], the authors describe filter redesign for stable sys-
tems and unstable systems that will guarantee differential privacy concerning
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the adjacency relation. A practical example is detailed of a traffic monitor-
ing system, where the state represents a vehicle’s position and velocity on a
straight road. The measurement yi is GPS measurements from the vehicles.

2.5 Opacity and linear systems
While differential privacy has emerged as the dominant framework for incor-
porating privacy protections into control design for continuous-state systems,
the related concept of opacity has attracted far more attention in the Discrete
Event Systems (DES) community.

In the paper [74], the author considers the relationship between opacity and
various other system theoretic concepts for discrete event systems (DES) mod-
elled using finite state automata. In particular, they define two types of opac-
ity: strong and weak opacity. By properly specifying the languages and obser-
vation mapping, the authors show that three properties of DES; observation,
diagnosability, and detectability can be reformulated as opacity.

Formally, they model a DES by an automaton G = (Σ, X, δ, x0, Xm), where
Σ is the set of events, X is the state space, δ is the transition function, x0

is the initial state and Xm ⊆ X is the set of so-called marked states. The
partially defined function δ : X × Σ → X determines the system dynamics
where δ(x, σ) = y if the execution of σ ∈ Σ from state x takes the system
to state y. If the execution of σ for x ∈ X is defined then we write δ(x, σ)!.
The language generated by G is defined by L(G) = {s ∈ Σ∗ : δ(x0, s)!}; thus
L(G) contains all possible strings that can be generated by the system. More
generally, a langauge is a subset of Σ∗. In the study of opacity for DES, the
notion of an observation map that characterises those events that are visible
to an outside agent or observer is key. This is a mapping θ : Σ∗ → Σ∗, where if
the event s happens the agent can only see the events in θ(s). For a language
L ⊆ Σ∗ we define θ(L) = {t ∈ Σ∗;∃s ∈ L, t = θ(s)} and its inverse image is
given by, θ−1(L) = {t ∈ Σ∗; θ(t) ∈ L}.

With the above notation we now recall the definitions of opacity for a DES as
follows:

Definition 2.5.1. Given two languages L1, L2 ⊆ L(G), L1 is strongly opaque
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with respect to L2 and the observation map θ if

L1 ⊆ θ−1(θ(L2)).

L1 is weakly opaque with respect to L2 and θ if

L1 ∩ θ−1(θ(L2)) 6= ∅.

With the above notations and definitions, the author of [74] characterises the
properties of anonymity and secrecy as special cases of opacity and relates it
to detectability.

For detectability, let Σ>N denote the set of strings in Σ∗ that have length
greater then N . Then for any state x ∈ X let Lx = {s ∈ L(G) : δ(x0, s) = x},
L∼x = {s ∈ L(G) : δ(x0, s) 6= x}, and L>Nx = Lx ∩ Σ>N . With this notation
we can define strong detectability as follows.

Definition 2.5.2. A DES G is strongly detectable with respect to the obser-
vation map θ if there exists a positive integer N such that for all x ∈ X,

∀s ∈ L>Nx ,∀s′ ∈ Σ∗, θ(s) = θ(s′) =⇒ s /∈ L∼x.

The main idea is that if the string s is long enough and the corresponding
execution terminates in the state x, then every string s′ that looks like s with
respect to θ gives an execution that leads to the state x. The following theorem
is shown in [74].

Theorem 2.5.1. A DES G is strongly detectable with respect to θ if and only
if there exist a positive integer N such that for all x ∈ X, L>Nx is not opaque
with respect to L∼x and θ.

State-based opacity

The state-based approach for opacity of DES was first introduced in [25, 92].
It relates to the intruder’s ability to infer the system is or has been in some
secret state or set of states. Different opacity properties have been defined
depending on the nature of the secret sets. In [61], the authors give details on
these different opacity properties.
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A system is current-state opaque (CSO), if the intruder can never infer whether
the current state of the system in a secret state or not from the observation.

A system is initial-state opaque (ISO), if the observer is never sure whether
the system’s initial state was a secret state or not.

Initial-and-final-state opacity (IFO), is an extension of ISO and CSO that
requires the initial and final state to be hidden from the intruder.

K-step opacity is a more general property where it keeps secret the fact that
the system was in a secret state a number of steps ago. This can be extended
to infinite-step opacity.

2.5.1 Opacity for Linear Systems
In the paper [89], the authors describe a notion of state based opacity for a
linear time invariant system as opposed to the language based opacity con-
sidered in [74]. The familiar definition of the observability problem aims to
determine the initial state x(0), given all the output and control history. How-
ever, in [89], the adversary only has access to a snapshot of the system and
must determine the initial state. It is assumed that the adversary makes one
observation at some time k. In [74], the observation of the entire secret trajec-
tory must coincide with the non-secret trajectory, but in [89] only the secret
and non-secret outputs at time k need to coincide. We now describe this work
more formally.

Consider the discrete-time LTI system

x(t+ 1) = Ax(t) +Bu(t)

x(0) = x0 ∈ X0

y(t) = Cx(t) (2.28)

where x ∈ Rn, u ∈ Rm, y ∈ Rp and A,B,C are real matrices of appropriate
dimensions. Let Xs, Xns ⊆ X0, where s corresponds to secret initial states
and ns corresponds to non-secret initial states. Let K be a set of positive
integers corresponding to the times the adversary will observe the system.

Now, we will define what it means for Xs to be strongly/weakly K initial state
opaque (ISO) with respects to Xns [89].
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Definition 2.5.3. For (2.28), given Xs, Xns ⊆ X0 and K, Xs is strongly
K-ISO with respect to Xns if for all k ∈ K, for all xs(0) ∈ Xs and every
admissible control sequence us(0), . . . , us(k), there exists an xns(0) ∈ Xns and
an admissible control sequence uns(0), . . . , uns(k) such that ys(k) = yns(k).

Definition 2.5.4. Xs is weakly K-ISO with respect to Xns if for all k ∈
K, there exists xs(0) ∈ Xs, an admissible control sequence us(0), . . . , us(k),
xns(0) ∈ Xns and an admissible control sequence uns(0), . . . , uns(k) such that
ys(k) = yns(k).

Let Xs(k) and Xns(k) denote the sets of reachable states in k steps, starting
from Xs and Xns. In [89], results are given that characterise the properties
of Xs being strongly/weakly k-ISO with respect to Xns, in terms of how the
sets Xs(k) and Xns(k) relate to each other with respect to the action of the
observation map C from (2.28). The authors also present theorems describing
how the weak/strong properties of k-ISO behave with respect to unions and
intersections of secret and non-secret subsets of X0.

Some of the results in [89] are framed in terms of the concept of output-
controllability which we now define.

Definition 2.5.5. A state x of (2.28) is output controllable on [0, k] if there
exists a control sequence {u(·)} that transfers the system from x(0) = x to
y(k) = 0.

The authors then determine conditions under which k-ISO is equivalent to
output controllability. These conditions are outlined in the following theorem.

Theorem 2.5.2. Let Xs be (strongly or weakly) k-ISO with respect to Xns.
Then there exists a state of (2.28) that is output controllable on [0, k].

In [88], the authors also define several notions of decentralized opacity in the
presence of multiple adversaries. The definition of decentralized opacity is
proposed for the presence or absence of collusion among the adversaries and
the presence or absence of a coordinator that aggregates information based on
the adversaries’ observations.

The first case considered is that of no coordinator, no collusion, where the
agents do not communicate with each, and there is no coordinator. The next
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case is with coordinator, no collusion, where there is a coordinator, who polls
the observations of each adversary and decides on co-opacity according to some
rule. Here, the coordinator does not know the system model or observation
maps and can not do any better with this knowledge. The last case is no
coordinator, with collusion, where there is no coordinator, but the adversaries
communicate with each other.

In the last section of the paper [88], the authors define a weaker form of
opacity, ε-k-ISO. For this to hold the outputs from the secret and non-secret
states differ, by a predefined amount, ε.

The results form [89] and [88] have been combined into a more recent journal
paper [90] with the addition of extra results. The additional material considers
the relationship between opacity and reach-set approximations. This line of
work follows on from the conditions to establish k-ISO for sets of reachable
states, X(k), where X(k) is the set of reachable states in k steps from a set
of initial states X. The second novel section in [90] considers opacity for
nonlinear systems. Here, the authors define k-ISO and conditions for k-ISO,
which is similar to the definition and results for a linear system in [89].

2.6 Conclusions
In this chapter, we have discussed various definitions and results on positive
linear systems and the positive linear observer problem. We also described
two privacy concepts: differential privacy and opacity. Throughout this thesis,
our major theme is the combination of positive systems with privacy concerns;
specifically we study several design questions for a positive linear system that
preserve that privacy of individuals who contribute data to the system. Some
of the main topics we will consider in the following chapters are the following:

• the design of differentially private mechanisms that produce nonnegative
outputs;

• bounds for the sensitivity of positive linear observers with a view to
construct differentially private observers using Laplace and Gaussian
distributions;

• optimisation problems related to the bounds mentioned above;
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• the problem of opacity for positive linear systems.
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CHAPTER 3
Differential Privacy and

Positivity

In this chapter, our main focus is on the bias and the mean square error (MSE) of
nonnegative Laplace mechanisms. We consider two methods of constructing these
mechanisms: post-processing and restriction. We present explicit formulae for the
bias of restricted Laplace mechanisms and Laplace mechanisms obtained by post-
processing with the standard ramp function, which sets negative values to zero.
Post-processing with the ramp function always leads to lower bias than restriction.
We briefly discuss multiplicative mechanisms for positive data that were proposed
in [71] and show that, without extra restrictions, these mechanisms can lead to
infinite bias. We then consider alternative post-processing functions and show that
lower bias can be achieved by using translated ramp functions. We determine the
optimal such function that minimises the worst case bias. A major contribution of
this chapter is to show that bias is unavoidable for any post-processed nonnegative
Laplace mechanism that has finite first and second moments. A corresponding result
is also proven for restricted mechanisms, where the original base mechanism is not
necessarily a Laplace mechanism. The final topic of the chapter is the mean square
error (MSE) of post-processed and restricted Laplace mechanisms. We prove the
existence of a square-integrable post-processing function that minimises the worst
case MSE for the Laplace mechanism.
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3.1 Introduction
It has been said before [56] that the Laplace mechanism is the “workhorse of
differential privacy”. It is one of the most popular and widely used mechanisms
for real-valued data [38]. Recently, various extensions and adaptations of this
basic mechanism have been studied. In [99] a discrete Laplace mechanism was
introduced for individual differential privacy. A shortcoming of the mechanism
for some situations is that the Laplace distribution is unbounded, and the
range of Laplace random variables is the real line, R. For contexts where
data is bounded, in some interval [l, u] ⊂ R, this is not suitable. This has
led researchers to consider ways of adapting the basic Laplace mechanism for
such data [56, 76]. In [75] two approaches to this question were presented:
truncation and boundary inflated truncation; the main focus was on ε (strict)
differential privacy and the authors derived formulae for the bias introduced
by both of these approaches as well as upper bounds for their mean square
error (MSE). In [56], the use of truncation (referred to as bounding in [56])
for generating bounded mechanisms satisfying (ε, δ) differential privacy was
studied and, using techniques from Fixed Point Theory, conditions for the
bounded Laplace mechanism to be differentially private were derived.

Our interest in this chapter is in nonnegative, unbounded data arising from
queries whose range is the half-line [0,∞). Boundary inflated truncation cor-
responds to post-processing [40] the Laplace mechanism with the ramp func-
tion. For this reason, we refer to mechanisms obtained using this method, and
generalisations of it, as post-processed mechanisms. We refer to nonnegative
mechanisms constructed by analogy with truncation as restricted mechanisms.
Our objective in this chapter is to study in detail the bias of post-processed
and restricted nonnegative mechanisms for ε differential privacy. Formulae
corresponding to those in [75] are readily derived for mechanisms constructed
by restriction or post-processing with the ramp function. It is natural to
ask whether lower bias can be achieved by post-processing with alternative
functions. We show that this is indeed possible simply by translating the
ramp function and determine the translated ramp function that achieves min-
imal bias (in a sense made precise later). A second related question concerns
whether or not bias is inevitable for mechanisms obtained using the construc-
tions here. We show that this is indeed the case and present results on this
question for both post-processed Laplace mechanisms, and general restricted
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mechanisms.

To finish the chapter, we calculate the MSE of both the restricted mecha-
nism and the post-processed mechanism with the simple ramp function. We
also prove the existence of a square-integrable post-processing function that
minimises the worst case mean square error for the Laplace mechanism.

3.2 Background and Notation
In this section, for the convenience of the reader, we fix the main notation and
terminology that is used throughout the chapter. We also recall the main def-
initions and results related to differential privacy needed in the chapter. Our
notation and formulation of differential privacy follows the general formalism
outlined in the paper [57].

In Chapter 2, in Section 2.4.1, we give a detailed background on differential
privacy for a database and queries defined on Rn, in this chapter we will be
concerned with queries taking values in R.

Let a set D representing the possible datasets of interest be given which is
equipped with a adjacency relation ∼. We consider a real-valued query Q :
D → R. Given a query Q, as is standard, a mechanism is a collection of
random variables {XQ,d : d ∈ D} where XQ,d : Ω→ R is a real-valued random
variable for each d ∈ D. In a slight abuse of notation, we shall often simply
refer to the mechanism XQ,d.

If Q has range Q(D), an output perturbation mechanism is defined by speci-
fying a family {Yq : q ∈ Q(D)} of random variables Yq : Ω → R. Given such
a family, for d ∈ D, we set XQ,d = YQ(d). All of the mechanisms considered
later in the chaper take this form.

Given ε > 0, the mechanism XQ,d is ε-differentially private if

P(XQ,d ∈ A) ≤ eεP(XQ,d′ ∈ A) (3.1)

for all d ∼ d′ in D and all Borel sets A ⊆ R.

For real-valued queries, we have only one notion of sensitivity, defined using
the absolute value. The sensitivity of the query Q : D → R is given by:

∆(Q) := sup{|Q(d)−Q(d′)| : d, d′ ∈ D, d ∼ d′}.
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Base and derived mechanisms

Throughout this chapter, Q : D → R+ is a nonnegative valaued query with
sensitivity ∆. We assume that a family of random variables {Yq : q ∈ R+} is
given where the range of each Yq is R and E[Yq] = q; informally, q corresponds
to the ’true’ value of the query so we are assuming the base mechanism is
unbiased. We refer to the associated mechanism XQ,d = YQ(d) as the base
mechanism. We assume that the mechanism XQ,d is ε differentially private for
some ε > 0.

The main focus of this chapter is to construct and analyse a derived family
{Ŷq : q ∈ R+} of nonnegative-valued random variables where each Ŷq has range
R+, such that the derived mechanism X̂Q,d = ŶQ(d) is differentially private and
nonnegative.

The bias of X̂Q,d is E[XQ,d]−Q(d). The form of XQ,d and the nonnegativity
of the query Q means that it is enough to consider E[Yq]− q for q ≥ 0.

A major focus of this chapter, is the maximal absolute bias of the family
{Ŷq : q ≥ 0} of derived random variables.

Definition 3.2.1. The maximal absolute bias of {Ŷq : q ≥ 0} is given by

B := sup{|E[Ŷq]− q| : q ∈ R+}. (3.2)

Laplace mechanisms

For most of the chapter, the base mechanism will be the Laplace mechanism,
constructed using a family of Laplace random variables, whose definition we
now recall from Chapter 2.

A Laplace random variable with mean q ∈ R and scale parameter b > 0 is a
real-valued random variable X with probability density function (pdf) given
by

f(x) = 1
2bexp

(
−|x− q|

b

)
, x ∈ R. (3.3)

Throughout this chapter, we shall use L to denote a Laplace random variable
with mean 0 and scale parameter b, where the scale parameter will be made
clear in context. Clearly, a Laplace random variable L has range R.
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3.3. Nonnegative derived mechanisms via post-processing and restriction

The following result concerning the Laplace mechanism and differential pri-
vacy, is a particular case of Theorem 2.4.1 in Chapter 2.

Proposition 3.2.1. Let Q : D → R have sensitivity ∆ and ε > 0 be given.
The Laplace mechanism defined by XQ,d = Q(d) + L where L : Ω → R is
a Laplace random variable with mean 0 and scale parameter b ≥ ∆

ε
is ε-

differentially private.

The Laplace mechanism is determined by the family of random variables {Yq =
q + L : q ∈ Q(D)}. This notation (for the case where Q(D) = [0,∞)) will be
used frequently in the chapter.

3.3 Nonnegative derived mechanisms via
post-processing and restriction

In this section, we describe the two approaches to constructing derived non-
negative mechanisms that shall be studied for the rest of the chapter. We first
discuss the approaches for a general base mechanism before specialising to the
case of the Laplace mechanism in the following sections.

Let ε > 0 be given and consider a family {Yq : q ∈ R+} of real-valued random
variables where the range of each Yq is R. Assume that the base mechanism
XQ,d = YQ(d) is ε differentially private.

3.3.1 Post-processing and restriction – general case
We now describe two general results that can be used to construct a derived
mechanism X̂Q,d = ŶQ(d) which is nonnegative-valued and also differentially
private.

Post-processing

The first technique is based on the following fundamental, and well-known,
fact [40].

Proposition 3.3.1. Let XQ,d : Ω → R be an ε differentially private mecha-
nism for the query Q : D → R+. Let φ : R → R+ be measurable. Then the
mechanism X̂Q,d given by X̂Q,d(ω) = φ(XQ,d(ω)) for d ∈ D is ε differentially
private.
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3.3. Nonnegative derived mechanisms via post-processing and restriction

Remark: The last result is also true in the more general case of relaxed (ε, δ)
differential privacy [57, 40] and for queries Q and mappings φ taking values
in an arbitrary measurable output set (as opposed to the real line R). For our
purposes, the form stated in Proposition 3.3.1 is sufficient.

Restriction

Our second construction is inspired by the exponential mechanism of McSh-
erry and Talwar [85]. It is essentially the same technique that was used in
[75] to construct the boundary inflated truncation mechanism for bounded
mechanisms. We include a brief proof here in the interests of completeness.

Proposition 3.3.2. Let XQ,d : Ω → R be an ε differentially private mech-
anism for the query Q : D → R+. If the family of measurable mappings
X̂Q,d : Ω→ R+ for d ∈ D satisfies

P(X̂Q,d ∈ A) = P(XQ,d ∈ A)
P(XQ,d ∈ R+) (3.4)

for all d ∈ D and all measurable subsets A ⊆ R+, then X̂Q,d is 2ε differentially
private.

Proof: Let d ∼ d′ be given and let A ⊆ E be measurable. Then as XQ,d is ε
differentially private:

P(XQ,d ∈ A) ≤ eεP(XQ,d′ ∈ A); P(XQ,d′ ∈ R+) ≤ eεP(XQ,d ∈ R+). (3.5)

Combining the two above inequalities we see that

P(X̂Q,d ∈ A) = P(XQ,d ∈ A)
P(XQ,d ∈ R+)

≤ eεP(XQ,d′ ∈ A)
e−εP(XQ,d′ ∈ R+)

= e2εP(X̂Q,d′ ∈ A).

Remarks:

(i) For the rest of the chapter, mechanisms constructed using Proposition
3.3.1 shall be referred to as post-processed mechanisms and those con-
structed using Proposition 3.3.2 shall be called restricted mechanisms.

43



3.3. Nonnegative derived mechanisms via post-processing and restriction

(ii) Versions of both Proposition 3.3.1 and Proposition 3.3.2 for the con-
struction of mechanisms taking values in some bounded interval [l, u]
can be found in the recent papers [56, 75].

3.3.2 Post-processing and restriction - Laplace
mechanism

We now consider the particular case where the base mechanism is a Laplace
mechanism. So, let ε > 0 be given and let L denote a Laplace random variable
with mean 0 and scale parameter b = ∆

ε
. For q ∈ R+, set Yq = q + L and

XQ,d = YQ(d) = Q(d) + L. It is straightforward to construct nonnegative
derived mechanisms using Proposition 3.3.1 and Proposition 3.3.2. We deal
with the simpler case of post-processing first.

Post-processing and differential privacy

By Proposition 3.2.1, the base mechanism XQ,d is ε differentially private. Now
consider the derived mechanism X̂Q,d = τ(XQ,d) where τ : R → [0,∞) is the
ramp function given by:

τ(x) =

x if x ≥ 0

0 otherwise.
(3.6)

As τ is continuous and hence measurable, it is immediate from Proposition
3.3.1 that X̂Q,d is ε differentially private. Later we shall consider various
questions related to more general choices of the post-processing function. Note
that if we set Ŷq = τ(Yq), then X̂Q,d = ŶQ(d).

Constructing nonnegative mechanisms via restriction

Proposition 3.3.2 shows that if a mechanism X̂Q,d satisfies (3.4) then it will be
2ε differentially private. We now show how to implement a derived mechanism
satisfying (3.4) given a base mechanism XQ,d. This is of course an important
consideration for practical applications.

Let q ≥ 0 be given. We will describe how to construct a random variable,
Lq : Ω→ [−q,∞) satisfying

P(Lq ∈ A) = P(L ∈ A)
P(L ∈ [−q,∞)) , (3.7)
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3.3. Nonnegative derived mechanisms via post-processing and restriction

for all measurable A ⊆ [−q,∞).

The first step is to calculate the cumulative distribution function (cdf) Fq of
a random variable Lq satisfying (3.7).

Proposition 3.3.3. Let L : Ω→ R be a Laplace random variable with mean
0 and scale parameter b > 0 and let q ≥ 0 be given. If Lq : Ω → [−q,+∞)
satisfies (3.7), the cumulative distribution function Fq of Lq is given by:

Fq(x) =



1− e
−x
b

2−e
−q
b

x > 0
e
x
b −e

−q
b

2−e
−q
b

−q ≤ x ≤ 0

0 x < −q

. (3.8)

Proof: For x ≥ −q:

Fq(x) = P(Lq ∈ [−q, x]) =
∫ x
−q e

− |ξ|
b dξ∫∞

−q e
− |ξ|

b dξ
(3.9)

The integral
∫∞
−q e

− |ξ|
b dξ can be readily calculated as:∫ ∞

−q
e−
|ξ|
b dξ = b(2− e−

q
b )

For
∫ x
−q e

− |ξ|
b dξ by considering the two cases, x > 0, −q ≤ x ≤ 0, a straight-

forward calculation then shows that Fq(x) is given by (3.8).

Using the expression for Fq in (3.8), we can use a standard technique in Prob-
ability Theory to construct Lq satisfying (3.7). As Fq : [−q,∞) → [0, 1) is
a strictly increasing function, F−1

q : [0, 1) → [−q,∞) is well defined. Let
U : Ω→ [0, 1] be a uniform random variable, and set

Lq(ω) = F−1
q (U(ω)). (3.10)

It is easy to see that Lq will have cdf given by Fq. For this, note that for
x ≥ −q:

P(Lq(ω) ≤ x) = P(F−1
q (U(ω)) ≤ x)

= P(U(ω) ≤ Fq(x))

= Fq(x).

45



3.4. Bias for nonnegative derived Laplace mechanisms

As Fq is monotonically increasing and Fq(0) = 1−e−
q
b

2−e−
q
b
, for x ∈ [0, 1):

F−1
q (x) =


−b ln[(1− x)(2− e− qb )] x > 1−e−

q
b

2−e−
q
b

b ln[(1− x)e− qb + 2x] x ≤ 1−e−
q
b

2−e−
q
b

(3.11)

To generate noise from a random variable satisfying (3.7), we take the output
u from a uniformly distributed random variable U on [0, 1], (which can be
simulated using standard functions provided by packages such as MATLAB
or Octave) and evaluate F−1

q (u).

Finally, set Ŷq = q + Lq for all q ≥ 0 and X̂Q,d = ŶQ(d). By construction, Ŷq
maps into [0,∞). Moreover, it is a straightforward application of Proposition
3.3.2 to see that the derived mechanism X̂Q,d is 2ε differentially private.

Corollary 3.3.4. Let ε > 0 and Q : D → R+ be given. Further, let L be a
Laplace random variable with mean 0 and scale parameter b = ∆(Q)

ε
and for

q ≥ 0, let Lq satisfy (3.7). Then the mechanism defined by X̂Q,d = ŶQ(d) is 2ε
differentially private.

Proof: We know that XQ,d = Q(d) + L is ε differentially private. Note that
for any measurable A ⊆ [0,∞):

P(X̂Q,d ∈ A) = P(LQ(d) ∈ A−Q(d))

= P(L ∈ A−Q(d))
P(L ∈ [−Q(d),∞))

= P(XQ,d ∈ A)
P(XQ,d ∈ [0,∞)) .

It follows immediately from Proposition 3.3.2 that X̂Q,d is 2ε differentially
private as claimed.

3.4 Bias for nonnegative derived Laplace
mechanisms

As in the previous section, we assume that the base mechanism is a Laplace
mechanism so that E[XQ,d] = Q(d) and the mechanism is unbiased. The bias
of the derived mechanism X̂Q,d is given by E[X̂Q,d]−Q(d). In this subsection,
we show that the post-processed Laplace mechanism X̂Q,d = τ(XQ,d) where

46



3.4. Bias for nonnegative derived Laplace mechanisms

τ is given by (3.6), and the restricted Laplace mechanism both have positive
bias. We also determine which of the approaches leads to a larger bias.

Post-processing and bias

As above, for q ≥ 0, Yq = q+L is a Laplace random variable with mean q and
scale parameter b. We now compute the expected value of Ŷq = τ(Yq). The
bias of the mechanism X̂Q,d at d ∈ D is then equal to E[ŶQ(d)]−Q(d).

The next result gives the expected value of the random variable Yq for q ≥ 0
and can be verified by direct calculation.

Proposition 3.4.1. Let Yq : Ω→ R be a Laplace random variable with mean
q ≥ 0 and scale parameter b. Let Ŷq = τ(Yq) where τ is given by (3.6). Then

E[Ŷq] = q + b

2 exp
(−q
b

)
.

Proof: The expectation of Ŷq = τ(Yq) can be readily shown by direct calcu-
lation to be:

E[Ŷq] = 1
2b

∫ ∞
0

xe
−|x−q|

b dx

= q + b

2e
− q
b .

Remark: It follows immediately from Proposition 3.4.1 that, for b = ∆
ε
the

bias of Ŷq = τ(Yq) is ∆
2εe
− qε∆ .

Restricted mechanisms and bias

In order to quantify the bias of restricted Laplace mechanisms, we first com-
pute an expression for the expected value of the random variables Lq : Ω →
[−q,∞) satisfying (3.7).

Lemma 3.4.2. Let L be a Laplace random variable with mean 0 and scale
parameter b > 0 and let q ≥ 0 be given. If Lq : Ω→ [−q,+∞) satisfies (3.7),
then

E[Lq] = 1
2e qb − 1

(q + b).
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3.4. Bias for nonnegative derived Laplace mechanisms

Proof: We use the fact [46] that for a nonnegative random variable Y , with
cumulative distribution function F (·),

E[Y ] =
∫ ∞

0
P(Y > t)dt =

∫ ∞
0

(1− F (t))dt.

While Lq is not nonnegative, the random variable q+Lq is. Let F+(t) denote
the cumulative distribution function of q + Lq. Then F+(t) = Fq(t − q) for
t ≥ 0. Hence,

∫∞
0 (1 − F+(t))dt =

∫∞
−q(1 − Fq(ξ))dξ. Therefore, with some

simple integration

E[q + Lq] = q + 1
2e qb − 1

(q + b) .

It now follows immediately that

E[Lq] = 1
2e qb − 1

(q + b).

Corollary 3.4.3. Let L be a Laplace random variable with mean 0 and scale
parameter b = ∆

ε
, let q ≥ 0 be given, and let Lq : Ω→ [−q,+∞) satisfy (3.7).

The bias of the restricted derived mechanism Ŷq = q + Lq is given by
qε+ ∆

2εe qε∆ − ε
.

Proof: This follows immediately from Lemma 3.4.2.

3.4.1 Comparison of bias for post-processing and
restriction

We wish to compare mechanisms with the same guaranteed level of differen-
tial privacy, as quantified by the parameter ε. With this in mind, for the
post-processed mechanism, we take the scale parameter b = ∆

ε
, while for the

restricted Laplace mechanism, we should take b = 2∆
ε
.

Consider the ratio between B1 = ∆
2ε exp

(
−εq
∆

)
(the bias of a post-processed

mechanism) and B2 = 1
2 exp( εq2∆ )−1(q + 2∆

ε
) (the bias of the restricted mecha-

nism). After some algebraic manipulation, we find that:

B2

B1
=

2 exp( εq∆ )
2 exp( εq2∆)− 1

(
εq

∆ + 2
)
> 2. (3.12)

This simple calculation shows that post-processing leads to a bias that is
always strictly less than that caused by restriction for the Laplace mechanism.
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3.4. Bias for nonnegative derived Laplace mechanisms

3.4.2 Positivity and Log-Laplace Random Variables
We now briefly describe a different approach taken in [71]; the authors consid-
ered the problem of how to release models of dynamic systems (described via
transfer functions, for example) in a differentially private manner. In order
to accurately reflect the stability properties of the models considered, such
mechanisms need to preserve the sign of some important model parameters.
The authors introduced a multiplicative mechanism based on the log-Laplace
distribution that preserves positivity; they refer to this as a sign-preserving
mechanism. This technique can prove useful provided we impose restrictions
on the queries considered and on the adjacency relation on D. We now briefly
describe how it would apply to the general nonnegative valued queries consid-
ered here, and we explain why it is not appropriate for this general context.

A key assumption is that Q : D → (0,∞) is a positive valued query for which
there is some K > 0 such that for all d ∼ d′:

|Q(d)−Q(d′)|
min{Q(d), Q(d′)} ≤ K. (3.13)

This then implies that the query log(Q) : D → R will have sensitivity bounded
above by K. Hence the mechanism XQ,d = log(Q(d)) + L is ε differentially
private where L is a Laplace random variable with mean 0 and b = K

ε
. As dif-

ferential privacy is invariant under post-processing, it follows that the positive
mechanism

X̂Q,d = eXQ,d = Q(d)eL

is also ε differentially private.

While this technique can be used for queries satisfying (3.13) and was applied
successfully to the problem of releasing dynamic models in a differentially
private manner while preserving stability properties, there are several issues
with its use for the more general setting considered here.

• From the form of (3.13) it is clear that the technique is unsuitable to
queries which can take the value 0.

• Even when the query is strictly positive, the bound K may be signif-
icantly larger than the sensitivity of the query itself, meaning that a
greater level of noise is required. In fact, it may not be possible to ob-
tain a finite bound K. As a simple example, if we take D = (0, 1]n and
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Q : D → (0, 1] to be the mean Q(d) =
∑n

i=1 di
n

, then the sensitivity of
Q is easily seen to be 1

n
. On the other hand, set d = (γ, γ, . . . , γ) and

d′ = (1, γ, γ, . . . , γ) and consider the standard adjacency relation given
by d ∼ d′ if for some i, dj = d′j, j 6= i. Then

|Q(d)−Q(d′)|
min{Q(d), Q(d′)} = 1− γ

γn
.

Thus by choosing γ sufficiently small, we see that there is no finite K
for which (3.13) will be satisfied in this case.

• Following on from the last point, the next result illustrates that even
if the query Q satisfies (3.13) for some finite K > 0, the multiplicative
mechanism will fail to have finite expectation unless K satisfies addi-
tional restrictions. This is clearly undesirable.

Proposition 3.4.4. Let K > 0, ε > 0 be given and let Q : D → (0,∞)
be a query satisfying (3.13). Further, let X̂Q,d = Q(d)eL be the multiplicative
mechanism with L a Laplace random variable with mean 0 and scale parameter
b = K

ε
. Then the expected value E[X̂Q,d] <∞ if and only if K < ε.

Proof: If L is a Laplace random variable with mean 0 and scale parameter
b > 0, then

E[eL] = 1
2b

∫ ∞
−∞

exe−
|x|
b dx.

The integral above is finite if and only if b < 1. The result follows immediately.

Remark: The previous result shows that even for queries satisfying (3.13),
the multiplicative mechanism will have an infinite bias if K > ε. An identical
calculation shows that X̂Q,d will have finite variance if and only if K < ε

2 .
From a practical viewpoint, these simple observations mean that for a given
query satisfying (3.13), it is only possible to design ε-differentially private
mechanisms with finite mean and variance for values of ε > 2K. This is in
marked contrast to mechanisms obtained by post-processing and restriction.

3.5 Optimising bias over translated ramp
functions

Consider again a Laplace random variable L with mean 0 and scale parameter
b > 0. Let Yq = q + L for q ≥ 0. For α ≥ 0, consider the translated ramp
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function τα(x) = τ(x−α). For q ≥ 0, the expected value of the post-processed
random variable τα(Yq) is given by

E[τα(Yq)] = 1
2b

∫ ∞
α

(x− α)e−
|x−q|
b dx.

For a fixed q ≥ 0, set G(α) = E[τα(Yq)]. From Proposition 3.4.1, we know
that for α = 0, corresponding to the standard ramp function, the expectation
of τ(Yq) is G(0) = q+ b

2 exp
(
−q
b

)
. This also means that the maximal absolute

bias of the family {τ(Yq) : q ≥ 0} is b
2 . It is readily verified that the derivative

of G with respect to α is given by G′(α) = − 1
2b
∫∞
α e−

|x−q|
b dx < 0. Thus for any

fixed q, G(α) is a decreasing function of α. Moreover, for every q, the bias of
τ(Yq) is strictly positive, meaning that G(0) > 0. These observations suggest
that it may be possible to reduce the bias of τ(Yq) by instead considering
τα(Yq) for α > 0.

For α ≥ 0, let B(α) denote the maximal absolute bias (3.2) of the family
{τα(Yq) : q ≥ 0}. In the following result, we determine the minimum value of
B(α) over α ≥ 0.

Theorem 3.5.1. Let L be a Laplace random variable with mean 0 and scale
parameter b > 0 and, for q ≥ 0, let Yq = q + L. Let α∗ be the unique solution
of b

2e
−α
b − α = 0 in [0,∞). Then min{B(α) : α ≥ 0} = α∗.

Proof: Fix some α ≥ 0. It can be readily verified by direct calculation that
the expectation of τα(Yq) is given by

E[τα(Yq)] = (q − α) + b

2e
α−q
b

for q ≥ α and
E[τα(Yq)] = b

2e
q−α
b

for 0 ≤ q ≤ α. It follows that the bias βα(q) = E[τα(Yq)]− q is given by:

• βα(q) = −α + b
2e

α−q
b for q ≥ α;

• βα(q) = b
2e

q−α
b − q for 0 ≤ q ≤ α.

It is clear that βα(q) is a monotonically decreasing function of q for q ≥ α.
Moreover, a simple calculation shows that for 0 ≤ q ≤ α, β′α(q) = 1

2e
q−α
b − 1
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which is negative for 0 ≤ q ≤ α. Thus βα(q) is decreasing for all α ≥ 0 and
moreover it is continuous. This implies that the maximum absolute bias of
{τα(Yq) : q ≥ 0} is either given by |βα(0)| = b

2e
−α
b or the limit limq→∞ |βα(q)| =

α. Formally,
B(α) = max{ b2e

−α
b , α}.

To complete the proof, let α∗ be the unique solution of b2e
−α
b −α = 0 in [0,∞).

Then:

(i) B(α) = b
2e
−α
b on [0, α∗];

(ii) B(α) = α on [α∗,∞).

Clearly B(α) is decreasing on [0, α∗] and increasing on [α∗,∞). Hence the
minimum value of B(α) on [0,∞) is given by B(α∗) = α∗ as claimed.

Remark: As α∗ > 0, the maximal absolute bias of {τα∗(Yq) : q ≥ 0}, given
by b

2e
−α
∗
b is clearly less than b

2 corresponding to the standard ramp function.

3.6 Bias is inevitable for post-processing and
restriction

Proposition 3.4.1 shows that if the base mechanism XQ,d is a Laplace mecha-
nism, the nonnegative, post-processed mechanism corresponding to the ramp
function τ has a strictly positive bias. Corollary 3.4.3 establishes the corre-
sponding fact for a restricted Laplace mechanism. In this context, it is entirely
natural to consider the following questions. Is it possible to construct an unbi-
ased mechanism by post-processing a Laplace mechanism with some function
other than τ? Does there exist an unbiased base mechanism given by a fam-
ily of random variables {Yq : q ≥ 0}, such that the corresponding restricted
mechanism Ŷq is also unbiased? In this section, we shall show that the answer
to both of these questions is negative under reasonable assumptions on both
the post-processing function and the base mechanism for restriction.

3.6.1 Bias and post-processed Laplace mechanisms
We first consider the maximal absolute bias for post-processed Laplace mech-
anisms. Let the family {Yq : q ≥ 0} consist of Laplace random variables with
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scale parameter b > 0; each Yq has the pdf

fq(x) = 1
2be

− |x−q|
b .

Let φ : R → R+ be a measurable function and define the derived family Ŷφ,q
by Ŷφ,q = φ(Yq) for q ≥ 0.

In order to ensure that each of the the derived random variables, Ŷφ,q q ≥ 0,
has finite first and second moments, we consider post-processing functions in
the Hilbert space V = L2(e−

|x|
b dx):

V := {φ : R→ R :
∫ ∞
−∞
|φ(x)|2e−

|x|
b dx <∞}.

The cone of nonnegative valued functions φ in V is denoted by V+.

It is straightforward to show that φ in V implies that
∫∞
−∞ |φ(x)|e−

|x|
b dx <∞

also. In the following lemma we note that given φ ∈ V+, the first and second
moments of Ŷφ,q are finite for all q ≥ 0.

Lemma 3.6.1. Let φ ∈ V+ be given. Then for any q ≥ 0:∫ ∞
−∞
|φ(x)|e−

|x−q|
b dx < ∞,∫ ∞

−∞
|φ(x)|2e−

|x−q|
b dx < ∞.

Proof: As φ ∈ V , we know that∫ ∞
−∞
|φ(x)|pe−

|x|
b dx <∞ (3.14)

for p = 1, 2. The result now follows from a simple application of the triangle
inequality as

e−
|x−q|
b ≤ e

|q|
b e−

|x|
b .

We now consider the mapping from V into R which takes a function φ to the
maximal absolute bias given by (3.2). Formally, for φ ∈ V :

B(φ) = sup
{∣∣∣∣∫ ∞
−∞

φ(x)fq(x)dx− q
∣∣∣∣ : q ∈ R+

}
. (3.15)

The following result establishes that B(φ) > 0 for any φ ∈ V+.

Proposition 3.6.2. Let {Yq = q + L : q ≥ 0} be a family of Laplace random
variables where L is Laplace with mean 0 and scale parameter b > 0. Let
φ ∈ V+ be given. Then B(φ) > 0.
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Proof: Consider q = 0. Then as φ ∈ V+ and f0(x) > 0 for all x, it follows
that ∫ ∞

−∞
φ(x)f0(x)dx > 0

unless φ = 0 almost everywhere. If φ is not zero a.e., it follows immediately
that

B(φ) ≥
∫ ∞
−∞

φ(x)f0(x)dx > 0.

On the other hand, if φ = 0 a.e. then∣∣∣∣∫ ∞
−∞

φ(x)fq(x)dx− q
∣∣∣∣ = q

for all q ≥ 0 which means that B(φ) = ∞ in this case. This completes the
proof.

Remark: Speaking informally, the previous result shows that bias is in-
evitable for any post-processed Laplace mechanism with finite first and second
moments.

3.6.2 Bias and restricted mechanisms
We now consider the maximal absolute bias of general restricted mechanisms;
we do not assume that the base mechanism is a Laplace mechanism here.
Let a family of continuous real-valued random variables {Yq : q ≥ 0} with
associated pdfs fq, q ≥ 0 be given. We make the following assumptions for all
q ≥ 0:

E[Yq] = q (3.16)

fq(x) > 0 ∀x ∈ R. (3.17)

Thus, we are assuming that the base mechanism is unbiased and has range
given by R.

Let Ŷq denote the restricted family of nonnegative random variables satisfying:

P(Ŷq ∈ A) = P(Yq ∈ A)
P(Yq ∈ [0,∞)) (3.18)

for all measurable sets A ⊆ R+.

We will show that for Ŷq, the maximal bias given by (3.2) also satisfies B > 0.
The proof of this makes use of the standard coupling technique from probabil-
ity theory (see Section 4.12 of [49]) to construct a common space Ω1 on which
Ŷq and a copy of Yq can be defined for all q ≥ 0.
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Proposition 3.6.3. Let a family of random variables {Yq : q ≥ 0} satisfying
(3.16), (3.17) and a restricted family Ŷq satisfying (3.18) be given. Then the
maximal absolute bias B given by (3.2) satisfies B > 0.

Proof: For q ≥ 0, let Fq denote the cumulative distribution function of Yq
and FR

q the cdf of Ŷq. As Ŷq takes values in [0,∞), FR
q (t) = 0 for t < 0.

Moreover, for t ≥ 0:

FR
q (t) = P(Ŷq ≤ t)

= P(Yq ∈ [0, t])
P(Yq ∈ [0,∞))

= Fq(t)− Fq(0)
1− Fq(0) .

We now show that FR
q (t) < Fq(t) for all t ∈ R. This is trivially true for t < 0.

For t ≥ 0,

FR
q (t) = Fq(t)− Fq(0)

1− Fq(0)

= Fq(t)(1− Fq(0)) + Fq(0)(Fq(t)− 1)
1− Fq(0)

= Fq(t) + Fq(0)(Fq(t)− 1)
1− Fq(0) .

As fq(x) > 0 for all x in R, it follows that Fq(t) < 1 for all t ∈ R and
Fq(0) < 1. This immediately implies that FR

q (t) < Fq(t) for t ≥ 0 also.
Therefore, the restricted mechanism Ŷq stochastically dominates Yq [49] for all
q ≥ 0. This means that we can construct a probability space (Ω1,F1,P1) and
random variables Ŷ 1

q , Y 1
q for q ≥ 0 such that

1. Ŷ 1
q has the same distribution (cdf) as Ŷq and Y 1

q has the same distribution
as Yq for all q ≥ 0;

2. Ŷ 1
q (ω) ≥ Y 1

q (ω) for all q ≥ 0 and all ω ∈ Ω1.

The construction we employ here is standard; however we shall strengthen
statement 2 slightly in order to prove that Ŷ 1

q has strictly positive bias. We
set Ω1 = [0, 1], F1 to be the Borel subsets of [0, 1], and define P1 to be the
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3.6. Bias is inevitable for post-processing and restriction

Lebesgue measure on [0, 1]. For q ≥ 0, we define random variables Ŷ 1
q , Y 1

q on
Ω1 by setting:

Ŷ 1
q (ω) = inf{t : FR

q (t) > ω}

Y 1
q (ω) = inf{t : Fq(t) > ω}.

As each of the cdfs, FR
q , Fq for q ≥ 0 is continuous and non-decreasing, it is

not difficult to see that for t ∈ R, Ŷ 1
q (ω) ≤ t⇔ ω ≤ FR

q (t), and Y 1
q (ω) ≤ t⇔

ω ≤ Fq(t). These two facts imply that

P(Ŷ 1
q ≤ t) = FR

q (t);P(Y 1
q ≤ t) = Fq(t).

It follows immediately that as Ŷ 1
q has the same distribution as Ŷq, E[Ŷ 1

q ] =
E[Ŷq]. Similarly, E[Y 1

q ] = E[Yq] = q. Furthermore, as FR
q (t) < Fq(t) for all

t ∈ R, Ŷ 1
q (ω) ≥ Y 1

q (ω) for all ω ∈ [0, 1]. We next show that for every q ≥ 0,
there exists some subset Sq of (0, 1) of positive measure with the property that

Ŷ 1
q (ω) > Y 1

q (ω) ∀ω ∈ Sq.

As Fq(t) =
∫ t
−∞ fq(x)dx with fq(x) > 0 for x ∈ (−∞,∞) by assumption,

it follows that we can choose K > 0 and α > 0 such that Fq(−K) = α.
This immediately implies that Y 1

q (ω) ≤ −K for ω ∈ (0, α). Moreover, by
construction Ŷ 1

q (ω) ≥ 0 for all ω ∈ (0, 1) and hence taking Sq = (0, α), we
have that

Ŷ 1
q (ω)− Y 1

q (ω) ≥ K, ∀ω ∈ Sq.

It now follows immediately that:

E[Ŷq] = E[Ŷ 1
q ]

=
∫

Ω1
Ŷ 1
q (ω)dP1(ω)

=
∫
Sq
Ŷ 1
q (ω)dP1(ω) +

∫
Scq

Ŷ 1
q (ω)dP1(ω)

>
∫
Sq
Y 1
q (ω)dP1(ω) +

∫
Scq

Y 1
q (ω)dP1(ω)

= E[Y 1
q ] = E[Yq].

Here Scq = Ω1 \ Sq. The argument above shows that, for any q ≥ 0 E[Ŷq] >
E[Yq] = q and hence the maximal absolute bias B satisfies:

B = sup{|EŶq − q| : q ≥ 0} > 0.

This completes the proof.
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3.7. Mean square error (MSE) for nonnegative derived Laplace mechanisms

3.7 Mean square error (MSE) for
nonnegative derived Laplace mechanisms

The privacy-accuracy trade-off is one of the most important questions in Dif-
ferential Privacy. The results in previous sections address one aspect of this
issue by considering the bias introduced by post-processing or restriction. We
now consider a different accuracy measure: the mean-square error (MSE) of
post-processed and restricted mechanisms.

The mean square error (MSE) of a random variable X as an estimator of q is

MSE(X) := E[(X − q)2].

A standard computation shows that

MSE(X) = E[X2 − 2qX + q2] (3.19)

= E[X2]− 2qE[X] + q2.

3.7.1 MSE for post-processed and restricted Laplace
mechanisms

{Yq : q ≥ 0} is a family of Laplace random variables, Yq = q+L, where L has
mean 0 and scale parameter b = ∆

ε
. Ŷτ,q denotes the post-processed family of

random variables constructed with the function τ given by (3.6); we will use
Ŷq to denote the family of restricted random variables.

As we have already calculated both E[Ŷτ,q] and E[Ŷq], it follows from (3.19)
that to compute the corresponding MSEs it is enough to calculate E[(Ŷτ,q)2]
and E[(Ŷq)2]

We will use the following integrals which can be readily calculated:∫ q

0
x2e

x
b dx = bq2e

q
b − 2b2qe

q
b + 2b3(e

q
b − 1) (3.20)∫ ∞

q
x2e−

x
b dx = bq2e−

q
b + 2b2qe−

q
b + 2b3e−

q
b ,

where b > 0, q ≥ 0.

Post-processed mechanism
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3.7. Mean square error (MSE) for nonnegative derived Laplace mechanisms

We first consider the post-processed mechanism Ŷτ,q = τ(Yq) constructed using
the standard ramp function τ . It can be checked by direct computation that
for x 6= 0, the pdf of Ŷτ,q is given by

fτ,q(x) =


0 x < 0
1
2be

x−q
b 0 < x < q

1
2be

−x+q
b x ≥ q.

(3.21)

Using this, we can now calculate the MSE of the post-processed mechanism.

Proposition 3.7.1. For q ≥ 0, the mean square error of Ŷτ,q = τ(Yq) is given
by:

MSE(Ŷτ,q) = b2(2− e−
q
b )− bqe−

q
b . (3.22)

Proof: Using (3.21),

E[(Ŷτ,q)2] = e−
q
b

2b

∫ q

0
x2e

x
b dx+ e

q
b

2b

∫ ∞
q

x2e−
x
b dx. (3.23)

It is now straightforward to verify using the formulae in (3.20) that

E[(Ŷτ,q)2] = q2 + b2(2− e−
q
b ).

Combining this with the formula

E[Ŷτ,q] = q + b

2e
− q
b ,

the result follows immediately from (3.19).

Restricted mechanisms

Now consider the restricted family, Ŷq for q ≥ 0, whose cumulative distribution
function is given by

FR
q (t) =



0 x ≤ 0

1− e
−x+q
b

2−e
−q
b

x > q

e
x−q
b −e

−q
b

2−e
−q
b

0 ≤ x ≤ q

.
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Differentiating, we see that the pdf of Ŷq is:

fRq (x) =



0 x ≤ 0
e
−x+q
b

b(2−e
−q
b )

x > q

e
x−q
b

b(2−e
−q
b )

0 ≤ x ≤ q

.

Proposition 3.7.2. For q ≥ 0, the mean square error of the restricted family
Ŷq, is given by:

MSE(Ŷq) = 1
2− e− qb

(
4b2 − e−

q
b (2b2 + 2bq + q2)

)
. (3.24)

Proof: The calculation is essentially the same as that used in Proposition
3.7.1. First, use the formulae for the pdf fRq (x) of ZR

q to see that

E[(Ŷq)2] = e−
q
b

b(2− e− qb )

∫ q

0
x2e

x
b dx+ e

q
b

b(2− e− qb

∫ ∞
q

x2e−
x
b dx.

It follows from (3.20) that

E[(Ŷq)2] = 2
2− e− qb

(
q2 + b2(2− e−

q
b )
)
.

The result now follows from noting that

E[Ŷq] = 1
2− e− qb

(
2q + be−

q
b

)
.

Comparison of MSE for restricted and post-processed mechanisms

We saw in Section 3.4 that the bias of the restricted mechanism is always
strictly greater than that of a post-processed mechanism with the same dif-
ferential privacy parameter ε. To finish this section, we carry out the corre-
sponding comparison for the MSE. To ensure ε differential privacy for both
the post-processed mechanism and the restricted Laplace mechanism, if we
use the scale parameter b for the post-processed mechanism, we should use 2b
for the restricted Laplace mechanism.

Consider the ratio between

M1 = b2(2− e−
q
b )− bqe−

q
b

59



3.8. Optimising the Mean Square Error

(corresponding to Ŷτ,q) and

M2 = 1
2− e− q

2b

(
16b2 − e−

q
2b (8b2 + 4bq + q2)

)
(corresponding to Ŷq). Note that

M1 ≤ b2(2− e−
q
b ) =⇒ 1

M1
≥ 1
b2(2− e− qb )

as bqe− qb ≤ 0 for all q ≥ 0.

Also note that
M2 ≥

1
2− e− q

2b
(8b2)

as e− q
2b (8b2 + 4bq + q2) is a decreasing function for all q ≥ 0, and hence its

maximum value occurs at q = 0. Therefore, it can be shown that
M2

M1
≥ 8

( 1
2− e− qb

)( 1
2− e− q

2b

)
≥ 2

as 1
2−e−

q
2b
≥ 1

2 and 1
2−e−

q
b
≥ 1

2 for all q ≥ 0. This calculation shows that the
MSE for post-processing is always strictly less than the MSE of the restricted
Laplace mechanism.

3.8 Optimising the Mean Square Error
In this section, we consider the MSE of a post-processed Laplace mechanism.
In particular, we introduce the worst case MSE as a function of the post-
processing function φ, and analyse the problem of minimising this function
over all nonnegative φ for which the associated mechanism has finite first
and second moments. The main contribution of this section is to prove the
existence of a minimising function φ for this problem. While we do not give a
constructive result here, proving the existence of a minimising function is an
important step in solving the optimisation problem.

For φ ∈ V+, the MSE of the post-processed mechanism Ŷφ,q = φ(Yq) is given
by:

MSE(Ŷφ,q) = E[(Ŷφ,q − q)2] (3.25)

= E[(Ŷφ,q − E[Ŷφ,q] + E[Ŷφ,q]− q)2]

= V [Ŷφ,q] + (E[Ŷφ,q]− q)2,

where V [Ŷφ,q] is the variance of Ŷφ,q. We note the following simple observations.
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• Lemma 3.6.1 implies that if φ ∈ V , then Ŷφ,q = φ(Yq) will have finite
first and second moments for all q ≥ 0. In particular, it follows from
(3.25) that MSE(Ŷφ,q)) will be finite for all q ≥ 0.

• Proposition 3.6.2 implies that

sup{MSE(Ŷφ,q) : q ≥ 0} > 0

for any choice of the function φ. In this section, we are interested in the
question of minimising this worst case MSE over φ ∈ V+.

V is a real Hilbert space with inner product

〈φ, ψ〉 =
∫ ∞
−∞

φ(x)ψ(x)e−
|x|
b dx

and the associated norm

‖ψ‖ =
(∫ ∞
−∞
|ψ(x)|2e−

|x|
b dx

)1/2
.

In particular, V is a reflexive Banach space.

We now define the worst case MSE function.

Definition 3.8.1. The worst case MSE is the function F : V → R+ ∪ {∞}
given by

F (φ) := sup{MSE(φ(Yq)) : q ≥ 0}. (3.26)

For the remainder of this section, we will consider the problem of minimising
the worse case MSE of a post-processed mechanism. Formally, we consider
the following question.

Problem 3.8.1. Minimise F (φ) subject to φ ∈ V+.

We will prove the existence of a minimising function φ̂ in V+ such that

F (φ̂) = inf{F (φ) : φ ∈ V+}.

As with all optimisation problems, proving the existence of a global minimiser
is a crucial first step in the development of algorithms for determining a min-
imising function φ.

We first recall some standard definitions and technical facts from the theory of
nonlinear optimisation; for background and additional details on these topics,
the reader may consult [93].
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Definition 3.8.2. A function f : E → R on a Banach space E is coercive if
limn→∞ ‖xn‖ =∞ implies lim supn→∞ f(xn) =∞.

Definition 3.8.3. Let S be a non-empty subset of a Banach space E. The
function f : S → R is lower semicontinuous at x̄ ∈ S if for all ε > 0, there is
some δ > 0 such that x ∈ S, ‖x− x̄‖ < δ implies f(x) > f(x̄)− ε.

In order to prove the existence of a minimising φ̂ in V+ with F (φ̂) ≤ F (φ) for
all φ ∈ V+, we make use of the following rephrased version of Theorem 5.4.4
in [93].

Theorem 3.8.1. Let E be a reflexive Banach space and let S ⊂ E be a
nonempty, convex, closed subset of E. If f : S → R is a coercive, convex,
lower-semicontinuous function on S then there exists some x̂ ∈ S with f(x̂) ≤
f(x) for all x ∈ S.

We wish to apply this theorem to the function F given by (3.26) defined on
the set V+. First note that as V is a Hilbert space it is a reflexive Banach
space [8].

For the remainder of this section, we use the notation dµ(x) (dµq(x)) for the
measure e−

|x|
b dx (e−

|x−q|
b dx). We also use the more compact notation

∫
R φdµ

for
∫∞
−∞ φ(x)dµ(x).

The first step in our proof is to prove that the cone V+ is convex and closed.
We include the proof here in the interests of completeness.

Lemma 3.8.2. The set V+ is convex and closed.

Proof: For convexity, simply note that if φ1(x) ≥ 0 and φ2(x) ≥ 0 for almost
all x and 0 < α < 1, then the set of x where αφ1(x) + (1 − α)φ2(x) < 0 is
contained in the union

{x : φ1(x) < 0} ∪ {x : φ2(x) < 0}

which has measure 0. This implies that αφ1(x)+(1−α)φ2(x) ≥ 0 for almost all
x. To see that V+ is closed, we suppose that the sequence φn in V+ converges
to some φ in V . This means that

∫
R(φn − φ)2dµ tends to 0 as n → ∞. If

φ(x) < 0 on a set of non-zero measure then for some n, the set Sn = {x :
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φ(x) < − 1
n
} has non-zero measure. It is then simple to see that for all n,∫

R(φn − φ)2dµ ≥ 1
n2µ(Sn) > 0 which contradicts φn → φ as n→∞.

Our next lemma shows that F given by (3.26) is both convex and coercive.

Lemma 3.8.3. The function F : V → R defined by (3.26) is convex and
coercive.

Proof: It follows from standard results in convex analysis [93] that for a set
{fq : q ∈ R+} of convex functions, fq : V → R, the function f given by
f(x) = sup{fq(x) : q ∈ R+} is also convex. We shall show that for each q ≥ 0,
the function φ 7→MSE(φ(Yq)) is convex. The convexity of F will then follow.

Direct calculation shows that

MSE(φ(Yq)) = E[φ(Yq)2]− 2qE[φ(Yq)] + q2.

Clearly the function φ 7→ −2qE[φ(Yq)] + q2 is affine and hence convex. Thus
it is enough for us to verify that H(φ) = E[φ(Yq)2] is convex.

So let φ1, φ2 in V , q ≥ 0, and 0 < α < 1 be given. Then, keeping in mind
that α2 < α as 0 < α < 1,

H(αφ1 + (1− α)φ2) =
∫
R
(αφ1 + (1− α)φ2)2dµq

=
∫
R
(φ2 + α(φ1 − φ2))2dµq

=
∫
R
φ2

2 + α2(φ1 − φ2)2 + 2αφ2(φ1 − φ2)dµq

≤
∫
R
φ2

2 + α(φ1 − φ2)2 + 2αφ2(φ1 − φ2)dµq

=
∫
R
αφ2

1 + (1− α)φ2
2dµq

= αE[φ1(Yq)2] + (1− α)E[φ2(Yq)2].

Thus H is indeed convex and hence so is MSE and the function F .

To show that F is coercive, suppose we have a sequence φn in V with
limn→∞ ‖φn‖ =∞. Then, taking q = 0,

MSE(φn(Y0)) =
∫ ∞
−∞
|φn(x)|2dµ(x)

= ‖φn(x)‖2 →∞
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as n → ∞. This immediately implies that F (φn) ≥ MSE(φn(Y0)) → ∞ as
n→∞ and hence F is coercive as claimed.

The final fact that we need to establish is the lower-semicontinuity of F .

Lemma 3.8.4. The function F : V → R given by (3.26) is lower semicontin-
uous on V+.

Proof: First note that for each q ≥ 0, MSE(φ(Yq)) = ‖φ − q‖2
q where ‖ · ‖q

denotes the norm in the Hilbert space L2(dµq). Moreover, it is an exercise in
the triangle inequality to show that for any such q, ‖φ‖2

q ≤ e
q
b ‖φ‖2 where ‖ · ‖

denotes the norm in V . It follows that if a sequence φn converges to φ in V ,
then it also converges to φ in L2(dµq). The continuity of the norm on a Hilbert
space [8] immediately implies that MSE(φn(Yq)) converges to MSE(φ(Yq)).
This shows that φ 7→MSE(φ(Yq)) is continuous on V for each q ≥ 0.

To show that F is lower semicontinuous on V+, let φ̄ in V+ and ε > 0 be given.
We need to show that there is some δ > 0 such that F (φ) > F (φ̄) for φ ∈ V+

with ‖φ− φ̄‖ < δ. As F (φ̄) = sup{MSE(φ̄(Yq)) : q ≥ 0} there is some q0 ≥ 0
with

MSE(φ̄(Yq0)) > F (φ̄)− ε

2 .

Moreover as φ 7→ MSE(φ(Yq0)) is continuous on V , we can conclude that
there is some δ > 0 such that if ‖φ− φ̄‖ < δ, then∣∣∣MSE(φ(Yq0))−MSE(φ̄(Yq0))

∣∣∣ < ε

2 .

Combining the two previous inequalities shows that if ‖φ − φ̄‖ < δ then
MSE(φ(Yq0)) > F (φ̄)− ε. This immediately implies that

F (φ) ≥MSE(φ(Yq0)) > F (φ̄)− ε,

which shows that F is lower semicontinuous as claimed.

Combining the previous lemmas with Theorem 3.8.1 proves the following re-
sult.

Theorem 3.8.5. There exists φ̂ ∈ V+ such that F (φ̂) ≤ F (φ) for all φ ∈ V+.

Proof: By Lemma 3.8.2, V+ is convex and closed; it is clearly nonempty.
Combining Lemma 3.8.4 and Lemma 3.8.3, we know that F is convex, coer-
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cive and lower semicontinuous on V+. The result now follows direrctly from
Theorem 3.8.1.

Remark: Given a Laplace mechanism defined by a family of random variables
{Yq = q + L : q ≥}, Theorem 3.8.5 guarantees the existence of a function
φ : R→ R+ such that:

(i) the first and second moments of all of the nonnegative random variables
φ(Yq) are finite;

(ii) the worst case mean square error of the mechanism φ(Yq) is minimal
among all functions satisfying (i).

This result naturally suggests the problem of determining the actual minimal
value of the function F on V+ and to develop algorithms to determine or
approximate a function φ attaining this minimum. As a first step in this
direction, it might be more tractable to restrict to a smaller class of functions
such as those functions in V+ that are piecewise linear or piecewise affine as
these are generalisations of the function τ given by (3.6).

3.9 Conclusions
In this chapter, we considered two general approaches to constructing non-
negative differentially private mechanisms; post-processing and restriction. In
Section 3.4, we gave explicit formulae for the bias of nonnegative Laplace
mechanisms obtained by restriction and by post-processing with the simple
ramp function. When we view boundary inflated truncation (to use the ter-
minology of [75]) as post-processing with the ramp function, τ , we see that it
is possible to use alternative post-processing functions in order to reduce bias.
The results presented in Section 3.5 on translations of the ramp function show
that this is indeed possible. In fact, we have given an explicit characterisation
of the optimal post-processing function within this class. An interesting, and
challenging, question for future research is to determine the minimal possible
value of the maximal absolute bias of a nonnegative, post-processed Laplace
mechanism where the mechanism is required to have finite first and second
moments. In relation to this question, the work of Section 3.6 proves that the
maximum absolute bias of any such mechanism must be strictly positive. In
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Section 3.7, formulae for the mean square error of post-processed (using the
simple truncation function) and restricted Laplace mechanisms are also de-
rived and we have proven that there exists a square integrable post-processing
function that minimises the worst case MSE, in Section 3.8.

In Chapter 4, we will briefly outline how the techniques in this chapter can
be applied in a system theoretic setting to derive positive mechanisms for
positive linear systems. In particular, this shows that they can be used to
build mechanisms for positive observers. This is then the major topic of much
of the rest of the thesis.
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CHAPTER 4
Positive Linear Observers and l1

Sensitivity

In this chapter, we show how to apply the results of the previous chapter to posi-
tive systems. Specifically, we show how to develop a positive ε differential private
observer using the Laplace mechanism. We first provide a general bound for the
l1 sensitivity of the map defined by a Luenberger observer for an LTI system. We
then study the optimisation problem of minimising this bound for positive linear
observers and provide a method for computing an optimal solution for systems with
a single measured output.

4.1 Introduction
In Chapter 3, our main motivation was to derive mechanisms that ensure
positivity when applying differential privacy to a nonnegative valued query. In
this chapter, we are interested in applying these methods to positive dynamic
systems. In this scenario the mapping from the input space to the output
space of the positive dynamic system will take the role of the query. We
show how the use the methods from Chapter 3 to ensure the outputs from a
mechanism are nonnegative.

The main focus in this chapter is to achieve differential privacy using the
Laplace distribution. As seen in Chapter 2, the l1 sensitivity is a key parameter
for Laplace mechanisms. Our main interest in this chapter and the following
two chapters is positive linear observers, so in the latter part of this chapter,
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we will concentrate on estimating the l1 sensitivity of a positive linear observer.
Here, the mapping from the measured output of the system to the observer
will take the role of the query mapping.

As noted in Chapter 2, many motivating examples for privacy preserving
control fall within the class of positive systems [103, 44, 19]. Previous work on
privacy preserving control and observer design has not explicitly considered
positive systems; however, positivity has a strong impact on system behaviour.
In [52], a formal mathematical description of the positive observer design
problem for linear systems, together with canonical forms appropriate to the
positive setting was described. Further work on positive observer design, for
more general classes of observer, can be found in [95]. Our objective here
is to introduce the problem of differentially private positive observer design;
starting from the work of [67] and concentrating on what can be said for the
sensitivity of observers for positive linear systems. Before developing results
for positive linear observers, we first show how to apply the work of the last
chapter to positive dynamical systems.

4.2 Differential privacy and positive linear
systems

In this section, we give a brief outline of how our results from Chapter 3
can be combined with recent work on differential privacy for control systems
[72, 67] to design positive, differentially private mechanisms for positive linear
systems. Our motivation comes from the positive linear observer problem
[52, 10, 76] and the development of differentially private positive observers of
Luenberger type.

Consider the positive linear system (with input)

Σ : x(t+ 1) = Ax(t) +Bu(t) (4.1)

y(t) = Cx(t)

where A ∈ Rn×n
+ , C ∈ Rp×n

+ , B ∈ Rn×m
+ . The system Σ defines a mapping

between the input space U+ :=
(
Rm

+

)Z+ of sequences with entries in Rm
+ and

the output space Y+ := (Rp
+)Z+ of sequences with entries in Rp

+. We shall
use Y and U to denote the corresponding real-valued sequences (without the
nonnegativity restriction).
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As is standard in Probability Theory [18], we will work with the sigma algebra
on these sequence spaces generated by finite dimensional projections; this is
the sigma algebra generated by the algebra of cylinder sets of the form π−1(A)
where π : (Rn)Z+ → Rk is a projection onto some finite set of k components
and A is a Borel set in Rk. We denote these sigma-algebras by σ(U+), σ(Y+)
respectively.

Given a system (4.1), a mechanism is a set of measurable mappings Y (u) :
Ω → Y+ indexed by u ∈ U+. The system takes the role of a query and u

corresponds to the database in our earlier discussion in Chapter 2 and 3.

We assume that U+ is equipped with a reflexive, symmetric relation ∼. The
following definition of differential privacy for systems, taken from [72], is a
direct extension of that for real-valued queries.

Let ε > 0 be given. The mechanism Y (u) : Ω → Y+ is ε differentially private
if

P(Y (u) ∈ B) ≤ eεP(Y (u′) ∈ B) (4.2)

for all B ∈ σ(Y+) and all u ∼ u′ in U+.

We will use the notation Y (u)
t,i to denote the ith component of the mechanism

Y (u) at time t ≥ 0, corresponding to the input u; this is then a real-valued
random variable. Similarly, y(u)

t,i denotes the ith component of the output y(u)

of the system at time t, corresponding to the input u.

Throughout this chapter, we will work exclusively with the l1 norm and the
corresponding induced norm for matrices, as these are the natural norms for
use in connection with Laplace mechanisms for differential privacy [67, 38].
Recall from Chapter 2, the l1 norm of y = (y(t)) in Y+ is defined by

‖y‖1 =
∞∑
t=0
‖y(t)‖1

where ‖y(t)‖1 is the usual l1 norm on Rp and for T ∈ Rm×n,

‖T‖1 = max
j

m∑
i=1
|tij|. (4.3)

In Proposition 4.2.2, we present a technical result that will underpin some of
our later arguments. In order to prove this result, we will make use of the
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4.2. Differential privacy and positive linear systems

Monotone Class Theorem. We first recall a definition necessary to state this
result.

Definition 4.2.1. A monotone class M is a collection of subsets of Ω with
two properties:

(i) if Ai ∈M for i = 1, 2, . . . , and for A1 ⊂ A2 ⊂ . . ., then ⋃iAi ∈M
(ii) if Bi ∈M for i = 1, 2, . . . , and for B1 ⊃ B2 ⊃ . . ., then ⋂iBi ∈M

Theorem 4.2.1 (Monotone class theorem [73]). Let Ω be a set and let A be
an algebra of subsets of Ω such that Ω is in A and the empty set ∅ is also in
A. Then there exists a smallest monotone class M that contains A. That
class,M, is also the smallest sigma-algebra that contains A.

With the Monotone class theorem we can now prove the following result.

Proposition 4.2.2. Let Y (u) : Ω → Y+ be a mechanism and let ε > 0.
Suppose that

P(π(Y (u)) ∈ A) ≤ eεP(π(Y (u′)) ∈ A) (4.4)

for all finite dimensional projections π, u ∼ u′ in U+, and all Borel sets A
in Rk

+ where π maps into Rk
+. Then the mechanism Y (u) is ε differentially

private.

Proof: By assumption, we know that (4.2) holds for all sets B in the algebra
A(Y+) which generates σ(Y+). It can be easily verified that the collection
of all sets B ⊆ Y+ satisfying (4.2) forms a monotone class M, [73]. As
A(Y+) ⊆ M, the Monotone Class Theorem 4.2.1 implies that σ(Y+) ⊆ M;
equivalently, (4.2) holds for all B in σ(Y+) as claimed.

The result of Proposition 4.2.2 for real-valued signals was established, using
different arguments, in Lemma 2 of [72]. The outline proof given above closely
follows the argument used in Theorem 3 of [57] and is included here in the
interest of completeness.

Recall from Chapter 2, that the l1-sensitivity of the system Σ (4.1) with respect
to the relation ∼ is defined by

∆1(Σ) := sup
u∼u′
‖y(u) − y(u′)‖1.
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4.2. Differential privacy and positive linear systems

The following result from [72] and Theorem 2.4.1 in Chapter 2 applies to
the design of the Laplace mechanism where the system Σ is not necessarily
nonnegative.

Consider the system Σ and let ε > 0 be given. Let L : Ω → R be a Laplace
random variable with mean value 0 and scale parameter b = ∆1(Σ)

ε
. Then Y (u),

defined by
Y

(u)
t,i (ω) = y

(u)
t,i + L(ω), ω ∈ Ω (4.5)

is ε-differentially private.

The equation (4.5) describes how to construct a differentially private mecha-
nism for a general linear system of the form (4.1) by adding the output of a
Laplace random variable to each component of the output y(t) of the system.
If we use this result for a positive system, the mechanism can generate nega-
tive values. We shall now show how to use post-processing and restriction, as
discussed in Chapter 3, to construct nonnegative mechanisms for a positive
system (4.1).

Post-processing

We first outline how post-processing to achieve positivity can be extended to
systems. This relies on the following more general form of Proposition 3.3.1,
which can be proven in the same way.

Proposition 4.2.3. Let Y (u) : Ω → E be an ε differentially private mecha-
nism where E is a measurable space, and let φ : E → G be a measurable map
into another measurable space G. Then φ ◦ Y (u) is an ε differentially private
mechanism.

For a sequence y in Y , we define T : Y → Y+ by applying τ given by (3.6) to
each component of the sequence y ∈ Y . Formally:

[T (y)]t,i = τ(yt,i) =

yt,i if yt,i ≥ 0

0 otherwise.
(4.6)

for y ∈ Y , 1 ≤ i ≤ p, t ≥ 0.

Our next result shows formally that if Y (u) : Ω→ Y is ε differentially private
then T (Y (u)) is a positive ε differentially private mechanism. Rather than
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4.2. Differential privacy and positive linear systems

formally verifying the measurability of the infinite dimensional mapping T ,
we will work with the finite dimensional projections which are measurable. To
simplify notation in the following proof, we let x+ = τ(x).

Proposition 4.2.4. Let Y (u) : Ω → Y be an ε differentially private mech-
anism. Then Ŷ (u) : Ω → Y+ defined by Ŷ (u) = T

(
Y (u)

)
, is ε differentially

private.

Proof: Y (u) is ε differentially private. Hence if k is any positive integer, π is
a k-dimensional projection, and u ∼ u′,

P
(
π(Y (u)) ∈ A

)
≤ eεP

(
π(Y (u′)) ∈ A

)
for all Borel sets A ⊆ Rk.

Tk : Rk → Rk
+ is defined by Tk(y1, y2, . . . , yk) = (y+

1 , y
+
2 , . . . , y

+
k ) is measurable.

Proposition 4.2.3 now implies that

P
(
Tk(π(Y (u))) ∈ B

)
≤ eεP

(
Tk(π(Y (u′))) ∈ B

)
(4.7)

for all u ∼ u′ and Borel sets B ⊆ Rk
+.

Now we show that π ◦ T = Tk ◦ π. To see this note

π ◦ T (y) = π(y+
1 , y

+
2 , y

+
3 , . . .)

= (y+
t1,i1 , y

+
t2,i2 , . . . , y

+
tk,ik

)

= Tk(yt1,i1 , yt2,i2 , . . . , ytk,ik)

Hence π(Ŷ (u)) = π(T (Y (u))) = Tk(π(Y (u))). It follows from (4.7) that

P(π(Ŷ (u)) ∈ B) ≤ eεP(π(Ŷ (u′)) ∈ B)

for all u ∼ u′ and Borel sets B ⊆ Rk
+. Therefore by Proposition 4.2.2 the

mechanism Ŷ (u) is ε differentially private.

Restricted Mechanisms

To define a restricted Laplace mechanism Ŷ (u) : Ω → Y+ we set Ŷ (u)
t,i =

yt,i + Lyt,i , where Lyt,i is the lower bounded Laplace random variable whose
output is restricted to [−yt,i,∞), with scale parameter b = ∆1(Σ)

ε
. The next

result is the key fact needed to establish conditions for Ŷ (u) to be differentially
private. To simplify notation in the following result, let ∆1(Σ) = ∆.
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4.2. Differential privacy and positive linear systems

Proposition 4.2.5. For a positive integer k let π : Y → Rk be a finite-
dimensional projection and let u ∼ u′ in U be given. The restricted Laplace
mechanism, Ŷ (u) with scale parameter b = ∆

ε
, satisfies

P(π(Ŷ (u)) ∈ A) ≥ e−2εP(π(Ŷ (u′)) ∈ A)

for all Borel sets A ⊆ Rk
+.

Proof: By definition

P(π(Ŷ (u)) ∈ A) =
∫
A e
−‖ξ−π(y(u))‖1 ε∆dξ∫

Rk+
e−‖ξ−π(y(u))‖1 ε∆dξ

First we consider
∫
A e
−‖ξ−π(y(u))‖1 ε∆dξ:∫

A
e−‖ξ−π(y(u))‖1 ε∆dξ =

∫
A
e−‖ξ−π(y(u′))+π(y(u′))−π(y(u))‖1 ε∆dξ

≥
∫
A
e−(‖ξ−π(y(u′))‖1+‖π(y(u′))−π(y(u))‖1) ε∆dξ

≥
∫
A
e−‖ξ−π(y(u′))‖1 ε∆−εdξ (4.8)

= e−ε
∫
A
e−‖ξ−π(y(u′))‖1 ε∆dξ

(4.8) follows from noting that ‖π(y(u′)) − π(y(u))‖1 ≤ ‖y(u) − y(u′)‖1 ≤ ∆ by
the definition of the l1 sensitivity ∆. Similarly we can show that:∫

Rq+
e−‖ξ−π(y(u′))‖1 ε∆dξ =

∫
Rq+
e−‖ξ−π(y(u))+π(y(u))−π(y(u′))‖1 ε∆dξ

≥ e−ε
∫
Rq+
e−‖ξ−π(y(u))‖1 ε∆dξ

=⇒ 1∫
Rq+
e−‖ξ−π(y(u))‖1 ε∆dξ

≥ e−ε∫
Rq+
e−‖ξ−π(y(u′))‖1 ε∆dξ

It now follows immediately that

P(π(Ŷ (u)) ∈ A) ≥ e−2ε 1∫
Rq+
e−‖ξ−π(y(u′))‖1 ε∆dξ

∫
A
e−‖x−π(y(u′))‖1 ε∆dξ

= e−2εP(π(Ŷ (u′)) ∈ A)

as claimed.

The next result follows immediately by combining the results of Propositions
4.2.5 and 4.2.2.
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4.3. Sensitivity for positive Luenberger observers

Corollary 4.2.6. The restricted Laplace mechanism Ŷ (u) : Ω → Y+, with
scale parameter b = ∆1(Σ)

ε
is 2ε differentially private.

The key point of this section has been to show that the methods of the last
chapter can help build mechanisms for positive systems that take only non-
negative values. For the rest of the chapter, we will be interested in the l1
sensitivity of a positive linear observer.

4.3 Sensitivity for positive Luenberger
observers

From our results in Chapter 3, and in the above section, we can see that the
sensitivity is a crucial parameter in forming differentially private mechanisms.
Our work is motivated by the design of differentially private observers for LTI
systems in discrete time. For the remainder of this chapter, we concentrate
on estimating the l1 sensitivity for a positive linear observer and then aim to
minimise the sensitivity bound.

We briefly recall some notation and terminology from Chapter 2 concerning
LTI systems, Luenberger observers, adjacency relations, and differential pri-
vacy. We consider systems Σ of the form:

x(t+ 1) = Ax(t)

y(t) = Cx(t) (4.9)

where A ∈ Rn×n, C ∈ Rp×n. The design of a Luenberger observer for this
system requires a matrix L ∈ Rn×p such that the solution x̂(·) of the system
Σ0 given by

x̂(t+ 1) = (A− LC)x̂(t) + Ly(t) (4.10)

satisfies ‖x̂(t)− x(t)‖ → 0 as t→∞ where x is the solution of (4.9).

Let K > 0 and 0 ≤ α < 1 be given. We will work with the definition of
adjacency in (2.24). Two sequences/signals y, y′ are adjacent, written y ∼ y′

if

∃ t0 ≥ 0 s.t.

y(t) = y′(t), t < t0

‖y(t)− y′(t)‖1 ≤ Kαt−t0 , t ≥ t0
(4.11)
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As our aim is to design a differentially private positive observer for positive
linear system, as stated in Chapter 2, we need to calculate the sensitivity of
the observer (4.10). From Definition 2.4.1, the l1 sensitivity ∆1(Σ0) of the
observer system Σ0 is given by

∆1(Σ0) := sup
y∼y′
‖Σ0(y)− Σ0(y′)‖1. (4.12)

It is possible to define sensitivity with respect to other norms; in particular the
l2 norm is used in the definition of Gaussian mechanisms for relaxed differential
privacy [72], this will be looked into in detail in Chapter 6.

To form an ε differentially private mechanism, we will add iid noise generated
from the Laplace distribution with parameter b = ∆(Σ0)

ε
to each component

of each x̂(t) [72]. For this reason we are interested in characterising the l1
sensitivity of the observer (4.10) mapping y to x̂. This naturally motivates
the problem of determining bounds for the l1 sensitivity of (4.10).

Proposition 4.3.1. Let A ∈ Rn×n, C ∈ Rp×n, L ∈ Rn×p be given and suppose
that ‖A − LC‖1 < 1. Consider the Luenberger observer, Σ0 given by (4.10).
Then for the adjacency relation defined by (4.11), the l1 sensitivity of Σ0 (as
given in (4.12)) is bounded by

∆1(Σ0) ≤
(

K

1− α

)( ‖L‖1

1− ‖A− LC‖1

)
. (4.13)

Proof: Let two adjacent sequences y ∼ y′ be given. The map from y to x̂
corresponding to (4.10), with x̂0 as the common initial state, is described by

x̂(t+ 1) = (A− LC)t+1x̂0 +
t∑
i=0

(A− LC)t−iLy(i) (4.14)

Write x̂′ for the observer output corresponding to y′ so that

x̂′(t+ 1) = (A− LC)t+1x̂0 +
t∑
i=0

(A− LC)t−iLy′(i). (4.15)

As y ∼ y′, it follows that x̂′(t) = x̂(t) for t ≤ t0. Moreover, for t > t0, we have

x̂(t)− x̂′(t) =
t−1∑
i=t0

(A− LC)t−i−1L(y(i)− y′(i)). (4.16)
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We need to bound ‖x̂(t)− x̂′(t)‖1; for t > t0, using the triangle inequality and
the submultiplicative property of the induced matrix norm we have:

‖x̂(t)− x̂′(t)‖ = ‖
t−1∑
i=t0

(A− LC)t−i−1L(y(i)− y′(i))‖1

≤
t−1∑
i=t0
‖(A− LC)t−i−1L(y(i)− y′(i))‖1

≤
t−1∑
i=t0
‖(A− LC)t−i−1‖1‖L‖1‖y(i)− y(i)‖1

≤
t−1∑
i=t0
‖(A− LC)t−i−1‖1‖L‖1Kα

i−t0

= ‖L‖1K
t−1∑
i=t0
‖(A− LC)t−i−1‖1α

i−t0

≤ ‖L‖1K
t−1∑
i=t0
‖(A− LC)‖t−i−1

1 αi−t0 .

The l1 norm of x̂(t) − x̂′(t) will be given by the sum ∑∞
t=t0+1 ‖x̂(t) − x̂′(t)‖1

which, in the light of the above calculation and remarks, will be bounded
above by

‖L‖1K
∞∑
t=t0

t∑
i=t0
‖(A− LC)‖t−i1 αi−t0 . (4.17)

The infinite series above can be rearranged as follows (keeping in mind that
the series is absolutely convergent as α < 1, ‖A− LC‖1 < 1):

∞∑
t=0

t∑
i=0
‖(A− LC)‖t−i1 αi =

∞∑
i=0

αi
( ∞∑
t=i
‖(A− LC)‖t−i1

)

=
∞∑
i=0

αi
( ∞∑
t=0
‖(A− LC)‖t1

)

=
∞∑
i=0

αi
(

1
1− ‖A− LC‖1

)

=
( 1

1− α

)( 1
1− ‖A− LC‖1

)
.

Putting everything together, we see that the l1 norm of x̂ − x̂′ is bounded
above by (

K

1− α

)( ‖L‖1

1− ‖A− LC‖1

)
which completes the proof as y ∼ y′ were arbitrary.
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4.3.1 Tightness of upper bound
A natural question is whether or not the upper bound on the sensitivity of
(4.10) given in Proposition 4.3.1 is in fact tight. The following example de-
scribes a situation in which the upper bound is attained.

Example 4.3.1. Consider the matrices

A =
 1 1/2

1/4 3/4

 , C =
(

1/3 1/3
)
, L =

 1
1/2

 .
Direct calculation shows that

A− LC =
 2/3 1/6

1/12 7/12

 .
Thus, ‖A− LC‖1 = 3/4 < 1. Moreover,

(A− LC)L = (3/4)L = ‖A− LC‖1L

so that (A− LC)iL = ‖A− LC‖i1L for all i ≥ 1. Using this, we can see that
for a pair of adjacent sequences y, y′ where y(t), y′(t) are in R for all t and
satisfy (4.11) with equality replacing the inequality (as we are dealing with
scalars, this is not difficult to achieve), the corresponding observer states x̂, x̂′

satisfy

‖x̂− x̂′‖1 =
(

K

1− α

)( ‖L‖1

1− ‖A− LC‖1

)
so that the bound of Proposition 4.3.1 is tight for this particular choice of
A,C, L.

Comment The point of the last example is to show that it is possible for the
upper bound for the l1 sensitivity of the system (4.10) given in Proposition
4.3.1 to be exact for some choices of A,C, L. It should be noted that the
matrices A,C, L and A− LC above are all nonnegative.

4.3.2 Relation to bounds given in [67]
In [67], the following nonlinear system was considered,

x(t+ 1) = f(x(t)) (4.18)

y(t+ 1) = g(x(t)), (4.19)
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and a method of constructing a ε differentially private observer using Laplace
noise was described. In particular, the result of Corollary 2 in [67], gives an
upper bound of the l1 sensitivity of the system, making use of results from
contraction analysis for nonlinear systems. We will now translate the upper
bound in [67] to compare it with our upper bound, (4.13) which we will denote
by M .

Consider the linear observer (4.10), let η > 0 be give and β > 0 satisfy the
following:

‖A− LC‖1 ≤ β, γ = max{α + t‖L‖1

η
, β}.

Corollary 2 of [67] shows that the l1 sensitivity of (4.10) is bounded by

M1 = η

(
1

1− γ −
1

1− α

)
(4.20)

Manipulation of inequalities shows that

M1 ≥
(
β − α
γ − α

)(
K

1− α

)( ‖L‖1

1− ‖A− LC‖1

)
.

Thus M1 ≥ β−α
γ−αM and in the case where β = γ, the upper bound M1 is at

best as tight as our bound (4.13). Further, it is important to note that we
have shown that the bound (4.13) is attained for some systems.

4.4 Positive observers
We now specialise to the question of positive observer design [5, 52, 10] and
consider the problem of minimising the bound for l1 sensitivity given in Propo-
sition 4.3.1 when the observer is required to be positive. Recall that the system
(4.9) is positive if and only if the matrices A, C are nonnegative and that the
positive observer design problem [5] requires the construction of a matrix L
such that A − LC ≥ 0, LC ≥ 0 and ρ(A − LC) < 1 (see Theorem 2.3.4 in
Chapter 2).

Before stating the optimisation problem we will consider for the remainder
of the chapter, recall that K and α are fixed parameters determined by the
definition of adjacency (4.11). Further, the bound given by (4.13) is only valid
for matrices L with ‖A − LC‖1 < 1; otherwise, it is not guaranteed that the
observer has finite l1 sensitivity. With this in mind, we propose the following
problem.
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Problem 4.4.1. Given A ∈ Rn×n
+ , C ∈ Rp×n

+ , minimise

Φ(L) := ‖L‖1

1− ‖A− LC‖1
(4.21)

subject to the constraints:

LC ≥ 0, A− LC ≥ 0, ‖A− LC‖1 < 1 (4.22)

If Φ∗ is an optimal value for Problem 4.4.1, the minimal value of (4.13) is
given by

K

1− αΦ∗.

Comment: While the constraints in (4.22) are convex, unfortunately the
function Φ in general is not convex; hence we cannot directly apply results
and algorithms on convex optimisation to our problem. The discussion that
follows Problem 4.4.2 below about the single output case will show clearly
that F is not in general a convex function.

We next characterise the feasibility and solution of Problem 4.4.1 for systems
with a single output variable (p = 1). In this case (where C ≥ 0) the constraint
LC ≥ 0 can be replaced by L ≥ 0 [5].

4.4.1 The single-output case: feasibility
If the measured output y is 1-dimensional, so that C ∈ R1×n, we will write
cT for C where c ∈ Rn is a column vector and L = l where l ∈ Rn. In this
case, testing the feasibility of Problem 4.4.1 (the existence of a positive linear
observer satisfying ‖A− lcT‖1 < 1) is straightforward.

For a vector c ∈ Rn
+ the support of c, supp(c) is given by supp(c) = {j : cj 6= 0}.

Proposition 4.4.1. Let A ∈ Rn×n
+ , c ∈ Rn

+, c 6= 0 be given. There exists
some l ∈ Rn

+ satisfying (4.22) if and only if

n∑
i=1

min
j∈supp(c)

aij
cj

> max
j∈supp(c)

1
cj

(
n∑
i=1

aij − 1
)
. (4.23)

Proof: If such an l exists then it follows from A−lcT ≥ 0 that licj ≤ aij for all
1 ≤ j ≤ n and hence li ≤ minj∈supp(c)

aij
cj
. It now follows from ‖A− lcT‖1 < 1
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that for all 1 ≤ j ≤ n

n∑
i=1

(aij − licj) < 1

⇒ cj
n∑
i=1

li >
n∑
i=1

aij − 1

⇒ cj
n∑
i=1

min
j∈supp(c)

aij
cj

>
n∑
i=1

aij − 1

and (4.23) follows immediately.

Conversely if (4.23) holds, then it is simple to check that the vector l defined
by setting li = minj∈supp(c)

aij
cj

will satisfy (4.22).

4.4.2 The single output case: optimality
Continuing with the case where p = 1, the induced l1 norm of L in Rn×1 is
simply the usual l1 norm of the associated column vector l, so ‖L‖1 = ∑n

i=1 li.
We next note that in this case, the function Φ in (4.21) can be written in a
simpler form.

Lemma 4.4.2. Given A ∈ Rn×n
+ , c, l ∈ Rn, we can write:

Φ(l) = max
j

∑n
i=1 li

(1−∑n
i=1 aij) + cj

∑n
i=1 li

.

Proof: This is a simple calculation as:

Φ(l) = ‖l‖1

1− ‖A− lcT‖1

=
∑n
i=1 li

1−maxj (∑n
i=1(aij − licj)

=
∑n
i=1 li

minj (1−∑n
i=1(aij − licj))

= max
j

∑n
i=1 li

(1−∑n
i=1 aij) + cj

∑n
i=1 li

as claimed.

Taken together, Lemma 4.4.2 and Proposition 4.4.1 show that for the single
output case, minimising the l1 sensitivity bound (4.13) reduces to the following
uni-variate constrained optimisation problem.
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Problem 4.4.2. Minimise

φ(x) = max
j

x

(1−∑n
i=1 aij) + cjx

subject to

x ≥ 0 & max
j∈supp(c)

1
cj

(
n∑
i=1

aij − 1
)
< x ≤

n∑
i=1

min
j∈supp(c)

aij
cj

(4.24)

Note that as one of the constraints is strict, our optimal solution may be an
infimum rather than a minimum in some circumstances.

In the following, we will use F to denote the feasibility region defined by
(4.24).

If we define
φj(x) = x

(1−∑n
i=1 aij) + cjx

, 1 ≤ j ≤ n,

then the following facts can be easily verified by direct computation.

• If ∑n
i=1 aij < 1 then: φj is a strictly increasing concave function on[

0,∑n
i=1 minj aijcj

]
and φj(0) = 0;

• If ∑n
i=1 aij > 1 then: φj is a strictly decreasing convex function on(

1
cj

(∑n
i=1 aij − 1) ,∑n

i=1 minj aijcj
]
and φj(x)→∞ as x tends to

1
cj

(∑n
i=1 aij − 1) from the right.

• If ∑n
i=1 aij = 1 then φj(x) = 1

cj
.

The discussion above suggests the following simple graphical scheme for solv-
ing Problem 4.4.2.

1. Determine the feasibility region (4.24) from A and c.

2. Plot each φj in this region and mark off the graph of φ = max φj.

3. Find the point x∗ where φ attains its minimum in (4.24). This value of
f will be the minimum of the l1 sensitivity bound (4.13) for the positive
observer problem.

4. A vector l satisfying (4.23) with ∑n
i=1 li = x∗ will be an optimal positive

observer. It is not difficult to see that such an l will always exist.
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Before describing the optimal solution in detail for 2-dimensional systems, we
note that there are essentially 3 cases to consider in the above scheme that
concern weather φj are concave or convex.

All φj are concave

If ∑n
i=1 aij < 1 for all j, then as every φj is strictly increasing, it is not hard to

see that the optimal point for Problem 4.4.2 occurs at x∗ = 0 corresponding
to l = 0 and ∆1(Σ0) = 0. This is not surprising as in this case the matrix A
has l1 induced norm less than 1. Note however that while l = 0 may minimise
sensitivity, it will deliver a sub-optimal rate of convergence in most cases.

All φj convex

If ∑n
i=1 aij > 1 for all j, then as every φj is strictly decreasing, and we can

see that the optimal point for Problem 4.4.2 occurs at the upper limit of the
feasibility region. This means x∗ = ∑n

i=1 minj∈supp(c)
aij
cj
, corresponding to the

observer gain defined by li = minj∈supp(c)
aij
cj

for 1 ≤ i ≤ n. This is also true
if some of the row sums are equal to 1. In this case, the gain matrix l that
minimises f is also optimal with respect to l1 observer convergence.

Mixed case

For this case, we define the following two sets J+ = {j | ∑n
i=1 aij > 1} and

J− = {j | ∑n
i=1 aij < 1}, which are both non-empty. We determine all points

of intersection x that lie in feasible region F , where φj(x) = φk(x) for j ∈ J+,
k ∈ J−. This amounts to solving a finite set of quadratic equations. If no
points of intersection are in F , then the optimal point, x∗ will again occur
at the upper limit of F . Otherwise, the optimal point x∗ will be one of the
points of intersection.

4.4.3 The 2-d case
To illustrate some of the points made above, we now describe how to find an
optimal observer for a 2-d positive linear system.

Let

A =
a11 a12

a21 a22

 , cT =
(
c1 c2

)
, l =

l1
l2

 .
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Since A− lcT ≥ 0, we have

0 ≤ l1 ≤ min
{
a11

c1
,
a12

c2

}
, 0 ≤ l2 ≤ min

{
a21

c1
,
a22

c2

}

If ‖A‖1 < 1, then we minimise F (l), by setting l =
0

0

. In the case where

‖A‖1 ≤ 1 and one column sum is equal to 1, the infimum of Φ in F is given by
1
cj

where j is the index of the column summing to 1. This can be approximated
to any desired degree of accuracy by choosing l > 0 sufficiently small.

If ‖A‖1 > 1 and ∑2
i=1 aij > 1, for j = 1, 2, then the optimal observer gain is

given by

l1 = min
{
a11

c1
,
a12

c2

}
, l2 = min

{
a21

c1
,
a22

c2

}
. (4.25)

If ‖A‖1 > 1 and ∑2
i=1 aij < 1, for some j ∈ {1, 2}, then let x = ‖L‖1 and write

αj = 1−∑2
i=1 aij for j = 1, 2.

We need to find the intersection of the two curves defined by φ1(x) = x
α1+c1x

and φ2(x) = x
α2+c2x . By setting

x

α1 + c1x
= x

α2 + c2x

we find that x = 0 or x = α2−α1
c1−c2 . If x lies outside of our feasible set F , then

the optimal value of l is again given by (4.25).

If x is within F then it corresponds to an optimal l and we need to choose l1
and l2 such that l1 ≤ min

{
a11
c1
, a12
c2

}
, l2 ≤ min

{
a21
c1
, a22
c2

}
and l1 + l2 = x. This

can be done by setting

l1 = min{ min
j∈supp(c)

aij
cj
, x}, l2 = max{0, x− l1}.

The discussion of the previous paragraphs can readily be codified as an algo-
rithm to find an optimal l for Problem 4.4.1 for 2-dimensional positive systems.

Example 4.4.1. Consider the system defined by

A =
 1/2 2/3

1/3 1/2

 , cT =
(

2 3
)
.
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Figure 4.1: This graph shows the intersection of the curves f1(x) and f2(x),
is within the range for ‖L‖1 ∈ ( 1

18 ,
7
18 ], where ∑2

i=1 ai1 < 1 and ∑2
i=1 ai2 > 1.

It is a straightforward computation to see that F = ( 1
18 ,

7
18 ]. In this case, we

have one column sum greater than 1 and one less than 1 so we compute the
intersection point

x = 7/6− 9/6
2− 3 = 1

3 .

As x ∈ F , we can now compute the optimal l by setting l1 = min{2/9, 1/3} =
2/9 and l2 = max{0, 1/3 − 2/9} = 1/9 giving an optimal observer gain l =
(2/9 1/3)T . The curves corresponding to f1, f2 for this example are shown in
Figure 4.1

4.4.3.1 n-dimensional l

Once we have solved for the optimal value x∗ in Problem 4.4.2, to construct
an optimal l for an n-dimensional system is a little more involved. However,
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Figure 4.2: This graph shows the intersection of the curves f1(x) and f2(x),
is outside the range for ‖L‖1 ∈ (1

6 ,
5
6 ], where ∑2

i=1 ai1 < 1 and ∑2
i=1 ai2 > 1

it is not too difficult to see that an algorithm for computing an optimal gain
matrix can be defined using the following steps.

1. First set r := x∗. Remember that x∗ defines the optimal value of ‖l‖1 so
we are trying to construct an l satisfying the constraints with this norm.

2. Let l1 = min{minj∈supp(c)
a1j
cj
, r}.

3. For 2 ≤ i ≤ n, set r := r−li−1. If r > 0, we then set li = min{minj∈supp(c)
aij
cj
, r}.

4. If for some i, 2 ≤ i ≤ n, r := r− li−1 = 0, then set lk = 0 for i ≤ k ≤ n.

5. It is easy to see that l will satisfy the constraints of a positive observer
and that ‖l‖1 = x∗.
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4.5. Conclusions

Figure 4.3: This graph shows the curves f1(x) and f2(x), where ∑2
i=1 ai1 > 1

and ∑2
i=1 ai2 > 1.

4.5 Conclusions
In this chapter, we have seen how to use the methods of post-processing and
restriction developed in Chapter 3 to guarantee positivity when making a
positive system and observer ε differentially private using the Laplace distri-
bution. We then used these methods to build differentially private positive
observers to guarantee positivity. Our first contribution was to calculate an
upper bound for the l1 sensitivity a linear Luenberger observer in Proposition
4.3.1. Our later results then describe how to minimise this bound for a single
output linear system. Our approach here has been largely algorithmic. In
the next chapter, we present a collection of more theoretical results on this
problem.
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CHAPTER 5
Further Aspects of l1

Sensitivity: Compartmental
Systems, Trade-offs, and

Coordinate-Transformations

In this chapter, we derive explicit analytic expressions for positive observers that
minimise the l1 sensitivity bound for single-output and classes of multiple-output
compartmental systems. We also consider the trade-off between the l1 sensitivity
bound of a positive linear observer and the rate at which it converges to the true
system state. Specifically, for single-output systems, we derive an explicit expres-
sion for the minimum possible sensitivity bound for a given convergence rate, as
quantified by the induced matrix norm of the observer. Some implications of this
result for globally optimal observers are also derived. Finally, we make some ob-
servations on sensitivity for more general classes of positive observers constructed
using coordinate transformations.

5.1 Introduction
In Chapter 4, one of our main results gave an upper bound for the l1 sensitivity
of a Luenberger observer for a linear system. We also considered the problem
of minimising this bound for a positive linear observer. This problem is mo-
tivated by the natural wish to minimise the amount of noise needed to make
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the observer differentially private in order to estimate the state as accurately
as possible. We next present some further results on this problem as well as
considering some new optimisation problems associated with it.

In this chapter, we present results for optimising the l1 sensitivity for a com-
partmental system for the single output and multiple output cases. While we
described numerical approaches in the last chapter, here our approach is more
theoretical. Then, we consider the trade off between obtaining the lowest pos-
sible value for the sensitivity bound and the speed of convergence to the true
state. With this in mind, the problem of minimising the l1 sensitivity bound
for a single output system where the norm of the observer system matrix is
specified is considered. Lastly, the bound for l1 sensitivity is extended to more
general observers, which were introduced in [10] and we show that it is possi-
ble to improve on the optimal sensitivity for classical observers by considering
this more general class.

5.1.1 Background
Before presenting our results for this chapter, we first fix our notation and
recall the main concepts and results needed. We will consider the same system
as in previous chapters; a positive LTI system:

x(t+ 1) = Ax(t) (5.1)

y(t) = Cx(t),

where A ∈ Rn×n
+ , C ∈ Rp×n

+ .

Recall that a classical Luenberger observer for (5.1) is given by

x̂(t+ 1) = (A− LC)x̂(t) + Ly(t) (5.2)

where the matrix L is designed such that the solution x̂(t) of (5.2) satisfies
limt→∞ ‖x̂(t)− x(t)‖1 = 0 for any initial values x(0), x̂(0).

Several of our main results in this chapter concern compartmental systems
which arise in applications such as hydrology and population dynamics [62,
105, 104]. We only consider discrete time systems here.

Definition 5.1.1. A matrix A in Rn×n
+ is compartmental if ∑n

i=1 aij ≤ 1 for
all 1 ≤ j ≤ n. If the system matrix A in (5.1) is compartmental, then (5.1) is
a compartmental system.
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Throughout this chapter, we work with the usual l1 norm on Rn and the
corresponding induced norm for matrices as defined in Chapter 2.

For a vector c ∈ Rn
+ the support of c, supp(c) is given by supp(c) = {j : cj 6= 0}.

We shall make use of the following characterisation of positive observers from
[7], previously stated in Chapter 2.

Proposition 5.1.1. Let A ∈ Rn×n
+ , C ∈ Rp×n

+ be given. The system (5.2) is
a positive observer for the positive system (5.1) if and only if the following
conditions are satisfied.

• LC ≥ 0;

• A− LC ≥ 0;

• A− LC is Schur-stable, ρ(A− LC) < 1.

When calculating the upper bound for sensitivity of the more general observers
from [11], we make use of the same definition of similarity of signals used in
Chapter 4.

Definition 5.1.2. Let K > 0, 0 < α < 1 be given. Two sequences y, y′ from
Y are similar, y ∼ y′ if there is some t0 ≥ 0 with

y(t) = y′(t) 0 ≤ t < t0 (5.3)

‖y(t)− y′(t)‖1 ≤ Kαt−t0 t ≥ t0.

In Chapter 4, the following bound for the l1 (as defined in Chapter 2, Definition
2.4.1) sensitivity of a linear observer was derived.

Proposition 5.1.2. Consider the observer (5.2) with ‖A−LC‖1 < 1 and let
K > 0, 0 < α < 1 be given. The sensitivity ∆ of (5.2) with respect to the
similarity relation (5.3) satisfies the following bound:

∆ ≤ K

1− α

(
‖L‖1

1− ‖A− LC‖1
.

)
(5.4)

In order to minimise the amount of noise added to the observer state x̂, we
want to find an observer gain L that minimises the upper bound in Proposition
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5.1.2. As K and α are fixed parameters, we shall be interested in constructing
observer gain matrices, L, that minimise the function

Φ(L) := ‖L‖1

1− ‖A− LC‖1
, (5.5)

for L satisfying 0 ≤ LC ≤ A, ‖A − LC‖1 < 1. While Proposition 5.1.1
has the requirement ρ(A − LC) < 1, we need ‖A − LC‖1 < 1 in order for
the observer to be sure to have finite sensitivity. After deriving a number
of results related to this problem, we will consider bounds for more general
observers, introduced in [10], in Section 5.4.

5.2 Compartmental Systems
In this section we consider the case where (5.1) is a compartmental system
in the sense of Definition 5.1.1. Many fundamental results on the design of
positive observers for compartmental systems, in continuous and discrete-time,
were presented in [106]. Our interest is in minimising the function Φ (5.5) over
observer gain matrices L that define a positive observer for the system (5.1).

Note that if ‖A‖1 < 1, we can choose L = 0 and then Φ(L) = 0 so this case is
trivial for the problem we are studying here. For this reason, we assume that
the compartmental matrix A has ‖A‖1 = 1.

5.2.1 Single output systems: p = 1
We first consider the rank one case where p = 1, corresponding to a single
output system.

Given a compartmental matrix A ∈ Rn×n
+ with ‖A‖1 = 1 and a column vector

c ∈ Rn
+, we say that (A, c) is a feasible pair if there exists some nonnegative

l ∈ Rn
+ with ‖A−lcT‖1 < 1, A−lcT ≥ 0. Note that when p = 1, the conditions

lcT ≥ 0, l ≥ 0 are equivalent [7]. We denote the set of all such l by FA,c. We
first characterise feasible pairs for the compartmental case.

Lemma 5.2.1. Let a compartmental matrix A ∈ Rn×n
+ with ‖A‖1 = 1, and

c ∈ Rn
+ be given. Let J := {j : ∑n

i=1 aij = 1}. Then (A, c) is a feasible pair if
and only if the following conditions are satisfied.

(i) J ⊆ supp(c).
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(ii) There exists some i with 1 ≤ i ≤ n such that aij > 0 for all j ∈ supp(c).

Proof: First assume that (i) and (ii) hold. Choose some k such that akj > 0
for all j ∈ supp(c) and set x = min{akj

cj
: j ∈ supp(c)}. Clearly, x > 0. Now

define l ∈ Rn
+ by

li =

x i = k

0 i 6= k.
(5.6)

It follows immediately that for i 6= k, aij− licj = aij ≥ 0. Moreover, for i = k,
akj − lkcj = akj ≥ 0 for j /∈ supp(c). For j ∈ supp(c), the definition of x
implies that

akj − lkcj = akj − xcj ≥ 0.

It follows that A − lcT ≥ 0. Furthermore, x > 0 and J ⊆ supp(c); these
conditions imply that for j ∈ J ,

n∑
i=1

(aij − licj) = (
n∑
i=1

aij)− xcj = 1− xcj < 1.

From the definition of J , we conclude that ‖A − lcT‖1 < 1 and hence (A, c)
is a feasible pair.

Conversely, assume that (A, c) is a feasible pair and let l ≥ 0 be such that
A − lcT ≥ 0 and ‖A − lcT‖1 < 1. As ‖A‖1 = 1, it follows that J is non-
empty and that l 6= 0. Let j ∈ J be given. Then ∑n

i=1 aij = 1 and, as
‖A − lcT‖1 < 1, we must have ∑n

i=1(aij − licj) < 1. This implies that cj > 0
and hence j ∈ supp(c). This proves (i). As l 6= 0, we can choose some i
with li > 0. Then as aij − licj ≥ 0 for all i, j we must have aij > 0 for all
j ∈ supp(c). This proves (ii) and completes the proof of the Lemma.

When p = 1, the gain matrix L is simply a column vector l ∈ Rn
+; hence, in

the remainder of this subsection (where p = 1) we alter our notation slightly
and consider the function defined on FA,c:

Φ(l) = ‖l‖1

1− ‖A− lcT‖1
. (5.7)

In Chapter 4, a numerical procedure for computing the minimum value of Φ
for l ∈ FA,c was described for general A. In our next result, we give an explicit
analytic characterisation of this minimum value for compartmental A.
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Theorem 5.2.2. Let a compartmental matrix A ∈ Rn×n
+ with ‖A‖1 = 1, and

c ∈ Rn
+ be given such that the set FA,c is non-empty. Let J := {j : ∑n

i=1 aij =
1}. There exists l̂ ∈ FA,c such that

Φ(l) ≥ Φ(l̂) = 1
minj∈J cj

. (5.8)

Proof: We first note that for any l ∈ FA,c,

‖A− lcT‖1 = max
1≤j≤n

n∑
i=1

aij − licj

= max
1≤j≤n

(
n∑
i=1

aij − ‖l‖1cj)

≥ max
j∈J

(
n∑
i=1

aij − ‖l‖1cj)

= 1− ‖l‖1 min
j∈J

cj.

This implies that 1− ‖A− lcT‖1 ≤ ‖l‖1 minj∈J cj and hence that

Φ(l) ≥ 1
minj∈J cj

.

Thus to complete the proof, we need to show that there exists some l̂ in FA,c
with Φ(l̂) = 1

minj∈J cj .

Denote by J c the set {1, . . . , n} \ J and, for each k ∈ J c, let αk = ∑n
i=1 aik

denote the corresponding column sum. Let j0 be any index such that cj0 =
min{cj : j ∈ J } and let

M = min
{

1− αk
cj0 − ck

: k ∈ J c, ck < cj0

}
.

Then as αk < 1 for all k ∈ J c, M > 0. By assumption, FA,c is non-empty.
Thus, by Lemma 5.2.1, J ⊆ supp(c) and we can choose some i0 such that
ai0j > 0 for all j ∈ supp(c). Define the vector l̂ ∈ Rn

+ by:

l̂i =

0 i 6= i0

min
(
{M} ∪ {ai0j

cj
: j ∈ supp(c)}

)
i = i0.

We note the following readily verifiable facts.

(i) l̂ ≥ 0; ‖l̂‖1 ≤M .
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(ii) aij − l̂icj ≥ 0 for all 1 ≤ i, j ≤ n.

(iii) ∑n
i=1(aij − l̂icj) < 1 for 1 ≤ j ≤ n. This follows from the facts that A is

compartmental, l̂ 6= 0, and J ⊆ supp(c).

For the final part of the proof, we will show that for l̂ constructed above,
‖A− l̂cT‖1 = 1

cj0
. First note that for any k ∈ J , by the choice of j0:

1− ‖l̂‖1cj0 ≥ 1− ‖l̂‖1ck.

Now consider k ∈ J c. Then αk < 1 so if ck ≥ cj0 ,

1− ‖l̂‖1cj0 > αk − ‖l̂‖1ck.

Finally, if k ∈ J c, and ck < cj0 ,

‖l̂‖1 ≤ M

=⇒ ‖l̂‖1 ≤
1− αk
cj0 − ck

=⇒ αk − ‖l̂‖1ck ≤ 1− ‖l̂‖1cj0 .

Putting the previous calculations together, we see that

‖A− l̂cT‖1 = max
1≤j≤n

n∑
i=1

aij − ‖l̂‖1cj

= 1− ‖l‖1cj0 .

It now follows immediately that

Φ(l̂) = 1
cj0

= 1
minj∈J cj

,

which completes the proof.

Remark: The preceding result implies that for a single-output compartmental
system, the minimum possible value of the sensitivity bound in Proposition
5.1.2 is

K

(1− α) minj∈J cj
.

It also provides a constructive way of obtaining the gain vector l̂ that minimises
the sensitivity. A major advantage of the direct, linear algebraic approach in
the above proof is that it gives insight into how this result may be extended to
the case where p ≥ 2, corresponding to multiple output systems. We address
this issue in the next subsection.
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5.2.2 Extension to multiple output systems (p ≥ 2)
For the general case of a system of the form (5.1) with the matrix C ∈ Rp×n

+ ,
p ≥ 2, the necessary and sufficient conditions for L ∈ Rn×p to define a positive
observer are given in Proposition 5.1.1. In order for the bound for l1 sensitivity
in Proposition 5.1.2 to be finite, we consider the following, more restrictive
set of conditions on L.

0 ≤ LC ≤ A; ‖A− LC‖1 < 1. (5.9)

Given a compartmental matrix A ∈ Rn×n
+ with ‖A‖1 = 1 and C ∈ Rp×n

+ , if
there exists some L satisfying (5.9), we say that (A,C) is a feasible pair and
denote the set of all such L by FA,C . We will be interested in minimising the
function Φ(L) given by (5.5) over L ∈ FA,C .

Lemma 5.2.1 was important for our construction of the optimal observer gain
vector l in Theorem 5.2.2. For this reason, we would like to generalise this
lemma to the multiple output case. It is tempting to conjecture the following
natural generalisation.

For 1 ≤ k ≤ p, let c(k) denote the kth row of C. As above, let J denote the
set {j : ∑n

i=1 aij = 1}. A natural conjecture generalising Lemma 5.2.1 is that
(A,C) is a feasible pair if and only if the following two conditions are satisfied.

(F1) J ⊆ ⋃pk=1 supp(c(k)).

(F2) For each k in {1, . . . , p}, there exists some ik such that aik,j > 0 for all
j ∈ supp(c(k)).

Unfortunately, this conjecture is not true as is shown by the following example.

Example 5.2.1. Consider the matrices:

A =


2/3 0 0
0 1/2 3/4

1/3 0 0

 , C =
 1 0 0

1 0 1

 .
Then clearly A is compartmental and ‖A‖ = 1. Moreover, (A,C) is feasible
as the matrix

L =


1/3 0
0 0
0 0
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clearly satisfies (5.9). However, while it is true that J ⊆ ∪pk=1supp(c(k)), there
is no ik satisfying condition (F2) for k = 2.

We will revisit the previous example after our next result which extends The-
orem 5.2.2 to multiple output compartmental systems satisfying conditions
(F1) and (F2) above.

Theorem 5.2.3. Let a compartmental A ∈ Rn×n
+ with ‖A‖1 = 1 and C ∈ Rp×n

+

with p ≥ 2 be given. Assume that the pair (A,C) satisfies conditions (F1),
(F2) above. Let J = {j : ∑n

i=1 aij = 1} and for 1 ≤ j ≤ n, let γj = ∑p
i=1 cij.

Then the pair (A,C) is feasible and moreover there exists L̂ ∈ FA,C such that
for all L in FA,C:

Φ(L) ≥ Φ(L̂) = 1
minj∈J γj

, (5.10)

where Φ is given by (5.5).

Proof: Let L ∈ FA,C be given. Then:

‖A− LC‖1 = max
1≤j≤n

n∑
i=1
|[A− LC]ij|

= max
1≤j≤n

n∑
i=1

[A− LC]ij

= max
1≤j≤n

(
n∑
i=1

aij −
n∑
i=1

[LC]ij
)

≥ max
j∈J

(
n∑
i=1

aij −
n∑
i=1

[LC]ij
)
. (5.11)

Here we have used that A− LC ≥ 0 in the second line. Now note that while
we are not assuming L ≥ 0 here, we do have C ≥ 0 and hence for 1 ≤ i, j ≤ n:

[LC]ij =
p∑

k=1
likckj

≤
p∑

k=1
|lik|ckj.
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It follows that for any j ∈ J :
n∑
i=1

[LC]ij ≤
n∑
i=1

p∑
k=1
|lik|ckj

=
p∑

k=1
(
n∑
i=1
|lik|)ckj

≤ ‖L‖1

p∑
k=1

ckj = ‖L‖1γj.

Combining this with (5.11), we see that

‖A− LC‖1 ≥ max
j∈J

(1−
n∑
i=1

[LC]ij) (5.12)

≥ max
j∈J

(1− ‖L‖1γj) (5.13)

= 1− ‖L‖1 min
j∈J

γj. (5.14)

It now follows immediately that for any L ∈ FA,C :

Φ(L) = ‖L‖1

1− ‖A− LC‖1
≥ 1

minj∈J γj
.

It remains for us to show that there exists some L̂ in FA,C such that Φ(L̂)
attains this lower bound.

To begin, write J c for the complement of J , J c = {1, . . . , n} \ J . Also, for
1 ≤ j ≤ n, let αj = ∑n

i=1 aij; thus αj < 1 for all j ∈ J c. It is easy to see that
by choosing x > 0 sufficiently small, we can ensure that

1− (min
j∈J

γj)x > αk − γkx, ∀k ∈ J c. (5.15)

Now, assumption (F2) implies that for 1 ≤ k ≤ p, there is some (not neces-
sarily unique) ik in {1, . . . n} such that aikj > 0 for all j with ckj > 0. We use
this fact to construct L̂.

First choose i1 such that c1j > 0 implies ai1j > 0. Then, for some x > 0 (to
be determined later) set l̂i11 = x, l̂s1 = 0 for s 6= i1. Repeat this, choosing ik
for k = 2, 3, . . . p and in each case setting l̂ikk = x and l̂sk = 0 otherwise. Note
that all of the ik selected need not necessarily be distinct. However, it can be
seen from the construction of L̂ that:

(i) each column of L̂ has exactly one non-zero entry which is equal to x;
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(ii) l̂sq > 0, cqj > 0 implies that asj > 0 (as in this case s = iq).

From (i), it follows that ∑n
i=1 l̂ij = x for 1 ≤ j ≤ p and that ‖L̂‖1 = x.

From point (ii), it follows that by choosing x sufficiently small (and positive)
we can ensure that A − L̂C ≥ 0. Clearly as L̂ ≥ 0, L̂C ≥ 0. Finally, note
that if j ∈ J , there is some k ∈ {1, . . . p} such that ckj > 0. Hence, by the
construction of L̂, l̂ikk = x > 0. This implies that ∑n

i=1[A− L̂C]ij < 1 for any
such j and by the definition of J , ‖A − L̂C‖1 < 1. Thus L̂ ∈ FA,C . Finally,
note that

‖A− L̂C‖1 = max
1≤j≤n

n∑
i=1

(
aij −

p∑
s=1

l̂iscsj

)

= max
1≤j≤n

(αj −
n∑
i=1

p∑
s=1

l̂iscsj)

= max
1≤j≤n

(αj −
p∑
s=1

(
n∑
i=1

l̂is)csj)

= max
1≤j≤n

(αj −
p∑
s=1

xcsj)

= max
1≤j≤n

(αj − xγj).

Now, if we choose x > 0 sufficiently small so that (5.15) holds, then we can
ensure that

max
1≤j≤n

(αj − xγj) = 1− xmin
j∈J

γj.

As ‖L̂‖ = x by construction, it follows that for such a choice of x > 0:

Φ(L̂) = x

xminj∈J γj
= 1

minj∈J γj
.

This completes the proof.

Remarks:

(i) Theorem 5.2.3 explicitly characterises the minimum value of Φ(L) where
L is the gain matrix of a positive observer for a multiple output compart-
mental system satisfying (F1), (F2). Further, the proof is constructive
as it demonstrates how to construct an optimal observer gain matrix L.

(ii) It is possible to adapt the algorithmic approach to single output sys-
tems described in Chapter 4 to prove Theorem 5.2.2 for the case p = 1.
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However the direct linear algebraic argument given here provides the
insights needed for the generalisation to multiple-output systems devel-
oped in Theorem 5.2.2.

(iii) In the case p ≥ 2, it is not necessary for the gain matrix L of a positive
observer (5.9) to be nonnegative. It is worth noting that the optimal
L constructed in Theorem 5.2.3 is indeed nonnegative. The problem
of determining classes of positive linear systems for which this property
holds is an interesting one for further research.

We now present an example to show that the result of Theorem 5.2.3 does
not necessarily hold without the assumptions (F1), (F2) on the matrix pair
(A,C).

Example 5.2.2. Recall the matrices A, C from Example 5.2.1.

A =


2/3 0 0
0 1/2 3/4

1/3 0 0

 , C =
 1 0 0

1 0 1

 .
We saw earlier that the pair (A,C), while feasible, does not satisfy condition
(F2). Now suppose that L ∈ R3×2 is such that LC ≥ 0 and A − LC ≥ 0. A
direct calculation shows that

LC =


l11 + l12 0 l12

l21 + l22 0 l22

l31 + l32 0 l32

 .
The conditions LC ≥ 0, A− LC ≥ 0 now imply that

l12 = l32 = 0; l22 ≥ 0; l21 = −l22.

Thus

L =


l11 0
−l22 l22

l31 0

 , A− LC =


2/3− l11 0 0

0 1/2 3/4− l22

1/3− l31 0 0

 .
It now follows that ‖L‖1 = l11 + l22 + l31 and that ‖A−LC‖1 ≥ 1−(l11 + l31) ≥
1− ‖L‖1. This implies that

‖L‖1

1− ‖A− LC‖1
≥ 1.
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Thus, for any L with 0 ≤ LC ≤ A, we must have Φ(L) ≥ 1. However, for this
pair (A,C), J = {1} and minj∈J γj = 2. Thus there exists no L in FA,C with

Φ(L) = 1
minj∈J γj

= 1
2 .

5.3 Trade-offs for l1 sensitivity
In the previous section, we studied the problem of minimising Φ(L) subject to
(5.9) for compartmental systems. Optimal solutions were described for gen-
eral compartmental systems with a single output (p = 1) and for a subclass of
multiple-output compartmental systems. When designing an observer (5.2),
the rate of convergence to the true state is also important, and this is deter-
mined by the norm ‖A − LC‖1 of the observer system matrix. In general,
there will be a trade-off between obtaining the lowest possible value for the
sensitivity bound and minimising the norm ‖A − LC‖1. In this section, we
consider this trade-off for positive systems, not necessarily compartmental,
with a single output.

Specifically, we consider a single-output positive system (5.1), where A is a
nonnegative matrix, not necessarily compartmental, and C is a (non-zero) row
vector, which we will write as cT for some c ∈ Rn

+ \ {0}. In this section, we go
back to the notation of Section 5.2.1 and consider the interplay between the
objective functions ‖A− lcT‖1 and Φ(l) where l ∈ Rn

+ is constrained to lie in
the feasibility region FA,c.

Formally, we consider the following problem.

Problem 5.3.1. Given A ∈ Rn×n
+ , c ∈ Rn

+ and η ∈ [0, 1), find the minimum
value of Φ(l) subject to

l ≥ 0; A− lcT ≥ 0; ‖A− lcT‖1 = η. (5.16)

Of course, the constraints here will not be feasible for all values of η. With
this in mind, we first characterise the possible values of ‖A − lcT‖1 where l
satisfies the first two conditions of (5.16).

Lemma 5.3.1. Let A ∈ Rn×n
+ , c ∈ Rn

+ be given and suppose that l ∈ Rn
+ is

such that A− lcT ≥ 0. Define the vector l̂ for 1 ≤ i ≤ n by

l̂i = min
k∈supp(c)

aik
ck
. (5.17)
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Then
‖A− l̂cT‖1 ≤ ‖A− lcT‖1 ≤ ‖A‖1 (5.18)

Proof: As A− lcT ≥ 0 and l ≥ 0, it follows that for all 1 ≤ i, j ≤ n

aij − licj ≥ 0

=⇒ licj ≤ aij

=⇒ li ≤ min
k∈supp(c)

aik
ck
.

If we set l̂i = mink∈supp(c)
aik
ck
, then l ≤ l̂. It follows, as c ≥ 0 that:

A− l̂cT ≤ A− lcT ≤ A

=⇒ ‖A− l̂cT‖1 ≤ ‖A− lcT‖1 ≤ ‖A‖1

The implication follows from the monotonicity of the l1 induced norm [59].

Remarks:

(i) For the rest of this section, given A ∈ Rn×n
+ and c ∈ Rn

+, we shall use
ηmin and ηmax to denote

ηmin = ‖A− l̂cT‖1 (5.19)

ηmax = ‖A‖1.

(ii) If ηmin = ηmax, then the only possible value of ‖A− lcT‖1 for l satisfying
the first two conditions of (5.16) is ‖A‖1. There are two possibilities in
this case:

1. ‖A‖1 ≥ 1: then there exists no l satisfying (5.16) with η ∈ [0, 1)
and the problem is not feasible;

2. ‖A‖1 < 1: then l = 0 gives a solution of Problem 5.3.1 with Φ(l) =
0.

As the problem is either infeasible or trivial in this case, we shall assume
for the rest of this section that ηmin < ηmax. Note that this implies that
l̂ 6= 0.
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(iii) Let A ∈ Rn×n
+ , c ∈ Rn

+ be such that ηmin < ηmax. Then it is not
difficult to see that for any η ∈ [ηmin, ηmax] there exists some l ∈ Rn

+

that satisfies (5.16). This is essentially an application of the Intermediate
Value Theorem coupled with the continuity of the norm.

(iv) We are interested in the function Φ as a bound for the l1 sensitivity of
a linear observer (5.2). This bound, given by Proposition 5.1.2, is only
valid if ‖A − lcT‖1 < 1 holds. For this reason, we will assume for the
rest of this section that ηmin < 1.

Given η ∈ [ηmin, ηmax], we define the set F(η) as follows:

F(η) = {l ∈ Rn
+ : A− lcT ≥ 0, ‖A− lcT‖1 = η}. (5.20)

In view of the assumption made in point (iii) above, F(η) 6= {0}.

Given, A ∈ Rn×n
+ , c ∈ Rn

+, and η ∈ [ηmin, ηmax] we define M(η) as:

M(η) = max
j∈supp(c)

(∑n
i=1 aij − η

cj

)
(5.21)

The following lemma notes that under the assumptions made above in point
(i), M(η) is nonnegative.

Lemma 5.3.2. Let A ∈ Rn×n
+ , c ∈ Rn

+ \ {0} be given. Assume that ηmin <
ηmax. Then for any η ∈ [ηmin, ηmax], M(η) ≥ 0.

Proof: By assumption, ‖A− l̂cT‖1 < ‖A‖1. This implies that for any j with∑n
i=1 aij = ‖A‖1, we must have cj > 0. Let ∑n

i=1 aik = ‖A‖1 for some k. It
follows that k ∈ supp(c) and that for η ∈ [ηmin, ηmax]:

M(η) = max
j∈supp(c)

(∑n
i=1 aij − η

cj

)

≥
∑n
i=1 aik − η

ck

= ‖A‖1 − η
cj

≥ 0.

The next result characterises the norm of l ∈ F(η) in terms of η and will prove
useful in giving an answer to Problem 5.3.1.
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Lemma 5.3.3. Let A ∈ Rn×n
+ , c ∈ Rn

+ \ {0} be given and assume that ηmin <
ηmax. Let l ∈ F(η) for some η ∈ [ηmin, ηmax]. Then

‖l‖1 ≥M(η).

Proof: As ‖A− lcT‖1 = η:

max
j

n∑
i=1

(aij − licj) = η

Therefore, for all 1 ≤ j ≤ n,
n∑
i=1

aij − cj‖l‖1 ≤ η

=⇒ cj‖l‖1 ≥
n∑
i=1

aij − η

From the definition of supp(c), it follows immediately that:

‖l‖1 ≥ max
j∈supp(c)

(∑n
i=1 aij − η

cj

)
= M(η)

Remark: The last result gives us a lower bound for ‖l‖1 where l is in F(η) and
η ∈ [ηmin, ηmax]. We next show that this lower bound is in fact a minimum.

Proposition 5.3.4. Let A ∈ Rn×n
+ , c ∈ Rn

+ \ {0} be given. Assume that
ηmin < ηmax. For any η ∈ [ηmin, ηmax] let M(η) be given by (5.21). Then:

min{‖l‖1 : l ∈ F(η)} = M(η).

Proof: From Lemma 5.3.3, it is enough to show that there exists l∗ ∈ F(η)
with ‖l∗‖1 = M(η). As ηmin < ηmax, it follows that there exists l ∈ F(η) such
that ‖l‖1 > 0; choose such an l.

As ‖A− lcT‖1 = η, for all j ∈ {1, . . . , n}, we have that ∑n
i=1 aij − cj‖l‖1 ≤ η.

Furthermore, as A ≥ 0, c ≥ 0, l ≥ 0, it follows that

{j :
n∑
i=1

aij > η} ⊆ supp(c)

Hence for all j /∈ supp(c), ∑n
i=1 aij ≤ η.

102



5.3. Trade-offs for l1 sensitivity

Define
l∗ =

(
M(η)
‖l‖1

)
l.

This is possible as we have chosen l with ‖l‖1 > 0. Moreover, as ηmin < ηmax,
M(η) ≥ 0 by Lemma 5.3.2 and ‖l∗‖1 = M(η).

It remains to show that l∗ ∈ F(η). By Lemma 5.3.3, M(η)
‖l‖!
≤ 1, thus 0 ≤ l∗ ≤ l

and A− l∗cT ≥ A− lcT ≥ 0. To finish we need to show that ‖A− l∗cT‖1 = η.

First of all, note that for all j /∈ supp(c),
n∑
i=1

aij − cj‖l∗‖1 =
n∑
i=1

aij ≤ η

Next note that the definition of M(η) implies that:

1. M(η) ≥
∑n

i=1 aij−η
cj

for all j ∈ supp(c);

2. M(η) =
∑n

i=1 aij−η
cj

for some j0 ∈ supp(c).

As ‖l∗‖1 = M(η), it follows that for all j ∈ supp(c),
n∑
i=1

aij − cj‖l∗‖1 ≤ η

while for j0,
‖A− l∗cT‖1 =

n∑
i=1

aij − cj‖l∗‖1 = η.

Thus l∗ ∈ F(η) and ‖l∗‖1 = M(η). This completes the proof.

Remark: It is now straightforward to apply Proposition 5.3.4 to answer
Problem 5.3.1. With the application to differential privacy in mind, we make
the assumption that ηmin < 1 (in order to ensure the bound in Proposition
5.1.2 is valid). The next result follows immediately from the definition of Φ
in (5.5) and the set F(η).

Corollary 5.3.5. Let A ∈ Rn×n
+ , c ∈ Rn

+ {0} be such that ηmin < ηmax and
ηmin < 1. Set η1 = min{ηmax, 1}. Let η ∈ [ηmin, η1) be given. Then

min
l∈F(η)

Φ(l) =
(
M(η)
1− η

)
. (5.22)
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Remark: In the corollary, if ηmax < 1 we can include the right endpoint η1

(we can allow η ∈ [ηmin, ηmax]) but this makes no significant difference to the
argument or conclusion.

5.3.1 Implications for globally optimising the
sensitivity bound

The last thing we do in this section is to show how to apply Corollary 5.3.5
to the problem of finding a global minimum of Φ over l in FA,c.

Proposition 5.3.6. Let A ∈ Rn×n
+ , c ∈ Rn

+ \ {0} be given. Assume that
ηmin < ηmax and ηmin < 1. If ∑n

i=1 aij ≥ 1 for all j ∈ supp(c), then the
infimum of Φ(l) for l in FA,c is M(ηmin)

1−ηmin .

Proof: Set η1 = min{ηmax, 1}. For a given η ∈ [ηmin, η1) (as above, if η1 < 1
we can include the right endpoint here but it makes no material difference to
the argument or conclusions), let

M(η)
1− η = max

j∈supp(c)
φj(η)

with φj(η) =
(∑n

i=1 aij − η
cj

)
1

1− η .

For each j ∈ supp(c), as∑n
i=1 aij ≥ 1, it can be easily verified by differentiation

that each φj is a non-decreasing function for all η ∈ [ηmin, η1). Hence, M(η)
is a non-decreasing function and

M(ηmin)
1− ηmin

≤ M(η)
1− η

for all η ∈ [ηmin, η1). The result now follows from Corollary 5.3.5.

Finally for this section, we prove a simple result for the case where the non-zero
entries of c are all equal.

Proposition 5.3.7. Let A ∈ Rn×n
+ , c ∈ Rn

+ \ {0} be given. Assume that
ηmin < ηmax and ηmin < 1. Suppose that there is some real number λ > 0 such
that cj = λ for all j ∈ supp(c). If maxj∈supp(c)

∑n
i=1 aij > 1, then the infimum

of Φ(l) for l in FA,c is M(ηmin)
1−ηmin .
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Proof: Again, set η1 = min{1, ηmax}. For a given η ∈ [ηmin, η1), if cj = λ for
all j ∈ supp(c)

M(η)
1− η =

maxj∈supp(c)

(∑n

i=1 aij−η
cj

)
1− η

=
maxj∈supp(c)

(∑n

i=1 aij−η
λ

)
1− η

= maxj∈supp(c) (∑n
i=1 aij − η)

λ(1− η)

= maxj∈supp(c) (∑n
i=1 aij)− η

λ(1− η)

If maxj∈supp(c)
∑n
i=1 aij > 1, then M(η)

1−η is an increasing function for all η in
[ηmin, η1). The result follows immediately.

5.4 The l1 sensitivity of positive observers
with coordinate transformation

In [11] and [10], a more general form of positive observer was studied for
continuous time systems. The goal was to obtain less conservative conditions
for a positive observer by allowing suitable coordinate transformations. We
now outline the construction of these papers for the discrete time systems
considered here. given by:

z(t+ 1) = Fz(t) +Gy(t) (5.23)

x̂(t) = T−1z(t).

In order for this to define a positive observer for (5.1), the following conditions
are sufficient.

• F ≥ 0, ρ(F ) < 1;

• TA− FT = GC;

• T is inverse positive, meaning T−1 ≥ 0.

In this section, we first derive an upper bound for the l1 sensitivity of an
observer of the form (5.23); as for the Luenberger observer (5.2), we require
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that ‖F‖ < 1 in order to ensure that the sensitivity bound is finite. In the next
result, we do not require the observer to be positive. The calculation needed to
establish the bound below is a direct generalisation of that previously derived
in Chapter 4 for the more restricted observer (5.2).

Proposition 5.4.1. Consider the observer given by (5.23) with ‖F‖1 < 1.
Let K > 0, 0 < α < 1 be given. The sensitivity ∆ of (5.23) with respect to
the similarity relation (5.3) satisfies the following bound:

∆ ≤ K

1− α

(
‖T−1‖1‖G‖1

1− ‖F‖1
.

)
(5.24)

Proof: Let two adjacent output signals y ∼ y′ satisfying (5.3) be given.
Denote by z, z′ and x̂, x̂′ the state and outputs from the observer (5.23) cor-
responding to y, y′ respectively (we assume the same initial conditions for the
observer so z(0) = z′(0)). A direct computation of the system response shows
that for t > 0:

z(t) = F tz(0) +
t−1∑
j=0

F t−1−jGy(j)

z′(t) = F tz(0) +
t−1∑
j=0

F t−1−jGy′(j).

It is immediate that z(t) = z′(t), x̂(t) = x̂′(t) for 0 ≤ t ≤ t0. For t ≥ t0 + 1 we
have that

z(t)− z′(t) =
t−1∑
j=t0

F t−1−jG(y(j)− y′(j)).

This implies that the l1 norm of x̂(t)− x̂′(t) satisfies

‖x̂(t)− x̂′(t)‖ ≤ ‖T−1‖
t−1∑
j=t0
‖F‖t−1−j‖G‖‖y(j)− y′(j)‖ (5.25)

≤ K‖T−1‖‖G‖
t−1∑
j=t0
‖F‖t−1−jαj−t0 .

Making the simple change of index variable i = j − t0 gives:

‖x̂(t)− x̂′(t)‖ ≤ K‖T‖−1‖G‖
t−t0−1∑
i=0
‖F‖t−i−t0−1αi.
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This implies that the l1 norm of x̂− x̂′ satisfies:

‖x̂− x̂′‖ ≤ K‖T−1‖‖G‖
∞∑

t=t0+1

t−(t0+1)∑
i=0

‖F‖t−i−(t0+1)αi.

Another simple change of variable, s = t− (t0 + 1), shows that

‖x̂− x̂′‖ ≤ K‖T−1‖‖G‖
∞∑
s=0

s∑
i=0
‖F‖s−iαi.

Keeping in mind that 0 < α < 1, 0 < ‖F‖ < 1 by assumption, we can now
conclude that:

‖x̂− x̂′‖ ≤ K‖T−1‖‖G‖
( 1

1− α

)( 1
1− ‖F‖

)
.

As y ∼ y′ were arbitrary, this completes the proof.

Remark: As a classical Luenberger observer (5.2) corresponds to the choice
T = I, F = A − LC, G = L, Proposition 5.1.2 can be derived as a corollary
of Proposition 5.4.1.

5.4.1 Positive observers defined by the Sylvester
equation

In this section we consider the general type of observer (5.23) where the orig-
inal system is a single-output compartmental system. This means that an
observer is defined by a triple (F, T, g) in Rn×n

+ × Rn×n × Rn
+ satisfying:

‖F‖1 < 1; T−1 ≥ 0; TA− FT = gcT . (5.26)

The bound for the sensitivity of the associated observer is then given by (5.24).
The following question arises naturally in this context. Is it possible to con-
struct observers of this more general form such that the value of the bound
‖T−1‖1‖g‖1

1−‖F‖1 is less than the minimum given by Theorem 5.2.2 for the classi-
cal observer? If so, this would make it possible to achieve the same level of
differential privacy by adding less noise for observers of this class.

As a guide to answering this question, we next present a simple, and rather
crude, lower bound for ‖T

−1‖1‖g‖1
1−‖F‖1 where T, g, F define a positive observer. Here

‖ · ‖∞ is the usual l∞ norm on Rn.
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Lemma 5.4.2. Let A ∈ Rn×n
+ be compartmental with ‖A‖1 = 1, and c ∈

Rn
+ \ {0}. Moreover, suppose that F ≥ 0, ‖F‖1 < 1, T ∈ Rn×n

+ is inverse
positive, g ≥ 0, and TA− FT = gcT . Then

‖T−1‖1‖g‖1

1− ‖F‖1
≥ 1
‖c‖∞

(
1− ‖T−1FT‖1

1− ‖F‖1

)
.

Proof: As TA− FT = gcT and T is invertible,

A− T−1FT = T−1gcT .

It follows immediately that

‖T−1gcT‖1 = ‖A− T−1FT‖1

≥ ‖A‖1 − ‖T−1FT‖1

= 1− ‖T−1FT‖1.

The result now follows by noting that ‖T−1gcT‖1 ≤ ‖T−1‖‖g‖‖c‖∞, and di-
viding across by 1− ‖F‖1.

Remark: The crude lower bound in the last result suggests that in cases where
the maximal component of c, ‖c‖∞ is significantly larger than minj∈J cj, it may
be possible to construct observers where ‖T

−1‖1‖g‖1
1−‖F‖1 is less than the minimum

possible via a classical observer. The next example shows that this is indeed
possible.

Example 5.4.1. Consider:

A =
 1/2 1/4

1/2 1/3

 , cT =
(

1/3 1/2
)
.

Next choose:

T =
 1 0
−1 1

 , F =
 1/3 0

0 1/30


and gT = (1/2 1/10). Then it is readily verified that

• 1
minj∈J cj = 3.

• TA− FT = gcT .

• T−1 ≥ 0, ‖F‖1 < 1.
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• ‖T
−1‖1‖g‖1

1−‖F‖1 = 9
5 .

Remark: The key point of the last example is as follows. If we consider a
classical positive observer and the upper bound on sensitivity given by Propo-
sition 5.1.2, then the optimal gain matrix l will give a value of 3K

1−α for the
sensitivity bound. In contrast, by using the more general form of positive ob-
server and the corresponding sensitivity bound given in Proposition 5.4.1, we
have show that it is possible to construct an observer giving a value of 9K

5(1−α)

for the bound. This means that, by using the more general form of observer,
we can achieve the same level of differential privacy via a Laplace mechanism
whose variance is only 0.6 that required by the optimal possible for a classical
observer.

5.5 Conclusions
In this chapter, we looked at a number of questions related to the construc-
tion of differentially private positive observers. We first studied the problem
of minimising the bound on l1 sensitivity from Chapter 4 for compartmental
systems. For this problem, we have proven two results, each of which pro-
vides a simple, usable expression for the minimum value of the bound. Both
Theorems 5.2.2 and 5.2.3 are constructive and they describe how to select the
optimal observer gain matrix.

In constructing an observer that is required to be differentially private, it is
important to take both the sensitivity and convergence speed into account.
The work of Section 5.3 presents initial results on how these two objective
functions interact for the case of single-output systems. Two simple results
are also derived to show how understanding this trade-off can help find solu-
tions to the global optimisation problem. In Section 5.4, we considered the l1
sensitivity of the more general class of positive observers introduced in [10].
We derived a natural generalisation of the bound of the l1 sensitivity from
Chapter 4 to this class of observers in Proposition 5.4.1. Interestingly, Exam-
ple 5.4.1 shows that we can build differentially private observers while adding
less noise if we work with the more general type of observer.
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CHAPTER 6
Positive Observers, Gaussian
Mechanisms and l2 Sensitivity

In this chapter, we consider the use of the Gaussian mechanism for differentially
private Luenberger observers for positive linear systems. In particular, we derive
a bound for the l2 sensitivity of Luenberger observers, which is used to quantify
the noise required to achieve relaxed, (ε, δ) differential privacy via the Gaussian
mechanism. An approach to minimise this bound for positive observers is described
and several bounds relevant to this problem are derived.

6.1 Introduction
In Chapter 4, our focus was on Laplace mechanisms to achieve ε differential
privacy. For the Laplace mechanism, the l1 sensitivity is the key parameter
needed to determine the magnitude of noise needed for ε differential privacy.
Our work in Chapter 4 and Chapter 5 focused on various questions about an
upper bound for the l1 sensitivity of positive linear observers. In this chapter,
we will consider the relaxed form of differential privacy, (ε, δ) differential pri-
vacy. The most popular method for this is the Gaussian mechanism and the
key parameter needed is the l2 sensitivity of the observer.

As we have done in Chapter 4, we will calculate an upper bound for the l2
sensitivity of a positive linear observer. When designing an observer for a
positive linear system, we wish to find a gain matrix L that will minimise this
sensitivity bound so that we add as little noise as possible. With this in mind
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6.2. Differential Privacy and Systems Theory

we develop an algorithm to find a matrix L that minimises the sensitivity
bound and satisfies the constraints for a positive linear observer detailed in
Chapter 2.

6.2 Differential Privacy and Systems Theory
As in Chapter 4, we consider Luenberger observers for linear systems, but with
a view to the design of (ε, δ) differentially private observers, we shall derive a
bound on the l2 sensitivity of such observers.

As in previous chapter, we consider a system Σ of the form:

x(t+ 1) = Ax(t)

y(t) = Cx(t) (6.1)

where A ∈ Rn×n, C ∈ Rp×n. For a Luenberger observer, we need a matrix
L ∈ Rn×p such that the solution x̂(·) of the system Σ0 given by

x̂(t+ 1) = (A− LC)x̂(t) + Ly(t) (6.2)

satisfies ‖x̂(t)− x(t)‖ → 0 as k →∞ where x is the solution to (6.1).

We work with the same definition of similarity on the space of output sequences
y(t), t ≥ 0 that we have used in the last 2 chapters. So we assume K > 0 and
0 ≤ α < 1 are given and say that two sequences y, y′ are adjacent, y ∼ y′ if
they satisfy (2.24).

We will work exclusively with the l2 norm and the corresponding induced
norm for matrices in this chapter. These norms are the natural norms for use
in connection with Gaussian mechanisms for differential privacy [72, 38].

Recall from Chapter 2, for M ∈ Rm×n, the l2 induced (spectral) norm of M
[59] is given by

‖M‖2 =
√
ρ(MTM). (6.3)

The l2 norm of a sequence y = (y(t)), 0 ≤ t < ∞ with y(t) ∈ Rp for all t is
given by

‖y‖2
2 =

∞∑
t=0
‖y(t)‖2

2 (6.4)

where ‖y(t)‖2 is the usual l2 norm in Rp.
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6.3. Bounding the l2 sensitivity for Luenberger observers

In some later sections, we will use the following result on the monotonicity of
the spectral norm [59].

Lemma 6.2.1. Let A,B in Rm×n
+ be given with A ≤ B. Then ‖A‖2 ≤ ‖B‖2.

Relaxed Differentially Private Mechanisms

For the observer Σ0, let Y , X̂ denote the spaces of measured output sequences,
y(t), and observer state sequences, x̂(t), respectively. Given ε > 0, δ > 0, and
the observer system Σ0 in (6.1), an (ε, δ) differentially private mechanism is
defined by specifying a set of random variables {X̂Σ,y | y ∈ Y} taking values
in X̂ satisfying:

P(X̂Σ,y ∈ A) ≤ eεP(X̂Σ,y′ ∈ A) + δ (6.5)

for all Borel sets A of X̂ and all y ∼ y′.

To achieve (ε, δ)-differentially private mechanism we will add iid Gaussian
noise to each component of the observer state [72]. As stated in Chapter
2, we need the Q-function defined as Q(x) := 1√

2π
∫∞
x exp(−u2

2 )du. Now for
ε > 0, 0 ≤ δ ≤ 0.5, let K = Q−1(δ) and define κδ,ε = 1

2ε(K +
√
K2 + 2ε).

The mechanism M(u) = Σ0(y) + w, where wk is white Gaussian noise with
covariance matrix κ2

δ,ε(∆2(Σ0))2Ip, is (ε, δ)-differentially private.

The key quantity for us is the l2 sensitivity ∆2(Σ0) which we have previously
defined in Definition 2.4.1. Recall that:

∆2(Σ0) := sup
y∼y′
‖Σ0(y)− Σ0(y′)‖2. (6.6)

It is important to note that ∆2(Σ0) depends on both the norm and the ad-
jacency relation. For the remainder of this chapter, we shall be interested in
bounds for the l2 sensitivity of observers for linear systems, with particular
focus on positive linear systems.

6.3 Bounding the l2 sensitivity for
Luenberger observers

In this section, we first derive an upper bound of the l2 sensitivity of the
observer (6.2) without imposing positivity constraints. Later we shall present
results on minimising this bound for positive observers.
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6.3. Bounding the l2 sensitivity for Luenberger observers

Proposition 6.3.1. Let A ∈ Rn×n, C ∈ Rp×n, L ∈ Rn×p be given and suppose
that ‖A − LC‖2 < 1. Consider the Luenberger observer, Σ0 given by (6.2).
Then for the adjacency relation defined by (2.24), the l2 sensitivity of Σ0 (as
given in (6.6)) is bounded by

∆(Σ0)2 ≤ K2

1− α2

(1 +Nα

1−Nα

)( ‖L‖2
2

1−N2

)
(6.7)

where N = ‖A− LC‖2.

Proof: Let two adjacent sequences y ∼ y′ be given. The map from the
sequence y to x̂ and from y′ to x̂′ corresponding to (6.2), with the common
initial observer state x̂0, is defined by

x̂(t+ 1) = (A− LC)t+1x̂0 +
t∑
i=0

(A− LC)t−iLy(i)

x̂′(t+ 1) = (A− LC)t+1x̂0 +
t∑
i=0

(A− LC)t−iLy′(i).

As y ∼ y′, it follows that x̂′(t) = x̂(t) for t ≤ t0. Moreover, for t > t0, we have

x̂(t)− x̂′(t) =
t−1∑
i=t0

(A− LC)t−i−1L(y(i)− y′(i)). (6.8)

We need to bound ‖x̂(t)− x̂′(t)‖2; for t > t0. Using the triangle inequality and
the submultiplicative property of the spectral norm, as done in Proposition
4.3.1 in Chapter 4, we have:

‖x̂(t)− x̂′(t)‖2 = ‖
t−1∑
i=t0

(A− LC)t−i−1L(y(i)− y′(i))‖2

≤ ‖L‖2K
t−1∑
i=t0
‖A− LC‖t−1−i

2 αi−t0

To simplify the notation in the following calculations we write N for ‖A −
LC‖2. The l2 norm of the sequence x̂− x̂′ is given by (6.4) which applied to
the above calculation shows that the square of this norm, ‖x̂−x̂′‖2

2, is bounded
above by:

‖L‖2
2K

2
∞∑

t=t0+1

 t−1∑
i=t0

N t−1−iαi−t0

2
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A simple shift of indices shows that the series in the above expression is equal
to:

∞∑
t=0

(
t∑
i=0

N t−iαi
)2

(6.9)

In order to evaluate the above sum, we shall show that the series∑∞
t=0

(∑t
i=0N

t−iαi
)2

is equal to the following sum of two series:

∞∑
i=1

iαi−1 N i−1

1−N2 +
∞∑
i=1

iN i−1 αi+1

1− α2 (6.10)

Intuitively, it is possible to see why this decomposition holds by examining
the pattern of the terms

(∑t
i=0N

t−iαi
)2

for t = 0, 1, 2, 3, 4.

1

N2 + 2Nα + α2

N4 + 2N3α + 3N2α2 + 2Nα3 + α4

N6 + 2N5α + 3N4α2 + 4N3α3 + 3N2α4 + 2Nα5 + α6

N8 + 2N7α + 3N6α2 + 4N5α3 + 5N4α4 + 4N3α5 + 3N2α6 + 2Nα7 + α8

To see why (6.10) holds, we need to make the following observations.

• The total power of each monomial term Npαq in
(∑t

i=0N
t−iαi

)2
is 2t.

This implies that each monomial in (6.9) appears for exactly one value
of t.

• Each term in
(∑t

i=0N
t−iαi

)2
is of the form N2t−(i+j)αi+j, where i, j ∈

{0, 1, . . . , t}. We now have two cases:

1. If t− (i+ j) > 0, then let p = 2t− (i+ j) and s = (i+ j)− t, where
s > 0. This implies N2t−(i+j)αi+j = Npαp+2s.

2. If t − (i + j) ≤ 0, let p = i + j and s = t − (i + j), where s ≥ 0.
This implies N2t−(i+j)αi+j = Np+2sαp.

Hence, each term in (6.9) is either of the form Npαp+2s for some integers
p ≥ 0, s > 0 or of the form αpNp+2s for integers p ≥ 0, s ≥ 0.

• The coefficient of the monomial Npαq in
(∑t

i=0N
t−iαi

)2
, also comes

down to two cases:
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1. If min{p, q} = q, then q ≤ t and the term Npαq occurs as the
product (N t−iαi)(N t−(q−i)αq−i), for i = 0, 1, . . . , q. So its coefficient
is q + 1.

2. Similarly, if min{p, q} = p, then p ≤ t andNpαq = (N iαt−i)(Np−iαt−(p−i)),
for i = 0, 1, . . . , p. So this time, its coefficient is p+ 1.

Hence, The coefficient of the monomial Npαq is given by min{p, q}+ 1.

From the above observations, it follows that we can split the terms in (6.9)
into those of the form i(αi−1N (i−1)+2s) for 1 ≤ i <∞, s ≥ 0 and those of the
form i(N i−1α(i−1)+2s) for 1 ≤ i < ∞, s > 0. The equality of (6.9) and (6.10)
now follows from the above points as we can write:

∞∑
t=0

(
t∑
i=0

N t−iαi
)2

=
∞∑
i=1

( ∞∑
s=0

i(αi−1N (i−1)+2s)
)

+
∞∑
i=1

( ∞∑
s=1

i(N i−1α(i−1)+2s)
)

=
∞∑
i=1

iαi−1 N i−1

1−N2 +
∞∑
i=1

iN i−1 αi+1

1− α2 .

The series (6.10) can now be rearranged as follows:
∞∑
i=1

iαi−1 N i−1

1−N2 +
∞∑
i=1

iN i−1 αi+1

1− α2

= 1
1−N2

∞∑
i=1

iαi−1N i−1 + α2

1− α2

∞∑
i=1

iN i−1αi−1

=
(

1
1−N2 + α2

1− α2

) ∞∑
i=1

i(Nα)i−1

=
(

1
1−N2 + α2

1− α2

) ∞∑
i=1

iβi−1

where β = Nα < 1. To evaluate ∑∞i=1 iβ
i−1, we simply note that it is the

derivative of the absolutely convergent (for |β| < 1) power series ∑∞i=0 β
i and
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thus
∞∑
i=1

iβi−1 = d

dβ

( ∞∑
i=0

βi
)

= d

dβ

(
1

1− β

)

= 1
(1− β)2

= 1
(1−Nα)2 .

Therefore, we may write

∞∑
t=0

(
t∑
i=0

N t−iαi
)2

=
(

1
1−N2 + α2

1− α2

) ∞∑
i=1

iβi−1

=
(

1
1−N2 + α2

1− α2

)
1

(1−Nα)2

= 1
(1−Nα)2

(
1−N2α2

(1−N2)(1− α2)

)

= 1
1− α2

(1 +Nα

1−Nα

)( 1
1−N2

)
Combining everything, the square of the l2 norm of x̂ − x̂′ is bounded above
by:

K2

1− α2

(1 +Nα

1−Nα

)( ‖L‖2
2

1−N2

)

which completes the proof as y ∼ y′ were arbitrary.

Remark: Recall that the upper bound for the l1 sensitivity of a Luenberger
observer that we derived in Chapter 4 was given by:

∆1(Σ0) ≤
(

K

1− α

)( ‖L‖1

1− ‖A− LC‖1

)
, (6.11)

where the induced matrix norms are with respect to the l1 vector norm. This
bound has a simpler form than our l2 bound in Proposition 6.3.1 as we are
able to isolate K and α. For this reason, when we were trying to minimise
the l1 bound, we only had to consider the function

‖L‖1

1− ‖A− LC‖1
.

The parameter α cannot be separated in this way for the l2 bound.
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6.4. Observer design and sensitivity bounds

6.3.1 Tightness of upper bound
As we did for the l1 bound, we now describe a simple example to illustrate how
the bound in Proposition 6.3.1 can be attained for certain matrices A,L,C.
The matrices used in the following example are all nonnegative.

Example 6.3.1. Consider

A =
 1/4 1/2

1/2 1

 , C =
(

1/3 2/3
)
, L =

 1/3
2/3

 .
A straightforward calculation shows that

A− LC =
 5/36 5/18

5/18 5/9

 .
Direct calculation shows that ‖A − LC‖2 = 25/36 < 1. Moreover, we can
verify that

(A− LC)L = (25/36)L = ‖A− LC‖2
2L

so that (A−LC)iL = (‖A−LC‖2
2)iL for all i ≥ 1. Now pick a pair of adjacent

sequences y, y′ where y(t), y′(t) are in R for all t, satisfy the adjacency relation
y ∼ y′ (2.24) but with equality in place of the inequality. As each y(t) is a
real number, this can be done. For such a pair, the corresponding observer
outputs x̂, x̂′ satisfy

‖x̂− x̂′‖2
2 = K2

1− α2

(1 +Nα

1−Nα

)( ‖L‖2
2

1−N2

)

6.4 Observer design and sensitivity bounds
Now, we will look at the question of positive observer design [5, 52, 10] and the
problem of minimising the bound for l2 sensitivity presented in Proposition
6.3.1 when a positive observer is required.

The system (6.1) is positive if A and C are nonnegative. Recall from Theorem
2.3.4 in Chapter 2 [5] that the existence of a positive observer is equivalent to
the existence of a matrix L such that A−LC ≥ 0, LC ≥ 0 and ρ(A−LC) < 1.
As our interest is in the bound on the l2 sensitivity of such an observer, we shall
replace the requirement that ρ(A − LC) < 1 with ‖A − LC‖2 < 1. Without
making this assumption, the observer need not have finite l2 sensitivity and
our bound is not valid.
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6.4.1 Minimising the sensitivity bound
First, consider the question of characterising the infimal or minimal value of
the bound in Proposition 6.3.1 and of determining an observer matrix L that
either attains or approximates this value.

As K and α are fixed parameters determined by the adjacency (2.24) we
address the following problem:

Problem 6.4.1. Given A ∈ Rn×n
+ , C ∈ Rp×n

+ , consider

F (L) = ‖L‖2
(

1 + ‖A− LC‖α
1− ‖A− LC‖α

)(
1

1− ‖A− LC‖2

)
. (6.12)

Determine inf F (L) subject to the constraints:

LC ≥ 0, A− LC ≥ 0, ‖A− LC‖2 < 1 (6.13)

For the rest of this chapter, we avoid the question of feasibility and assume
throughout that the set defined by (6.13) is non-empty: in the case where it is
empty, most statements are satisfied vacuously (or by adopting the convention
that the infimum of an empty set is ∞).

In this section, we shall present results that can be used to develop methods
to minimise F (L) subject to (6.13). A major contribution is to show how
to reduce this question to a simple 1-dimensional question via a family of
optimisation problems with a convex objective function.

The next lemma show that in the case where ‖A‖2 > 1, the infimum above is
in fact a minimum that is attained for some L in the feasible set.

Lemma 6.4.1. Let A ∈ Rn×n
+ , C ∈ Rp×n

+ be given with ‖A‖2 > 1 and assume
that there is some L satisfying (6.13). Then there exists some κ with 0 < κ < 1
such that inf F (L) subject to (6.13) is given by minF (L) subject to

LC ≥ 0, A− LC ≥ 0, ‖A− LC‖2 ≤ κ (6.14)

Proof: We first note that for any κ with 0 < κ < 1, F is a well-defined
continuous function on the compact set given by (6.14) and hence attains its
minimum on this set.
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As ‖A‖2 > 1, it follows that there must exist some ε > 0 such that for any L
such that ‖A−LC‖2 < 1, we have ‖L‖2 ≥ ε. It follows readily that for any L
satisfying (6.13), we must have

F (L) ≥ ε2

1− ‖A− LC‖2
2
.

Now choose some L1 satisfying (6.13) and suppose F (L1) = f 2
1 . If f1 = 0,

then clearly F attains its minimum at L1 and the result follows. Otherwise,
set ε1 = min{ε, f1

2 }. Then a simple calculation shows that for any L satisfying
(6.13) with ‖A − LC‖2 > 1 − ε1

f1
, we must have F (L) > f1. The result now

follows with κ = 1− ε1
f1
.

For the remainder of the chapter, we assume that ‖A‖2 > 1. The case where
‖A‖2 < 1 is trivial as we can simply take L = 0 to minimise the function
F (L); the boundary situation where ‖A‖2 = 1 may be more subtle however
and we will not consider it here.

To present our next results, we will write F (L) = ‖L‖2
2 H(‖A−LC‖2), where

the function H : [0, 1)→ R is given by

H(N) =
(1 +Nα

1−Nα

)( 1
1−N2

)
(6.15)

The next lemma will be important in our approach to solving Problem 6.4.1.

Lemma 6.4.2. The function H defined by (6.15) is an increasing function on
the interval [0, 1).

Proof: The first derivative of H is given by:

H ′(N) =
( 1

1−N2

)((1 +Nα)α
(1−Nα)2 + α

1−Nα

)

+
(1 +Nα

1−Nα

)( 2N
(1−N2)2

)

As α is a fixed value with 0 ≤ α ≤ 1 we can see that H ′(N) > 0 for N in the
interval [0, 1).

6.4.1.1 Algorithm

In this subsection, we will describe the key steps of an algorithm for solving
problem 6.4.1.
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1. Determine upper and lower bounds, ζmin, ζmax for ‖L‖2 for L satisfying
(6.13).

• We only want to be sure that ‖L‖2 lies between the bounds for this
step (we are not requiring that they be tight). For any system,
we can clearly take 0 as a lower bound. However, we shall shortly
describe how to obtain a less conservative lower bound than this.

• For a single output system (p = 1), an upper bound can be calcu-
lated as follows. L ∈ Rn×1

+ so we can consider L as a column vector
l ∈ Rn

+; similarly we can take C to be given by a row vector cT for
c ∈ Rn

+. Since A − lcT ≥ 0, li ≤ aij
cj

=⇒ li ≤ minj∈supp(c)
aij
cj
, for

1 ≤ i ≤ n. This gives an upper bound on the l2 norm of L: namely

‖L‖2 ≤

√√√√∑
i

(
min

j∈supp(c)

aij
cj

)2

= ζmax.

Later we shall describe how to calculate an upper bound for general
multiple output systems.

2. For ζ ∈ [ζmin, ζmax] solve the optimisation problem
M(ζ) = minH(N(L)) such that ‖L‖2 = ζ.

• As H is an increasing function of N , this is equivalent to solving
the simpler problem of determining for each ζ ∈ [ζmin, ζmax]:

N(ζ) = min
‖L‖2=ζ

‖A− LC‖2 (6.16)

subject to L satisfying (6.13).

• This problem may be solved for each ζ using optimisation pack-
ages based on techniques such as sequential quadratic programming
(SQP). We shall show below that for the single output case, this
step is in fact a convex problem.

3. Finally solve min ζ2M(ζ) for ζ ∈ [ζmin, ζmax].

• This is a simple single variable optimisation problem so we have re-
duced the original multivariable, non-convex problem to optimising
a single variable function in a closed interval.
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6.4.2 Bounding ‖L‖2

Now consider the problem of determining lower and upper bounds for ‖L‖2

where L satisfies (6.13) and the matrix C has full rank p (we make the rea-
sonable assumption that p ≤ n).

Proposition 6.4.3. Let A ∈ Rn×n
+ , C ∈ Rp×n

+ (p ≤ n) be given and suppose
that L ∈ Rn×p satisfies (6.13). Assume that C has rank p and let C† be the
pseudo-inverse of C satisfying CC† = Ip where Ip is the p× p identity matrix.
Then

‖A‖2 − 1
‖C‖2

≤ ‖L‖2 ≤ ‖A‖2‖C†‖2 (6.17)

where C† is the pseudo-inverse of C.

Proof: As p ≤ n and we are assuming that C has rank p, it follows easily from
considering the singular value decomposition of C that the pseudo-inverse C†

of C exists satisfying CC† = Ip where Ip is the p × p identity matrix. From
this, the upper bound above follows readily as

‖L‖2 = ‖LCC†‖2

≤ ‖LC‖2‖C†‖2

≤ ‖A‖2‖C†‖2

where the last inequality follows as 0 ≤ LC ≤ A and the monotonicity of the
spectral norm on nonnegative matrices.

For the lower bound, note that

‖A‖2 − ‖LC‖2 ≤ ‖A− LC‖2 < 1

which implies that

‖L‖2‖C‖2 ≥ ‖LC‖2 > ‖A‖2 − 1.

The lower bound now follows immediately.

6.4.3 The single output case p = 1
In this subsection, we show that when dealing with a single output system,
p = 1, step 2 of our algorithm for minimising F (L) is equivalent to a convex
problem.
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Lemma 6.4.4. Let A ∈ Rn×n
+ , c ∈ Rp

+ and ζ > 0 be given where ζ < ζmax.
Define:

m1 := min{‖A− lcT‖2 : l ≥ 0, A− lcT ≥ 0, ‖l‖2 = ζ};

m2 := min{‖A− lcT‖2 : l ≥ 0, A− lcT ≥ 0, ‖l‖2 ≤ ζ}.

Then m1 = m2.

Proof: It suffices to show that for any l such that lcT ≥ 0, A − lcT ≥ 0 and
‖l‖2 ≤ ζ, there exists some l1 with l1cT ≥ 0, A− l1cT ≥ 0 and ‖l1‖2 = ζ such
that

‖A− l1cT‖2 ≤ ‖A− lcT‖2.

To this end, let such an l be given. Take l̂ to be the vector with l̂i =
minj∈supp(c)

aij
cj

so that l ≤ l̂ for any l satisfying (6.13) and ‖l̂‖2 ≥ ζ. It is
not difficult to see that l̂ lies in the convex feasible set F (assumed to be
non-empty) determined by (6.13). For α ∈ [0, 1] consider

l̂(α) = αl̂ + (1− α)l.

As F is convex, l̂(α) is in F for all α ∈ [0, 1]. Also, as l ≤ l̂, l̂(α) ≥ l for
all α ∈ [0, 1]. Moreover, as ‖l̂(0)‖2 = ‖l‖2 < ζ and ‖l̂(1)‖2 = ‖l̂‖2 ≥ ζ, it
follows that for some α1 we must have ‖l̂(α1)‖2 = ζ. The result follows setting
l1 = l̂(α1).

The equality of m1 and m2 established in the lemma shows that, when p = 1,
in Step 2 of the algorithm in Section 6.4.1.1, we can replace the problem of de-
termining the value of m1 by the convex optimisation problem of determining
m2.

We now present a 2-dimensional example to illustrate how to use these ideas
to minimise F (L) given by (6.12) for a given A,C.

Example 6.4.1. Consider

A =
 1/4 1/2

1/2 1

 , C =
(

1/3 2/3
)

with α = 0.2 and K = 0.5.

To apply algorithm 6.4.1.1, we need to first determine values for ζmin and ζmax.
As mentioned previously, we can always take ζmin = 0. Using Proposition
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6.4.3, we calculate ζmax = 1.6771. Applying the algorithm gives us an observer
gain matrix L = [0.47692 0.95385]T . The value of the l2 sensitivity bound for
this observer is 1.2958.

6.4.4 Convergence Vs Sensitivity Trade-off
Our approach to Problem 6.4.1 could also provide insight into the fundamental
trade-off between utility and privacy, as considered in Chapter 5. Some of the
results may help to clarify the relationship between the achievable sensitivity
values and observer convergence rates quantified by the system norm ‖A −
LC‖2.

In the design of differentially private observers there is a trade-off between
the sensitivity bound described by the function F (L) and the norm of ‖A −
LC‖2 which determines the rate of convergence of the observer to the value
of the state. As we have done in Chapter 5 for l1 sensitivity of single output
systems, it would be interesting to characterise the interplay between these
two quantities for the l2 case. The following two problems seem natural in
this context.

• The construction of a positive observer with minimal sensitivity for a
prescribed performance level, expressed in terms of the l2 norm of A −
LC.

• The construction of a positive observer with optimal convergence for a
specified level of sensitivity.

Formally, the first of these questions amounts to determining the minimal
value of F (L) subject to ‖A − LC‖2 = η, A − LC ≥ 0, LC ≥ 0. It is trivial
to see that once ‖A− LC‖2 = η, then

F (L) = ‖L‖2
2
1 + αη

1− αη
1

1− η2 .

Thus the question of determining the minimum sensitivity amounts to finding
L such that ‖L‖2 is minimal while ‖A − LC‖2 = η. This question is related
to the second step in Algorithm 6.4.1.1.

Formally, the second question amounts to determining the minimum value of
‖A− LC‖2 subject to F (L) = η, A− LC ≥ 0, LC ≥ 0.
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6.5 Conclusions
In this chapter, we first derived an upper bound for the l2 sensitivity of a
Luenberger observer for a linear system. We then considered the problem of
minimising this bound for positive systems where we also require that the ob-
server be positive. In particular, we have described an algorithm that reduces
this problem to a single variable optimisation and have given upper and lower
bounds for the variable in this simple problem. When the system has a single
output, we show that the key step in the minimisation algorithm is a convex
problem and have given simple bounds for this case also.

In Chapter 3, methods of ensuring that the output from a mechanism is posi-
tive were described. The technique of post-processing can be applied directly
to Gaussian mechanisms, using the bounds for l2 sensitivity derived in the
current chapter. However, more work would be required in order to develop
mechanisms based on restriction as the methods in Chapter 3 apply to the
Laplace mechanism.
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CHAPTER 7
A Brief Look at Opacity for

Positive Systems

We present preliminary results on initial state opacity for positive linear systems.
In particular, we consider the problem of initial state opacity when the secret and
non-secret states are defined by convex cones in Rn+. A result characterising opacity
in this situation is given; the proof relies on an application of Farkas’ Lemma.

7.1 Introduction
In the last 3 chapters, we have discussed results on differentially private pos-
itive observers for positive linear systems. We have mentioned in Chapter 2
that opacity is an alternative concept of privacy for dynamic systems. While
differential privacy relies on methods from Probability Theory, the main ver-
sions of opacity are deterministic in nature. Recall that the idea behind opac-
ity is to protect private information by making it difficult for an outside ob-
server to determine a ’secret’ of the system; in particular, observers should be
unable to clearly distinguish secret executions from non-secret ones.

Our interest in this short chapter is in the problem of initial state opacity
for a positive linear system. We shall make use of the recent formulation of
this concept for general linear systems in [89, 90], which has been discussed in
Chapter 2. We study opacity for a simple positive linear system with output;
in contrast with the previous 3 chapters, we will not consider the design of
positive observers here.
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7.2 Opacity for Positive Linear Systems
Consider the positive linear system

x(t+ 1) = Ax(t) +Bu(t) (7.1)

y(t) = Cx(t),

where A ∈ Rn×n
+ , B ∈ Rn×m

+ , C ∈ Rp×n
+ . As in previous chapters, our state

space is Rn
+, our input space is Rm

+ and our output space is Rp
+.

In keeping with the discussion in Chapter 2 and the papers [89, 90] we assume
that two sets Xs ⊆ Rn

+, Xns ⊆ Rn
+ of initial states are specified: Xs contains

the secret initial states while Xns contains the non-secret states. We also
assume that some time τ is specified; this is the time at which the observer
measures the output y(τ). We are interested in τ -step strong initial state
opacity in the following sense.

For an initial state x(0) = x0 and input sequence u = (u(0), . . . , u(τ − 1)), we
denote the output of (7.1) at time τ by yx0,u(τ). The system (7.1) satisfies
τ -step strong initial state opacity (τ -ISO) if for any x0 ∈ Xs and any input
sequence u = (u(0), u(1), . . . u(τ − 1)), there is some x′0 ∈ Xns and u′ =
(u′(0), u′(1), . . . , u′(τ − 1)) such that

yx′0,u′(τ) = yx0,u(τ).

Informally, this definition means that the system makes sure that for any secret
initial state and input sequence, there is some non-secret state and some input
sequence which give rise to the same output value at time τ . In the paper
[89], a condition for τ -ISO was formulated in terms of the reachability set of
the system (7.1) at time τ . In the next section, we will present some initial
results for positive systems that are in the same spirit. We impose some extra
structure on the sets Xs and Xns however.

7.3 Characterising Opacity for Conic Secret
and Non-Secret Sets

For our results, we assume that both the set Xs of secret states, and the set
Xns of non-secret states are finitely generated convex cones in Rn

+ [16]; this
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means that they are the conic hull of finitely many points in Rn
+ [14]. We first

recall the relevant definition.

Definition 7.3.1. The set X ⊆ Rn
+ is the conic hull of the finite set

{x1, . . . xq} ⊆ Rn
+ if:

X =
{ q∑
i=1

αixi : αi ∈ R+, 1 ≤ i ≤ q

}
.

We say that a set is a finitely generated cone if it is the conic hull of a
finite set of points. When X is the conic hull of {x1, . . . , xq}, we write
X = co({x1, . . . , xq}).

We assume from now on that there are two finite sets {x1, . . . , xq}, {x′1, . . . , x′r}
of points in Rn

+ such that

Xs = co({x1, . . . , xq}) (7.2)

Xns = co({x′1, . . . , x′r})

Furthermore, we assume that Xs and Xns are disjoint; otherwise the problem
of initial state opacity is not practical.

We first present a simple lemma that simplifies the condition for τ -ISO. Es-
sentially, it allows us to focus on the case where the output from secret initial
state is driven by the zero input sequence.

Lemma 7.3.1. Consider the system (7.1) and let the set of secrets states, Xs,
and the set of non-secret states, Xns satisfy (7.2). Then (7.1) is τ -ISO with
respect to Xs, Xns if and only if for every x0 ∈ Xs, there is some x′s in Xns

and some sequence u′ = (u′(0), u′(1), . . . , u′(τ − 1)) such that

CAτx0 = yx′0,u′(τ). (7.3)

Proof: First suppose that (7.1) is τ -ISO with respect to Xs, Xns and let
x0 ∈ Xs be given. Then for the input sequence u = (0, 0, . . . , 0), there is some
x′s in Xns and some sequence u′ = (u′(0), u′(1), . . . , u′(τ − 1)) such that

yx0,u(τ) = CAτx0 = yx′0,u′(τ).

For the converse direction, let x0 ∈ Xs and an input sequence
u = (u(0), u(1), . . . , u(τ − 1)) be given. Let x′0 ∈ Xns and the input sequence
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u′ = (u′(0), . . . u′(τ − 1)) be such that

CAτx0 = yx′0,u′(τ).

Then it is readily verified that

yx0,u(τ) = CAτx0 +
τ−1∑
i=0

CAτ−1−iBu(i)

= yx′0,u′(τ) +
τ−1∑
i=0

CAτ−1−iBu(i)

= yx′0,u′+u(τ).

Thus the system (7.1) is τ -ISO.

7.3.1 Opacity and Farkas’ Lemma
Assume from now on that Xs and Xns are given by (7.2) and that some time
τ > 0 is given. By Lemma 7.3.1, the system (7.1) is τ -ISO if and only if for
every x0 in Xs, there is some x′0 in Xns and some sequence of nonnegative
inputs u(0), u(1), . . . , u(τ − 1) such that

CAτx0 = CAτx′0 +
τ−1∑
i=0

CAiBu(i).

In this subsection, we will make use of the conic structure of the sets Xs, Xns

to apply Farkas’ Lemma and obtain a condition for (7.1) to be τ -ISO.

First note the following simple fact.

Lemma 7.3.2. Let Xs, Xns be given by (7.2) and let τ > 0 be a positive
integer. The system (7.1) is τ -ISO if and only if for every i, 1 ≤ i ≤ q, there
is some v′i in Xns and some input sequence u′i such that

CAτxi = yv′i,u′i(τ).

Proof: If the system is τ -ISO, it is immediate that the given condition much
hold. For the converse, let x0 in Xs be given. Then there are nonnegative
real numbers λ1, λ2, . . . , λq such that x0 = λ1x1 + · · · + λqxq. Moreover, for
1 ≤ i ≤ q, there exist initial vectors v′i in Xns and input sequences u′i with

CAτxi = yv′i,u′i(τ).
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Hence

CAτx0 =
q∑
i=1

λiCA
τxi

=
q∑
i=1

λiyv′i,u′i(τ)

= yx′0,u′

where x′0 = ∑q
i=1 λiv

′
i ∈ Xns and u′ = ∑q

i=1 λiu is a nonnegative input se-
quence. It now follows from Lemma 7.3.1 that (7.1) is τ -ISO as claimed.

Remarks:

• The last result reduces the problem of τ -ISO where the secret and non-
secret states are finitely generated cones to finding nonnegative solutions
to a system of linear equations.

• To see this, note that (7.1) will be τ -ISO if and only if for every vector
yi = CAτxi, 1 ≤ i ≤ q, there exist nonnegative real numbers αij, 1 ≤ j ≤
r and some nonnegative input sequence u′i = (u′i(0), u′i(1), . . . , u′i(τ − 1))
such that

yi =
r∑
j=1

αijCA
τx′j +

τ−1∑
j=0

CAτ−j−1Bu′i(j). (7.4)

• Using (7.4), define the block matrix M by

M =
[
CAτx′1 CA

τx′2 . . . CA
τx′r CA

τ−1B . . . CB
]
. (7.5)

• In terms of the matrix M , (7.4) shows that (7.1) is τ -ISO if and only if
for all i, 1 ≤ i ≤ q there is some nonnegative vector zi with

yi = Mzi. (7.6)

The remarks above show that the property of τ -ISO for the case we are consid-
ering comes down to the existence of nonnegative solutions zi, of the equations
(7.6) for 1 ≤ i ≤ q. This simple observation suggests the use of Farkas’ Lemma
(or a so-called Theorem of the Alternative) to gain insight into this question.

Farkas’ Lemma

We now recall the statement of Farkas’ Lemma. The version stated here is
taken from [109] where it appears as Theorem 1.30.
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Theorem 7.3.3. Let M ∈ Rm×n and y ∈ Rm be given. Then exactly one of
the following conditions holds.

1. There exists some z ∈ Rn
+ with Mz = y.

2. There exists some w ∈ Rm such that wTy < 0 and wTM ≥ 0.

To finish off this brief chapter, we note some simple consequences of applying
Farkas’ Lemma to the problem of τ -ISO for (7.1) under the assumptions (7.2)
on Xs and Xns.

Proposition 7.3.4. Let the sets Xs, Xns satisfy (7.2), let τ > 0 be a positive
integer and let the matrix M be given by (7.5). The system (7.1) is τ -ISO if
and only if for 1 ≤ i ≤ q

wTM ≥ 0 =⇒ wTCAτxi ≥ 0.

Proof: From the remarks after Lemma 7.3.2, it follows that (7.1) is τ -ISO
if and only if for 1 ≤ i ≤ q, there is some nonnegative vector zi ≥ 0 with
Mzi = CAτxi. Farkas’ Lemma (Theorem 7.3.3) implies that this is equivalent
to the following condition.

For each i with 1 ≤ i ≤ q, there is no vector w satisfying the inequalities
wTCAτxi < 0, wTM ≥ 0. This condition is equivalent to the condition that
wTM ≥ 0 implies wTCAτxi ≥ 0 for 1 ≤ i ≤ q which proves the result.

Remarks:

• The purpose of this short chapter is to present some initial thoughts on
opacity for positive linear systems. The result of Proposition 7.3.4 can
be used to obtain conditions for opacity for certain classes of systems.

• For example, consider Proposition 7.3.4 for the case where the system
(7.1) has a single output; so p = 1 and C = cT ≥ 0 is a row vector.
In this case, clearly M is also a row vector of nonnegative real numbers
and wTM ≥ 0 implies that w is a nonnegative real number (unless M
consists entirely of zeros). Trivially, the condition of Proposition 7.3.4
is satisfied so the system is τ -ISO for any τ > 0.
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• If for every i with 1 ≤ i ≤ p, there is some column of M , with index ji
say, such that miji > 0 and mkji = 0 for k 6= i. Informally, for each such
i there is some column of M which has exactly one non-zero entry in
position i. It is relatively straightforward to see that in this case, (7.1)
is τ -ISO also.

7.4 Concluding Remarks
In this very brief chapter, we have considered the problem of initial state
opacity for positive systems. Opacity is an interesting, alternative privacy
framework and its use for linear systems is very recent [89, 90]. The aim of
this chapter was to present preliminary results on opacity for positive sys-
tems where the secret and non-secret states lie in finitely generated cones
which seem a natural choice when dealing with positive systems. The result
of Proposition 7.3.4 shows that τ -ISO is equivalent to one convex cone be-
ing a subset of another. This simple result could be combined with results
from convex analysis to derive usable conditions for opacity. This opens an
interesting possible direction for future research.
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CHAPTER 8
Conclusions

In this chapter, we review and summarise the work presented in this thesis and
highlight some open questions for future work based on it.

8.1 Summary
In Chapter 2 we discussed some of the most relevant results from the literature
on differential privacy, the positive observer problem, and opacity for discrete
event and linear systems.

In order to apply differentially private mechanisms to positive systems, we
need ways of guaranteeing that the output of these mechanisms takes only
nonnegative values. Rather than constructing entirely new mechanisms, in
Chapter 3 we considered ways of using existing mechanisms, such as the
Laplace or Gaussian mechanism, to build nonnegative mechanisms. The two
main approaches considered were post-processing and restriction. We have
shown that bias is inevitable for both approaches, but post-processing leads
to a bias that is always strictly less than that caused by restriction for the
Laplace mechanism. For a different accuracy measure, we considered the MSE
of both the post-processing and restriction mechanism. Similarly for the bias,
the MSE for post-processing is always strictly less than the MSE of the re-
stricted Laplace mechanism. In relation to the post-processing mechanism,
we considered alternative post-processing functions and show that lower bias
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8.1. Summary

can be achieved by using translated ramp functions and show the existence of
a post-processing function that minimises the worst case MSE for the Laplace
mechanism.

The results of Chapter 3 focussed on 1-dimensional, real-valued queries. In the
early part of Chapter 4, we showed how to extend these results so that they
can be applied to the outputs of positive systems. This work then allowed
us to construct differentially private positive observers, which was the major
focus of much of the following chapters. A major contribution of Chapter
4 is a bound on the l1 sensitivity of a linear observer, which can be used to
construct a differentially private observer using the Laplace mechanism. When
we specialise to positive linear systems and the positive observer problem, we
are presented with some novel questions. The most obvious of these is the
question of finding an observer which minimises the amount of noise to be
added. Our work in the later sections of Chapter 4 gives a technique that can
be used to approach this problem for positive systems with a single output.
It is not immediately clear how the graphical approach could be extended to
systems with multiple outputs.

A more theoretical approach to the problem of minimising sensitivity is adopted
in Chapter 5. Here we derived a constructive, analytical characterisation of
the optimal observer gain matrices for compartmental systems with a single
output. We also developed a similar result for a class of compartmental sys-
tems with multiple outputs. Alongside minimising the sensitivity, this chapter
also gives some insight into the trade-off between minimising the sensitivity
and the rate of convergence of the observer to the true state for a positive sin-
gle output system. In particular, for a fixed rate of convergence we calculate
a minimum of the bound of the sensitivity of the observer. We also derived an
upper bound for the l1 sensitivity of a more general class of observer. Through
a specific example, we saw that this class of observer allow us to add less noise
to the observer to achieve differential privacy than for a Luenberger observer.

In Chapter 6 the main focus was on deriving an upper bound on the l2 sensitiv-
ity of a linear observer, which can be used to construct a differentially private
observer using the Gaussian mechanism. The algorithm presented here can be
used to find a gain matrix that minimises the sensitivity bound for a multiple
output system. This was done by reducing the multiple variable, non-convex
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problem down to iterations of a single variable convex problem through dif-
ferent constraints.

In contrast to the majority of this thesis that addresses differential privacy
for positive linear system and positive linear observers, in Chapter 7, we in-
troduced the problem of initial state opacity for positive systems. Here, we
give preliminary results on opacity when the secret and non-secret states lie
in finitely generated cones. We saw that the property of τ -ISO is equivalent
to one convex cone being a subset of another. This result could be used to
obtain conditions for opacity of certain classes of positive systems.

8.2 Future Works
There are a number different questions that arise from the results of this thesis,
some of which are listed below.

• In Chapter 3, we applied post-processing and restriction to Laplace
mechanism to obtain an ε differentially private mechanism that only
takes nonnegative values. It would be interesting to consider similar
questions for other base mechanisms such as the Gaussian mechanism
featured in Chapter 6 to from a (ε, δ) differentially private mechanism.
Again, obtaining similar results on the bias and the mean square error
of nonnegative Gaussian mechanisms would be an interesting research
direction.

• In Chapter 5, we have shown that it is possible to reduce the amount
of noise needed using the more general observer class, but it is not clear
that this is always the case. Identifying precisely systems for which
this can be done and obtaining results for the more general observers
of a compartmental system similar to those for Luenberger observers is
another possible direction for future work.

• Is it possible to extend results from Chapter 5 to a broader class of
multiple-output compartmental systems? Specifically, can we relax the
assumptions (F1) and (F2) of Section 5.2.2 and obtain a result like The-
orem 5.2.3? The insights of the paper [7] combined with Theorem 5.2.3
suggest the following interesting question. Can we identify matrix pairs
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(A,C) with p ≥ 2 for which the minimum value of Φ(L) for L ∈ FA,C
occurs at a nonnegative matrix L?

• The work of Chapter 7 is only a first step on opacity for positive sys-
tems. This could be developed to obtain usable conditions for opacity
for classes of positive systems. Another question here is to apply it to
designing opaque positive observers.

• As a final point, all of our work concerns linear positive systems. Ex-
tending this to nonlinear systems would be a significant challenge.

We have only discussed a sample of possible future questions here. There are
many other interesting and challenging questions related to applying privacy
concepts to positive systems theory.
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