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Abstract

The multiple-input multiple-output (MIMO) technology has become an essential ele-
ment of modern communication systems e.g., 3G, 4G and massive MIMO technology
has been recently standardized in 3GPP Rel-15 i.e., New Radio (NR) to enhance the
spectral efficiency or the capacity of 5G networks. Given a digital communication
system, a receiver will suffer from decoding errors if the transmission rate exceeds
the capacity. Therefore, the capacity of a MIMO system is an important metric to
characterize the system performance. More importantly, an efficient precoder design
to achieve that capacity is of great interest.
This thesis is dedicated to this fundamental problem under multiple power con-
straints. From the theoretical perspective, capacity maximization is a classical
problem. However efficient algorithms considering realistic scenarios or multiple
power constraints, especially for massive MIMO application, are still sparse. In
the thesis, the author has sought new methods of determining the capacity under
two practical power constraints: 1) per-antenna power constraint (PAPC) 2) linear
transmit covariance constraint (LTCC). In particular, the PAPC imposes an indi-
vidual power limit on each power amplifier associated with a transmit antenna, thus
is much more realistic than the traditional sum power constraint (SPC) in which all
transmit antennas collaborate to satisfy a predefined total power budget. In many
other practical scenarios, other power constraints can be imposed on a system, not
necessarily to either SPC or PAPC. To this end, LTCCs are general enough to in-
clude those constraints. In both cases, we have proposed low-complexity approaches
to the considered problems and the description of them is in the following.
For the problem of capacity maximization under PAPC, two closed-form low-complexity
approaches have been developed for single-user MIMO and multi-user MIMO under
different MIMO channels and precoding techniques. More specifically, the first ap-
proach is based on fixed-point-iteration to solve the problem directly in the broadcast
channel (BC), whereas the other relies on alternating optimization (AO) together
with successive convex optimization (SCA) to solve the equivalent problem in dual
multiple access channel (MAC) domain. Interestingly, the latter approach is also
applicable to the problem of computing capacity with LTCCs. For the special case
of joint SPC and PAPC, we have also derived analytical solutions to this impor-
tant problem. Last but not least, we have investigated the applications of machine
learning to our capacity problems and presented some preliminary results.
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Chapter 1

Introduction

In 1948, Shannon proved a fundamental result for modern communications systems
in his breakthrough work: reliable communication is only guaranteed if and only
if the data rate is less than a specified value, which he referred to as the channel
capacity [5]. His pioneer information theoretical result has opened an important
line of research in communication theory which aims to compute the capacity of
communications systems. Early wireless networks were built on the single-input
single-output (SISO) technology and the capacity of numerous SISO systems is
well-studied. However, the SISO technology fails to accommodate the increasing
demands of high data rate in modern communications networks. The solution to
this challenge lies in the multiple-input multiple-output (MIMO) technology, which
has been studied extensively for the last few decades. MIMO technology has proved
its capability to boost the data rate of a system using the spatial resource and is an
integral part of many current wireless networks [6–11].
Contrary to traditional communication systems, MIMO technology exploits multi-
path to increase the capacity of a system. This is surprisingly advantageous since
multipath, which causes intersymbol interference at a receiver, was once considered
as ‘the enemy’ of communication systems. In addition, the effect of fading, which is
detrimental to the system performance, can be reduced, thus improving the reliabil-
ity of the system. In particular, a transmitter sends multiple replicas of a signal over
a fading channel so that a receiver can derive a good estimate of the original signal.
Moreover, MIMO can not only support single-user systems (point-to-point) but also
multi-user systems (point-to-multipoint) to improve the overall system performance.
In general, the capacity of MIMO systems is considered under a certain type of
transmit power constraint. The sum power constraint (SPC) in which transmit
antennas collaborate to satisfy a maximum power budget has drawn a lot of attention
since this simple constraint, to a large extent, leads to computationally efficient
algorithms. Of more practical relevance is the per-antenna power constraint (PAPC)
since each transmit antenna has its own power amplifier and thus can be subject
to different power constraints. In addition to SPC or PAPC, a system can also
be subject to other power constraints which are altogether generalized as multiple
linear transmit covariance constraints (LTCCs). Although MIMO technology has
been studied and adopted for more than twenty years, the research on these mixed
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Chapter 1 Introduction

power constraints is still sparse despite their practical importance. Existing solutions
based on high-complexity methods can be, in some particular cases, slightly modified
to deal with these general capacity computation problems. However, such methods
are not suitable for large-scale MIMO systems, which are the main driving force for
the thesis.

The aim of this thesis is to develop efficient approaches to computing the MIMO
capacity under various power constraints, including SPC, PAPC, LTCCs, and com-
bination thereof. The computational efficiency is focused on massive MIMO. To
achieve the goals we base the proposed solutions on some powerful mathematical
programming frameworks: successive convex optimization (SCA), alternating opti-
mization (AO) and fixed-point iteration. The purpose is to derive analytical solu-
tions wherever possible. Throughout the thesis we mainly consider Gaussian MIMO
channels and the channel state information is assumed to be perfectly known at
both of the transmitter and receiver. The system models of interest range from
single-user MIMO (SU-MIMO) to multi-user MIMO (MU-MIMO) to demonstrate
the superiority of the proposed approaches.

This chapter lays the foundation to the topics considered in this thesis: Wireless
communications and multiple-input multiple-output (MIMO) technology. In par-
ticular, we describe the fundamentals of a digital wireless communication system
and highlight the performance boosted by the MIMO technology in Section 1.1. An
overview of the thesis is presented in the next section followed by a list of publica-
tions and notation in Sections 1.3 and 1.4, respectively. The research background
will be detailed in the next.

1.1. Motivation

In the following, we provide some fundamentals of two key elements of modern
communication systems: Wireless digital communication system and multiple-input
multiple-output technology.

1.1.1. Wireless Digital Communication Systems

A typical structure of a digital communication system is illustrated in Fig. 1.1. The
information in the form of bits is transformed into bit streams by a source coder,
then goes through the error control channel i.e., channel coding and modulation to
transmit over a channel. The received signal is decoded at the receiver to reconstruct
the original signal.

2
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Source coding Channel coding Modulation

Source decoding Channel decoding Demodulation

C
h
an

n
el

Figure 1.1.: An abstract illustration of a digital communication system.

1.1.1.1. Signal Generation

Digital signals can be transmitted without pre-processing but analog signals. Most
of signals such as sound, voice etc. need to be converted into digital signals using
sampling and quantization. An analog signal is first sampled following the Nyquist
theorem, then the samples are quantized to obtain a finite number of levels, each of
which can be easily mapped onto a sequence of bits.
In order to remove the redundancy, the sampled data is transferred to a source coder.
The primary task of a source coder is to represent information with a minimum
number of bits while preserving the specified quality of the original signal. At the
receiver, source decoder reconstructs the decoded signal.

1.1.1.2. Error Control Channel

Being transmitted over wireless channels, a signal can be deteriorated due to signal
impairments e.g., attenuation, distortion, or noise. To protect the signal against
unwanted impairments, a process called channel coding is introduced to provide re-
dundancy to the signal. Doing so, channel coding enables corrupted message to
be corrected which in turn reduces probable errors in the system. Another neces-
sary step to adapt the signal to the physical channel by means of modulation. In
particular, the signal is converted into a proper form for physical transmission.
At the receiver, demodulation brings the signal back to baseband signal. For a
simple SISO channel model, the received signal can be written as

y = hx+ n (1.1)

where y and x are the transmitted and received symbol, respectively and h and n
denote the channel response and the noise, respectively. The signal is then fed into
a channel decoder to produce a received bit stream which is expected to be identical

3



Chapter 1 Introduction

to the one at the transmitter. The capacity of this time-invariant SISO channel or
Additive White Gaussian Noise (AWGN) is given by

C = B log(1 + σ2
x|h|2

σ2
n

) (1.2)

where B is the bandwidth and σ2
x|h|2 and σ2

n are the signal power and noise power,
respectively.
In the context of wireless medium, the propagation of the signal over the wireless
channel is affected by the following factors:
- Shadowing: A signal can be attenuated through absorption, reflection, scattering,
and diffraction due to obstacles in the signal path.
- Path loss: A signal can also be subject to path loss, which is the reduction in
power density when it propagates.
- Multipath propagation: Multiple copies of an original signal can arrive at the
receiver on different paths (multipath). The combined signal can be increased or
decreased depending on the phase of these signals.
Based on the attenuation variation, fading can be classified as large-scale fading or
small-scale fading.
- Large-scale fading: is evaluated by averaging the signal attenuation over a large
area. Shadowing and path loss belong to this category since the attenuation usually
occurs over a long distance. This type of fading is thus more relevant to cell planning
process.
- Small-scale fading: refers to dramatic changes in signal amplitude and phase due
to addition of multipath components. This fading has huge impact on the efficiency
and reliability of the systems, is thus particularly of interest to design a reliable
communication system.

1.1.2. MIMO Technology

In conventional SISO system, a high data rate can be achieved by increasing either
transmit power or the bandwidth (cf. Eq. (1.2)). However, increasing the trans-
mit power incurs battery and safety issues, whereas the bandwidth is precious and
highly regulated. Tremendous research in the last decades has found that multiple-
input multiple-output (MIMO) is the key technology to boost the data rate and
to increase the reliability of wireless communication systems without increasing the
transmit power or the bandwidth. More specifically, the spatial multiplexing tech-
nique enhances the throughput by exploiting multipath and the spatial diversity
combats fading to improve the reliability of a communication link. In this section,
we describe the key components of the MIMO technology including different deploy-
ments of multiple antennas, definitions of single- and multi-user MIMO, open- and
closed-loop MIMO.
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1.1 Motivation

1.1.2.1. Receive Diversity

In this simple scenario, a transmitter is equipped with a single antenna and a receiver
has multiple antennas (see Fig. 1.2). The receiver can find an estimate of the
transmitted signal by either averaging the combined signals or selecting the signal
with the highest signal-to-noise ratio (SNR).

Figure 1.2.: SIMO.

1.1.2.2. Transmit Diversity

In this mode, a transmitter transmits multiple copies of a signal (see Fig. 1.3).
Although transmit diversity does not boost the data rate, it increases robustness
against channel fading, therefore improves the link quality.

Figure 1.3.: MISO.

1.1.2.3. Spatial Multiplexing

Spatial multiplexing enhances data rate by transmitting independent data simul-
taneously over each transmit antenna (see Fig. 1.4). The maximum number of
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independent streams supported by a MIMO system is given by [6].

r = min(N,M) (1.3)

where N and M are the number of transmit and receive antennas, respectively.
This parameter is in fact the multiplexing gain of a MIMO system compared to
a SISO system. A rigorous explanation for the multiplexing gain can be found in
Subsection 2.3.1.

Figure 1.4.: Spatial Multiplexing.

1.1.2.4. Beamforming

Beamforming relies on antenna array to shape the radiation pattern so that the
antenna gain in the user direction is maximized (see Fig. 1.5).

Figure 1.5.: Beamforming.

1.1.2.5. Single-user and Multi-user MIMO

As mentioned above, conventional single-user MIMO system has one transmitter
and one receiver, each of which is equipped with multiple antennas. In multi-user
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1.2 Overview of the Thesis

MIMO, a transmitter, normally, a base station communicates with many users. Note
that in multi-user MIMO, the overall system will experience increased throughput
but individual users. In fact, the communication in multi-user environment is more
complicated than that of single-user MIMO due to the interference caused by other
users to one user. The optimal non-linear dirty paper coding (DPC) can completely
suppress the interference but suffers from implementation issues. Thus, non-linear
precoding techniques attract more attention due to providing good balance between
performance and implementation complexity. The details of mathematical formula-
tions regarding these discussions are in the following chapter.

1.1.2.6. Open-loop and Closed-loop MIMO

In order to perform MIMO communication, a transmitter or a receiver has to know
the characteristics of the channel. The channel information can be either instanta-
neous channel state or its distribution. The former is normally called the channel
state information (CSI) while the latter is referred to as channel distribution infor-
mation (CDI). Depending on the information available at the transmitter and/or
the receiver, MIMO techniques can be either open-loop or closed-loop. In open-loop
setting, only receiver has the knowledge of the channel, whereas a transmitter in
closed-loop also has the knowledge of the channel by receiving the feedback from
the receiver.

1.2. Overview of the Thesis

As mentioned previously, the capacity of single-input single-output systems is well-
established but that of multi-antenna systems. In this thesis, we propose to find the
capacity of MIMO systems under per-antenna power constraint (PAPC) and mul-
tiple power constraints using novel approaches which outperform existing solutions
in the literature. Specifically, our contributions are summarized in the following:
- MIMO capacity under per-antenna power constraint (PAPC): Per-antenna
power constraint (PAPC) is more practical than SPC since each transmit antenna
is connected to a different power amplifier. Despite its importance, the existing
closed-form solution to single-user MIMO systems is not well-studied since the proof
is incomplete, whereas the interior-point-based method for multi-user MIMO is not
computationally efficient. In contrast, we proposed two approaches: The first algo-
rithm is based on fixed-point iteration while the second one is based on alternating
optimization together with successive convex optimization. Two approaches are
provably convergence and have low-complexity compared to the existing solutions.
- MIMO capacity under linear transmit covariance constraint (LTCCs):
In practice, other power constraints can be imposed on a MIMO system in addition
to either SPC or PAPC. Therefore, LTCCs are general enough to include those
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constraints. The current solutions to this important problem can solve this general
problem properly but experience high-complexity. In light of aforementioned study,
our idea is to utilize convex-concave procedure (CCP) and alternating optimization
to arrive at efficient iterative algorithms. Moreover, we also take advantages of the
special structure of the problem in the special case of SPC and PAPC to obtain
analytical solutions. Extensive numerical and analytical results have proved the
effectiveness of the proposed approach.
- Machine learning for computing MIMO capacity: Since an optimal solu-
tion can generate prohibitive complexity for a given channel realization, especially
large-scale MIMO setting in our context, a lower complexity method is thus prefer-
able. In this thesis, we have developed a machine learning approach which is more
advantageous than optimal solutions in terms of complexity. Some initial results on
this research has demonstrated the feasibility of our approach.
The structure of the thesis is as follows:
- Chapter 2 provides a literature survey of MIMO capacity. In particular, we high-
light the importance of the research on PAPC and LTCCs. Then the mathematical
definition of the capacity is applied to formulate the capacity of single-user MIMO
and multi-user MIMO under traditional SPC. Next, we introduce the well-known
water-filling (WF) solution to single-user MIMO with SPC. In this chapter, we also
present the important results of MIMO capacity in broadcast channel (BC) and
multiple access channel (MAC) together with non-linear and linear precoding meth-
ods. In fact, an important relation between BC and MAC, i.e., BC-MAC duality
will be utilized extensively later on in the next chapters. At the end of the chapter,
we discuss the open problems in computing MIMO capacity
- Our proposed approaches to MIMO capacity under PAPC are detailed in Chapter
3. Specifically, we have proposed two low-complexity approaches to the problem
of interest: fixed-point iteration and AO together with SCA. The former can be
adopted directly in broadcast channel (BC), whereas the latter is applied to the
equivalent minimax problem in multiple access channel (MAC). In this regard, the
fixed-point approach is only applicable to SU-MIMO, while the other is applicable
to both SU-MIMO and MU-MIMO. We conclude the chapter by presenting and
analyzing the results of the proposed iterative algorithms.
- Inspired by the approach of AO and SCA in Chapter 3, we have developed this
approach to deal with the general LTCCs in Chapter 4. Similar to that of PAPC, we
transform the considered problem in the BC into an equivalent problem in the MAC
so that AO and CCP can be utilized to solve the obtained problem. In addition
to a general framework for arbitrary power constraints, we have derived analytical
solutions to the special cases of joint SPC and PAPC based on the special structure of
the problem. Furthermore, we have considered both linear and nonlinear precoding
methods for MU-MIMO. The numerical results have demonstrated the effectiveness
of the proposed approach.
- Taking advantages of our proposed approaches, we have done some experiments
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1.3 Publications

regarding machine learning in Chapter 5. In particular, we introduce the funda-
mentals of machine learning and then apply them to estimate the maximum sum
rate of successive zero-forcing dirty paper coding under PAPC. More specifically,
the optimal and suboptimal solution are derived based on AO and machine learn-
ing, respectively. Since our solution relies on linear regressions, its complexity is
extremely low in comparison with the optimal approach. Some interesting results
have shed some light on applications of machine learning to similar problems.
- In Chapter 6, we conclude the thesis and suggest some future research directions.
Particularly, we discuss about possible applications of the proposed approaches.
For example, we can customize the AO and CCP approach to compute the global
optimum secrecy rate of a MIMO system, which is an important problem in physical
layer security. Moreover, the AO and CCP-based approach can be applicable to
other minimax problem in general and we can apply the ML-based approach to
solve similar problems.

1.3. Publications

Our research on MIMO capacity under multiple power constraints has resulted in a
number of papers on conferences and journals below:
Journal papers

[J1] T. M. Pham, and R. Farrell, and J. Dooley, and E. Dutkiewicz, and D. N.
Nguyen, and L.-N. Tran, “Efficient zero-forcing precoder design for weighted
sum-rate maximization with per-antenna power constraint,” IEEE Trans. Veh.
Technol., vol. 67, no. 4, pp. 3640–3645, Apr. 2018

[J2] T. M. Pham, and R. Farrell, and L.-N. Tran, “Revisiting the MIMO capacity
with per-antenna power constraint: Fixed-point iteration and alternating op-
timization,” IEEE Trans. Wireless Commun., vol. 18, no. 1, pp. 388–401, Jan
2019

[J3] T. M. Pham, R. Farrell, H. Claussen, M. F. Flanagan, and L.-N. Tran, “On the
MIMO capacity under multiple linear transmit covariance constraints,” IEEE
Trans. Signal Process., 2019 submitted

Conference papers

[C1] T. M. Pham, and R. Farrell, and L.-N. Tran, “Low-complexity approaches
for MIMO capacity with per-antenna power constraint,” in Proc. IEEE VTC-
Spring, Jun. 2017, pp. 1–7

[C2] ——, “Alternating optimization for capacity region of Gaussian MIMO broad-
cast channels with per-antenna power constraint,” in Proc. IEEE VTC-Spring,
Jun. 2017, pp. 1–6
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[C3] T. M. Pham, R. Farrell, H. Claussen, M. F. Flanagan, and L.-N. Tran, “Weighted
sum rate maximization for zero-forcing methods with general linear covariance
constraints,” in Proc. IEEE ICC, May 2018, pp. 1–6

[C4] ——, “On the MIMO capacity with multiple linear transmit covariance con-
straints,” in Proc. IEEE VTC-Spring, Jun. 2018, pp. 1–6

[C5] T. M. Pham, R. Farrell, and L.-N. Tran, “On estimating maximum sum rate
of MIMO systems with successive zero-forcing dirty paper coding and per-
antenna power constraint,” in Proc. IEEE PIMRC, Sep. 2019

In particular, part of Chapter 2 and Chapter 5 has been appeared in the third
journal paper and the fifth conference paper, respectively. Additionally, most of the
content in Chapter 3 is already in the first and the second journal paper while that
of Chapter 4 has been appeared in the third journal paper.

1.4. Notation

Standard notations are used in this thesis. Bold lower and upper case letters rep-
resent vectors and matrices, respectively. IN defines an identity matrix of size N ; I
and 0 define identity and zero matrices respectively, of which the size can be easily
inferred from the context. CM×N denotes the space of M × N complex matrices;
H†/HH and HT are Hermitian and ordinary transpose of H, respectively; Hi,j is
the (i, j)-entry of H; rank(H) is the rank of H; N (H) is the null space of H; |H| is
the determinant of H; λmax(H) is the maximum eigenvalue of a Hermitian matrix
H; diag(x) denotes the diagonal matrix having diagonal entries matching the vector
x; diag(H), where H is a square matrix, is the vector of diagonal elements of H.
The notation x � y denotes the Hadamard product (i.e., the entrywise product)
of x and y. The notation A � (�)B means A − B is positive semidefinite (defi-
nite). Furthermore, we denote the expected value of a random variable by E[.], and
[x]+ = max(x, 0), 0n and 1n to be a row vector of size n with all zeros and ones,
respectively. The Euclidean and Frobenius norms are denoted by || · ||2 and || · ||F ,
respectively. The ith unit vector (i.e., its ith entry is equal to one and all other
entries are zero) is denoted by ei.
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Chapter 2

Background

This chapter provides the background for the research in this thesis. We first present
a literature survey of computing MIMO capacity in Section 2.1 followed by the
definition of capacity in Section 2.2. In the Section 2.3, we formulate the capacity of
single-user MIMO and multi-user MIMO under conventional sum power constraint
and point out some open problems related to capacity in Section 2.4. Most of the
content of Section 2.1 has been published in [2] under © 2018 IEEE and [13].

2.1. Literature Survey of Computing MIMO Capacity

From a system design perspective, one of the most fundamental problems is to
compute the capacity of the system of interest. For a single-user MIMO (SU-MIMO)
channel, pioneer studies proved that the capacity can be achieved by Gaussian input
signaling [6, 7]. For multi-user MIMO (MU-MIMO) scenarios, the seminal work
of [8] showed that dirty-paper coding (DPC) in fact achieves the entire capacity
region of Gaussian MIMO broadcast channel (BC). Since finding the capacity of
MIMO channels is computationally expensive in general, one is also interested in
near-capacity achieving transmission strategies such as successive zero-forcing DPC
(SZFDPC) [9, 19] or zero-forcing (ZF) [20, 21], for which the achievable rate region
is much easier to characterize.
The capacity of MIMO systems is investigated along with a certain type of constraint
on the input covariance matrices. To this end, a majority of the related literature
assumes a sum power constraint (SPC) as it usually leads to efficiently computational
algorithms. In particular, under perfect channel state information (CSI) at both
transmitter and receiver, the capacity of a SU-MIMO channel is found using the
closed-form water-filling (WF) algorithm [6, 7]. In [22], Yu et al. presented an
iterative WF (IWF) algorithm to compute the sum capacity for a Gaussian vector
multiple access channel (MAC). In [23], Jindal et al. proposed sum power IWF to
determine the sum capacity of Gaussian MIMO BCs by exploiting the MAC-BC
duality. The entire capacity region of MIMO-BCs with a SPC was characterized
in [24,25], using conjugate gradient projection (CGP)- and pre-conditioned gradient
projection-based approaches, respectively.
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In reality, each antenna is associated with a separate power amplifier, each having
a different dynamic range. As such, per-antenna power constraint (PAPC) is of
more practical importance. If a sum power constraint is considered, some antennas
may be allocated a power level that is beyond their dynamic range of the associated
power amplifier, depending on fading situations. This will result in nonlinear distor-
tion that has a detrimental impact on the whole system. In [8], it was shown that
DPC still achieves the full capacity region of the MIMO BC under PAPC. How-
ever, finding the DPC region with PAPC is more numerically difficult than with
a SPC. In fact, no closed-form design has been reported for the computation of
the capacity region of the MIMO BC subject to PAPC. For this reason, numerous
research endeavors have been made to understand performance limits of various sub-
optimal transmission strategies such as zero-forcing (ZF) beamforming, minimum
mean square error (MMSE), and SZFDPC [12,20,21,26–30].

The capacity of a SU-MIMO channel with PAPC was studied in [1,3]. In particular,
the author in [1,3] proposed an iterative mode-dropping algorithm based on closed-
form expressions to find the optimal input covariance. As shown in the next chapter,
this algorithm still requires high computational complexity and its convergence proof
is not complete. Also, the mode-dropping algorithm assumes a full-rank channel
which hardly holds true in practice. To the best of our knowledge, the only attempt
to characterize the entire capacity region of the MIMO BC subject to PAPC was
made in [10]. Specifically, the authors established a modified duality between the
MAC and BC and transformed the input optimization problem in the BC into
a minimax optimization problem in the corresponding MAC. Then the resulting
program is solved by a standard barrier interior-point routine. Similarly, Tran et al.
also proposed customized interior-point methods to study the achievable rate region
of SZFDPC in [29, 30]. However, the complexity of such second order optimization
methods increases quadratically with the number of input dimensions, which is not
practically appealing for large-scale antenna systems (also known as massive MIMO).

In practice, other types of power constraint can also be imposed on a MIMO system,
not necessarily limited to SPC or PAPC separately. For example, optimal trans-
mit covariance for MISO channels with joint SPC and PAPC was recently studied
in [31,32]. In the context of cognitive networks, interference temperature constraints
can be imposed on a secondary user (SU) to limit the interference generated at a
primary user (PU) [33–35]. All of these constraints can be generally modeled as lin-
ear transmit covariance constraints (LTCCs) [33]. More recent research efforts have
been made to characterize the capacity of Gaussian MIMO channels with joint SPC
and PAPC [31, 32]. However, the work of [31] is only applicable to MISO systems,
while that of [32] partially addresses general MIMO channels. For the general form
of LTCCs, interior-point and subgradient methods were presented in [33,34] to com-
pute optimal transmit covariance matrices. However, it was demonstrated in [15]
that these high-complexity methods are not useful for massive MIMO systems.
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2.2 Mutual Information and Definition of Capacity

2.2. Mutual Information and Definition of Capacity

Consider a discrete random variable X ∈ {x1, x2, . . .}. The information I(xi) asso-
ciated with the event X = xi is given by

I(xi) = − log p(xi) (2.1)

where p(xi) denotes the probability X = xi.
From the information theory, the average information denotes the entropy H(X) as
follows

H(X) = EX(I(X)) = −
∑
i

pX(xi) log pX(xi). (2.2)

The entropy in fact measures the uncertainty of a random variable. The conditional
entropy H(X|Y ) is defined as follows:

H(X|Y ) = −
∑
x,y

p(x, y) log pX,Y (y|x). (2.3)

Recall the generic digital communication system in Chapter 1, the encoder trans-
forms the information into a finite set of symbols {x1, x2, · · · } and pass those en-
coded symbols through the channel and received a set of symbols {y1, y2, · · · }. Then
the amount of information about the occurrence of an event X = xi given by the
occurrence of the event Y = yi is called the mutual information which is

I(xi; yi) = log(p(xi|yi)
p(xi)

). (2.4)

The average mutual information is then given by

I(X;Y ) = Ex,y(I(x; y)) =
∑
x,y

p(x, y) log(p(x|y)
p(x) ). (2.5)

After some manipulations, we arrive at the following result

I(X;Y ) = H(X)−H(X|Y ). (2.6)

The capacity C of a single-input single-output system is defined as

C = max
{pX(x)}

I(X;Y ) (2.7)

where 0 ≤ pX(x) ≤ 1 and ∑
x
pX(x) = 1. In other words, the capacity of a communi-

cation system is the maximum amount of mutual information. Herein, we use this
definition to derive the capacity of single-user and multi-user MIMO capacity in
the following. Note that we assume that the channel state information is perfectly
known at both the transmitter and receiver.
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2.3. Single-user MIMO and Multi-user MIMO
Capacity

2.3.1. Single-user MIMO Capacity

In this section, we develop the capacity of single-user MIMO based on the definition
of capacity mentioned above. In particular, we examine a fundamental scenario
where a transmitter has N transmit antennas and a receiver has M receive anten-
nas. The channel matrix H consists a set of channel response hij between transmit
antenna j to receive antenna i. The received signal is given by

y = Hs + z (2.8)

where s and z are the transmitted vector and additive white circularly symmetric
complex Gaussian noise vector. Extending the definition of the capacity in (2.7) to
a MIMO system, we obtain

C = max
{pS(s)}

I(S;Y ) = max
{pS(s)}

{H(y)−H(y|s)}. (2.9)

Since Hs is fixed for the given channel matrix, then the uncertainty is caused by
the noise i.e., H(y|s) = H(z). Then (2.9) can be simplified to the following

C = max
{pS(s)}

{H(y)−H(z)}. (2.10)

Expanding two terms in (2.10) results in the formula for MIMO capacity [6]

C = log |I + 1
ρ2 HSH†| (2.11)

where S = E(ss†) is the input covariance matrix, ρ2 is the noise variance. Since the
noise is usually normalized, (2.11) is therefore reduced to

C = log |I + HSH†|. (2.12)

When the transmitter is assumed to be subject to an average power constraint P ,
i.e., tr(S) ≤ P. , the capacity is the solution to the following problem

maximize
S�0

log |I + HSH†| (2.13)

subject to tr(S) ≤ P.

A simple method to calculate the capacity is to extract the channel into multiple
independent Additive White Gaussian Noise (AWGN) channels so that the capacity
is the sum of AWGN channel capacity. The singular value decomposition (SVD)
allows us to rewrite H as H = UΣV† where U,V are unitary matrices and Σ
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is a diagonal matrix with non-negative descending-order singular value i.e., σ1 ≥
σ2 ≥ . . . ≥ σrHwhere rH ≤ min(N,M) is called the rank of the channel matrix H.
The rank of a matrix determines the number of independent streams which can be
multiplexed simultaneously. Thus, we can transform the system into an equivalent
system by introducing new variables

s = Vs̃ (2.14)
y = Uỹ (2.15)

thus

Uỹ = (UΣV†)Vs̃ + z (2.16)

or equivalently

ỹ = Σs̃ + U†z = Σs̃ + z̃. (2.17)

Since E(ss†) = E(̃ss̃†) and E(zz†) = E(z̃z̃†), the power constraint of the equivalent
system is the same i.e., tr(S̃) ≤ P . The output can be extracted to parallel channels
as follows

ỹi = σis̃i + z̃i, i = 1, 2, . . . , rH . (2.18)

The water-filling algorithm allocates the power to rH channels such that
rH∑
i=1

Pi =
rH∑
i=1

(γ − 1
σ2
i

)+ = P (2.19)

where γ is called the power level. Based on Eq. (1.2), the capacity of these multiple
AGWN channels is given by

C =
rH∑
i=1

log(1 + Piσ
2
i ). (2.20)

The principle of the water-filling is illustrated in the Fig. 2.1. Considering different
containers for different eigenvalues, the water is first poured to the first largest
eigenvalues, then the second largest one and so on until the water i.e., power is fully
assigned.
Remark:
- At low SNR regime, i.e., γ � 1

σ2
i
, thus the whole power is assigned to the largest

eigenvalue channel.
- At high SNR regime, i.e., γ � 1

σ2
i
, the power assigned to each channel is nearly

constant, i.e., Pi = P
rH

and an approximate capacity is given below

C '
rH∑
i=1

log(1 + P

rH
σ2
i ). (2.21)

' rH logP. (2.22)
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From the equation above, we can easily see that the capacity of a MIMO system is
approximately rH times larger than that of AWGN channel at high SNR. The rank
of the channel rH is in fact the multiplexing gain which we have mentioned in the
first section of Chapter 1.

γ

1=σ2

1

1=σ2

2

1=σ2

3

1=σ2

4

1=σ2

5

P1

P2

P3

P4 = 0

P5 = 0

Figure 2.1.: Water-filling principle. The water is poured until fully assigned.

2.3.2. Capacity Region of Multi-user MIMO

The most important results of the capacity of multi-user MIMO Gaussian channels
are summarized in this section. Specifically, we consider two basic channel models:
Broadcast channel (BC) and Multiple-access channel (MAC) (see Fig. 2.2). In BC,
a base station sends messages to many users. On the contrary, many users send
messages to a base station in MAC scenario. In the context of cellular networks,
the former is called the downlink while the latter is called the uplink. Hence, we use
interchangeably BC and downlink, MAC and uplink. Recall that the capacity of a
single-user MIMO is a number due to only one rate. However, in multi-user MIMO,
the capacity is a region (see Fig. 2.3) since there are different rates associated with
each users.
Note that in single-user MIMO, the capacity gain increase linearly with the rank
of the channel matrix i.e., min(N,M) where N and M are the number of transmit
and receive antennas, respectively, thus multiple antennas can be deployed at the
transmitter and receiver to achieve the gain. However, in multi-user MIMO, the sum
rate increases linearly with min(N,MK) where K is the number of users. Therefore,
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it is sufficient to deploy a large number of antennas at the base station to serve a
large number of users equipped with one or a few receive antennas.
It should be noted that each user in the MAC has independent data stream and
is therefore associated with a different data rate. As a result, the capacity region
is K-dimension. Similarly, the transmitter in the BC has an independent message
for each user and thus the capacity region is also K-dimension. The fundamental
results on MAC and BC associated with SPC are summarized in the following.

2.3.2.1. Broadcast Channel

Let s be the transmitted signal from the base station and yk denotes the received
signal at user k and zk ∼ N (0, I) is the noise signal with circularly symmetric
complex Gaussian with an identity covariance matrix for each user. The received
signal at a user k is given by

yk = Hks + zk (2.23)

In general, the capacity region of the BC is unknown due to the difficulties of
interference cancellation at the receivers. However, by pre-subtract multi-user in-
terference at the transmitter, dirty paper coding (DPC) is proved to achieve the
capacity region. In this technique, the rate is defined as

Rk = log
|Hk(

∑
i≥k

Si)H†k + I|

|Hk(
∑
i>k

Si)H†k + I|
. (2.24)

It is worth mentioning that the rate equations are neither concave or convex, thus
problem becomes nontrivial problem. In reality, the problem is transformed into an
equivalent convex problem so that standard optimization methods can be utilized. In
particular, by establishing the duality relationship between the BC and the MAC,
the original problem is reformulated to a convex optimization problem in MAC
domain. This technique will be detailed in the BC-MAC duality below.

2.3.2.2. Multiple Access Channel

Let s̄k be the transmitted signal associated with user k and y denotes the received
signal and z̄ ∼ N (0, I) is the noise signal with circularly symmetric complex Gaus-
sian with an identity covariance matrix. The received signal at the base station is
given by

y = [H†1,H†2, . . . ,H†K ]


s̄1
s̄2
· · ·
s̄K

+ z̄. (2.25)
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Each user is subject to an individual power constraint which implies tr(S̄k) ≤ Pk or
K∑
k=1

tr(S̄k) ≤ P .

2.3.2.3. BC-MAC Duality

Intuitively, the MAC can be achieved from the BC by reversing the arrow as shown
in Fig. 2.2a. In fact, a K-user BC and MAC are dual if the following conditions
hold [36, p.491]:

1. The channel response is the same for the uplink and the downlink.
2. The noise statistics of the channel in the downlink is the same as that of the

uplink.
3. The sum of individual power constraints in the uplink is the power constraint

in the downlink.
The duality states that there exist covariance matrices {S̄k} in MAC such that
K∑
k=1

tr(S̄k) =
K∑
k=1

tr(Sk), and thus R̄k = Rk, or in other words

log
|∑
i≤k

H†i S̄iHi + I|

|∑
i<k

H†i S̄iHi + I|
= log

|Hk(
∑
i≥k

Si)H†k + I|

|Hk(
∑
i>k

Si)H†k + I|
. (2.26)

In fact, the duality implies that the DPC region of the BC is equal to the capacity
region of the MAC. In particular, for a set of weights 0 ≤ µ1 ≤ µ2 ≤ . . . ≤ µK , the
equivalent optimization problem in the MAC is

maximize
{S̄k}∈S̄

K∑
k=1

µkR̄k (2.27)

or equivalently [37]

maximize
{S̄k}�0

K∑
k=1

(µk − µk−1) log |
K∑
i=k

H†i S̄iHi + I| (2.28)

subject to
K∑
k=1

tr(S̄k) ≤ P. (2.29)

It is easy to see that the equivalent problem in the MAC is convex, thus can be
solved by traditional optimization techniques. If µ1 = µ2 = . . . = µK = 1, the
problem reduces to sum rate maximization (SRMax) given by

maximize
{S̄k}�0

K∑
k=1

log |
K∑
i=k

H†i S̄iHi + I| (2.30)

subject to
K∑
k=1

tr(S̄k) ≤ P. (2.31)
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2.3.2.4. Near-optimal Precoding Methods

The dirty paper coding (DPC) technique has been proved to achieve the capacity
of a Gaussian multiple-input multiple-output broadcast channel (BC) [8]. However,
such a nonlinear coding strategy is not appealing to practical applications due to
complex processing in both encoders and decoders. To this point, linear precoding
methods such as zero-forcing (ZF) and successive zero-forcing dirty paper coding
(SZFDPC) are promising alternatives since they provide good trade-off between
performance and implementation complexity.
Consider a K-user single-cell MIMO BC where the base station (BS) and each user
have N and Mk antennas, respectively. Let Hk ∈ CMk×N be the channel matrix for
user k. Then, the received signal at user k is given by

yk = Hkxk +
∑

j 6=k Hkxj + zk (2.32)

where xk ∈ CN×1 is the downlink signal for the kth user and zk ~ CN (0, I) is the
background noise. For linear precoding xk can be expressed as xk = Rksk, where
Rk ∈ CN×Mk and sk ∈ CMk×1 denote the precoding matrix and information-bearing
signal, respectively. We also assume that sk consists of independent zero-mean and
unit energy symbols, i.e., sk ∼ CN (0, I). In case of ZF precoding, the inter-user
interference to user k is suppressed by designing Rk such that HjRk = 0 for all
j 6= k. Thus, the weighted sum rate maximization (WSRMax) problem for ZF
precoding with SPC is formulated as

maximize
{Sk�0}

∑K

k=1wk log |I + HkSkH†k| (2.33a)

subject to HjSkH†j = 0, ∀j 6= k (2.33b)∑K

k=1 tr(Sk) ≤ P, (2.33c)

where Sk = E[xkx†k] = RkR†k is the input covariance matrix for user k, P is the
power constraint of the system, and wk ≥ 0 is the weight of user k.

2.4. Open Problems in Computing MIMO Capacity

The discussions so far have showed the most important results and formulations in
MIMO systems under perfect channel assumption and sum power constraint. In the
following, we present some of the challenges in MIMO systems, more specifically,
the MIMO capacity:

1. Efficient algorithms for large-scale MIMO systems: Capacity under assump-
tion of perfect channel state information is usually considered with tradition
sum power constraint, and recently PAPC and LTCCs. Nevertheless, exist-
ing solutions in the literature rely on general high-complexity methods such as
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Figure 2.2.: Broadcast channel and Multiple-access channel.

interior-point method, which are in turn inapplicable to large-scale MIMO sys-
tems. Thus, the efficient algorithms for MIMO, especially large-scale MIMO,
are still open problems.

2. Channel distribution information : While the capacity under the perfect chan-
nel information assumption provides useful insight, the study of the channel
capacity based on channel distribution is of great practical relevance. More-
over, the channel information can change quickly over time, little results have
been achieved with imperfect CSI or CDI at transmitter or receiver.

3. Non-DPC precoding methods: It is a well-known fact that DPC is optimal
solution to multi-user MIMO but difficult to implement in practice due to its
complexity. Thus, low-complexity precoding methods, which can trade off the
implementation complexity and performance, are of more interest.

The first issue will be discussed in more details in the next chapters, which is the
focus of this thesis. Specifically, Chapter 3 details two approaches to tackle the
problem of computing MIMO capacity under PAPC ranging from single-user MIMO
to multi-user MIMO. The approaches rely on fixed-point iteration and alternating
optimization together with successive convex approximation, thus achieve low com-
plexity. In Chapter 4, the AO approach is extended to compute the MIMO capacity
under a generalized power constraint. The problem formulation, though relying on
the same framework with that of PAPC, has resulted in different solutions in each
iteration. In case of joint SPC and PAPC, analytical solutions have been derived,
thanks to the special structures of the problems. All the aforementioned algorithms
are applicable to large-scale MIMO systems due to their low complexity. In fact,
the third problem is partially addressed in Chapter 3, 4, and 5 in which we have
considered other precoding methods than DPC. More specifically, we have exploited
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the proposed approaches to arrive at efficient solutions to ZF in Chapter 3, 4 and
machine learning-based method for SZFDPC under PAPC in Chapter 5. Taking
advantages of our proposed approaches, we have also outlined some possible meth-
ods to solve the capacity-related problems under imperfect channel estimation in
Chapter 6.
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Chapter 3

MIMO Capacity with Per-antenna
Power Constraint

As mentioned in previous chapters, the majority of the related literature has in-
vestigated the capacity of MIMO systems along with SPC due to its simplicity.
In reality, SPC may result in distortion since some power amplifiers connected to
transmit antennas may be assigned a power level that is beyond their limits. As a
result, PAPC which imposes a power limit to each power amplifier is more practical.
In this chapter, we consider the problems of finding the capacity of various MIMO
settings subject to PAPC, ranging from the SU-MIMO to MIMO BC. The goal is
to arrive at closed-form design for considered problems which are extremely helpful
for analyzing large-scale systems. In particular, our specific contributions include
the following:

• For an SU-MIMO channel we proposed two fast-converging low-complexity
iterative algorithms to compute the optimal input covariance matrices under
PAPC. The first method is based on manipulating the optimality conditions
of the considered problem and fixed-point iteration. The second one relies on
the well-known MAC-BC duality, but the resulting minimax problem is solved
by a novel alternating optimization (AO) algorithm. Specifically, we proposed
to optimize the upper bound of the objective with respect to a coordinate,
eliminating the zigzag effect likely occurring in a pure AO method. Both
proposed methods are provably convergent without any specific assumption on
the channel matrix. Extensive analytical and numerical results are provided
to demonstrate the superior performance of the proposed method, compared
to the mode-dropping algorithm in [1, 3].

• By exploiting the specific structure of the weighted sum rate with ZF and
PAPC, we recruit the AO-based approach to derive an iterative algorithm
whose monotonic convergence is achieved. Since the subproblem at each it-
eration of the proposed method is solved by water-filling-like algorithms, the
proposed method can be extended to deal with the ZF precoder design in
large-scale MIMO systems that are beyond the capability of state-of-the-art
convex solvers.
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3.1 Capacity of SU-MIMO

• We also characterize the entire capacity region of the MIMO BC, which was
studied in [10]. For the MIMO BC, the weighted sum capacity is neither a
concave nor convex function of the covariance matrices. Thus, the MAC-BC
duality is invoked to obtain a convex formulation in the dual MAC, which is
given in the form of a minimax optimization problem [10]. Instead of apply-
ing a standard interior-point method to find a saddle point of the resulting
minimax program, we propose a closed-form design based on AO, similar to
the case of SU-MIMO. The idea is to leverage the fact that the weighted sum
capacity problem under a SPC can be solved by closed-form expressions in
combination with a CGP method [24].

The remainder of the chapter is organized as follows. The capacity of SU-MIMO is
described in Section 3.1 followed by that of ZF in Section 3.2. Section 3.3 derives
closed-form expressions for the capacity region of a Gaussian MIMO BC while Sec-
tion 3.4 presents the numerical results. Finally, we conclude the chapter in Section
3.5. Most of the content and results in this chapter have been published in [2, 12]
under © 2019 and 2018 IEEE.

3.1. Capacity of SU-MIMO

3.1.1. System Model

Consider a SU-MIMO channel, where the transmitter is equipped with N antennas
and the receiver withM antennas. The channel matrix is represented by H ∈ CM×N ,
which is assumed to be known perfectly at the transmitter. The received signal is
given by

y = Hs + z (3.1)

where s is the vector of transmitted symbols of zero-mean, and z ∈ CM×1 is the
background noise with distribution CN (0, IM). Let S = E{ss†} be the input covari-
ance matrix for the transmitted signal. We are interested in finding the capacity of
the above channel with PAPC, which is formulated as

maximize
S�0

log |I + HSH†| (3.2a)

subject to [S]i,i ≤ Pi, i = 1, 2, . . . , N (3.2b)

where Pi is the maximum power constraint on the ith antenna. The problem (3.2)
is a convex program, and can be solved by general-purpose optimization software.1

1More specifically, (3.2) in the current form is in fact a MAXDET program [38] but can be
reformulated as a semidefinite program (SDP) [39, p. 149] for which dedicated solvers are more
available.
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Chapter 3 MIMO Capacity with Per-antenna Power Constraint

However, the computational complexity of these convex solvers, which are usually
based on interior-point methods, increases rapidly with the number of transmit an-
tennas N , thereby not suitable for large-scale MIMO systems. Herein, we propose
two efficient iterative algorithms which will be numerically shown to achieve a su-
perlinear convergence rate.

3.1.2. Proposed Algorithms

3.1.2.1. Fixed-point Iteration

We first note that the Slater condition is satisfied for (3.2) and thus strong duality
holds. Now, consider the partial Lagrangian function of (3.2), which is given by

L(S,Λ) = log |I + HSH†| − tr(Λ(S−P)) (3.3)

where P = diag(P1, P2, . . . , PN), and Λ = diag(λ1, λ2, . . . , λN) is the diagonal matrix
comprising the dual variables for the N power constraints in (3.2b). The dual
objective of (3.2) is

g(Λ) = max
S�0
L(S,Λ). (3.4)

To find the optimal solution of (3.2), we only need to consider the case where
Λ � 0, i.e, λi > 0 for all i, otherwise g(Λ) is unbounded above, which cannot
be the dual optimal of (3.2). This can be easily seen by contradiction. Suppose
λi = 0 for some i. Then create a diagonal matrix S = diag([0, . . . , 0, αi, 0, . . . , 0]T ).
Accordingly, we can check that L(S,Λ) = log(1 + αi

∑M
j=1 |Hj,i|2)→∞ if αi →∞.

Moreover, for a given Λ � 0, we can solve (3.4) efficiently as described next. Let
us denote Ŝ = Λ1/2SΛ1/2. Then finding S to maximize L(S,Λ) amounts to solving
the following problem

maximize
Ŝ�0

log |I + HΛ−1/2ŜΛ−1/2H†| − tr(Ŝ) (3.5)

The above problem admits the solution based on water-filling algorithm with fixed
water level [40]. Explicitly, let VΣV† = Λ−1/2H†HΛ−1/2 be the eigenvalue de-
composition (EVD) of Λ−1/2H†HΛ−1/2, where V ∈ CN×N are unitary matrix,
and Σ ∈ CN×N is a matrix of (possibly zero) eigenvalues in decreasing order of
Λ−1/2H†HΛ−1/2. Let r = rank(HΛ−1/2), and ρi, i = 1, . . . r, be r positive eigenval-
ues of Λ−1/2H†HΛ−1/2. Then, Ŝ can be found as

Ŝ = V diag([1− 1
ρ1

]+, . . . , [1−
1
ρr

]+,0N−r)V†. (3.6)

Consequently, S is given by

S = Λ−1/2V
(
diag([1− 1

ρ1
]+, . . . , [1−

1
ρr

]+,0N−r
)
V†Λ−1/2. (3.7)
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3.1 Capacity of SU-MIMO

As a closer look at (3.7), let s be the largest number such that 1− 1
ρs
> 0. Then, S

is equivalently written as

S = Λ−1/2V diag(1− 1
ρ1
, . . . , 1− 1

ρs
,0N−s)V†Λ−1/2. (3.8)

Since VV† = I, S is further simplified as

S = Λ−1 −Λ−1/2V diag( 1
ρ1
, . . . ,

1
ρs
,1N−s)V†Λ−1/2. (3.9)

We can prove that at the optimum, [S]i,i = Pi for all i = 1, . . . , N . Thus, in order
to find optimal S, we need to find Λ such that[

Λ−1 −Λ−1/2V diag( 1
ρ1
, . . . ,

1
ρs
,1N−s)V†Λ−1/2

]
i,i

= Pi. (3.10)

Since Λ is a diagonal matrix, (3.10) equals to
(
I−

[
V
(
diag( 1

ρ1
, . . . ,

1
ρs
,1N−s

)
V†
]
i,i

)[
Λ−1

]
i,i

= Pi. (3.11)

Let Ψ(λ̃) =
[
V
(
diag( 1

ρ1
, . . . , 1

ρs
,1N−s

)
V†
]
. Then, we can rewrite (3.11) in the form

of a nonlinear system as

λ̃− diag(Ψ(λ̃))� λ̃ = p (3.12)

where λ̃ , [λ−1
1 , λ−1

2 , . . . , λ−1
N ]T , p , [P1, P2, . . . , PN ]T . It is easy to see that

[
Ψ(λ̃)

]
i,i

=
∑N

j=1 ρ̃j|vi,j|
2 (3.13)

where ρ̃j = 1
ρj
< 1 for 1 ≤ j ≤ s, and ρ̃j = 1 for s < j ≤ N . Since ∑N

j=1 |vi,j|2 = 1,
it holds that Ψ(λ̃) ≺ I for all λ̃ � 0, and (3.12) is thus well defined. Unfortunately,
there is no analytical solution to (3.12), mostly due to the fact that Ψ(λ̃) is a
nonlinear function of λ̃. However, (3.12) already suggests a way to find λ̃ iteratively
as follows

λ̃n+1 = p + diag(Ψ(λ̃n))� λ̃n , I(λ̃n). (3.14)

In fact, (3.14) is written in a fixed-point iteration form and its convergence is stated
in the following lemma.

Lemma 3.1. The iterations in (3.14) converge to the unique fixed-point of (3.12),
thereby solving (3.2).
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Chapter 3 MIMO Capacity with Per-antenna Power Constraint

The proof of Lemma 3.1 is provided in Appendix A.1. The key is to show that I(x)
is a standard interference function.

We can see that the fixed-point algorithm based on (3.14) requires iteratively per-
forming EVD of Λ−1/2H†HΛ−1/2. A simple way is to treat it as a new matrix at
each iteration, but this is not computationally efficient. Exploiting the fact that the
channel matrix H remains the same during the whole iterative process, we present
a way to compute the EVD of Λ−1/2H†HΛ−1/2 more efficiently. To this end, let
H = GR, where G is unitary and R is upper triangular, be a QR factorization of
H. Then we can write HΛ−1/2 = (GR)Λ−1/2 = G(RΛ−1/2). Since Λ is diagonal,
RΛ−1/2 is also an upper triangular matrix. Now let RΛ−1/2 = UΣ̄V† be the SVD of
RΛ−1/2. Then the EVD of Λ−1/2H†HΛ−1/2 is simply given by VΣ̄2V†. We remark
that SVD computation for an upper triangular matrix is much cheaper than for a
full matrix [41, p. 492], which leads to a huge reduction in the computation cost of
the proposed algorithm. The proposed algorithm based on fixed-point iteration is
outlined in Algorithm 3.1.

Algorithm 3.1: Proposed Solution Based on Fixed-point Iteration.
Input: Λ0 diagonal matrix of positive elements, ε > 0.

1 Set n := 0 and τ = 1 + ε.
2 Perform QR decomposition of H: H = GR, where G is a unitary matrix and

R is an upper triangular matrix.
3 while τ > ε do
4 Perform the SVD of RΛn

−1/2: RΛn
−1/2 = UnΣ̄nV†n, where Σ̄n is diagonal.

Let ρi = σ2
i , i = 1, . . . , r, where σi is the ith non-zero entry of Σ̄n and

r = rank(RΛ−1/2
n ).

5 Σ̃n := diag([1− ρ−1
1 ]+, ..., [1− ρ−1

r ]+,0N−r).
6 Ψn := Vn(I− Σ̃n)V†n.
7 Sn := Λ−1

n −Λ−1/2
n ΨnΛ−1/2

n .
8 τ = ∑N

i=1[Λn]i,i|[Sn −P|]i,i.
9 λ̃n+1 = p + diag(Ψn)� λ̃n.

10 Λn+1 = (diag λ̃n+1)−1.
11 n := n+ 1.
12 end

Output: Sn.

Remark 1. To solve (3.2), the work of [1, 3] proposed two different algorithms for
two corresponding cases: M ≥ N and M < N . Moreover, these algorithms are
dedicated to full-rank channel matrices. In this regard, Algorithm 3.1 is more uni-
versal in the sense that it is applicable to channel matrices of any dimension and
rank-deficiency. Another issue of the methods presented in [1, 3] is that a complete
analytical proof of their convergence is sill missing. On the contrary, Algorithm 3.1
is provably convergent from an arbitrary starting point λ̃0 > 0. Moreover, ana-
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3.1 Capacity of SU-MIMO

lytical and numerical results demonstrate Algorithm 3.1 achieves lower complexity,
compared to the ones in [1, 3].

3.1.2.2. Alternating Optimization

The second proposed iterative method exploits an interesting result from the duality
between BC and MAC [42, 43]. In fact it is shown that (3.2) is equivalent to the
following minimax optimization problem [10]

min
Q�0

max
S̄�0

log |Q+H†S̄H|
|Q| , f(Q, S̄)

subject to tr(S̄) ≤ P, tr(QP) ≤ P ; Q : diagonal
(3.15)

where P ,
∑N
i=1 Pi. In the above formulation we define log |Q| = −∞ if Q is

singular. For the development of the second proposed method, without loss of
optimality, we assume that ||hi||2 > 0 where hi is the ith column of the channel
matrix H, which is normally the case in practice. If hi happens to be all-zero vector,
the ith transmit antenna can be dropped to obtain a reduced channel matrix, to
which the following proposed method is applied. As a result of Appendix A.2, the
relationship between (3.2) and (3.15) is stated in the following fact.

Fact 1. There exists a saddle point (S̄?,Q?) for (3.15) such that Q? � 0. Denote
UΣV† to be an SVD of H(Q?)−1/2 where Σ is square and diagonal. Then, the
optimal solution S? to (3.2) can be found as

S? = (Q?)−1/2VU†S̄?UV†(Q?)−1/2. (3.16)

The above result is in fact a special case of the MAC-to-BC transformation presented
in [43] when applying to a single user system.
It is trivial to see that the optimality of (3.15) is not affected if the inequalities are
made to be equality. To appreciate the idea behind the second proposed method, let
us define Q , {Q|Q : diagonal,Q � 0, tr(QP) = P} and S = {S̄|S̄�0, tr(S̄) = P}.
Now, (3.15) can be rewritten in an abstract form as

min
Q∈Q

max
S̄∈S

f(Q, S̄). (3.17)

We note that f(Q, S̄) is concave with S̄, and convex with Q, and twice differentiable.
Thus a saddle point (Q∗, S̄∗) exist for (3.17) and it holds that

f(Q∗, S̄) ≤ f(Q∗, S̄∗) ≤ f(Q, S̄∗). (3.18)

We can see that solving (3.15) boils down to finding a saddle point for (3.17). In
fact, this interpretation was used in the interior-point method proposed in [10].
The minimax formulation in (3.17) also suggests a way to find a saddle point by
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Chapter 3 MIMO Capacity with Per-antenna Power Constraint

alternatively optimizing Q and S̄. This method was also mentioned in [10] but note
that it is not provably convergent. In fact we have very often observed that this
pure method will suffer a ping-pong effect, and thus fail to converge to an optimal
solution of (3.17) (cf. Fig. 3.2 for an example on this).
In the second proposed algorithm, we still capitalize on the idea of AO, but do it
in a novel way to ensure strict monotonicity. Suppose at the nth iteration, we have
obtained Qn. Then S̄n is found as the solution to the following problem

maximize log |Qn + H†S̄H|
subject to tr(S̄) = P ; S̄ � 0. (3.19)

It is well known that the above problem admits the solution based on water-filling
algorithm [6,7]. More explicitly, let UnΣnU†n = HQ−1

n H† be the EVD of HQ−1
n H†,

where Σn = diag(ρ1, ρ2, . . . , ρr) is a matrix of non-negative eigenvalues of HQ−1
n H†,

and r = rank(HQ−1/2
n ). Then, S̄n can be found as

S̄n = UnΣ̂nU†n (3.20)

where Σ̂n = diag([µ− 1
ρ1

]+, [µ− 1
ρ2

]+, . . . , [µ− 1
ρr

]+) and µ is the water-level, which
is chosen to satisfy the total power constraint

r∑
i=1

[µ− 1
ρi

]+ = P. (3.21)

Note that S̄n in (3.20) is the unique solution to (3.19). To find Qn+1, we invoke the
following inequality, which results from the concavity of the logdet function,

log |Q + H†S̄nH| ≤ log |Φn|+ tr
(
Φ−1
n

(
Q−Qn

))
(3.22)

where Φn = Qn + H†S̄nH. In the second proposed algorithm, Qn+1 is found to
optimize the upper bound of (3.15), i.e., Qn+1 is the solution to the following problem

minimize
Q�0

tr
(
Φ−1
n Q

)
− log |Q|

subject to tr(QP) = P ; Q : diagonal.
(3.23)

We will see shortly that in the second proposed iterative algorithm, Qn � 0 for
all iterations n, and thus Φ−1

n is well defined. Also, it is worth mentioning that
the gradient of the objective in (3.23) with respect to Q is identical to that of the
original objective in (3.15) when Q = Qn. This is essentially to ensure that the
first order optimality conditions of the original problem are preserved even with the
use of an upper bound. To clarify this point let us write the partial derivative of
f(Q, S̄n) with respect to qi as

∂qif(Q, S̄n) = [(Q + H†S̄nH)−1]i,i − q−1
i (3.24)
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The partial derivative of the upper bound with respect to qi obtained at iteration n
of the proposed method is

[Φ−1
n ]i,i − q−1

i = [(Qn + H†S̄nH)−1]i,i − q−1
i (3.25)

It is now clear that the partial derivatives of the original objective and the upper
bound in (23) with respect to any qi are the same when Q = Qn. Thus when the
iterates {(Qn, S̄n)} converge, they will satisfy the KKT conditions of the original
problem, though an upper bound of the objective is minimized.
Before proceeding further we provide a remark regarding the use of the upper bound
in (3.23) for updating Q. First it is a well-known fact that if we simply alternate
optimization of Q and S̄ as done in a pure AO method, then convergence to a
saddle point is not guaranteed as monotonic convergence of the objective is not
achieved. In the second proposed algorithm, the key point is to make the objective
decrease after each cyclic update of Q and S̄. For this purpose we minimize an
upper bound of the objective for updating Q. In fact, this idea is largely inspired
by successive convex approximation (SCA) principle for nonconvex optimization
problems [44]. Roughly speaking, for SCA-based methods, the nonconvex objective
is approximated by a convex upper bound in each iteration, which ensures monotonic
decrease of the sequence of the objectives. However, the main challenge is that
SCA only concerns minimization (or equivalently maximization) problems, while our
considered problem is a minimax program. As such the proof for the convergence
of SCA-based algorithms is not applicable to Algorithm 3.2, as shown in Appendix
A.2.
Since Q in (3.23) is in fact diagonal, i.e., Q = diag(q), we can rewrite (3.23) as

minimize
q≥0

∑N
i=1 φn,iqi − log qi

subject to ∑N
i=1 Piqi = P

(3.26)

where φn,i =
[
Φ−1
n

]
i,i
. Interestingly, the above problem also has a water-filling-like

solution as

qi = 1
φn,i + γPi

> 0 (3.27)

where γ ≥ 0 is the solution of the equation
N∑
i=1

Pi
φn,i + γPi

= P. (3.28)

From (3.27) it is clear that Qn � 0 for all n and thus Φ−1
n exists as mentioned below

(3.23). Further, from the definition of Φn, it holds that φn,i =
[
Φ−1
n

]
i,i
≤
[
Q−1
n

]
i,i
.

As the result, we obtain ∑N
i=1

Pi
φn,i
≥ tr(QnP) = P , where the equality holds since

Qn is the solution to (3.23) in the previous iteration. Note that the left hand
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side of (3.28) is decreasing with γ, and thus (3.28) always has a unique solution,
which can be found efficiently, e.g., by the bisection or Newton method. The second
proposed algorithm based on AO is summarized in Algorithm 3.2. The main point
of Algorithm 3.2 is the use of the inequality in (3.22) to optimize Q for a given
S̄. This step will eliminate the ping-pong effect mentioned above and ensure the
objective sequence is strictly decreasing. The convergence proof of Algorithm 3.2 is
provided in Appendix A.2.

Algorithm 3.2: Proposed Solution Based on Alternating Optimization.
Input: Q0 is feasible to Q, and ε > 0.

1 Initialize n := 0, τ = 1 + ε.
2 while τ > ε do
3 Apply water-filling algorithm (i.e., (3.20) and (3.21)) to compute

S̄n = arg max
S̄∈S

log |Qn + H†S̄H|.

4 For n ≥ 1, let τ = |f(Qn, S̄n)− f(Qn−1, S̄n−1)|.
5 Φ−1

n := (Qn + H†S̄nH)−1.
6 Find Qn+1 = arg min

Q∈Q
tr
(
Φ−1
n Q

)
− log |Q|, using (3.27) and (3.28).

7 n := n+ 1.
8 end

Output: S̄n and use (3.16) to compute optimal S.

We note that the error tolerance τ in line 4 of Algorithm 3.2 is only computed for
n ≥ 1. We remark that line 3 in Algorithm 3.2 involves the EVD of HQ−1

n H†, which
can be computed similarly as done in Algorithm 3.1 to reduce the overall complexity.
Specifically let GR = H be the QR decomposition of H. Next we compute the SVD
of the upper triangular matrix RQ−1/2

n as ŨnΣ̃nṼ†n = RQ−1/2
n . Then the EVD of

HQ−1
n H† is simply given by UnΣnU†n = HQ−1

n H†, where Un = GŨn and Σn = Σ̃2
n.

Moreover, we note that S̄n needs not be computed explicitly as in (3.20) for each
iteration. The reason is that the diagonal elements of Φ−1

n in line 5 can be found
efficiently from the SVD of RQ−1/2

n as shown in the following.

Using the matrix-inversion lemma, we can write Φ−1
n = Q−1/2

n (I+Q−1/2
n H†S̄nHQ−1/2

n )−1

Q−1/2
n = Q−1/2

n (I + ṼnΣ̂nṼ†n)−1Q−1/2
n , where the latter equality holds due to (3.20).

Now let Σ̇n be the diagonal matrix containing all strictly positive entries of Σ̂n, and
V̇n be the corresponding singular vectors. Then we can write (I + ṼnΣ̂nṼ†n)−1 =
(I + V̇nΣ̇nV̇†n)−1 (a)= I − V̇n

(
Σ̇−1
n + V̇†nV̇n

)−1
V̇†n

(b)= I − V̇n

(
Σ̇−1
n + I

)−1
V̇†n, where

(a) is due to the matrix inversion lemma, and (b) holds true since V̇†nV̇n = I. In
summary, we have Φ−1

n = Q−1
n −Q−1/2

n V̇n

(
Σ̇−1
n + I

)−1
V̇†nQ−1/2

n . Since Σ̇−1
n + I is

diagonal, its inversion can be computed easily. It is also clear that, to compute Φ−1
n ,

what we need is only Σ̃n and Ṽn from the SVD of RQ−1/2
n .
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3.1.3. Complexity Analysis

In this section, we analyze the complexity of the proposed algorithms in the pre-
ceding section, counted as the number of flops. Although flop counting is a crude
way to measure the actual computational complexity, it somewhat captures the
order of the computation load. To this end we first assume M ≥ N (i.e, more re-
ceive than transmit antennas) and summarize the relevant results presented in [41]
and [45] as follows. QR decomposition of an M × N matrix using Householder
transformation requires 2N2(M−N/3) flops for only R, and 4M2N−2MN2 + 2

3N
3

flops for both R and Q. The computation of SVD of a full M × N matrix needs
4M2N + 8MN2 + 9N3 flops for (Σ,V,U), 4MN2 + 8N3 flops for (Σ,V), and
4M2N − 8MN2 flops for (Σ,U) while that of an upper triangular matrix requires
4M2N + 22N3, 2M2N + 11N3, 4M2N + 13N3, respectively. The number of flops
for the water-filling algorithm with N eigenmodes is 2N2 + 6N . Inversion of an
N × N symmetric matrix requires N3 flops. Note that these flop counts are for a
real matrix. For complex matrices, we simply treat every operation as a complex
multiplication which is equal to 6 real flops [45, 46]. That is, QR decomposition of
an M ×N complex matrix requires 4N2(3M −N) flops.

In the complexity analysis presented in the following, we only consider the main
operations having the most significant complexity and ignore those contributing
negligibly to the overall complexity (e.g., subtraction or addition).

3.1.3.1. Complexity of Algorithm 3.1

Algorithm 3.1 performs a QR decomposition (cf. line 2) at the first iteration and
only R is needed, which requires 4N2(3M − N) flops as explained above. In the
subsequent iterations, Algorithm 3.1 involves an SVD of an upper triangular matrix
(line 4), in which only (Σ,V) needs to be computed. This step takes 6(2MN2 +
11N3) flops. We note that other operations in Algorithm 3.1 have minor complexity,
compared to QR decomposition and SVD, and thus are neglected.

3.1.3.2. Complexity of Algorithm 3.2

To reduce the complexity, Algorithm 3.2 performs a full QR decomposition in the
first iteration, which takes 6(4M2N − 2MN2 + 2

3N
3) flops. Then, the complexity

incurred in line 3 of Algorithm 3.2 is due to finding (Σ̃n, Ṽ†n) in the SVD of the
upper triangular matrix RQ−1/2

n . The flop count of the step is 6(2M2N + 11N3).
The water-filling algorithm to find positive eigenmodes that meet the sum power
constraint needs 6(2N2 + 6N) flops. The complexity of line 5 (i.e., computing the
diagonal elements of Φ−1

n ) and that of line 6 are lower compared to the remaining
steps and thus can be ignored.
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Chapter 3 MIMO Capacity with Per-antenna Power Constraint

3.1.3.3. Complexity of the mode-dropping algorithm in [1, 3]

For comparison purpose we now present the complexity of the so-called mode-
dropping algorithm proposed in [1, 3]. Specifically, this method requires an SVD
of a full M ×N matrix, in the first iteration, for which the flop count is 6(4M2N +
8MN2 +9N3). From the second iteration, the most complex operation of the mode-
dropping algorithm is to compute an EVD which requires 6(4MN2 + 8N3) flops.
Basically, the complexity of the proposed algorithms for the case N > M can be
obtained by simply switching N and M in the above analytical expressions. How-
ever, for the mode-dropping algorithm, two additional matrix inversions need to
be performed, resulting in an increased complexity. The per-iteration complexity
comparison (after the first iteration) is summarized in Table 3.1, where the bold
text refers to the algorithm with the lowest complexity, i.e., Algorithm 3.1 and 3.2.
However, the total complexity of an iterative algorithm heavily depends on the num-
ber of iterations required to converge. This issue is evaluated for various numerical
experiments in Section 3.4.

3.1.3.4. Complexity of interior-point methods

As mentioned earlier, problem (3.2) can be reformulated as an SDP and then solved
by general-purpose optimization packages. These optimization tools are normally
based on primal-dual path-following methods to solve a convex model. However, the
per-iteration complexity of such interior-point solvers is O(N6) [27,47], which is pro-
hibitively high for large-scale MIMO systems. A numerical complexity comparison
is shown in Fig. 3.5 to further demonstrate this point.

Table 3.1.: Per-iteration Complexity Comparison. The table is adapted from Table
I in [2] under © 2019 IEEE.

Algorithms M ≥ N M < N

Mode-dropping [1, 3] 6(4MN2 + 8N3) 6(4NM2 + 8M3)
+12(N −M)3

Algorithm 3.1 6(2MN2 + 11N3) 6(2NM2 + 11M3)
Algorithm 3.2 6(2MN2 + 11N3) 6(2NM2 + 11M3)

3.2. Weighted Sum Rate with ZF

3.2.1. System Model

Consider a K-user MIMO BC where the base station and each user have N and Mk

antennas, respectively. Let Hk be the channel matrix for user k. Then, the received
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3.2 Weighted Sum Rate with ZF

signal at user k is given as

yk = Hksk +
∑

j 6=k Hksj + zk (3.29)

where sk is the downlink signal and zk ~ CN (0, IM) refers to the noise for the kth
user. For linear ZF precoding, we can express sk as sk = Rkxk, where Rk and xk ~
CN (0, IM) denote the precoding matrix and information-bearing signal, respectively.
For user k, the interference from other users in the system is suppressed by designing
Rk such that HjRk = 0 for all j 6= k. The weighted sum rate maximization
(WSRMax) problem for ZF precoding with PAPC is formulated as [48]

maximize
{Xk�0}

∑K
k=1wk log |I + HkXkHH

k |

subject to HjXkHH
j = 0, ∀j 6= k∑K

k=1[Xk]i,i ≤ Pi, i = 1, 2, . . . , N
(3.30)

where Xk = E[sksHk ] = RkRH
k is the input covariance matrix for user k, Pi is the

power constraint on antenna i, and wk is the positive weighting factor assigned
to the kth user. In the above formulation we have omitted the rank constraint
rank(Xk) ≤ Mk but this step does not affect the optimality as proved in [48]. We
also remark that this rank constraint will be automatically satisfied the proposed
solution presented next.

3.2.2. Proposed Algorithm

In this section, we derive an efficient algorithm to solve (3.30) using minimax duality,
AO, and SCA. Assuming that N >

∑
Mk−min{Mk}, let Ȟk be the channel matrix

of all users, except for user k, i.e. Ȟk = [HH
1 , . . .HH

k−1,HH
k+1, . . .HH

K ]H , and Bk be
a basis of the null space of Ȟk. Then (3.30) reduces to the following problem

maximize
{X̃k�0}

∑K
k=1wk log |I + HkBkX̃kBH

k HH
k |

subject to ∑K
k=1[BkX̃kBH

k ]i,i ≤ Pi, i = 1, . . . , N.
(3.31)

For the special case of sum rate maximization (SRMax) problem (i.e., w1 = w2 =
· · ·wK), (3.31) becomes a MAXDET program as mentioned in [21]. We further note
that for this special case, (3.31) can be recast as a semidefinite program. For the
general case of WSRMax problem, the optimization package SDPT3 is a dedicated
solver. However, solving (3.31) by generic convex solvers is not practically appealing
for a large number of antennas N and/or a large number of users K. A closed-
form solution for (3.31) was proposed in [48], but it was found by leveraging the
subgradient method whose convergence rate is typically slow.
To overcome the aforementioned drawbacks, by extending Theorem 2 of [30], we
first transform (3.31) into a minimax problem in the dual MAC as

min
Λ�0

max
{X̄k�0}

∑K
k=1wk log |B

H
k ΛBk+H̃H

k X̄kH̃k|
|BH
k

ΛBk|

subject to ∑K
k=1 tr(X̄k) = P ; tr(ΛP) = P,Λ : diagonal

(3.32)
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Chapter 3 MIMO Capacity with Per-antenna Power Constraint

where H̃k = HkBk. Then the optimal solution X̃∗k of (3.31) is given by

X̃∗k = (BH
k Λ∗Bk)−

1
2 UkVH

k X̄∗kVkUH
k (BH

k Λ∗Bk)−
1
2 (3.33)

where {X̄∗k} and Λ∗ are a saddle-point of (3.32), and UkΣkVH
k is the economy-size

singular value decomposition of (BH
k Λ∗Bk)−1/2H̃H

k . A proof of this transformation
is given in Appendix A.4.
The problem now is to find a saddle-point of (3.32). For a general minimax opti-
mization, one may alternate between minimization and maximization but the con-
vergence of such a method is not guaranteed. A more common approach to tackle
(3.32) is based on Newton’s method, e.g., [10]. However, the complexity of this
method increases rapidly with the problem size. In the sequel, we show that (3.32)
can be solved efficiently by combining AO and SCA to derive closed-form expres-
sions.
Let {X̄n

k} be the optimal value of the following maximization in the nth iteration

max ∑K
k=1wk log |BH

k ΛnBk + H̃H
k X̄kH̃k|

s.t. ∑K
k=1 tr(X̄k) = P ; X̄k � 0, k = 1, . . . , K (3.34)

Note that the above problem admits the water-filling solution which is skipped here
for the sake of brevity.
Now, we turn our attention to the minimization of Λ for given {X̄n

k}. To achieve
monotonic convergence, instead of minimizing the objective of (3.32), we construct
and then minimize an upper bound of it. This step is inspired by the concept of SCA
which has received growing attention recently. To this end, we recall the following
inequality which results from the concavity of the log-determinant function [47, p.
73]

log |BH
k ΛBk + H̃H

k X̄n
kH̃k| ≤ log |Φn

k | tr
(
BkΦ−nk BH

k

(
Λ−Λn

))
(3.35)

where Φn
k , BH

k ΛnBk + H̃H
k X̄n

kH̃k, and Φ−nk ,
(
Φn
k

)−1
. Thus, in the (n + 1)th

iteration of the proposed algorithm, Λn+1 is the solution to the following problem

min ∑K
k=1wk

(
tr
(
BkΦ−nk BH

k Λ
)
− log |BH

k ΛBk|
)

s.t. tr(ΛP) = P,Λ : diagonal; Λ � 0
(3.36)

We remark that the inequality in (4.55) is not entirely new. In fact it has been
appeared in previous studies such as [14,15,49]. Our contributions in this regard are
twofold. Firstly, the use of (4.55) allows us to analytically prove that the proposed
algorithm converges monotonically to a saddle-point of (3.32). Secondly, we show
that (4.56) can be solved by closed-form expressions as follows.
Since Λ is diagonal, (4.56) reduces to the following problem

minimize
λ∈Θ

αTλ−∑K
k=1wk log |BH

k diag(λ)Bk| (3.37)
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3.2 Weighted Sum Rate with ZF

where α = ∑K
k=1wk

(
diag(BkΦ−nk BH

k )
)
and Θ , {pTλ = P ;λ ≥ 0}. From the

above, we observe that (i) Θ is a simplex, and (ii) projection onto a simplex can
be computed by a water-filling-like algorithm as shown shortly. These observations
lead to the proposed gradient projection method to solve (3.37), which is outlined
in Algorithm 3.3.

Algorithm 3.3: The proposed gradient projection algorithm for solving (3.37).
Input: λ0 , m = 0, ε1 > 0, τ1 = 1 + ε1.

1 repeat
2 Calculate the gradient

g̃m = −∇f(λm) = ∑K
k=1wk diag(Bk(BH

k diag(λm)Bk)−1BH
k )−α.

3 Choose an appropriate positive scalar ρm and create λ̃m = λm + ρmg̃m.
4 Project λ̃m onto Θ to obtain λ̄m.
5 Choose appropriate step size νm using the Armijo rule [50] and set

λm+1 = λm + νm(λ̄m − λm).
6 m := m+ 1.
7 until τ1 = |∇f(λm)T (λm+1 − λm)| < ε1;

Output: λm as the optimal solution to (3.37).

In Algorithm 3.3, the subscript m denotes the iteration index. The main operation
of Algorithm 3.3 is the projection of λ̃m onto Θ which can be formulated as

minimize ||λ− λ̃m||2
subject to pTλ = P ;λ ≥ 0. (3.38)

It is easy to see that (3.38) can be solved efficiently by water-filling-like algorithm.
Note that when an equal power constraint is considered, Θ becomes a canonical sim-
plex for which more efficient algorithms for projection are available [51]. Moreover,
Algorithm 3.3 can be easily modified into a conjugate gradient projection method.
The overall algorithm to solve the WSRMax problem for ZF precoding with PAPC
is summarized in Algorithm 3.4, and its convergence proof is provided in the Ap-
pendix. Note that the residual error τ2 is only computed for n ≥ 1.

3.2.3. Complexity Analysis

In this section, we provide the complexity analysis of the proposed algorithm in
terms of the number of flops. The flop count for related operations is taken from
[52] and [45]. For convenience, we assume that all the receivers have the same
number of antennas i.e. Mk = M . To solve the SDP problem for K covariance
matrices of N ×N by the interior-point-based approach (e.g., [21]), the complexity
is O(K3N6) [27, 47]. As explained earlier, Algorithm 3.4 performs the water-filling
algorithm and eigenvalue decomposition to solve (4.54) , which needs K(N − (K −
1)M)3 + K(4(N − (K − 1)M)2M − 8(N − (K − 1)M)M2) flops [45]. To find Λ,
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Chapter 3 MIMO Capacity with Per-antenna Power Constraint

Algorithm 3.4: Proposed algorithm for solving (3.31).
Input: Λ := Λ0 , n := 0, ε2 > 0, τ2 = 1 + ε2

1 repeat
2 Apply the water-filling algorithm to solve (4.54). Denote the optimal

solution by {X̄n
k}.

3 For each k, set Φn
k = (BH

k ΛnBk + H̃H
k X̄n

kH̃k).
4 Find Λn+1 using Algorithm 3.3.
5 n := n+ 1.
6 until τ2 = |f(Λn, X̄n)− f(Λn−1, X̄n−1)| < ε2;

Output: {X̄n
k}Kk=1 and apply the BC-MAC transformation to compute optimal

{X̃n
k}Kk=1.

Algorithm 3.3 requires K(N − (K − 1)M)3 flops for gradient computation (cf. line
2), while the complexity of the projection on a simplex (cf. line 4) and of other
steps is negligible, and therefore is ignored. Thus, the total per-iteration complexity
of Algorithm 3.4 is O(KN3) flops. For the same problem, the subgradient-based
method in [48] has a similar per-iteration complexity. However, the subgradient
method is generally known for slow convergence, and thus potentially results in
higher overall computation time that is investigated in the next section.

3.3. Capacity Region of a Gaussian MIMO BC

In this scenario we compute the capacity region of a MIMO BC. It was proved
in [8] that the capacity region of a Gaussian MIMO BC is achieved by DPC. For a
SPC, this problem was addressed in a number of previous studies [23, 24, 53]. The
related research for PAPC is quite limited. Specifically, the capacity region can be
characterized by solving the following weighted sum rate maximization

maximize
{Sk�0}

∑K
k=1wk log | |I+Hk

∑k

i=1 SiH†k|
|I+Hk

∑k−1
i=1 SiH†k|

subject to ∑K
k=1[Sk]i,i ≤ Pi, ∀i

(3.39)

for different sets of the weights wi. Without loss of generality, we assume that
0 < w1 ≤ w2 ≤ ... ≤ wK and ∑K

k=1wk = 1 in the following. Since (3.39) is
nonconvex at hand, Algorithm 3.1 cannot be extended to solve it. Fortunately, it
can be solved efficiently using the BC-MAC duality and alternating optimization as
shown next. First, by the BC-MAC duality [10], (3.39) is equivalent to

min
Q�0

max
{S̄k�0}

∑K
k=1 ∆k log |Q +∑K

i=k H†i S̄iHi| − wK log |Q|

subject to ∑K
k=1 tr(S̄k) = P, tr(QP) = P,Q : diagonal

(3.40)

where ∆k = wk−wk−1. Before proceeding further we remark for the same problem,
an interior-point algorithm was proposed in [10]. The complexity of such a method
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does not scale favorably with the problem size, compared to our proposed approach
presented in what follows, which is based on closed-form expressions.
Let ({S̄nk},Qn) denote the value of ({S̄k},Q) after n iterations of the proposed
method. In view of AO, {S̄nk} is the solution to the following problem

maximize ∑K
k=1 ∆k log |Q +∑K

i=k H†i S̄iHi|
subject to ∑K

k=1 tr(S̄k) = P ; {S̄k � 0}.
(3.41)

Problem (3.41) can be solved by off-the-shelf convex solvers but it can be solved more
efficiently by a CGP method. The motivation is that projection onto the feasible
set of (3.41) can be reduced to projection onto a canonical simplex, as shown in
Appendix A.3. Thus, a CGP method can be derived to find the optimal solution of
(3.41) (The details are skipped due to the space limitation). We note that similar
approaches were also presented in [24,25].
For the important case of the sum capacity of the MIMO BC, (3.41) becomes

maximize ∑K
k=1 log |Q +∑K

i=k H†i S̄iHi|
subject to ∑K

k=1 tr(S̄k) = P ; {S̄k � 0}.
(3.42)

For the above specific problem, the sum power iterative water-filling algorithm pro-
posed in [23] and dual decomposition based method in [40] are particularly efficient.
We now turn our attention to finding Qn+1, which can be done exactly the same as
for the SU-MIMO case. Specifically, it holds that

log |Q +∑K
i=k H†i S̄ni Hi| ≤ log |Φn

k |+ tr
(
Φ−nk

(
Q−Qn

))
(3.43)

where Φn
k , Qn+∑K

i=k H†i S̄ni Hi. Thus, Qn+1 is the solution to the following problem

minimize ∑K
k=1

∆k

wK
tr
(
Φ−nk Q

)
− log |Q|

subject to tr(QP) = P,Q : diagonal; Q � 0.
(3.44)

We note that the idea of using the upper bound in (3.44) to optimize Q follows
exactly the same as that of Algorithm 3.2. The above problem has the same form
as (3.23), and thus closed-form solution using (3.27) and (3.28) can be applied. The
overall proposed algorithm to solve (3.39) is summarized in Algorithm 3.5. We can
prove the convergence of Algorithm 3.5 using the same lines as those for Algorithm
3.2 and thus the details are omitted due to space limitation. Similar to Algorithm
3.2, τ is only calculated for n ≥ 1.

3.4. Numerical Results
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Chapter 3 MIMO Capacity with Per-antenna Power Constraint

Algorithm 3.5: Proposed algorithm for the computation of the capacity region
of a MIMO BC based on AO.
Input: Q := Q0 diagonal matrix of positive elements, ε > 0 .

1 Initialization: Set n := 0 and τ = 1 + ε.
2 while (τ > ε) do
3 Solve (3.41) and denote the optimal solution by {S̄nk}
4 For n ≥ 1, let τ = |fDPC(Qn, {S̄n})− fDPC(Qn−1, {S̄n−1})|, where fDPC(·)

denotes the objective in (3.40).
5 For each k, compute Φ−nk = (Qn +∑K

i=k H†i S̄ni Hi)−1.
6 Solve (3.44) to find Qn+1.
7 n := n+ 1.
8 end

Output: Use the obtained {S̄nk}Kk=1 and the BC-MAC transformation in [43]
to find the optimal solution to (3.39).

In this section, we numerically evaluate the performance of the proposed algorithms
presented in this chapter. For all iterative algorithms of comparison, we set an error
tolerance of ε = 10−6 as the stopping criterion. The condition number κ is defined as
the ratio between the largest singular value and the smallest one. The initial values
Λ0 and Q0 in the corresponding proposed algorithms are set to the identity matrix
for all simulations, if not mentioned otherwise. Other simulation parameters are
specified for each setup. The codes are executed on a 64-bit desktop that supports
8 Gbyte RAM and Intel CORE i7.

3.4.1. Single-user MIMO

In the first numerical experiment, we demonstrate the convergence rate of Algo-
rithms 3.1 and 3.2, and the mode-dropping algorithm in [1, 3]. In particular we
consider the same channel matrix as given in [1, Eq. (26)] and a total power of 0
dBW. As can be seen in Fig. 3.1, monotonic convergence is not always achieved for
Algorithm 3.1, which is expected for an iterative method based on standard inter-
ference function. For the considered scenario, Algorithm 3.2 converges much faster
than other methods of comparison. It can be implied from the iteration in (3.14)
that Algorithm 3.1 will attain a good convergence rate if all the diagonal entries of
Ψ(λ̃n) are much less than 1 during the whole iterative process, which is likely to
occur if the singular values of H and/or p are relatively large. The same argument
can also be applied to the mode-dropping method. However, this is not the case for
the considered scenario, leading to slower convergence rates for Algorithm 3.1 and
the mode-dropping method, compared to Algorithm 3.2. Further numerical results
on this will be provided in Fig. 3.3.
In Fig. 3.2 we provide an example to show that a pure AO approach may fail to
yield the optimal solution to (3.15) as briefly discussed earlier. The channel matrix
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Figure 3.1.: Convergence comparison of different iterative methods for a point-
to-point MIMO system with N = 2 and M = 2. The channel matrix is taken
from [1]. The figure is adapted from Fig. 1 in [2] under © 2019 IEEE.

is H = [−0.0723 − 0.6116i, 0.2257 − 0.1166i;−0.1707 − 0.0212i, 0.2212 + 0.4439i],
which is generated randomly. The other simulation parameters are the same as
those for Fig. 3.1. The initial value Q0 is set to identity. We can easily see that
the objective returned by the pure AO method is oscillating and not converging to
the optimal one. On the contrary, Algorithm 3.2 always guarantees a monotonically
decreasing objective sequence converging to the optimal solution.

In the next set of numerical experiments we further investigate the convergence
results of the algorithms in comparison. The numbers of transmit and receive an-
tennas are set to N = 2 and M = 4, respectively. In particular, Λ0 in Algorithm
3.1 is generated in the same way as done in the mode-dropping method [1, 3]. Fig.
3.3 plots the average number of iterations as a function of P1/P over 100 randomly
generated channel realizations, and the total transmit power P is specified in the
legends of the figure. In this considered setting, the channel matrix has two sin-
gular values. First, entries of H are generated following the i.i.d. zero mean and
unit variance Gaussian, and then the smaller singular value is scaled accordingly to
achieve a specific value of κ as given in Figs. 3.3a and 3.3b.

As can be seen clearly in Fig. 3.3, the convergence behavior of Algorithm 3.2 is
quite consistent for different settings. On the other hand, Algorithm 3.1 and the
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Figure 3.2.: Illustration of the ping-pong effect of the pure AOmethod, P1/P = 0.5.
The upper part of the figure plots the objective of both methods in comparison
when it is optimized with S̄, while the lower part in gray color plots with Q. The
border line represents the objective of the saddle point. The figure is in [2] under
© 2019 IEEE.

mode-dropping scheme obtain the same convergence rate which is sensitive to κ and
p. In particular, Algorithm 3.1 takes more iterations to converge when the channel
matrix is ill-conditioned (cf. Fig. 3.3b) However, Algorithm 3.1 converges faster for
well-conditioned channel matrix and large p (cf. Fig. 3.3a). We can also see that
the convergence rate of Algorithm 3.1 becomes inferior when one of the power limits
Pi is small. For such a case, one of the diagonal element of Ψ(λ̃n) is very close to
1 for all iterations, making the fixed-point iteration converge slowly. In fact, these
observations agree with what has been explained in Fig. 3.1.

As mentioned earlier, the overall complexity of an iterative algorithm depends on
not only the per-iteration complexity but also the number of iterations that it takes
to terminate. The overall complexity in terms of flop counts of the iterative methods
in case N ≤ M is plotted in Fig. 3.4. As shown in the figure, Algorithm 3.2 has
the lowest overall complexity. The reason is that Algorithm 3.2 has not only low
per-iteration complexity but also (and more importantly) the smallest number of
iterations as analyzed in Fig. 3.3. We also observe that if Algorithm 3.1 and the
mode-dropping method start from the same initial point, the number of iterations to
converge is identical. Thus, Algorithm 3.1 outperforms the mode-dropping method
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when N < M . However, when N = M , the total complexity of Algorithm 3.1 is
6N3(13n+4/3) while that of mode-dropping is 6N3(12n+21) where n is the number
of iterations to converge. For this special case, it is possible that the total complexity
of Algorithm 3.1 can be higher than the mode-dropping algorithm, depending on
the number of iterations (n ≥ 20) and vice versa.
In Fig. 3.5 we benchmark the average run time of proposed algorithms against
interior-point methods. In particular the commercial interior-point-based solver
MOSEK [4] is chosen for this purpose due to its recognized good performance. The
results in Fig. 3.5 are averaged over 1000 channel realizations which are randomly
generated using the i.i.d. channel model. It can be seen clearly that the run time of
MOSEK increases quickly with the number of transmit antennas. This observation
is expected and consistent with the complexity analysis of interior-point methods
presented earlier in Section 3.1.3. On the contrary, other algorithms in comparison
are more scalable, and Algorithms 3.1 and 3.2 still achieve better performance than
the method in [3].

3.4.2. Multi-user MIMO

In the first simulation, we report the average run time for solving (3.31) by several
approaches over 1000 channel realizations. As mentioned earlier, we can use generic
convex solvers to solve (3.31) optimally. Here we compare Algorithm 3.4 to MOSEK
[4] and SDPT3 [54] through the parser YALMIP [55]. In Table 3.2, ‘×’ stands for
either a computer crash or extremely large computation time. Table 3.2 clearly
shows that Algorithm 3.4 requires the lowest computation time. Recall that in the
aforementioned complexity analysis Algorithm 3.4 and [48] have similar per-iteration
complexity order. However, the subgradient-based algorithm needs much more time
to solve (3.31), due to slow convergence rate as illustrated in Fig. 3.1. Off-the-shelf
solvers i.e. MOSEK and SDPT3 work relatively effectively for small N , but fail for
large N . This result can be explained by the fact that interior-point-based solvers
do not scale well with the problem size. Note that our simulation codes are built
on MATLAB environment which is by no means real-time implementation. Thus
the run time reported in Table 3.2 is mainly for relative benchmarking purpose.
Real-time implementation of the proposed algorithm is beyond the scope of the
chapter and is left as future work. However, it is normally expected that embedded
implementation can speed up the efficiency of a MATLAB code by several orders of
magnitude. We further remark that the coherence time in massive MIMO systems
is much larger than that in conventional ones due to the channel hardening effect
[56, 57]. Thus these two facts may indicate good embedded implementation of the
proposed algorithm is likely suitable for real-time massive MIMO applications.
In the following simulation, the number of receive antennas M and the number of
transmit antennas N are fixed to 1 and 128 antennas, respectively. The number of
users K is specified for each setup and the power limit for all antennas is equal to
P/N .
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Table 3.2.: Average run time (seconds) comparison for P = 10 dBW,M = 2, K = 8.
The run time is averaged over 1000 channel realizations. The table is adapted
from Table I in [12] under © 2018 IEEE.

No. of Tx. antennas N 16 32 64 128

SR
M
ax

Algorithm 3.4 0.097 3.84 115.79 175.96
[48] 0.85 610.92 > 1 hr ×

SDPT3 0.32 11.36 × ×
MOSEK 0.23 11.01 > 1 hr ×

W
SR

M
ax Algorithm 3.4 0.10 2.24 92.47 147.18

[48] 1.02 89.27 > 1 hr ×
SDPT3 0.32 7.99 × ×

Taking the advantage that the proposed algorithms have low complexity, in the last
numerical experiment we characterize the capacity region of a massive MIMO system
with PAPC. In particular, we also consider achievable rate region of the well-known
ZF scheme. The purpose is to understand the performance of ZF in comparison with
the capacity achieving coding scheme under some realistic channel models. To this
end we consider a simple urban scenario using WINNER II B1 channel model [58],
where a base station, equipped with N = 128 antennas, is located at the center
of the cell and single-antenna receivers are distributed randomly. The total power
at the BS is P = 46 dBm and each antenna is subject to equal power constraint,
i.e., Pi = P/N for i = 1, 2, . . . , 128. As can be seen clearly in Fig. 3.6, there is a
remarkable gap between the achievable rate region of ZF and the capacity region,
especially when the number of users increases. This basically implies that ZF is
still far from optimal for a practical number of transmit antennas. Our observation
opens research opportunities in the future to strike the balance between optimal
performance by DPC and low-complexity by ZF.

3.5. Summary

We have solved the problem of computing the capacity of MIMO systems under
PAPC. For a SU-MIMO system, two efficient algorithms have been proposed, one
based on fixed point iteration and the other based on the MAC-BC duality together
with AO. Extensive numerical experiments have been provided to demonstrate the
superior performance of the two proposed algorithms over the known methods in
[1, 3] in terms of computational complexity. We have also explored the capacity
of multi-user MIMO systems subject to PAPC. For the optimal precoding scheme
DPC, we have presented a method to compute the full capacity region. Using this
low-complexity method, we have also characterized the capacity region of a single
cell multiuser massive MIMO system subject to PAPC. The numerical results have
demonstrated that the conventional ZF scheme still operates far from the capacity
boundary for a practical number of transmit antennas.
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Figure 3.3.: Average number of iterations required to converge of different iterative
algorithms with N = 2 and M = 4. The figures are adapted from Fig. 3 in [2]
under © 2019 IEEE.
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Chapter 4

MIMO Capacity with Linear
Transmit Covariance Constraints
The well-known fact that SPC can be imposed on a system to satisfy the power
budget or regulations, whereas imposing PAPC is to prevent nonlinear distortions
of power amplifiers associated with each transmit antenna. In fact, other power
constraints can also be imposed on a MIMO system in addition to SPC or PAPC.
For example, interference temperature constraints can be imposed on a secondary
user (SU) to limit the interference generated at a primary user (PU) in a cognitive
radio networks [33–35]. All of aforementioned constraints can be generalized as
linear transmit covariance constraints (LTCCs) [33].
In this chapter we first propose an efficient approach to computing the capacity of
a single-user MIMO (SU-MIMO) system under the most general form of multiple
LTCCs. We then extend the proposed approach to find the capacity of Gaussian
MIMO broadcast channels (BCs). The channel state information is assumed to be
perfectly known at both the transmitter and the receiver(s). To this end, we first
transform the considered problem in the BC into an equivalent minimax problem
in the dual multiple access channel (MAC), generalizing several results on the BC-
MAC duality in the previous studies of [10,33,42]. In fact, a minimax optimization
approach was also considered in [10] but by interior-point algorithms, i.e., finding a
saddle point of the minimax problem by a barrier method. We propose a different
method in this chapter. Specifically, to find a saddle point of the considered minimax
problem, we combine alternating optimization (AO) and concave-convex procedure
(CCP) to arrive at an iterative algorithm, where each iteration is based on closed-
form expressions. Our contributions are summarized as follows:

• For SU-MIMO, by generalizing the BC-MAC duality for an arbitrary number
of LTCCs, we equivalently express the capacity of the BC with multiple LTCCs
as a minimax optimization problem in the dual MAC. The objective of the
minimax problem is a concave-convex function of transmit and noise covariance
matrices, respectively.

• We then propose a closed-form approach to computing a saddle point of the
minimax problem by efficiently combining AO and CCP. The idea is to al-
ternately optimize the transmit and noise covariance matrices following the
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4.1 Capacity of SU-MIMO

general methodology of AO. For minimax problems, the convergence of a pure
AO is not guaranteed in general. The novelty of our proposed method is to
optimize a bound of the objective obtained from the CCP when optimizing
the noise covariance matrix. The proposed algorithm is provably convergent.

• We also propose for the first time an efficient solution to compute the capacity
region of a Gaussian MIMO BC, subject to multiple LTCCs. The proposed
approach is also based on closed-form expressions, and thus outperforms known
solutions relying on either subgradient or interior-point methods in [33,34] in
terms of complexity.

• The approach is also extended to multi-user MIMO channels with ZF methods
under multiple LTCCs, the resulting minimax problem is solved by utilizing
CCP and AO to find the saddle point. Each iteration of the proposed method
can be solved efficiently by water-filling algorithms, leading to its fast conver-
gence rate.

• We provide numerical results on the capacity of large-scale MIMO systems
with multiple LTCCs, which have not been reported previously.

The remainder of the chapter is organized as follows. The capacity of SU-MIMO
with LTCCs is described in Section 4.1 followed by the special case of joint SPC and
PAPC in Section 4.2. Sections 4.3 and 4.4 derive closed-form expressions for the
capacity region of a Gaussian MIMO BC and that of ZF while Section 4.5 presents
the numerical results. Finally, we conclude the chapter in Section 4.6. Most of the
content and results in this chapter have been appeared in [16,17] under © 2018 IEEE
and submitted for publication [13] on IEEE journal.

4.1. Capacity of SU-MIMO

4.1.1. System Model

We consider a SU-MIMOmodel, where the transmitter and the receiver are equipped
with N and M antennas, respectively. In this chapter, we assume that the chan-
nel state information is perfectly known at the transmitter and the receiver. The
received signal is given by

y = Hs + z (4.1)

where H ∈ CM×N is the channel matrix, s ∈ CN×1 is the vector of transmitted
symbols, and z ∈ CM×1 is the background noise with distribution CN (0, IM). Let
S = E[ss†] be the input covariance matrix for the transmitted signal. We are
interested in finding the capacity of the above channel with multiple LTCCs, which
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is formulated as

maximize
S�0

log |I + HSH†| (4.2a)

subject to tr(EiS) ≤ Pi, i = 1, 2, . . . , L (4.2b)

where, for each i = 1, 2, . . . , L, Ei � 0 is a predefined positive semidefinite matrix
and Pi > 0 is the corresponding power constraint. Note that (4.2b) is called general
linear constraints on the transmit covariance and it can include several types of
transmit power constraints as special cases. Some examples are given below:

• If, for some i, Ei is an identity matrix, the resulting constraint (4.2b) becomes
tr(S) ≤ Pi, representing a SPC.

• If, for some i, Ei = diag(ei), the constraint reduces to [S]i,i ≤ Pi, denoting
a maximum power constraint on the ith antenna. In this chapter, a PAPC
means imposing (4.2b) for all antennas.

• If, for some i, Ei = G†G, where G is the effective channel between a SU and a
PU, then the resulting constraint limits the overall interference experienced by
the PU [59,60]. More specifically, in this situation, the transmitter of the con-
sidered MIMO system is assumed to be a SU in the context of cognitive radio
networks. Consequently, the transmitter introduces an interference term hav-
ing a covariance matrix GSG†. To reduce the interference that the transmitter
causes to the PU, we may impose a constraint tr(GSG†) = tr(SEi) ≤ Pi [59].
Intuitively, we wish to limit the total interference power that the SU can cause
to the PU. In the remainder of this chapter, we will refer to this type of con-
straint as an interference power constraint.

Let S be the feasible set of (4.2), i.e., S = {S|S � 0, tr(EiS) ≤ Pi, i = 1, 2, . . . , L}.
In this chapter we assume that Ei’s are introduced in such a way that the feasible
set S is compact, and thus (4.2) is solvable. We further assume that for any subset
I ⊂ {1, 2, . . . , L} such that the matrix E = ∑

i∈I Ei is singular, then N (E) is not
contained in N (H). We detail this assumption as follows.

• If S includes Ei = diag(ei) (i.e. the PAPC for the ith antenna), then the
above assumption requires that the ith column of H is not an all zero-vector.
That is, if all PAPCs are considered, then each of the columns of H is not an
all-zero vector.

• If S also contains an interference power constraint Ei = G†G, where G is
the effective channel as mentioned above and rank(G) < N , then we further
require that N (Ei) = N (G) is not contained in N (H). Note that N (G) ⊂
N (H) if and only if there exists a matrix C such that H = CG. Considering
the random nature of H and G, it happens almost surely that N (G) is not
contained in N (H).

The achievability of (4.2) is stated in the proposition below.
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Proposition 4.1. The capacity of a MIMO system with multiple LTCCs given in
(4.2) can be achieved by a Gaussian distributed input.

Proof. See Appendix B.1.

We can pose (4.2) as a semidefinite program (SDP) and then use an off-the-shelf
SDP optimization software to find the optimal transmit covariance. However, the
complexity of such a method increases dramatically with the problem size, and thus
is not suitable for large-scale MIMO systems. In the following we propose an efficient
solution for solving (4.2) by closed-form expressions.

4.1.2. Algorithm Description

The proposed method for solving (4.2) is inspired by the one presented in [2]. In
order that the current chapter is self-contained, we briefly describe the main steps
of the proposed methods and refer the interested readers to [2] for further details.
The idea is to transform (4.2) in the BC into an equivalent minimax problem in
the MAC for which an efficient algorithm is derived. First we note that the Slater
condition holds for (4.2) due to the fact that Pi > 0 for all i. As a result, the
duality gap is zero and (4.2) can be optimally solved in the dual domain. In this
regard, let us denote by q = [q1, q2, . . . , qL]T the vector of the Lagrange multipliers
for the constraints (4.2b) and let p = [P1, P2, . . . , PL]T be the corresponding power
constraints. The proposed algorithm is based on the following theorem.

Theorem 4.1. The Lagrangian dual problem of (4.2) is equivalent to the following
minimax problem

min
q≥0

max
S̄�0

log |
∑L

i=1 qiEi+H†S̄H|
|
∑L

i=1 qiEi|
, f(q, S̄)

subject to tr(S̄) ≤ P ; pTq ≤ P ;∑L
i=1 qiEi � 0

(4.3)

where P = ∑L
i=1 Pi.

Proof. See Appendix B.2.

We remark that the above result is in fact a generalization of several results for
LTCCs presented in previous studies [10, 33, 42]. Without loss of optimality, the
inequalities of (4.3) can be replaced with equalities. Let us define Q , {q|q ≥
0,pTq = P,

∑L
i=1 qiEi � 0} and S̄ = {S̄|S̄ � 0, tr(S̄) = P}, and note that f(q, S̄)

is concave with S̄, and convex with q, and twice differentiable. Thus a saddle point
(q∗, S̄∗) exists for the minimax problem of (4.3) and it holds that

f(q∗, S̄) ≤ f(q∗, S̄∗) ≤ f(q, S̄∗). (4.4)
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For this general minimax problem, pure AO which simply alternates maximization
and minimization at each step is not guaranteed to converge [2, 10]. On the other
hand, interior-point methods are possible but their complexity increases rapidly with
the problem size, and thus they are not attractive for large-scale MIMO systems [15].

In this chapter we propose an iterative method that combines AO and CCP to solve
(4.3) efficiently. The proposed method can be summarized as follows:

• For a given q, we maximize f(q, S̄) with respect to S̄, which can be solved
efficiently by the classical water-filling algorithm.

• For a given S̄, we minimize a convex upper bound of f(q, S̄) which is obtained
from the CCP. The novelty of the proposed method lies in the use of a convex
upper bound, which is proved to generate a decreasing sequence of objective
values. This method avoids fluctuations which occur in a pure AO algorithm,
and thus convergence is guaranteed.

We remark that the proposed method is entirely different from the alternating direc-
tion method of multipliers (ADMM) which is widely used in the related literature.
Firstly, no augmented Lagrangian function is involved. Secondly, the dual variable
update in the ADMM uses a step size equal to the parameter associated with the
augmented Lagrangian function, while the q-minimization in Algorithm 4.2 (which
can be viewed as the dual update to some extent) is based on solving an approx-
imate optimization problem. Thirdly, we maximize the objective with respect to
one variable and minimize with respect to the other variable, while the update of
the primal variables in the ADMM is done by only minimizing the objective. As
a result, the convergence proof of the ADMM cannot be applied to our proposed
method.

In fact, the approach presented in this chapter is the same as the one in [2] from an
algorithmic viewpoint. The main advantage of such a method is that the maximiza-
tion of f(q, S̄) admits the classic water-filling algorithm regardless of the types of
power constraints in the BC. However, the minimization of a convex upper bound
of f(q, S̄) is entirely different as can be seen shortly. More specifically, we propose
efficient solutions to this step for MIMO capacity with multiple LTCCs in general
and joint SPC and PAPC in particular.

In the following we provide the details of the above steps. Let qn be the value of
q at the nth iteration of the proposed method and Qn = ∑L

i=1 q
n
i Ei. From (4.3),

we can easily see that the maximization with respect to S̄ admits the water-filling
solution [2, 6, 7]. Therefore we focus on the problem of finding Qn which is one of
our main contributions. Similar to [2], we use an upper bound of the objective for
the q-minimization. We refer the interested reader to [2] for further discussions on
the use of an upper bound for the q-minimization.

In light of the CCP, we note that f(q, S̄) in (4.3) can be expressed as a difference
of two convex functions. In particular, by the concavity property of the logdet
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function, we have

log |Q + H†S̄nH| ≤ log |Φn|+ tr
(
Φ−1
n

(
Q−Qn

))
(4.5)

which produces

f(q, S̄n) ≤ log |Φn|+ tr
(
Φ−1
n

(
Q−Qn

))
− log |Q| (4.6)

where Φn = Qn + H†S̄nH and Q ,
∑L
i=1 qiEi. The right hand side of (4.6) is a

convex upper bound of the objective. To find qn+1 we solve the minimization of the
upper bound given in (4.6). Since log |Φn| is a constant in this regard, qn+1 is in
fact the solution to the following problem

minimize
q≥0

tr
(
Φ−1
n Q

)
− log |Q|

subject to pTq = P
(4.7)

or equivalently,

minimize
q≥0

∑L
i=1 qiφn,i − log |∑L

i=1 qiEi| , g(q)
subject to pTq = P

(4.8)

where φn,i = tr
(
Φ−1
n Ei

)
.

It is worth mentioning that the optimal solution qn+1 to (4.8) must satisfy Qn+1 =∑L
i=1 q

n+1
i Ei � 0 for all n, assuming Q0 � 0 which can be achieved by properly

choosing q0. This can be proved by noting that Φ0 � 0 if Q0 � 0. Thus Q1
cannot be singular, otherwise the optimal value goes to infinity which is impossible.
By induction we can conclude that Qn � 0 (and thus Φn � 0) for all n. As a
result, the proposed iterative method is well defined for all iterations. Our idea
of using a convex upper bound for minimizing a cost function is inspired by the
successive convex approximation (SCA) framework. However, in the context of
SCA, the objective to be minimized is often nonconvex. In the considered problem,
f(q, S̄) is indeed convex with respect to q but an upper bound can be derived easily
following the CCP.We note that other upper bounds can also be used in the proposed
algorithm, as long as they meet the other conditions as well (see Property A of [44]
for the details). The upper bound found in (4.6) is relatively straightforward but
it results in efficient methods for solving (4.8) as shown next. In the general case
of LTCCs, the gradient projection or conjugate gradient projection method can be
utilized to solve (4.8) efficiently. The reason is that the feasible set of (4.8) is a
simplex, and projection onto a simplex admits water-filling-like algorithms [51]. A
gradient projection based algorithm for solving (4.8) is described in Algorithm 4.1.
A closed-form method for solving (4.8) was proposed in [14] for the case where only
a PAPC is considered. For the special case of joint SPC and PAPC, a closed-form
solution for (4.8) is provided in the next subsection.
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Algorithm 4.1: The Gradient Projection Algorithm for Solving (4.8).
Input: q0 , ε1 > 0, m := 0.

1 repeat
2 Calculate the gradient ũm = −∇g(qm).
3 Choose an appropriate positive scalar ρm for q̃m = qm + ρmũm.
4 Project q̃m onto Q to obtain q̄m.
5 Choose appropriate step size νm using the Armijo rule [50] and set

qm+1 = qm + νm(q̄m − qm).
6 m := m+ 1.
7 until |∇g(qm)T (qm+1 − qm)| < ε1;

Output: qm as the solution to (4.8).

Algorithm 4.2: Proposed Solution Based on AO and CCP.
Input: q0 feasible to Q, and ε2 > 0.

1 Initialize n := 0, τ = 1 + ε2.
2 while τ > ε2 do
3 Compute Qn = ∑L

i=1 q
n
i Ei.

4 Apply water-filling algorithm to compute S̄n = arg max
S̄∈S̄

log |Qn + H†S̄H|.

5 If n ≥ 1, let τ = |f(qn, S̄n)− f(qn−1, S̄n−1)|.
6 Let Φ−1

n = (Qn + H†S̄nH)−1.
7 Find qn+1 = arg min

q∈Q
tr
(
Φ−1
n Q

)
− log |Q| using Algorithm 4.1.

8 n := n+ 1.
9 end

Output: S̄n .

The complete algorithm to find the optimal transmit covariance matrix with multiple
LTCCs is summarized in Algorithm 4.2. The convergence results of Algorithm 4.2
are stated in the following lemma.

Lemma 4.1. Let {qn, S̄n} be the sequence generated by Algorithm 4.2. Then

a) f(qn, S̄n) ≥ f(qn+1, S̄n+1) and thus {f(qn, S̄n)} is convergent.

b) {qn, S̄n} contains at least a convergent subsequence.

c) Q∗ = ∑L
i=1 q

∗
iEi, where q∗i is a limit point of {qn}, is non-singular.

d) Every limit point of {qn, S̄n} is a saddle point of (4.3).

The proof of the lemma is provided in Appendix B.3.
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4.2. Special cases of SU-MIMO with joint SPC and
PAPC

The MIMO capacity with joint SPC and PAPC is important in its own right and is
treated in this section. In particular, we show that more computationally efficient
solutions are achievable for MIMO capacity with joint SPC and PAPC. We derive
explicit closed-form expressions for solving (4.8) for the specific case of joint SPC
and PAPC. We remark that previous research has made noticeable attempts to
solve this problem by working directly on (4.2) [31, 32, 61, 62]. In this chapter we
demonstrate that the minimax formulation in (4.3) is also particularly useful to the
MIMO capacity with joint SPC and PAPC.

4.2.0.1. MIMO Capacity with Joint SPC and PAPC

The special case of MIMO capacity with joint SPC and PAPC has received growing
interest recently in [61, 62]. In particular, Loyka proposed a closed-form solution
for this problem in [62], which is, unfortunately, only applicable to full column rank
channels, high SNR regime, and an equal power constraint on all transmit antennas.
Under these conditions, a closed-form solution for the optimal covariance matrix is
possible by solving the KKT conditions of (4.2) [62]. In [61] Cao et al. proposed
an iterative method by solving a sequence of MIMO capacity problems with PAPC.
However, their work was based on a closed-form solution for MIMO capacity with
PAPC introduced in [63]. The issue with [63] is that their solution also assumes full
column rank channels and high SNR regime, otherwise it is only suboptimal.
In this chapter we aim to fill this gap in the literature. Specifically, we make no
assumptions on the MIMO channels or on the operating SNR. In our earlier work
[17], we presented a nonlinear Gauss–Seidel method in combination with Lagrangian
duality to solve (4.8). As an improvement, we provide herein a method to solve
(4.8) by closed-form expressions, rather than using a gradient projection method as
mentioned in the preceding section.
First, notice that in this case the number of constraints is L = N +1 and we assume
EN+1 = IN which represents the SPC, and Ei = diag(ei) for i = 1, 2, . . . , N which
represents the PAPC. In this way Pi, i = 1, 2, , . . . , N is the power constraint for the
ith antenna and PN+1 , PT is the total transmit power.
In this chapter, we only consider the non-trivial case where min{Pi} < PN+1 <∑N
i=1 Pi. If PN+1 ≤ min

1≤i≤N
{Pi}, it is easy to see that (4.2) reduces to the MIMO

capacity with a single SPC. Similarly, if PN+1 ≥
∑N
i=1 Pi, the SPC can be omitted

and thus (4.2) becomes the MIMO capacity with PAPC [14].
It is trivial to see that in this case, problem (4.8) may be equivalently rewritten as

minimize
q≥0

qN+1φn,N+1 +∑N
i=1 (qiφn,i − log(qN+1 + qi))

subject to ∑N+1
i=1 Piqi = P.

(4.9)
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To derive a closed-form solution to the above problem, we note that in this case
EN+1 = ∑N

i=1 Ei = IN and thus

φn,N+1 = tr
(
Φ−1
n EN+1

)
= tr

(
Φ−1
n

N∑
i=1

Ei

)
=

N∑
i=1

φn,i. (4.10)

By definition, we have

φn,i = tr
(
Φ−1
n Ei

)
[Φ−1

n ]i,i =
[(

Qn + H†S̄nH
)−1

]
i,i
≤ 1
qni + qnN+1

. (4.11)

To lighten the notation, the subscript n is to be dropped in the sequel. Accordingly,
(4.9) can be rewritten as

minimize
q≥0

∑N
i=1 (φi(qi + qN+1)− log(qN+1 + qi))

subject to ∑N+1
i=1 Piqi = P.

(4.12)

To further simplify the problem, we make a change of variable. Specifically, let us
define qi + qN+1 = xi for i = 1, 2, . . . , N . Then the above problem is equivalent to

minimize ∑N
i=1 (φixi − log xi)

subject to ∑N
i=1 Pixi + P ′T qN+1 = P.

xi − qN+1 ≥ 0; qN+1 ≥ 0
(4.13)

where P ′T = PT −
∑N
i=1 Pi < 0. The optimal solution for the above problem can be

found by solving the KKT conditions which are given by

µi(xi − qN+1) = 0 (4.14a)
µN+1qN+1 = 0 (4.14b)

φi −
1
xi

+ γPi − µi = 0, i = 1, 2, . . . , N (4.14c)

γP ′T − µN+1 +
N∑
i=1

µi = 0. (4.14d)

where µi ≥ 0 and γ are the KKT multipliers for the constraints xi − qN+1 ≥ 0 and∑N
i=1 Pixi + P ′T qN+1 = P , respectively. We have the following proposition.

Proposition 4.2. The solution to the KKT conditions in (4.14) satisfies qN+1 > 0.

Proof. See Appendix B.4.

We remark that from the proof of Theorem 4.1, qN+1 is in fact the Lagrange multi-
plier of the SPC constraint. Thus, Proposition 4.2 means the SPC is binding, which
is not surprising.
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It is now obvious that µN+1 = 0. For a given γ, without loss of generality, we can
assume that 1

φ1+γP1
≥ 1

φ2+γP2
≥ . . . ≥ 1

φN+γPN . Further, we note that if µi = 0 then

xi = 1
φi + γPi

(4.15)

which leads to the following proposition.
Proposition 4.3. If i < j and xi > qN+1 and xj > qN+1 then xi ≥ xj.

It can be easily seen that µi = µj = 0; thus xi ≥ xj follows immediately from (4.15).
Proposition 4.4. If xj = qN+1 for some j then xk = qN+1 for k > j.

Suppose the contrary that xk > qN+1for a certain k > j. Then µk = 0 and thus

xk = 1
φk + γPk

≤ 1
φj + γPj

≤ 1
φj + γPj − µj

= xj = qN+1 (4.16)

which contradicts with the fact that xk > qN+1. From the two above propositions
there exists a number k such that

x1 ≥ x2 ≥ · · · ≥ xk ≥ qN+1 (4.17)
and

xk+1 = · · · = xN = qN+1. (4.18)

Using (4.14c) and (4.14d) we have

γ = −
∑N
i=k+1 µi
P ′T

= −
∑N
i=k+1 φi − 1

qN+1
+ γ

∑N
i=k+1 Pi

P ′T
(4.19)

and thus

qN+1 = N − k∑N
i=k+1 φi + γ(P ′T +∑N

i=k+1 Pi)
. (4.20)

From the above derivations, we propose a bisection method to solve (4.13) as follows.

Step 1: Set γmin = 0 and γmax to be sufficiently large.
Step 2: Set γ̄ = γmin+γmax

2 .
Step 3: Rearrange the terms { 1

φi+γ̄Pi} in decreasing order.
Step 4: Find the largest k ≤ N − 1 such that

1
φk+γ̄Pk

≥ N−k∑N

i=k+1 φi+γ̄(P ′T+
∑N

i=k+1 Pi)
and set xi = 1

φi+γ̄Pi for i ≤ k and

xi = qN+1 = N−k∑N

i=k+1 φi+γ̄(P ′T+
∑N

i=k+1 Pi)
for i > k.

Step 5: If ∑N
i=1 Pixi + P ′T qN+1 − P > 0 then set γmin = γ̄, otherwise set

γmax = γ̄.
Step 6: Repeat Step 2 until γmax − γmin < ε where ε is a predetermined error
tolerance.

A possible value of γmax can be chosen as γmax = N
P
− φmin

Pmax
. A proof that this choice

is sufficient to solve (4.13) is given in Appendix B.5.
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4.2.1. MISO Capacity with Joint SPC and PAPC

As mentioned earlier, this special case was recently studied in [31,32], where a closed-
form solution was presented in [32]. Our purpose in this subsection is to show that
a closed-form solution is also achievable using the minimax formulation in (4.2),
leading to an equivalent solution to that in [32]. Again we are only interested in the
nontrivial case where min{Pi} < PN+1 <

∑N
i=1 Pi.

It is easy to see that for MISO channels, S̄ in (4.3) becomes a scalar and thus
maximization of f(q, S̄) with respect to S̄ is always obtained at S̄ = P = ∑N+1

i=1 Pi.
Thus the minimax problem is reduced to

min
q≥0

log | diag(qN+1+q)+PH†H|
| diag(qN+1+q)|

subject to ∑N+1
i=1 Piqi = P

(4.21)

which is equivalent to (by noting that H is a row vector)

min
q≥0

H (diag(qN+1 + q)−1 H†

subject to ∑N+1
i=1 Piqi = P.

(4.22)

To make notation clear, let us write H = [h1, h2, . . . , hN ]. Then (4.22) is explicitly
written as

min
q≥0

∑N
i=1

|hi|2
qi+qN+1

subject to ∑N+1
i=1 Piqi = P.

(4.23)

Since Slater’s condition holds, the sufficient optimality condition is given by the
KKT conditions:

− |hi|2

(qi + qN+1)2 + γPi − µi = 0, i = 1, 2, . . . , N (4.24)

−
∑N

i=1
|hi|2

(qi + qN+1)2 + γPT − µN+1 = 0 (4.25)

PT qN+1 +
∑N

i=1 Piqi − P = 0 (4.26)

qiµi = 0, i = 1, 2, . . . , N (4.27)

qN+1µN+1 = 0. (4.28)
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Without loss of generality, let us assume { |hi|√
Pi
} are in decreasing order, i.e., |h1|√

P1
≥

|h2|√
P2
≥ . . . ≥ |hN |√

PN
. If qi > 0 (i.e. the ith PAPC is active) then from (4.24) we have

|hi|2

(qi + qN+1)2 = γPi ⇔ qi + qN+1 = |hi|√
γPi

. (4.29)

Suppose all N PAPCs are active; then we have

−γ
∑

Pi + γPT − µN+1 = 0. (4.30)

If PT >
∑
i Pi then µN+1 > 0 and thus qN+1 = 0. That is, the SPC is inactive which

can be understood clearly from considering the primal domain. The solution in this
case is trivial.
Now consider the case where PT ≤

∑
i Pi. In this case, qN+1 > 0 and µN+1 = 0. If

qi = 0 then

− |hi|2

(qN+1)2 + γPi − µi ⇔ qN+1 = |hi|√
γPi − µi

. (4.31)

Proposition 4.5. If qi > 0 and qj > 0 where i < j then qi > qj

It follows immediately from (4.29).
Proposition 4.6. If qj = 0 for some j then qk = 0 for k > j.

Suppose the contrary that there exists k > j such that qk > 0. Thus we have

qk + qN+1 = |hk|√
γPk
≤ |hj|√

γPj
≤ |hj|√

γPj − µj
= qN+1 (4.32)

which is impossible.
Theorem 4.1. The solution to the dual MAC problem (4.21) is given by

qi = 1
√
γ

 |hi|√
Pi
−

√√√√√ ∑N
i=k+1 |hi|2(

PT −
∑k
i=1 Pi

)
 , i = 1, . . . , k (4.33)

qi = 0, i = k + 1, k + 2, . . . , N (4.34)

where k is the least solution to the following inequality:∑N
i=k+1 |hi|2

PT −
∑k
i=1 Pi

≥ |hN |
2

PN
(4.35)

and

γ =


∑k
i=1 |hi|

√
Pi + (PT −

∑k
i=1 Pi)

√√√√ ∑N

i=k+1 |hi|
2(

PT−
∑k

i=1 Pi

)
P



2

. (4.36)
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Proof. See Appendix B.6.

4.3. Capacity Region of a Gaussian MIMO BC

In the section, we extend the minimax duality approach in SU-MIMO to find the
capacity region of Gaussian MIMO BC with multiple LTCCs. In fact, some ap-
proaches relying on either subgradient or interior-point methods have been proposed
for this problem [33,34]. However, these methods were only applicable to small-scale
MIMO or MISO because their computational complexity is not appealing for large-
scale scenarios such as massive MIMO. Herein, we propose an efficient solution to
this problem, which follows the same idea as that of the preceding section, and in
which each iteration is based on closed-form expressions.

4.3.1. System Model

Consider a K-user MIMO BC where the base station and each user k = 1, 2, . . . , K
are equipped with N and Mk antennas, respectively. Let Hk denote the channel
matrix for user k, and let s denote the composite signal that combines the data for
all users in the downlink. Then, we can express the received signal at user k as

yk = Hks + zk (4.37)

where zk is the Gaussian noise with distribution CN (0, IM). For Gaussian input, it
was proved that dirty paper coding is capacity achieving [8]. The problem of find-
ing the capacity region is usually formulated as a weighted sum rate maximization
(WSRMax), which is written as

maximize
{Sk�0}

∑K
k=1wk log |I+Hk

∑k

i=1 SiH†k|
|I+Hk

∑k−1
i=1 SiH†k|

subject to ∑K
k=1 tr(EikSk) ≤ Pi, ∀i

(4.38)

where Eik and Sk are the ith predefined positive semidefinite matrix and input
covariance matrix for the kth user, Pi is the ith power constraint, and wk is the
weighting factor assigned to user k. Without loss of generality, we assume in the
rest of the chapter that 0 < w1 ≤ w2 ≤ ... ≤ wK and ∑K

k=1wk = 1.

We remark that the work of [8] proved that the capacity region given in (4.38)
is achievable in the case of PAPC, i.e., in the case where Eik = diag(ei) for k =
1, 2, . . . K. Following similar arguments, we can show that the capacity region for
the case of multiple LTCCs is also achievable.
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4.3 Capacity Region of a Gaussian MIMO BC

4.3.2. Algorithm Description

Extending the result of minimax duality above, we can equivalently rewrite (4.38)
as

min
q≥0

max
{S̄k�0}

∑K
k=1 ∆k log |Qk +∑K

i=k H†i S̄iHi| − wK log |Qk| , fDPC(q, {S̄k})

subject to ∑K
k=1 tr(S̄k) = P ; pTq = P

(4.39)

where ∆k = wk−wk−1 ≥ 0, Qk = ∑
i
qiEik, P = tr(P); {S̄k} and {Qk} are considered

as input covariance and noise covariance matrices in the dual MAC, respectively.
Note that when we only consider a PAPC, the above formulation reduces to the
one in [42] [2]. We also note that the objective in (4.39) is convex with q ≥ 0 and
concave with {S̄k � 0}. Thus, there is a saddle point for (4.39). Let (q∗, {S̄∗k}) be
the saddle point of (4.39). Then the optimal covariance matrices that achieve the
capacity region in the BC are given by

Sk = M−1/2
k UkV†kB

1/2
k S̄kB1/2

k VkU†kM
−1/2
k (4.40)

where Uk,Vk are achieved from economy-size SVD of (M−1/2
k H†kB

−1/2
k ); Mk = Qk+∑K

j=k+1 H†jS̄jHj,Bk = I +∑k−1
j=1 HkSjH†k.

We discuss three benefits of using the minimax problem in (4.39) in computing the
capacity region of a Gaussian MIMO BC. Firstly, the Sk-maximization has the same
structure for all types of LTCCs. Secondly, the q-minimization does not scale with
the number of users. Thirdly, projection onto the feasible sets of q and {S̄k} can be
done using closed-form expressions. We exploit these properties to derive efficient
solutions to the MIMO capacity region.
The proposed method for solving (4.39) follows the approach for SU-MIMO, which
is described next. Denote (qn, {S̄nk}) as the obtained values of (q, {S̄k}) after n
iterations of the proposed iterative algorithm. For a given qn, S̄n is the solution to
the maximization problem under a SPC to which gradient-projection-based methods
are numerically shown to be efficient (see [2,24,25] for details). Moreover, if the sum
capacity is of interest, i.e. ∆k = 0 for all k ≥ 2, it is easy to see that the maximization
in (4.39) admits a water-filling solution.
Turning now to the problem of finding qn+1, we solve the optimization problem
below:

minimize
q≥0

∑K
k=1 ∆k log |Qk +∑K

i=k H†i S̄iHi| − wK log |Qk|
subject to pTq = P.

(4.41)

In light of Algorithm 4.2, we choose to minimize an upper bound of the objective
instead of optimizing the original objective in (4.41). To this end, by again invoking
the concavity of the logdet function, we obtain the following inequality

log |Qk +∑K
i=k H†i S̄ni Hi| ≤ log |Φn

k |+ tr
(
Φ−nk

(
Qk −Qn

k

))
(4.42)
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where Φn
k = Qk + ∑K

i=k H†i S̄ni Hi,Φ−nk , (Φn
k)−1. Thus, qn+1 is found to be the

optimal solution to the following problem

minimize
q≥0

∑K
k=1

∆k

wK
tr
(
Φ−nk Qk

)
− log |Qk|

subject to pTq = P.
(4.43)

We remark that the problem (4.43) has a similar form to (4.7); thus a gradient-
projection-based algorithm can be easily customized to apply here. The overall
algorithm is summarized in Algorithm 4.3 and its convergence proof is similar to
that of Algorithm 4.2.

Algorithm 4.3: Proposed Algorithm for the Computation of the Capacity Re-
gion of a MIMO BC Based on AO.
Input: q0 feasible to Q, and ε2 > 0.

1 Initialization: Set n := 0 and τ = 1 + ε.
2 while (τ > ε2) do
3 Qn

k = ∑
i
qni Eik .

4 Solve (3.41) and denote the optimal solution by {S̄nk} .
5 If n ≥ 1, let τ = |fDPC(qn, {S̄n})− fDPC(qn−1, {S̄n−1})|.
6 For each k, compute Φ−nk = (Qn

k +∑K
i=k H†i S̄ni Hi)−1.

7 Solve (4.43) to find qn+1.
8 n := n+ 1.
9 end

Output: Use the obtained {S̄nk}Kk=1 and a similar BC-MAC transformation to
that in [43] to find the optimal solution to (4.38).

4.3.3. MIMO Capacity Region with Joint SPC and PAPC

In this subsection we customize Algorithm 4.3 to deal with the specific case of MIMO
capacity region with joint SPC and PAPC. We remark that no efficient solutions
have been reported for this important case previously. For the SU-MIMO case, it is
possible to find closed-form solutions based on solving the KKT conditions in the
BC for some specific scenarios as shown in [62]. However, such a method appears
to be impossible for the MU-MIMO case.
Our main point is to demonstrate that the equivalent minimax formulation in the
MAC allows for efficient solutions to this special case. In particular, for the case of
joint SPC and PAPC considered in this chapter, we show that Step 7 of Algorithm
4.3 (i.e., solving (4.43)) admits a closed form-solution.
We begin by rewriting (4.43) as

minimize
q≥0

qN+1ψn,N+1 +∑N
i=1 (qiψn,i − log(qN+1 + qi))

subject to ∑N+1
i=1 Piqi = P

(4.44)
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where ψi = [∑K
j=1

∆j

wK
Φ−nj ]i,i.

Theorem 4.2. The solution to (4.43) in the special case of joint SPC and PAPC
is given by

qi = 0, i = k + 1, k + 2, . . . , N (4.45)

qi = 1
ψi + γPi

− N − k
(ψN+1 −

∑k
i=1 ψi) + γ(PT −

∑k
i=1 Pi)

,

i = 1, . . . , k (4.46)

where k is the largest k ≤ N − 1 such that

1
ψi + γPi

≥ N − k
(ψN+1 −

∑k
i=1 ψi) + γ(PT −

∑k
i=1 Pi)

(4.47)

and γ is the solution of the equation

k∑
i=1

Pi
ψi + γPi

+ (N − k)(PT −
∑k
i=1 Pi)

(ψN+1 −
∑k
i=1 ψi) + γ(PT −

∑k
i=1 Pi)

= P. (4.48)

Proof. See Appendix B.7.

4.4. Weighted Sum Rate with ZF

As mentioned in the previous section, the capacity region of a Gaussian MIMO BC
is achieved by DPC which requires high complexity to implement. Thus zero-forcing
methods are more practically appealing as they only involve linear processing. To
the best of our knowledge, the most related work to the present chapter was carried
out in [34], where Huh et al. proposed a gradient descent algorithm with barrier
functions to solve the problem of weighted sum rate maximization (WSRMax) for ZF
under multiple generic LTCCs. However, the proposed method in [34] has two main
drawbacks: (i) it is only applicable to MISO systems, and (ii) it converges very
slowly. To overcome the above shortcomings, we again transform the considered
problem into the MAC and apply the above framework to derive a computationally
efficient algorithm to solve it.
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4.4.1. System Model

We consider the system model as described in Section 4.3.1 and, for description
purposes, rewrite (4.37) as

yk = Hkxk +
∑

j 6=k Hkxj + zk. (4.49)

Again, channel state information is perfectly known at both the BS and users. For
linear precoding we can express xk as xk = Rksk, where Rk ∈ CN×Mk and sk ∈
CMk×1 denote the precoding matrix and information-bearing signal, respectively. We
further assume that sk consists of independent zero-mean and unit energy symbols,
i.e., sk ∼ CN (0, I). For the ZF technique, the inter-user interference to user k is
suppressed by designing Rk such that HjRk = 0 for all j 6= k. Thus, the WSRMax
problem for ZF precoding with LTCCs is formulated as

maximize
{Sk�0}

∑K

k=1wk log |I + HkSkH†k| (4.50a)

subject to HjSkH†j = 0, ∀j 6= k (4.50b)∑K

k=1 tr(EikSk) ≤ Pi, i = 1, 2, . . . , L (4.50c)

where Sk = E[xkx†k] = RkR†k is the input covariance matrix for user k, Eik is the
ith positive semidefinite matrix of user k, Pi is the power constraint associated with
{Eik}Kk=1, and wk ≥ 0 is the weighting factor assigned to the kth user to maintain
some degree of fairness. In fact we have omitted the constraint that rank(Sk) ≤
min(N,Mk) so that the precoder Rk can be extracted from Sk. However, it was
proved in [48] that this relaxation does not affect the optimality. This property is
also obvious from the BC-MAC duality presented later on.
Before proceeding further, let us first simplify (4.50) by eliminating the zero-interference
constraints. Denote Ȟk to be the channel matrix of all users, except for user k, i.e.,
Ȟk = [H†1, . . .H†k−1,H

†
k+1, . . .H

†
K ]†. For ZF precoding to be feasible, it should hold

that N ≥ ∑K
k=1Mk, which is assumed in this chapter [20]. Let Vk be a basis of the

null space of Ȟk, then (4.50) reduces to the following maximization problem

maximize
{S̃k�0}

∑K
k=1wk log |I + HkVkS̃kV†kH

†
k|

subject to ∑K
k=1 tr(EikVkS̃kV†k) ≤ Pi, i = 1, . . . , L.

(4.51)

We note that for this general problem, (4.51) can be recast as a MAXDET program
[38] and solved by a dedicated optimization package such as SDPT3 [54]. However,
solving (4.51) by generic convex solvers is not computationally efficient for large-
scale problems, nor does it provide useful insights into the structure of the optimal
input covariance matrices. In particular, modern convex solvers are mostly based
on interior-point methods whose complexity increases rapidly with the problem size,
e.g., with the number of transmit antennas N and/or the number of users K in
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the considered context. For the special case of multi-user MISO systems, Huh et
al. presented a gradient descent algorithm with barrier functions but it converges
very slowly [34]. For large-scale MISO systems, Huh et al. also proposed a low-
complexity solution but it cannot achieve the optimal performance. Therefore, an
efficient algorithm for general MIMO systems for ZF precoding with LTCCs has
remained an open problem. In the following, we propose a low-complexity method
to solve this problem.

4.4.2. Algorithm Description

The proposed solution for ZF methods is similar to Algorithm 4.3. Specifically, we
first transform (3.31) into an equivalent problem in MAC, then apply AO and CCP
to derive an efficient algorithm. To this end we state the following theorem.

Theorem 4.3. The equivalent problem in the dual MAC of the problem (4.51) in
the BC is the following minimax problem

min
λ≥0

max
{S̄k�0}

∑K
k=1wk log

|V†
k

(∑L

i=1 λiEik
)

Vk+H̃†
k
S̄kH̃k|

|V†
k

(∑L

i=1 λiEik
)

Vk|

subject to ∑K
k=1 tr(S̄k) = P

pTλ = P

(4.52)

where H̃k = HkVk, λ = [λ1, λ2, . . . , λL]T and p = [P1, P2, . . . , PL]T . Let (λ∗, {S̄∗k} )
be the saddle point of (4.52). Then, the optimal solution S̃∗k to (4.51) is given by

S̃∗k = (V†kΛ∗kVk)−
1
2 UkX†kS̄∗kXkU†k(V

†
kΛ
∗
kVk)−

1
2 (4.53)

where Λ∗k = ∑L
i=1 λ

∗
iEik, and UkΣkX†k is the compact singular value decomposition

of (V†kΛ∗kVk)−1/2H̃†k.

We remark that the above theorem is a generalization of the duality result in [33,42]
and its proof can be found in [16]. Existing solutions to a minimax problem such as
(3.32) are based on interior-point methods [10,34]. Unfortunately, these methods do
not scale well with the problem size, and thus are not suitable for large-scale MIMO
systems.
The proposed solution for ZF methods is as follows. At the nth iteration of the
proposed method, {S̄nk} is found to be the solution to the following maximization
problem:

max ∑K
k=1wk log |V†kΛn

kVk + H̃†kS̄kH̃k|
s.t. ∑K

k=1 tr(S̄k) = P ; S̄k � 0, k = 1, . . . , K (4.54)

where Λn
k = ∑L

i=1 λ
n
i Eik. That is, to find {S̄nk} we fix λ. The above problem

is actually the one of WSRMax under a single SPC, which admits a water-filling
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solution [20]. We skip the details for the sake of brevity and refer the interested
reader to [20] for further details.

In the next step, we fix {S̄nk} and solve for the optimal λ which minimizes the
objective in (3.32). Again, we minimize an upper bound of the objective. In this
regard, the following inequality is in order [47]

log |V†kΛkVk + H̃†kS̄kH̃k| ≤ log |Φn
k |

+ tr
(
VkΦ−nk VH

k

(
Λk −Λn

k

)) (4.55)

where Φn
k , V†kΛ

n
kVk + H̃†kS̄nkH̃k, and Φ−nk ,

(
Φn
k

)−1
. Thus, at the nth iteration

of the proposed algorithm, Λn+1
k is the solution to the following problem

min ∑K
k=1wk

(
tr
(
VkΦ−nk V†kΛk

)
− log |V†kΛkVk|

)
, g(λ)

s.t. pTλ = P,λ � 0.
(4.56)

We remark that the feasible set of (4.56), denoted by Θ , {pTλ = P ;λ ≥ 0}, is
a simplex. Since the projection on a simplex can be done efficiently [51], we can
apply the gradient projection (GP) or conjugate gradient projection method to solve
(4.56). The proposed algorithm to solve the WSRMax problem with ZF and LTCCs
is summarized in Algorithm 4.4. Note that the GP method in line 7 follows similar
procedures to those outlined in Algorithm 4.1. The convergence proof of Algorithm
4.4 in fact follows the similar arguments as those of [2, 14, 15] and Appendix B.3 of
the present chapter, thus it is skipped for the sake of brevity. We also note that
our proposed method can be easily modified to deal with the WSRMax problem for
successive zero-forcing DPC (SZFDPC) [16] with multiple LTCCs.

Algorithm 4.4: The Proposed Algorithm for Solving (4.51).
Input: λ0 feasible to Θ, ε2 > 0.

1 Initialize n := 0, and τ2 = 1 + ε2.
2 while τ2 > ε2 do
3 Compute Λn

k =
∑L
i=1 λ

n
i Eik

4 Apply the water-filling algorithm to solve (4.54). Denote the optimal solution by
{S̄nk}.

5 For n ≥ 1, compute τ2 = |f(λn, S̄n)− f(λn−1, S̄n−1)|.
6 For each k, set Φn

k = (V†kΛ
n
kVk + H̃†kS̄nkH̃k).

7 Solve (4.56) to find λn+1 using GP.
8 n := n+ 1.
9 end

Output: {S̄nk}Kk=1 and apply the BC-MAC transformation to compute optimal
{S̃nk}Kk=1.
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4.5. Numerical Results

In this section, we evaluate the performance of the proposed algorithm by numerical
experiments. More specifically, we focus on the important case of joint SPC and
PAPC. For notational convenience, we denote the SPC and the sum of PAPCs as
PT and PA = ∑N

i=1 Pi, respectively. Unless explicitly stated otherwise, we consider
here the most common case encountered in practice, where each transmit antenna
is subject to the same power constraint, i.e., Pi = P0 = PA

N
, for i = 1, 2, . . . , N . As

mentioned earlier, we are interested in the nontrivial case where min{Pi} < PT < PA.
In fact, if min{Pi} ≥ PT , then the PAPC can be removed without loss of optimality.
Similarly, if PT ≥ PA, then the SPC can be eliminated. For MU-MIMO, all users
are equipped with the same number of receive antennas i.e.,Mk = M . Unless stated
otherwise, the error tolerances ε1 and ε2 are set to 10−6 for all simulations. Other
relevant simulation parameters are specified for each setup. Note that each average
result is based on Monte Carlo simulations over 1000 i.i.d. channel realizations.
Each entry of the channel matrix is drawn from a circularly-symmetric complex
Gaussian distribution with unit variance. The MATLAB code was executed on a
64-bit desktop that supports 8 GB RAM and Intel CORE i7.

4.5.1. SU-MIMO

In the first experiment, we study the convergence behavior of the objective f(q, S̄)
in (4.3) for different channel realizations under joint SPC, PAPC and interference
power constraint. As mentioned earlier in Section 4.1, for the interference power
constraint, the considered MIMO system is assumed to act as a SU. The chan-
nel between the SU and the PU, denoted by G, is randomly generated following
circularly-symmetric complex Gaussian distribution with unit variance. The re-
ceived interference power at the PU is tr(GSG†) which is constrained to stay below
a predetermined threshold Pint. The values of PT i.e., the SPC and Pint are fixed at
0.6PA and 0.06PA, respectively where PA is defined above. Note that the objectives
are plotted including the objectives after the maximization and minimization steps
of each iteration. As can be seen from Fig. 4.1, the objectives increase with respect
to maximization and decrease with respect to minimization. However, our novel
method in the minimization step guarantees the consistent decrease of the objec-
tive until convergence. Thus, we can obtain monotonic convergence and avoid the
fluctuations which can occur in the case of pure AO.

Next, we study the convergence properties of the proposed algorithm under different
settings of SPC, PAPC and interference power limit. In this experiment, we fix
the interference power limit at Pint = 0.1PT . The channel matrix associated with
the interference power constraint is generated as done in the first experiment. The
convergence rate of Algorithm 4.2 with different ratios of PT/PA and PAPC is plotted
in the Fig. 4.2. The residual error is defined as the absolute difference between two
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Figure 4.1.: Objective convergence behavior with respect to different number of
receive antennas M with N = 2 transmit antennas, PA = 0 dBW, PT = 0.6PA
and the interference power limit is Pint = 0.06PA.

consecutive objectives. For the randomly generated channel realization considered
in Fig. 4.2, Algorithm 4.2 can converge with less than eight iterations and even
fewer iterations in high power scenarios. For a fixed PA, the convergence results
of Algorithm 4.2 seem to be insensitive to the ratio between PT and PA. We also
notice that the rate of convergence of the proposed algorithm is also insensitive to
different PAPC settings.
We now compare the capacity of the following MIMO channel

H =

 0.1189 + 0.1515i 0.1238 + 0.3326i 0.8572 + 0.1131i
−0.3198− 0.3663i −0.6491 + 0.2784i 0.3392− 0.1974i
−0.1019 + 0.6639i 0.3663− 0.3097i −0.1116− 0.1101i


under joint SPC and PAPC using the proposed approach and [61,62]. Each entry of
the above channel is randomly generated following a circularly-symmetric complex
Gaussian distribution with unit variance. In order to execute the solution in [62], we
have to set the power of each transmit antenna to be equal. Also, the closed-form
solution in [62] requires that the total transmit power must be PT ≥ 8.3137 W and
P0 ≥ 5.1071 W. In other words, the SNR should be larger than 9.198 dB for this
method to work. In low power scenarios, the approaches in [61, 62] yield an input
covariance matrix that violates the positive semidefinite constraints. To achieve
a fair comparison, we compensate for negative eigenvalues and scale the resulting
covariance matrix by a factor so that all power constraints are met. As can be
seen from Fig. 4.3a, the capacity generated by our algorithm and that of [62] are
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the same in high power constraint regions as expected. However, in the low power
regime, our proposed solution outperforms other methods (c.f. Fig. 4.3b).
Next, we consider a MISO example with the channel matrix

H = [−2.0819+0.9689i, 1.0171−1.2102i,−0.5338−0.1707i, 0.2299−0.0723i].

In addition, we choose the SPC PT and the PAPC P0 to be 8 dbW and 3 dBW,
respectively, so that the setup is nontrivial. The purpose of this experiment is to
verify the analytical solution expressed in (4.33) and (4.34). First we use MOSEK
[4], which is a powerful commercial convex solver, to solve (4.23). The resulting
optimal solution obtained in this way is q = [2.3604, 1.2702, 0, 0, 1.1385]T . The same
result is also achieved by our analytical formulas as explained as followed. We can
check that the condition in (4.35) is satisfied when k = 2. Thus, q3 = q4 = 0
which results directly from Lemma 4.6. Moreover, substituting k = 2 into (4.36)
immediately yields γ = 0.1436. Substituting this value of γ into (4.33) and (B.47),
we obtain q1 = 2.3604, q2 = 1.2702, q5 = 1.1385, which is in accordance with the
result given by the MOSEK solver. By BC-MAC transformation, we can obtain
the same solution as [32]. Since both solutions are closed-form, their computational
efficiency is definitely better than that of the iterative solution in [31].
Now we investigate the performance of Algorithm 4.2 for general MIMO systems
under joint SPC and PAPC. In Fig. 4.4, we compare the number of iterations of
the proposed algorithm with that of the interior-point method. Specifically, the
considered problem is solved by MOSEK which is a commercial interior-point-based
convex solver. As can be seen, the number of iterations of Algorithm 4.2 increases
nearly linearly with the number of transmit antennas N . On the other hand, the
interior-point method requires fewer iterations to converge, approximately three to
four times less than that of Algorithm 4.2 in large-scale scenarios. However, this
does not necessarily mean that the interior-point method is more computationally
efficient, as the overall complexity also depends on the per-iteration cost. The
problem of the interior-point method is that its per-iteration cost is much higher
than that of Algorithm 4.2. As a result, in term of overall efficiency, the interior-
point method performs worse than Algorithm 4.2. This issue is further studied in
the next simulation.
To obtain a more complete comparison, we report the average run time of Algorithm
4.2 along with common interior-point solvers i.e., SDPT3 [54] and MOSEK in Table
4.1. Both the solvers are executed through the parser YALMIP [55]. The ratio
PT/PA is set to 0.8. The symbol × denotes the case where the run time is extremely
high or where the solvers could not run successfully due to insufficient memory or
other reasons. Note that the run time accounts for both the number of iterations
and the per-iteration complexity. We recall that the per-iteration complexity of
an interior-point-based method for the similar problem is O(N6) [47], compared to
O(N3) for Algorithm 4.2. As can be seen clearly from Table 4.1, interior-point-
based convex solvers are not suitable for large-scale MIMO systems because their
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complexity and memory requirements can increase rapidly with the problem size
which results in prohibitive computation time. Meanwhile, the proposed algorithm
consistently shows a low run time, which is relatively independent of PA.
Further experiments are carried out with the average capacity of MIMO systems
under different power constraint settings i.e., SPC, PAPC, and joint SPC and PAPC.
As shown in Fig. 4.5, the capacity under joint SPC and PAPC is lower than that
of PAPC because in this case, the maximum is achieved at a point where not all
PAPCs are satisfied with equality. We also observe that when the PAPC is set to
be equal for all transmit antennas, the capacity of PAPC is close to the one under
SPC as previously observed in [1], [15].

Table 4.1.: Average run time (seconds) comparison with PT = 0.8PA, M = 2
receive antennas. The run time is averaged over 1000 channel realizations.

PA Algorithms/solvers No. of transmit antennas N

16 32 64 128

0 dBW
Algorithm 4.2 0.035 0.239 0.823 3.890

MOSEK 0.040 0.592 × ×
SDPT3 0.414 2.160 × ×

10 dBW
Algorithm 4.2 0.025 0.214 0.780 3.807

MOSEK 0.047 0.618 × ×
SDPT3 0.419 2.221 × ×

4.5.2. MU-MIMO

In the first simulation, we plot the cumulative distribution functions (CDF) of the
number of iterations taken by Algorithm 4.3 to converge. The low and high SNR
scenarios as well as different power ratios i.e., PT/PA are studied. The CDF for each
scenario is obtained over 1000 channel realizations. We can clearly see in Fig. 4.6
that 95% of the cases, Algorithm 4.3 terminates within 30 and 10 iterations for low
and high power regions, respectively.
Taking advantage of our low-complexity algorithms, we characterize the capacity
region of linear precoding (ZF) and nonlinear precoding method (DPC) in a realistic
massive MIMO scenario under joint SPC and PAPC. In particular, we consider the
typical urban micro-cell WINNER II B1 channel model [58] where two users are
distributed around a centered base station in a single cell. In addition, we only
consider the path loss and ignore shadowing. The noise power is set to −94 dBm
over a bandwidth of 100 MHz. The base station and each user are equipped with
128 and 2 antennas, respectively. We can see clearly that the capacity of ZF with
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joint SPC and PAPC is close to that of DPC in massive MIMO settings. Both are
less than the capacity of DPC with PAPC and the feasible region is still bounded
by the SPC.
Finally, we study the performance of the average sum rate of different precoding
methods, including ZF, SZFDPC [16] and DPC under joint SPC and PAPC. For
the same set of power constraints, the average sum rate of ZF is lower than that
of suboptimal precoding SZFDPC, while DPC remains the optimal solution with
the highest sum rate. We can also see that when the number of transmit antennas
increases, the performance of ZF and SZFDPC methods approaches that of DPC.

4.6. Summary

We have proposed an efficient approach to computing the MIMO capacity and
characterizing the capacity region under arbitrary combination of linear transmit
covariance constraints. The approach is based on minimax duality and CCP to
derive water-filling-like algorithms. Interestingly, our approach can be easily ex-
tended to the MU-MIMO with DPC. For the special case of MIMO capacity with
joint SPC and PAPC, we have provided analytical solutions in addition to itera-
tive algorithms. The numerical results have supported that our proposed algorithm
outperforms the well-known interior-point method in overall complexity and thus
is suitable for large-scale MIMO systems. These successes may hope to tackle the
computation difficulties of the previously known algorithms which are mostly relied
on either subgradient or interior-point methods.
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Figure 4.2.: Convergence rate of the proposed algorithm for SU-MIMO under
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with N = 2 transmit antennas and M = 8 receive antennas. The interference
power constraint Pint = 0.1PT .
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Chapter 5

Machine Learning and Its
Applications to Capacity-related
Problems

The proliferation of data-driven applications and computing resources has attracted
huge attention to Artificial Intelligence (AI) and Machine Learning (ML) in recent
years. The fact that ML is extremely useful for applications which are difficult
to model or have no existing solutions. In addition, it can provide good trade-off
between the complexity and the performance. Those features are therefore appealing
to the research of wireless communications in which the majority of research cannot
fully characterize a system due to the difficulties of mathematical formulations. More
importantly, a proper formulation may result in high-complexity solution depending
on the complexity of problems. In this chapter, we carry out some initial experiments
to verify possible applications of ML to capacity-related problems. More specifically,
we take advantages of ML to obtain suboptimal solution to the sum rate of successive
zero-forcing dirty paper coding (SZFDPC) with PAPC.
The remainder of the chapter is organized as follows. The fundamentals of ML
are described in Section 5.1. In Section 5.2, we derive a solution to compute the
sum rate of a Gaussian MIMO BC with SZFDPC and PAPC using a suboptimal
ML-based approach and present some numerical results followed by the conclusion
in Section 5.3. Most of the content and results in Section 5.2 have been appeared
in [18] under © 2019 IEEE.

5.1. Fundamentals of Machine Learning

Before going into the details, we recall what learning is. It is a well-known fact that
humans can learn from experience and computers learn from data. For example,
one can recognize and respond properly to a situation which once happened in the
past. Human learning is therefore involved in memorization and adaptation. More
importantly, it can be generalized to deal with a set of similar problems. Similarly,
machine learning is designed to enable computers to adapt and generalize their
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actions as accurately as possible. In this section, we introduce the basis of machine
learning including its applications, learning stages, different ML categories and an
important learning task- regression- which will be applied to our considered capacity
problem.

5.1.1. Applications of Machine Learning

According to [64, 65], ML can be applied to a number of engineering problems.
In fact, it is the most feasible approach to applications of unknown or undesirable
solutions due to model or algorithm deficit. On the contrary to conventional optimal
engineering solutions, ML is commonly referred to as a black box, thus is suitable for
tasks which do not require explicit reasoning or detailed explanation. In addition,
ML is beneficial in the presence of sufficiently large training sets or the sets can be
created easily. In this respect, the phenomenon or the environment of the learning
task is considered stationary for a sufficiently long period. Moreover, ML can address
a lot of problems of loose constraints or provide satisfactory performance to an
algorithm deficit as mentioned above.

In practice, ML has broad applications including text classification, speech pro-
cessing, computer vision and many other applications. The two most important
learning tasks of ML are classification and regression. The former task, which have
been applied extensively in objective recognition, face detection, text classification
etc., is to assign a pattern to a category. On the other hand, the latter, which is
usually described as fitting problem, learns a model using a training set so that it
can predict an output correctly in the future.

5.1.2. Learning Stages

Here, we present the relevant processes to choose, apply and evaluate ML. Generally,
different stages of ML are in the following [66, p. 10]:

• Data collection and preparation: To train and test the algorithms, the relevant
data need to be collected either from scratch or assembling from available data.
The inputs and the outputs are associated with the features and the targets/
responses, respectively.

• Feature selection: This process can be used to increase the robustness of ML
since it is involved in identifying the most useful features for the considered
problem.

• Algorithm choice: The accuracy of ML for a given data set depends on the
choice of an appropriate algorithm. We will present some of fundamental
algorithms in the next subsections.
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• Parameters and model selection: Since ML is data-specific problem, parame-
ters and model should be tuned to relevant problems manually or experimen-
tally.

• Training: The training is to build a model based on given data to predict
outputs of new data.

• Evaluation: We need to test the model obtained from the training before any
possible deployments.

5.1.3. Types of Machine Learning

In principle, ML can be classified into four categories [66, p. 6]:

• Supervised learning: Given a training set with correct responses, an algorithm
generalizes to make predictions.

• Unsupervised learning: Since correct responses are not available, an algorithm
tries to categorize similar inputs.

• Reinforcement learning: This learning strategy has to explore and try out
different possibilities until it knows how to get the right answer. Reinforcement
learning in fact fills the gap between supervised learning and unsupervised
learning.

• Evolutionary learning: This type of learning is developed based on model-
ing the biological evolution. Inspired by the process of natural selection, an
evolutionary algorithm generally involves four important steps: initialization
of population, selection, genetic operators and termination under a certain
condition [67].

Most of ML-based applications rely on supervised learning which we can make pre-
dictions or classifications based on known data. In this chapter, we will focus on its
key learning task - regression - which is exploited to solve our capacity problem.

5.1.4. Regression

Some of practical applications of regression are to predict stock price or Gross Do-
mestic Product (GDP) growth rate of a country, to name a few. In the following,
we present the basic methods of both linear and nonlinear regression.

5.1.4.1. Linear regression

With linear regression, we may fit data to a line in case of a scalar input or a
hyperplane in other cases. Assume that we have a training set {xi, yi}Mi=1 where xi
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and yi are the ith input vector of size N and scalar output, respectively. In linear
regression model, the output and input are linearly dependent:

yi ≈ xTi w + b (5.1)

where w and b are the weight vector and the bias, respectively. Note that we use
the approximately equal sign since we may not perfectly fit all the data to a line or
a plane.

Denote x̂i =
[

1
xi

]
and ŵ =

[
b
w

]
, (5.1) can be rewritten as

yi ≈ x̂Ti ŵ. (5.2)

Least square regression To measure the accuracy of an algorithm, we can use a
cost function. A least square (LS) cost function can be formed as follows:

g(ŵ) =
M∑
i=1

(x̂Ti ŵ− yi)2. (5.3)

Our objective is to minimize this error over ŵ which is in turn to solve the following
optimization problem

minimize
ŵ

M∑
i=1

(x̂Ti ŵ− yi)2. (5.4)

Although it is possible to utilize any convex optimization software to solve this
convex problem, we are interested in deriving a closed-form solution. Specifically,
taking the gradient of this problem yields

∇g(ŵ) = 2
M∑
i=1

x̂i(x̂Ti ŵ− yi). (5.5)

Setting this gradient to zero, we obtain the solution to (5.4)(
M∑
i=1

x̂ix̂Ti

)
ŵ =

M∑
i=1

x̂iyi. (5.6)

If we stack M vectors into a matrix, i.e., X̂ = [x̂1, . . . , x̂M ], then the above equation
is equivalent to

X̂X̂T ŵ = X̂y (5.7)

where y is the vector of the outputs. When X̂X̂T is invertible, the weight vector
can be found as

ŵ = (X̂X̂T )−1X̂y. (5.8)

The solution above is usually referred to as ordinary least square (OLS). We may
employ pseudo-inverse instead of normal inverse to guarantee the feasibility of (5.8).
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Ridge regression Notice that we can always guarantee the inverse of (5.1) by
adding a small term αI to X̂X̂T , in other words

ŵ = (X̂X̂T + αI)−1X̂y. (5.9)

If we do not regularize ŵ0 = b, then the considered problem is given

minimize
w,b

M∑
i=1

(xTi w + b− yi)2 + α||w||22. (5.10)

After some manipulation the solution to (5.10) is

ŵ = (X̂X̂T + αÎ)−1X̂y (5.11)

where Î =
[

0 0
0 I

]
.

Principle component regression Let X̂X̂T = UΣUT where U = [u1, . . . ,uN ] is
the matrix of eigenvectors of X̂X̂T and Σ = diag(λ1, . . . , λN) is a diagonal matrix
of eigenvalues. Denote Z = X̂TU = [z1, . . . , zN ], then zi is referred to as the ith
sample principle component of X̂T . Note that UUT = UTU = I, (5.2) can be
written as

y ≈ X̂T ŵ = X̂TUUT ŵ = Zβ. (5.12)

where β = UT ŵ. According to the result of OLS, the solution to (5.12) is

β = (ZTZ)−1ZTy = Σ−1ZTy. (5.13)

The principal component estimator is defined by

ŵ = Uβ = UΣ−1ZTy. (5.14)

If we use all the principal components then the principle component estimator is the
same as that of OLS. In reality, we retain only a subset of the important components
and eliminate the others e.g., the ones with the smallest eigenvalue. As a result, the
estimator can be approximated as

ŵ ≈ UlΣ−1
l ZT

l y. (5.15)

where Zl = [z1, . . . , zl] and l ≤ N .

Note that principle component regression (PCR) can be easily customized to Prin-
ciple Component Analysis (PCA) to reduce the dimension of the inputs. Interested
readers can refer to [68] for the details.
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5.1.4.2. Nonlinear regression

Although linear model is preferable due to its simplicity and robustness, many input-
output relationships are non-linear in practice. In the following, we present a typical
ML solution using a classic nonlinear function

s(t) = 1
1 + e−t

(5.16)

which is commonly referred to as logistic sigmoid function. Note that this function
only generates a value between zero and one corresponding to an input. A sigmoid
function-like data set satisfies

yi ≈ s(xTi w + b) = s(x̂Ti ŵ) (5.17)

where x̂i =
[

1
xi

]
and ŵ =

[
b
w

]
.

A least square cost function can be formed as follows:

g(ŵ) =
M∑
i=1

(s(x̂Ti ŵ)− yi)2. (5.18)

The gradient of this objective is

∇g(ŵ) = 2
M∑
i=1

(s(x̂Ti ŵ)− yi)s(x̂Ti ŵ)(1− s(x̂Ti ŵ))x̂i. (5.19)

Unlike the linear case, we cannot solve the first order derivation directly due to
many nonlinear terms in the equation. Instead, we can use numerical methods such
as gradient descent to find a local minimum. To find an optimum, we may linearize
the function using the strategy in the following subsection.

5.1.4.3. Feature design for regression

The fact that ML is data-dependent, an algorithm can achieve very good or bad
results depending on the data set. Thus the knowledge and the understanding of
the data can help to design an efficient algorithm for a specific problem of interest.
For example, in case of logistic function mention above, we can rewrite (5.17) as

x̂Ti ŵ = log( yi
1− yi

) = ŷi (5.20)

which is in fact a linear function, thus the family of least-square solution is applica-
ble.
By reasoning or background knowledge, we can also preprocess a data set for which
simple or more efficient solution can be derived. In particular, we can transform
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the set into possibly high-dimensional feature space using non-linear features φ(.)
so that

yi ≈ φ(xi)T ŵ. (5.21)

Notice that the function remains linear in the weight vector, thus linear-based al-
gorithms can be applied. For example, the function yi ≈ log(xTi a)w is nonlinear
with the input xi while is still linear with w. Even in case of simple linear model
yi ≈ xTi w we can always transfer the data to possibly higher-dimensional space


x1
x2
. . .
xN

 φ→


1
x1
x2
. . .
xN


ŵ→ y

where φ(x) = [1, x1, . . . , xN ]T . For this specific example, the new features in the
transformed feature space are more advantageous than the original ones since they
take bias into account.

5.1.4.4. Performance metrics

Let yi and ỹi denote the actual value and the estimate value, respectively. We can
use the following measures to evaluate an ML algorithm:

• Mean Absolute Error (MAE):

MAE = 1
N

N∑
i=1
|yi − ỹi|. (5.22)

• Mean Absolute Relative Error (MARE) or Mean Absolute Percentage Error
(MAPE):

MAPE = 1
N

N∑
i=1
|yi − ỹi

yi
|. (5.23)

• Root Mean Square Error (RMSE):

RMSE =

√√√√ 1
N

N∑
i=1

(yi − ỹi)2. (5.24)

• Root Mean Square Percentage Error (RMSPE):

RMSPE =

√√√√ 1
N

N∑
i=1

(yi − ỹi
yi

)2 (5.25)
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• Relative Root Mean Square Error (RRMSE):

RRMSE = RMSE
ȳ

=

√
1
N

N∑
i=1

(yi − ỹi)2

1
N

N∑
i=1

yi

. (5.26)

It is worth mentioning that when we have a limited data set, k-fold cross-validation
is preferable. In particular, the data is divided into k groups so that we perform
the training on (k − 1) groups and test the model on the rest. In fact, there are no
formal criteria for selecting k, normally we can take a value of 5 or 10.

5.2. A Case Study of ML-based Approach

In this section, we apply ML to estimate the maximum sum rate for SZFDPC
systems. For this specific problem, a barrier interior-point method was proposed
in [29,30]. It is well known that such a second-order approach has a computational
complexity that does not scale favorably with the problem size. In the following we
proposed to solve this important problem by a suboptimal solutions which is based
on regression.

5.2.1. System Model

Consider a MIMO BC consisting of a base station (BS) and K users. The BS and
each user k are equipped with N andMk antennas respectively. The channel matrix
for user k is denoted by Hk ∈ CMk×N . Normally, a user suffers interference from
all other users in the system. For user k in the SZFDPC scheme, the interference
caused by users j < k is canceled by DPC, while that caused by users j > k is
nulled out by zero-forcing technique. In this way, a MIMO BC can be decomposed
into parallel interference-free channels. We refer the interested reader to [29] and
references therein for a more detailed description of the SZFDPC scheme.

5.2.2. Problem Formulation

The sum rate of SZFDPC can be characterized through solving the sum rate (SR-
Max) problem under PAPC which is formulated as

maximize
{Sk�0}

∑K
k=1 log |I + HkSkH†k| (5.27a)

subject to HjSkH†j = 0, ∀j < k (5.27b)∑K
k=1[Sk]i,i ≤ Pi, i = 1, 2, . . . , N (5.27c)
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where Sk � 0 is the input covariance matrix for user k. The constraint in (5.27b) is
imposed to suppress the interference from users j < k as mentioned above.
Due to the use of zero-forcing method, SZFDPC is a suboptimal transmission strat-
egy compared to DPC. However, SZFDPC does not cancel multiuser inference only
by zero-forcing technique since DPC is still invoked for this purpose. Thus, SZFDPC
can achieve a performance close to that of DPC, which was reported in various pre-
vious studies [29, 30, 69]. We note that for SZFDPC (i.e. (5.27)) to be feasible, it
should hold that N > (K − 1)M which is assumed in this chapter. This dimension
condition basically imposes a constraint on the maximum number of users that can
be supported simultaneously. When the number of demanding users increases, a
user scheduling algorithm is required and this problem was studied in [69] where
several efficient user selection methods were proposed for SZFDPC. We also remark
that the interference cancelling process is performed sequentially after each user, and
thus user ordering in SZFDPC is important. Optimal user ordering requires solving
a combinatorial optimization problem but efficient user order algorithms were also
proposed in [69]. In this chapter we simply assume the natural user ordering for
SZFDPC and focus on the precoder design.
In order to simplify the formulation in (5.27), let H̆k = [H†1,H†2, . . .H†k−1]†, V̆k =
null(H̆), and Ḣk = HkV̆k. Intuitively, Ḣk is called the effective channel of user k.
The optimal Sk in (5.27) is then given by Sk = V̆kṠkV̆†k, where Ṡk is the optimal
solution to the following problem

maximize
{Ṡk�0}

∑K
k=1 log |I + ḢkṠkḢ†k|

subject to ∑K
k=1[V̆kṠkV̆†k]i,i ≤ Pi, ∀i.

(5.28)

Inspired by the work in [12], we extend the AO approach to our considered problem.
More specifically, by extending Theorem 2 of [30], we can show that (5.28) can be
equivalently transformed into the following minimax problem in the dual MAC

min
Q�0

max
{S̄k�0}

∑K
k=1 log |V̆

†
k
QV̆k+Ḣ†

k
S̄kḢk|

|V̆†
k
QV̆k|

subject to ∑K
k=1 tr(S̄k) = P

tr(QP) = P,Q : diagonal
(5.29)

where P = tr(P), P = diag([P1, P2, . . . , PN ]T ).
Since the AO-based algorithm to solve (5.29) is similar to those in [12, Algorithm
2], we refer interested readers to [12, Algorithm 2] for the details. Instead, we
concentrate on our ML-based approach in the following.

5.2.3. An ML-based Approach

Following similar arguments to those in [12, Subsection III-B], the interior-point-
based approach to solve the considered problem has the per-iteration complexity
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up to O(K3N6) while that of the AO-based algorithm is O(KN3) flops. On the
one hand, AO-based algorithm dominates the existing approach and reduces the
complexity significantly, but on the other hand, it still experiences high complexity
in case of massive MIMO settings where N

K
≥ 10. In such cases, we can employ the

following ML approach to obtain a suboptimal solution since this approach can adapt
quickly to any changes in the systems while retaining the satisfactory performance.
Regarding ML-based methods, it is also worth mentioning that deep learning has
been applied recently to the relevant problems [70, 71]. However, the performance
of the deep learning-based methods depends heavily on the choice of the number of
hidden layers as well as the number of neurons in each layer. More importantly, the
tuning of the hyperparameters is difficult. Instead, we will show shortly that we can
find an appropriate estimator using simple linear regression methods which are not
only tractable but also easy to implement and analyze.
Assuming that we execute the AO-based algorithm to generate optimal sum rates y
based on X = [x1,x2, . . . ,xs] ∈ Cp×s inputs where s is the number of samples. Note
that xi contains p features of the power constraints and channel coefficients. In other
words, we stack the power constraints and the channel coefficients of all users into a
vector, i.e., p = N +KMN. If we simply apply arbitrary ML algorithms, the errors
will be extremely prohibitive due to the fact that the considered problem is nonlin-
ear in nature with respect to either the power constraint or the channel matrix (c.f.
Fig. 5.1). On the other hand, nonlinear ML algorithms are much more difficult to
investigate since there are no available solutions to this type of optimization. Even
the optimal solution mentioned above already contains many nonlinear terms. In
the following, we propose a novel two-step preprocessing method to transform the
inputs into another feature space to which linear regression algorithms are applica-
ble. Herein, we will refer to this approach as feature design (FD)-based approach.

Step 1: Select a set of features x̌ by customizing the principle component
analysis (PCA)-based algorithm in [68]:
- Choose the number of eigenvectors whose eigenvalues are larger than 1 .
- Select the features based on l largest contribution
Step 2: Transform x̌ into higher feature space by φ(x̌) = [1, logb(|x̌|)]T .

Note that instead of choosing a number of largest eigenvalues of the covariance
matrix randomly [68], we empirically choose d eigenvalues which are larger than 1.
As a result, we can form a new matrix Ũ = [ũ1, ũ2, . . . , ũd] corresponding to those
eigenvalues. To select the most dominant features, we first calculate the contribution
measure

ϑi =
d∑
j=1
|ũi,j| (5.30)

where i = 1, 2, . . . , p. Then we select the desired features with respect to l largest
contribution ϑi. Again, we avoid random selection of l whose appropriate value is
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not easy to justify in practice. Instead, we propose to choose l based on the matrix
size and the number of users:

l = N +Kr (5.31)

where N and K are the number of transmit antennas and the number of users,
respectively; r = min(M,N) where M is the number of receive antennas. Note that
l < p from (5.31) and we can therefore obtain a new matrix with reduced dimension
X̌ = [x̌1, x̌2, . . . , x̌s] ∈ Cl×s.
In fact, there are no criteria to choose a function to transform the inputs into
another space where efficient algorithms can be derived. In our approach, we rely
on the characteristics of the problem to propose a transform function. Specifically,
recall that the considered sum rate is a logdet function, thus we can transform these
features into a new feature space where linear model are possible using the following

φ(x̌) =
[

1
logb(|x̌|)

]
(5.32)

where b is the base of the logarithm. Under this assumption, an output i.e., an
estimate sum rate is given by

yi ≈ φ(x̌i)T ŵ. (5.33)

As a result of this formulation, we can apply any linear regression algorithms such
as ordinary least square (OLS), ridge regression or principal component regression
(PCR) [72, Chapter 6] to find an appropriate estimator ŵ. In the numerical results,
we will show the effectiveness of our proposed approach in comparison with other
algorithms which do not take the feature design into account.

5.2.4. Numerical Results

In this section, we numerically evaluate the performance of the proposed algorithm.
For the AO-based algorithm, we set an error tolerance of ε = 10−6 as the stopping
criterion to generate the optimal sum rate. The number of transmit antennas are
varied from 16 to 32 and the number of users is fixed at 4. The the PAPC ratio is
chosen randomly, whereas SNR is chosen from the set SNR = [0, 10, 20, 30, 40] dBW.
For each MIMO setting we generated 240 samples. Also, we simply use natural log
to transform the feature space. Other simulation parameters are specified for each
setup. The codes are executed on a 64-bit desktop that supports 8 Gbyte RAM and
Intel CORE i7.
In the first experiment, we compare the optimal and estimate sum rates of a MIMO
scenario where N = 32 transmit antennas and M = 2 receive antennas. In partic-
ular, we compare the cumulative distribution functions (CDFs) of the optimal and
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estimate sum rates of a MIMO system with SZFDPC and different PAPC settings
using linear and nonlinear regression methods. More specifically, we utilize support
vector regression (SVR) with radial basis function (RBF) kernel [73] for nonlinear
regression. Here, we train on 216 samples and test on 24 samples. As can be seen
from the figure, conventional OLS and SVR fail to fit the data due to nonlinear
nature of the problem. However, the results of the simple OLS with the feature
design are very close to optimal solutions. The performance has also proved the
feasibility of our approach.
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Figure 5.1.: Cumulative distribution functions of the optimal and estimate sum
rates of a MIMO system with SZFDPC and random PAPC settings using linear
and nonlinear regression, N = 32 transmit antennas, M = 2 receive antennas and
K = 2 users.

In the last experiment, we consider the effectiveness of our feature-design-based
approach in terms of average relative root mean square error (aRRMSE) [74] over
large samples with varying number of transmit and receive antennas. In particular,
we obtain the aRRMSE by executing 10-fold cross-validation using three simple
linear ML algorithms: OLS, Ridge and PCR. According to [74], a learning model is
considered good and excellent when 10% < aRRMSE < 20% and aRRMSE < 10%,
respectively. Interestingly, the ML-based methods show sufficiently low error rates,
especially when N

K
≥ 10. From our observations, the training matrices are invertible

and the eigenvalues are larger than 1, thus the performance of OLS and PCR is
the same and has minor difference in comparison with that of ridge regression.
Unsurprisingly, these observations coincide with the properties of these regression
methods.
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Figure 5.2.: aRRMSE of OLS, Ridge regression and PCR with feature design and
K = 2 users.

5.3. Summary

We have presented the basis of ML and applied it to compute sum rate of MIMO
systems under PAPC and SZFDPC. Our experiments using optimal solution have
stated that the SZFDPC can obtain the near-capacity whereas the ZF scheme still
operates far from the optimal capacity boundary for a specified number of users. The
fact that the proposed optimal solution may experience high complexity in large-
scale MIMO settings, a suboptimal ML-based approach is therefore more efficient.
Extensive numerical results have demonstrated the superiority of the proposed al-
gorithms over the existing interior-point method. More importantly, our ML-based
approach can be applicable to a class of similar problems.
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Chapter 6

Conclusions and Future Work
The capacity of MIMO systems is well-studied under SPC, however efficient algo-
rithms to compute the MIMO capacity under per-antenna power constraint or the
general form i.e., LTCCs remain open problems since the state-of-the-art solutions
utilizing high-complexity methods are inapplicable. In this thesis, we have proposed
novel approaches to those important problems. More importantly, our algorithms
have low complexity, thus have huge impact on the development of massive MIMO
systems in 5G and beyond.
For the MIMO capacity under PAPC, we proposed two efficient approaches based on
fixed-point iteration and AO together with SCA. More specifically, the fixed-point
solution relies on water-filling-based method and fixed-point iteration, thanks to
the special structure of the problem in BC. In the second approach, the considered
problem in BC is transformed into an equivalent minimax problem in the dual MAC.
Since a naive minimax does not guarantee the convergence, we have proposed to
optimize the upper bound of the minimization problem and this critical step in fact
avoids fluctuations observed in a naive minimax algorithm. Our approaches are
provably convergent and have low complexity.
When a new power constraint or multiple linear transmit covariance constraints are
imposed on the system, the solution for PAPC is no longer applicable. Interestingly,
the capacity problem can however be solved efficiently under the same framework
for PAPC case. As a starting point, we also transformed the original maximization
problems into a minimax problem. Then AO and CCP are utilized to derive both
iterative low-complexity algorithms for the general power constraints and analytical
solutions to the important cases of joint SPC and PAPC. To a large extent, this
approach is not only efficient but also general enough to include either SPC or
PAPC or joint SPC and PAPC as special cases.
In light of ML, we have developed a ML-based approach to estimate the sum rate
of a multi-user MIMO system, which is specifically helpful for massive MIMO sys-
tems. Considering SZFDPC as a case study, we relied on aforementioned optimal
approaches to arrive at the optimal solution. We then proposed an approach to
preprocess the data generated by the optimal algorithm so that linear regression
methods are feasible. The numerical results have shown that this approach strikes
a good balance between the complexity and optimal rates.
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It is worth noting that LTCCs considered in Chapter 4 are general enough to include
PAPC or joint SPC and PAPC as special cases. From an algorithmic point of
view, the second approach in Chapter 3 and the approach proposed in Chapter 4
are based on the same idea of combining alternating optimization and successive
convex approximation and thus the resulting algorithms are actually the same. The
differences lie on the closed-form solutions for each step of the iterative process, more
specifically, the minimization utilizing the upper bound of the considered objectives.
In fact, the minimax problems in Chapters 3 and 4 can be generalized as follows

min
x

max
y

g(x,y)− h(y) (6.1)

where x ∈ X ,y ∈ Y , X ,Y are compact and convex sets in Rn; g(x,y) is jointly
concave with x and y , g(x,y)− h(y) is convex with y.
The novelty of our proposed approach is to minimize an upper bound for the min-
imization, instead of the original objective. This is a very critical step in order to
guarantee the convergence of the resulting algorithm. Otherwise, we may end up
with a ping-pong situation as illustrated in Fig. 3.2 of Chapter 3. In general, differ-
ent upper bounds may converge to different points. To avoid this problem, we need
to impose some conditions on an upper bound to make sure that it always converges
to an optimal solution. Basically an upper bound should satisfy two conditions:
(i) The upper bound should be tight when the iterative procedure converges, and
(ii) the KKT conditions of the optimization problem derived from the upper bound
should be the same as the KKT conditions of the original problem. A more rigorous
explanation is given below.
Let f(y) = g(x,y) − h(y) be a convex function to be minimized over the convex
feasible set Y . That is, we consider the following problem

minimize f(y) (6.2)
subject to y ∈ Y (6.3)

We wish to develop an iterative method to solve the above problem using an upper
bound. Let ϕ(y; y(n)) be an upper bound for this purpose where y(n) is the obtained
solution at iteration n. The two conditions mentioned above mean

• ϕ(y; y(n)) ≥ f(y) for all y ∈ Y and ϕ(y(n); y(n)) = f(y(n)). In other words, the
upper bound and the original objective should be equal at y(n). This condition
guarantees that the upper bound and the original function achieve the same
value when the iterative process converges.

• ∇yϕ(y; y(n))|y=y(n) = ∇yf(y)|y=y(n) . That is, the gradient of the upper bound
and that of the objective function evaluated at y(n) are identical. This condi-
tion is to ensure that the optimal solution to the approximate problem is also
optimal to the original problem.
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We remark that for a given function f(y), there are infinitely many upper bounds
that can meet the two requirements. The choice of an upper bound also depends
how the resulting problem can be solved. A good choice is one that can lead to an
efficient solution. In the thesis we derive an upper bound of the objective which
is based on the first order approximation of the logdet function. Thus, the upper
bound can naturally satisfy the two conditions stated above. To clarify this point
let us write the gradient of the objective of Eq. (4.3) with respect to Q = ∑L

i=1 qiEi

as

∇Qf(Q, S̄) = (Q + H†S̄H)−1 −Q−1. (6.4)

The gradient of the objective in iteration n of the proposed method is

Φ−1
n −Q−1 = (Qn + H†S̄nH)−1 −Q−1. (6.5)

It is trivial to check that the gradients of the original objective and the upper bound
in are the same when Q = Q(n). More importantly, this simple upper bound allows
us to find an efficient solution.

In fact, our approaches are not only applicable to the considered problems in this
thesis but also a class of similar problems. More specifically, we suggest some possible
extensions to our study in what follows:

• In the context of physical security, the secrecy rate optimization is generally
non-trivial since the problem is neither convex nor concave. Recently, authors
in [75] proposed to transform this non-convex problem into an equivalent min-
imax problem. Inspired by the work of [75], the author in [76] developed a
global-convergent interior-point-based algorithm for this problem under SPC
or PAPC. Due to the similarity of the problem formulation to those in this
thesis, our AO and CCP-based approach is promising alternative to current
interior-point-based solution.

• A constrained maximization or minimization can always be considered as a
minimax problem. In particular, we have to maximize/minimize a Lagrangian
function with respect to (w.r.t) one or a set of primal variables, while mini-
mizing/maximizing it w.r.t the dual variables or Lagrangian multiplier(s). If
we can find a proper upper bound/lower bound for the minimization or the
maximization, then the approach is still well suited.

• In a broader sense, the AO-based approach may be investigated further to
apply to an arbitrary minimax problem with proper bound(s). Our conjecture
is that we can choose either an upper bound for the minimization or a lower
bound for the maximization or even both to solve the problem. Moreover, this
methodology is also applicable to a non-convex problem if we can transform
it into a minimax problem as the case of secrecy capacity.
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• In practice, optimal solutions can cause high complexity in certain scenarios,
therefore suboptimal solutions e.g., machine learning -based approach which
trade off the complexity and performance are of more interest. Since our
initial experiments with machine learning-based method only estimate the
channel capacity, more research efforts can be done to not only arrive at the
channel capacity but also precoding matrices to achieve that capacity. A more
sophisticated technique to estimate multi-targets such as deep learning can be
investigated.

• Under imperfect channel information, we may formulate a channel as a combi-
nation of a deterministic channel and an error model. Therefore, the proposed
approaches can be customized to solve these problems. We may also con-
sider imperfect channel model in light of stochastic optimization in which the
algorithms mentioned above are applicable.
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Appendix A

Proofs of Chapter 3

A.1. Proof of Lemma 3.1

The key to prove the convergence of the fixed-point iteration in (3.14) is to show
that I(x) is a standard interference function. That is, for all x ≥ 0 then I(x)
satisfies the following three properties

• Positivity: I(x) > 0.
• Monotonicity: If x ≥ y, then I(x) ≥ I(y).
• Scalability: For all α > 1, αI(x) > I(αx).

According to [77, Theorem 2], if a function satisfies three properties listed above, it
will converge to a unique fixed point.
The positivity is obvious and the scalability can be easily shown by the following
inequalities

I(αx) = p + α diag(Ψ(αx))� x (A.1)
(a)
≤ p + α diag(Ψ(x))� x (A.2)
(b)
< α(p + diag(Ψ(x))� x) = αI(x) (A.3)

where (a) can be proven from the definition of Ψ(x) as follows. Let X = diag(x) and
VΣV† = XH†HX be the EVD of XH†HX, where Σ = diag([ρ1, ρ2, . . . , ρr,0N−r])
and r = rank(H†H). Then it follows immediately that VΣ̃V† = X̃H†HX̃ where
X̃ = diag(αx), Σ̃ = diag([ρ̃1, ρ̃2, . . . , ρ̃r,0N−r]), and ρ̃i = α2ρi for i = 1, 2, . . . , r.
Since α > 1, we have 1

ρ̃i
= 1

α2ρi
< 1

ρi
, and thus

Ψ(αx) = V diag( 1
ρ̃1
, · · · , 1

ρ̃s′
,1N−s′)V† � Ψ(x) = V diag( 1

ρ1
, · · · , 1

ρs
,1N−s)V†

(A.4)

where s′ and s are the largest number such that 1 − 1
ρs′

> 0 and 1 − 1
ρs

> 0,
respectively. Note that s′ ≥ s and thus the above inequality is easily justified.
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Consequently, diag(Ψ(αx)) ≤ diag(Ψ(x)) which completes (a). The inequality (b)
holds since p < αp for α > 1, which results in p + α diag(Ψ(x)) � x < α(p +
diag(Ψ(x))� x) = αI(x).
To prove the monotonicity of I(x), we need to show that for all x,y ≥ 0 then I(x) ≥
I(y) or equivalently diag(Ψ(x)) � x ≥ diag(Ψ(y)) � y. Let X = diag(x),Y =
diag(y). Then monotonicity proof is equivalent to showing that diag(X1/2Ψ(x)X1/2) ≥
diag(Y1/2Ψ(y)Y1/2) for X � Y � 0.
Let us first consider the case N ≤M and H is full column rank. Then we can write
the EVD of Λ−1/2H†HΛ−1/2 as

Λ−1/2H†HΛ−1/2︸ ︷︷ ︸
B

= VΣV†. (A.5)

For notational convenience, let K = H†H. Note that K is full-rank and thus
invertible. Then the above equation can be rewritten as

B−1 = Λ1/2K−1Λ1/2 = VΣ−1V† (A.6)

which the results in

B−1 − I = V
(
Σ−1 − I

)
V†. (A.7)

Let Σ̃ be the (N − k) positive eigenvalues of B−1 − I and Ṽk consist of the corre-
sponding N − k eigenvectors, Σ̄ be the k non-positive eigenvalues of B−1 − I, and
V̄k consist of the corresponding k eigenvectors, and define

A+ = ṼkΣ̃Ṽ†k (A.8a)
A− = V̄kΣ̄V̄†k. (A.8b)

Then it holds that

B−1 − I = A+ + A− (A.9)

and that A−A+ = 0. Now we can write Ψ(λ̃) = A− + I = B−1 −A+ and thus

[Ψ(λ̃)Λ−1]i,i = [Λ−1/2Ψ(λ̃)Λ−1/2]i,i
= [Λ−1/2

(
B−1 −A+

)
Λ−1/2]i,i

= [Λ−1/2B−1Λ−1/2]i,i − [Λ−1/2A+Λ−1/2]i,i
= [K−1]i,i − [Λ−1/2A+Λ−1/2]i,i
= [K−1]i,i − [Λ̃1/2A+Λ̃1/2]i,i. (A.10)

To proceed further we need to show that if X � Y then

[X1/2A+
XX1/2]i,i ≤ [Y1/2A+

Y Y1/2]i,i. (A.11)
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Now from (A.9) we have

X−1/2K−1X−1/2 − I = A+
X + A−X (A.12)

which is equivalent to

K−1 −X = X1/2A+
XX1/2 + X1/2A−XX1/2. (A.13)

The same result applies to Y, i.e.,

K−1 −Y = Y1/2A+
Y Y1/2 + Y1/2A−Y Y1/2. (A.14)

Since X � Y � 0 it holds that

K−1 −X � K−1 −Y. (A.15)

Substituting (A.13) and (A.14) into (A.15) yields

X1/2A+
XX1/2 + X1/2A−XX1/2 � Y1/2A+

Y Y1/2 + Y1/2A−Y Y1/2. (A.16)

We now recall the following inequality. For Hermitian matrices A and B, if A � B,
then SASH � SBSH for S � 0 [78, Observation 7.7.2]. Applying this inequality to
(A.16) leads to

A+
X −X−1/2Y1/2A+

Y Y1/2X−1/2 � X−1/2Y1/2A−Y Y1/2X−1/2 −A−X (A.17)

which is then equivalent to
(
A+
X

)1/2(
A+
X −X−1/2Y1/2A+

Y Y1/2X−1/2
)(

A+
X

)1/2

�
(
A+
X

)1/2(
X−1/2Y1/2A−Y Y1/2X−1/2 −A−X

)(
A+
X

)1/2
� 0. (A.18)

The above inequality holds true since
(
A+
X

)1/2
A−X

(
A+
X

)1/2
= 0. It is easy to see

that (A.18) results in

X1/2A+
XX1/2 � Y1/2A+

Y Y1/2 (A.19)

and thus

[X1/2A+
XX1/2]i,i ≤ [Y1/2A+

Y Y1/2]i,i (A.20)

for all i. Here we have used a well-known fact that for A � B, then [A]i,i ≥ [B]i,i.

We now turn our attention to the general case where K is singular. This occurs
when N > M or N ≤ M but H is not full column rank, i.e. the columns of H are
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not linearly independent. First we add a small regularization term to both sides of
(A.5) to obtain

Bε = Λ−1/2H†HΛ−1/2 + εΛ−1

= Λ−1/2
(
H†H + εI

)
Λ−1/2

= VΣV† + εΛ−1. (A.21)

We note that Bε is invertible for any ε > 0. Let VεΣεV†ε be the EVD of Bε and
thus

B−1
ε = VεΣ−1

ε V†ε. (A.22)

Applying the result for the nonsingular case, we achieve the following inequality

Ψε(x)X � Ψε(y)Y (A.23)

for arbitrarily small ε and X � Y, and Ψε(·) in constructed from Bε. To complete
the proof we are left to show that Ψε(λ̃) is continuous with ε, i.e., lim

ε→0+
Ψε(λ̃) =

Ψ(λ̃) = A− + I.
To proceed, we note that (A.9) is changed into

B−1
ε − I = A+

ε + A−ε (A.24)

where A+
ε and A−ε are defined similarly to (A.8). We will show that limε→0 A−ε →

A−. To this end let εmin = ε×mini{1/λi} and εmax = ε×maxi{1/λi}, where λi is
the ith diagonal entry of Λ. It is clear from from (A.21) that the following inequality
holds

V
(
(Σ + εminI)−1 − I

)
V†︸ ︷︷ ︸

Ξεmin

� B−1
ε − I � V

(
(Σ + εmaxI)−1 − I

)
V†.︸ ︷︷ ︸

Ξεmax

(A.25)

Further, the matrix Ξεmin can be explicitly written as

Ξεmin = V diag([ 1
ρ1 + εmin

− 1, . . . , 1
ρr + εmin

− 1,

1
εmin
− 1, . . . , 1

εmin
− 1︸ ︷︷ ︸

(N−r) terms

])V† (A.26)

where r = rank(K). Following (A.9), we decompose Ξεmin as

Ξεmin = A+
εmin + A−εmin (A.27)

where A+
εmin and A−εmin consists of positive and non-positive eigenvalues, respectively.

As ε→ 0+ we have 1
ρi+εmin

→ 1
ρi

for all i = 1, 2, ..., r, and 1
εmin
� 1. Thus , the term
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1
εmin
−1 in (A.26) becomes strictly positive and thus is excluded in A−εmin . As a result,

we have limε→0+ A−εmin = A−. Following the same arguments we can also show that
limε→0+ A−εmax = A−. From (A.25) it is clear that lim

ε→0+
A−ε = A− and thus

lim
ε→0+

Ψε(λ̃) = lim
ε→0+

(A−ε + I) = A− + I = Ψ(λ̃). (A.28)

By the continuity property shown above, the monotonicity of Algorithm 3.1 also
holds for the singular case, which completes the proof.

A.2. Convergence Proof of Algorithm 3.2

We note that the function log |Q + H†S̄H| is jointly concave with Q and S̄. Thus
the following inequality holds

log |Q+H†S̄H| ≤ log |Qn + H†S̄nH︸ ︷︷ ︸
Φn

|+tr(Φ−1
n (Q−Qn))+tr(HΦ−1

n H†(S̄− S̄n))

(A.29)

for all Q ∈ Q and S̄ ∈ S. The above inequality comes from the first order approx-
imation of log |Q + H†S̄H| around the point (Qn, S̄n). Substitute Q := Qn+1 and
S̄ := S̄n+1 into the above equality, we have

log |Qn+1 +H†S̄n+1H| ≤ log |Φn|+tr(Φ−1
n (Qn+1−Qn))+tr(HΦ−1

n H†(S̄n+1−S̄n)).
(A.30)

Since S̄n = arg max
S̄∈S

log |Qn + H†S̄H|, the optimality condition results in

tr(HΦ−1
n H†(S̄− S̄n)) ≤ 0 (A.31)

for all S̄ ∈ S. For S̄ = S̄n+1 the above inequality means

tr(HΦ−1
n H†(S̄n+1 − S̄n)) ≤ 0 (A.32)

which leads to

log |Qn+1 + H†S̄n+1H| ≤ log |Φn|+ tr(Φ−1
n (Qn+1 −Qn)). (A.33)

Subtract both sides of the above inequality by log |Qn+1| results in

f(Qn+1, S̄n+1) = log |Qn+1 + H†S̄n+1H| − log |Qn+1|
≤ log |Φn| + tr(Φ−1

n (Qn+1 −Qn)) − log |Qn+1|. (A.34)
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Since Qn+1 solves (3.23) it holds that

log |Φn|+ tr
(
Φ−1
n

(
Qn+1 −Qn

))
− log |Qn+1|

≤ log |Φn| + tr
(
Φ−1
n

(
Q −Qn

))
− log |Q| (A.35)

for all Q ∈ Q. For the special case Q := Qn, the above inequality is reduced to

log |Φn|+ tr
(
Φ−1
n

(
Qn+1 −Qn

))
− log |Qn+1| ≤ log |Φn| − log |Qn|︸ ︷︷ ︸

f(Qn,S̄n)

. (A.36)

Combining (A.34) and (A.36) results in f(Qn, S̄n) ≥ f(Qn+1, S̄n+1).

It is easy to see that {f(Qn, S̄n)} is bounded below, and thus {f(Qn, S̄n)} is con-
vergent. We also note that (3.22) is strict if Q 6= Qn. Consequently, the sequence
{f(Qn, S̄n)} is strictly decreasing unless it is convergent.

Let us consider the set Q+ , {tr(QP) ≤ P ; Q � 0}. Note that Q+ is open. As
mentioned previously, Qn ∈ Q+ for all n. We will prove the two following properties
regarding the convergence of Algorithm 3.2:

• Algorithm 3.2 generates at least a convergent subsequence.

• Let Q∗ be the limit point of {Qn}. Then Q∗ is nonsingular, i.e. Q∗ ∈ Q+.

The first property is relatively trivial. It is easy to see that the set Q+ is bounded
(though it is open). As Q+ and S are both bounded, Algorithm 3.2 must produce
at least a convergent subsequence, due to the Bolzano-Weierstrass theorem [79,80].
The proof for the second property is quite involved, which is done by contraction as
follows.

Suppose the contrary that Q∗ is singular, i.e., there exists {qn,i} → 0 for some i.
Recall that S̄n = arg max log |Qn + H†S̄H|, and thus replacing S̄n = P

N
I which is a

feasible point to the maximization problem results in

log |Qn + H†S̄nH| ≥ log |Qn + P
N

H†H|. (A.37)

Consequently we have

f(Qn, S̄n) ≥ log |Qn + P
N

H†H| − log |Qn|
= log |I + P

N
Q−1/2
n H†HQ−1/2

n |
= log |I + P

N
HQ−1

n H†|

= log |I + P
N

N∑
l=1

q−1
n,lhlh

†
l |. (A.38)
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Note that hl is the lth column of H. Let An,i = I + P
N

∑N
l 6=i q

−1
n,lhlh

†
l . Then we can

write

f(Qn, S̄n) ≥ log |An,i + P
N
q−1
n,ihih

†
i |

= log |An,i|+ log |I + P
N
q−1
n,iA

−1/2
n,i hih†iA

−1/2
n,i |

= log |An,i|+ log(1 + P
N
q−1
n,ih

†
iA−1

n,ihi). (A.39)

Let υmax
n,i be the maximum eigenvalue of An,i, and thus 1

υmax
n,i

is the minimum eigen-
value of A−1

n,i. Then we have

f(Qn, S̄n) ≥ log(υmax
n,i ) + log(1 + P

Nqn,iυmax
n,i
||hi||22) (A.40)

where we have used the fact that all eigenvalues of An,i are no less than 1, and that
x†Bx ≥ λmin||x||22, where λmin is the minimum eigenvalue of B.

To proceed further we consider two cases. Specifically, if limn→∞ υ
max
n,i = ∞, then

it immediately holds that limn→∞ f(Qn, S̄n) = ∞. Now suppose that there exists
c <∞ such that 1 ≤ υmax

n,i ≤ c for all n. In this case we obtain

f(Qn, S̄n) ≥ log(1 + P
Nc

1
qn,i
||hi||22). (A.41)

It is straightforward to see that f(Qn, S̄n) → ∞ as qn,i → 0, due to the fact that
||hi||2 > 0.

In summary we have proved that if there exists {qn,i} → 0 for some i, then {f(Qn, S̄n)} →
∞. This contradicts the fact that ∞ > f(Q0, S̄0) ≥ f(Qn, S̄n) for all n as proved
earlier. Thus it is concluded that the limit point of Algorithm 2 Q∗ is non-singular.
By the continuity of f(·) over S and Q+, we have lim

n→∞
f(Qn, S̄n) = f(Q∗, S̄∗).

Now let {(Qnk , S̄nk)} be the subsequence converging to the limit point. Next we
shall show that {(Qnk+1, S̄nk+1)} → (Q∗, S̄∗). In fact, it is sufficient to prove that
Qnk+1 → Q∗ which can be done by contradiction. Assume the contrary that Qnk+1
does not converge to Q∗. Consequently, there exists a d > 0 such that

d ≤ dnk = ||Qnk+1 −Qnk ||,∀k (A.42)

where || · || stands for arbitrary norm. We have

f(Qnk+1, S̄nk+1) ≤ F (Qnk+1; Qnk , S̄nk) (A.43)
= F (Qnk + dnkΓnk ; Qnk , S̄nk) (A.44)
≤ F (Qnk + δdΓnk ; Qnk , S̄nk),∀δ ∈ [0, 1]
≤ F (Qnk ; Qnk , S̄nk) (A.45)
= f(Qnk , S̄nk) (A.46)
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where Γnk , (Qnk+1−Qnk)/dnk is the normalized distance between Qnk+1 and Qnk ,
F (Qnk+1; Qnk , S̄nk) = log |Φnk | + tr

(
Φ−1
nk

(
Qnk+1 −Qnk

))
− log |Qnk+1|. Note that

||Γnk || = 1 and thus Γnk lies in a compact set and has a limit point Γ∗. Letting
k →∞ (by further restricting to a subsequence converging to Γ∗) leads to

f(Q∗, S̄∗) ≤ F (Q∗ + δdΓ∗; Q∗, S̄∗) ≤ f(Q∗, S̄∗) (A.47)

or equivalently

f(Q∗, S̄∗) = F (Q∗ + δdΓ∗; Q∗, S̄∗),∀δ ∈ [0, 1]. (A.48)

Furthermore

F (Qnk+1 ; Qnk+1 , S̄nk+1) = f(Qnk+1 , S̄nk+1)
≤ f(Qnk+1, S̄nk+1) ≤ F (Qnk+1,Qnk , S̄nk) ≤ F (Q; Qnk , S̄nk),∀Q ∈ Q+.

(A.49)

Letting k →∞ we obtain

F (Q∗; Q∗, S̄∗) ≤ F (Q; Q∗, S̄∗),∀Q ∈ Q+ (A.50)

which further implies that Q∗ is the minimizer of F (·; Q∗, S̄∗). Since Qnk+1 =
arg min

Q∈Q+

F (Q; Qnk , S̄nk) it follows that

F (Qnk+1; Qnk , S̄nk) ≤ F (Q; Qnk , S̄nk),∀Q ∈ Q+. (A.51)

Letting k →∞ implies

F (Q∗; Q∗, S̄∗) ≤ F (Q; Q∗, S̄∗),∀Q ∈ Q+. (A.52)

That is

〈∇QF (Q; Q∗, S̄∗)|Q=Q∗ ,Z−Q∗〉 ≥ 0,∀Z ∈ Q+ (A.53)

where 〈.〉 denotes the inner product. Recall that F (·; Q, S̄) is the first order of
f(Q, S̄). Thus it is easy to see that

∇QF (Q; Q∗, S̄∗)|Q=Q∗ = ∇f(Q∗, S̄∗) (A.54)

and thus (A.53) is equivalent to

〈∇Qf(Q∗, S̄∗),Z−Q∗〉 ≥ 0,∀Z ∈ Q+. (A.55)

In the same way we can show that

〈∇S̄f(Q∗, S̄∗),W− S̄∗〉 ≤ 0,∀W ∈ S. (A.56)

Two above inequalities imply that (Q∗, S̄∗) is a saddle point of (3.15), which com-
pletes the proof.
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A.3. Projection onto the Feasible Set of (3.41)

The projection of {S̃k} onto the feasible set of (3.41) is formulated as

minimize ∑K
k=1 ||S̄k − S̃k||2F

subject to ∑K
k=1 tr(S̄k) = P ; {S̄k � 0}. (A.57)

Let UkD̃kU†k = S̃k be the EVD of S̃k, where Uk is unitary and D̃k is diagonal.
Then we can write S̄k = UkD̄kU†k for some D̄k � 0. Since Uk is unitary, it holds
that tr(S̄k) = tr(D̄k) and that ||S̄k − S̃k||F = ||D̄k − D̃k||F . That is to say, (A.57)
is equivalent to

minimize ∑K
k=1 ||D̄k − D̃k||2F

subject to ∑K
k=1 tr(D̄k) = P ; {D̄k � 0}. (A.58)

It is easy to see that D̄k must be diagonal to minimize the objective of (A.58). Next
let d̄k = diag(D̄k), d̃k = diag(D̃k), d̄ = [d̄T1 , d̄T2 , . . . , d̄TK ]T , and d̃ = [d̃T1 , d̃T2 , . . . , d̃TK ]T .
Then (A.58) can be reduced to

minimize 1
2 ||d̄− d̃||22

subject to 1M̃ d̄ = P ; d̄ ≥ 0 (A.59)

where M̃ = ∑K
1 Mk. It is now clear that (A.59) is the projection onto a canonical

simplex and efficient algorithms can be found in [51].

A.4. Duality Transformation Proof

The duality transformation in (3.32) can be proved using the same arguments as
those in [30]. First, we write the partial Lagrangian function of (3.31) as

L({X̃k},A) =
∑K

k=1(wk log |I + H̃kX̃kH̃H
k | − tr(CkX̃)) + tr(AP) (A.60)

where Ck = BH
k ABk, A = diag(a1, a2, . . . , ai, . . . , aN). Let X̂k = C1/2

k X̃kC1/2
k .

Then L({X̃k},A) is equal to

L({X̃k},A) =
∑K

k=1(wk log |I+H̃kC−1/2
k X̂kC−1/2

k H̃H
k |−tr(X̂k))+tr(AP). (A.61)

Denote UkΣkVH
k to be the singular value decomposition of H̃kC−1/2

k , i.e., UkΣkVH
k =

H̃kC−1/2
k . By the so-called channel flipping effect, we can express the dual objective

as

D(A) = max
Ẋk�0

∑K

k=1(wk log |B
H
k ABk + H̃H

k ẊkH̃k|
|BH

k ABk|
− tr(Ẋk)) + tr(AP) (A.62)
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where X̂k = VkUH
k ẊkUkVH

k . Now the dual problem of (3.31) is

min
A�0

max
{Ẋk}�0

∑K

k=1(wk log |B
H
k ABk + H̃H

k ẊkH̃k|
|BH

k ABk|
− tr(Ẋk)) + tr(AP). (A.63)

By introducing new optimization variable δ > 0, we can rewrite the above problem
as

min
A�0,δ>0

max
{Ẋk}�0

∑K
k=1wk log |B

H
k ABk+H̃H

k ẊkH̃k|
|BH
k

ABk|
− δP + tr(AP)

subject to ∑K
k=1 tr(Ẋ) ≤ δP.

(A.64)

Note that we can again change the optimization variables as

X̄k = Ẋk

δ
; Ā = A

δ
. (A.65)

Thus, (A.64) is equivalent to

min
Ā�0

max
{X̄k}�0

∑K
k=1wk log |B

H
k ĀBk+H̃H

k X̄kH̃k|
|BH
k

ĀBk|

subject to ∑K
k=1 tr(X̄k) ≤ P ; tr(ĀP) ≤ P.

(A.66)

which is the form given in (3.32) and thus completes the proof.

A.5. Convergence Proof of Algorithm 3.4

Let us define Ω , {Λ|Λ : diagonal,Λ � 0, tr(ΛP) = P} and X = {X̄k|X̄k �
0,∑K

k=1 tr(X̄k) = P, k = 1, . . . , K.}. We note that the sets Ω and X are compact
convex. We first show that Algorithm 3.4 yields a decreasing objective f(Λn, {X̄n

k})
following similar arguments in [14, 15]. Since Λn+1 is the optimal solution to the
minimization problem (4.56), the inequality below holds

f(Λn, {X̄n
k}) =

K∑
k=1

wk

(
log |Φn

k | − log |BH
k ΛnBk|

)

≥
K∑
k=1

wk

(
log |Φn

k |+ tr
(
BkΦ−nk BH

k

(
Λn+1 −Λn

))
− log |BH

k Λn+1Bk|
)
.

(A.67)

In addition, log |BH
k ΛBk + H̃H

k X̄kH̃k| is jointly concave with Λ and X̄k and note
that X̄k is the optimal solution to (4.54), we can easily prove that

K∑
k=1

wk

(
log |Φn

k |+ tr
(
BkΦ−nk BH

k

(
Λn+1 −Λn

))
− log |BH

k Λn+1Bk|
)

≥
K∑
k=1

wk

(
log |BH

k Λn+1Bk + H̃H
k X̄n+1

k H̃k| − log |BH
k Λn+1Bk|

)
︸ ︷︷ ︸

f(Λn+1,{X̄n+1
k
})

. (A.68)
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Combining (A.67) and (A.68) results in

f(Λn, {X̄n
k}) ≥

K∑
k=1

wk

(
log |Φn

k |+tr
(
BkΦ−nk BH

k

(
Λn+1−Λn

))
−log |BH

k Λn+1Bk|
)

(a)
≥ f(Λn+1, {X̄n+1

k }). (A.69)

We remark that the inequality (a) is strict if Λn 6= Λn+1. Thus, the sequence
{f(Λn, {X̄n

k})} is strictly decreasing unless it is convergent. Moreover, the continuity
of f(·) and the compactness of X and Ω imply lim

n→∞
f(Λn, {X̄n

k}) = f(Λ∗, {X̄∗k}).

The proof of uniqueness, i.e., {(Λni+1, {X̄ni+1
k })} → (Λ∗, {X̄∗k}) is similar to the

arguments in Proof A.2 and is thus skipped for the sake of brevity.
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Appendix B

Proofs of Chapter 4

B.1. Proof of Proposition 4.1

We will adopt the notion of the matrix covariance constraint presented in [8] and
adapt it into our context. Explicitly for a given covariance matrix S � 0, the matrix
covariance constraint is denoted by E{ss†} � S. Denote by R a given rate. Let
C(n,S, R, ε) be a codebook that maps each messagem ∈ {1, 2, . . . , enR} into a coded
transmit sequence X ∈ CN×n. The receiver applies maximum likelihood decoding to
decode the message index with an average probability of decoding error no greater
than ε. Moreover, the codewords satisfy

S = 1
enR

∑
X∈C(n,S,R,ε)

XX†. (B.1)

A rate R is said to be achievable under the matrix covariance constraint S, if there
exists an infinite sequence of codebooks, C(nl,Sl, R, εl), with increasing lengths nl,
rate R, matrices Sl � S, and decreasing probabilities of error εl, such that εl → 0
as l → ∞. For the feasible set defined in (4.2b), a rate is said to be achievable if
Sl ∈ S for all l.
It is well known that for a covariance matrix constraint S, the following rate is
achievable [8]

R ≤ log |I + HSH†|. (B.2)

The above rate can be achieved by a Gaussian code with covariance matrix S, which
is due to the fact that Gaussian distribution maximizes the differential entropy
among all distributions with the same covariance [81, Theorem 8.6.5]. The proof
of achievability and proof of converse utilizing similar arguments in [81, Chapter 9]
and [31, Appendix A] are in what follows.

Proof of Achievability Let Sj(u) = E(sjs†j) where j = 1, 2, . . . , n and u = 1, 2, . . . , 2nR
and sj is i.i.d. Gaussian with zero-mean and covariance P− εI. The average prob-
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ability of error P n
e is given by

P n
e = Pr(E0 ∪ E1 ∪ E2 ∪ E3 ∪ . . . E2nR)

≤ Pr(E0) + Pr(E1) +
2nR∑
j=2

Pr(Ej) (B.3)

where Pr(.) denotes conditional probability for the given codeword, E0 is the event
that a power constraint is violated i.e., E0 = {(tr( 1

n
(∑n

j=1 EiSj)) > Pi)}, E1 and
E2 ∪E3 ∪ . . . E2nR represent the cases where the received and transmitted codeword
are not jointly typical and the received sequence is jointly typical with some wrong
codeword, respectively.
By the law of large number and joint asymptotic equipartition property (AEP) [81,
p.196], the above inequality can be written as

P n
e ≤ 2ε+ 2−n(−3ε+(I(s;y)−R)) (B.4)

Thus P n
e → 0 when n → ∞ and R < I(s; y) − 3ε which completes the proof of

achievability.

Proof of Converse We will show that if any rate R is achievable, then R ≤
log |I + HSH†| for some S ∈ S. As the rate R is achievable, there exists an infinite
sequence of codebooks, C(nl,Sl, R′, εl), with increasing lengths nl, rate R, matrices
Sl ∈ S, and decreasing probabilities of error εl, such that 1

nl

∑nl
i=1 Si → S and εl → 0

as l→∞. Then the following result holds

R ≤ 1
nl

nl∑
i=1

I(si; yi) + εl (B.5)

≤ log |I + H
1
nl

nl∑
i=1

SiH†|+ εl (B.6)

= log |I + HSH†|+ εl (B.7)

Therefore R ≤ log |I + HSH†| when εl → 0.

B.2. Proof of Theorem 4.1

In this appendix, we prove the duality transformation in (4.3). We first write the
partial Lagrangian function of (4.2) as

L(a,S) = log |I + HSH†| −
∑
i

ai(tr(EiS)− Pi)

= log |I + HSH†| − tr(AS) + pTa (B.8)
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where A = ∑
i
aiEi, a = [a1, a2, . . . , aL]T . Note that A must be positive definite (i.e.,

invertible), otherwise max
S�0
L(a,S)→∞. Let Ŝ = A1/2SA1/2, then (B.8) becomes

L(a,S) = log |I + HA−1/2ŜA−1/2H†| − tr(Ŝ) + pTa. (B.9)

Let UΣV† be the singular value decomposition of HA−1/2, we proceed with the
introduction of dual objective:

D(a) = max
Ṡ�0

log |I + A−1/2H†ṠHA−1/2| − tr(Ṡ) + pTa (B.10)

where the relationship between uplink and downlink covariance matrix is given by
Ŝ = VU†ṠUV†.
By definition, the dual problem is min

a≥0
D(a), or equivalently

min
a≥0

max
Ṡ�0

log |A + H†ṠH|
|A|

− tr(Ṡ) + pTa. (B.11)

We can introduce a new optimization variable δ > 0 so that the problem above can
be rewritten as

min
a≥0,δ>0

max
Ṡ�0

log |A+H†ṠH|
|A| − δP + pTa

subject to tr(Ṡ) ≤ δP.
(B.12)

Again, we can change the variables by

q̂i = ai
δ
, S̄ = Ṡ

δ
. (B.13)

Substituting (B.13) into (B.12), we arrive at the following optimization problem

min
q̂≥0

max
S̄�0

log
|
∑
i

q̂iEi+H†S̄H|

|
∑
i

q̂iEi|

subject to tr(S̄) ≤ P
pT q̂ ≤ P

(B.14)

which completes the proof.

B.3. Proof of Lemma 4.1

Following the similar arguments to those in [2, Appendix B], we can prove most of
Lemma 4.1 except for part (c) as follows.

105



Appendix B Proofs of Chapter 4

Proof of part (a) We note that the function log |Q + H†S̄H| is jointly concave
with Q and S̄ where Q ,

∑L
i=1 qiEi. Thus the following inequality holds

log |Q + H†S̄H| ≤ log |Qn + H†S̄nH︸ ︷︷ ︸
Φn

|

+ tr(Φ−1
n (Q −Qn)) + tr(HΦ−1

n H†(S̄ − S̄n)) (B.15)

for all Q ∈ Q and S̄ ∈ S̄. To lighten the notation we write Q ∈ Q to denote {Q|q ∈
Q,Q = ∑L

i=1 qiEi} The above inequality comes from the first-order approximation of
log |Q + H†S̄H| around the point (Qn, S̄n). Substituting Q := Qn+1 and S̄ := S̄n+1
into the above equality, we obtain

log |Qn+1 + H†S̄n+1H| ≤ log |Φn|
+ tr(Φ−1

n (Qn+1 −Qn)) + tr(HΦ−1
n H†(S̄n+1 − S̄n)). (B.16)

Since S̄n = arg max
S̄∈S̄

log |Qn + H†S̄H|, the optimality condition results in

tr(HΦ−1
n H†(S̄− S̄n)) ≤ 0 (B.17)

for all S̄ ∈ S̄. For S̄ = S̄n+1 the above inequality implies

tr(HΦ−1
n H†(S̄n+1 − S̄n)) ≤ 0 (B.18)

which leads to

log |Qn+1 + H†S̄n+1H| ≤ log |Φn|+ tr(Φ−1
n (Qn+1 −Qn)). (B.19)

Subtracting log |Qn+1| from both sides of the above inequality results in

f(qn+1, S̄n+1) = log |Qn+1 + H†S̄n+1H| − log |Qn+1|
≤ log |Φn| + tr(Φ−1

n (Qn+1 −Qn)) − log |Qn+1|. (B.20)

Since Qn+1 solves (4.8), it holds that

log |Φn|+ tr
(
Φ−1
n

(
Qn+1 −Qn

))
− log |Qn+1|

≤ log |Φn| + tr
(
Φ−1
n

(
Q −Qn

))
− log |Q| (B.21)

for all q ∈ Q. For the special case Q := Qn, the above inequality is reduced to

log |Φn|+ tr
(
Φ−1
n

(
Qn+1 −Qn

))
− log |Qn+1|

≤ log |Φn| − log |Qn|︸ ︷︷ ︸
f(qn,S̄n)

. (B.22)

Combining (B.20) and (B.22) results in f(qn, S̄n) ≥ f(qn+1, S̄n+1). It is easy to see
that {f(qn, S̄n)} is bounded below, and thus {f(qn, S̄n)} is convergent. We also
note that (4.5) is strict if q 6= qn. Consequently, the sequence {f(qn, S̄n)} is strictly
decreasing unless it is convergent.
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Proof of part (b) In fact, part (b) of Lemma 4.1 is trivial. It is easy to see
that Q and S̄ are both bounded, Algorithm 4.2 must produce at least a convergent
subsequence, due to the Bolzano-Weierstrass theorem.

Proof of part (c) As mentioned previously, the proof of nonsingularity of [2,
Appendix B] is not applicable to our considered problem since Q in the present form
is not a simple diagonal matrix. More specifically, part (c) is proved by contraction as
follows. Let q∗ be the limit point of {qn}. Suppose the contrary that Q∗ = ∑L

i=1 q
∗
iEi

is singular. By abuse of notation, let I = {i ∈ [1, L] : q∗i > 0}. It is easy to see
that if Ei � 0 for some i ∈ I, then Q∗ is non-singular. Thus the singularity of
Q∗ implies that Ei is singular, ∀i ∈ I . As a result of the assumption made in the
system model, there exists a vector υ 6= 0 such that Eiυ = 0 for all ∀i ∈ I and
||Hυ||2 = c > 0.
Recall that S̄n = arg max

S̄∈S̄
log |Qn + H†S̄H|, and thus replacing S̄n = P

M
I which is a

feasible point to the maximization problem results in

log |Qn + H†S̄nH| ≥ log |Qn + P
M

H†H|. (B.23)

Consequently we have

f(Qn, S̄n) ≥ log |Qn + P
M

H†H| − log |Qn|
= log |I + P

M
Q−1
n H†H|

≥ log
(
1 + P

M
λmax

(
Q−1
n H†H

))
. (B.24)

We have the following inequality:

λmax
(
Q−1
n H†H

)
= max

u6=0

u†H†Hu
u†Qnu

(B.25)

≥ υ
†H†Hυ
υ†Qnυ

= ||Hυ||2
υ†
(∑L

i=1 q
n
i Ei

)
υ

(B.26)

= c2

υ†
(∑L

i=1 q
n
i Ei

)
υ
. (B.27)

Let {qnki } be a subsequence converging to q∗. We have

lim
k→∞

υ†
(

L∑
i=1

qnki Ei

)
υ = υ†

(
L∑
i=1

q∗iEi

)
υ

= υ†
(∑
i∈I

q∗iEi

)
υ = 0. (B.28)

In summary we have proved that if Q∗ is singular, then λmax
(
Q−1
n H†H

)
→∞ and

thus {f(Qn, S̄n)} → ∞. This contradicts the fact that ∞ > f(Q0, S̄0) ≥ f(Qn, S̄n)
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for all n as proved earlier. Thus it is concluded that the limit point of Algorithm 2 Q∗
is non-singular. By the continuity of f(·) over S̄ and Q, we have lim

n→∞
f(Qn, S̄n) =

f(Q∗, S̄∗).

Proof of part (d) The proof of part (d) follows similar arguments to those in [2],
and thus we refer interested readers to [2, Appendix B] for the details.

B.4. Proof of Proposition 4.2

Suppose the contrary that qN+1 = 0. Then it immediately holds that µi = 0 and
xi = 1

φi+γPi , for i = 1, 2, . . . , N . From (4.14d) we have

γ = µN+1

P ′T
≤ 0. (B.29)

As a result, the following inequality is obtained

N∑
i=1

Pixi =
N∑
i=1

Pi
φi + γPi

≥
N∑
i=1

Pi
φi
>

N∑
i=1

Pi(qni + qnN+1). (B.30)

Note that qni and qnN+1 are a solution to (4.9), and thus

N∑
i=1

Pi(qni + qnN+1) =
N+1∑
i=1

Piq
n
i︸ ︷︷ ︸

P

+


N∑
i=1

Pi − PT︸ ︷︷ ︸
>0

 qnN+1 ≥ P. (B.31)

Combining (B.30) and (B.31) yields

N∑
i=1

Pixi > P (B.32)

which indicates that xi’s are not feasible to (4.13) and thus completes the proof.

B.5. Proof that the Specified Choice of γmax solves
(4.13)

First note that (4.14c) and (4.14d) produce

φixi − 1 + γPixi − µixi = 0, i = 1, 2, . . . , N (B.33)
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γP ′T qN+1 − µN+1qN+1︸ ︷︷ ︸
0

+qN+1

N∑
i=1

µi = 0, (B.34)

respectively. From (B.33), (B.34), and (4.14a) we have
∑N

i=1 φixi −N + γ(
∑N

i=1 Pixi + P ′T qN+1) = 0 (B.35)

which is equivalent to
∑N

i=1 φixi −N + γP = 0 (B.36)

and thus

γP ≤ N − φmin
∑N

i=1 xi (B.37)

where φmin = min
1≤i≤N

{φi}. It is easy to see that

Pmax
∑N

i=1 xi ≥
∑N

i=1 Pixi = P − P ′T qN+1 ≥ P (B.38)

where Pmax = max
1≤i≤N

{Pi}. Combining (B.37) and (B.38) yields

γ ≤ N

P
− φmin

Pmax
. (B.39)

Thus it is sufficient to set γmax = N
P
− φmin

Pmax
for the bisection method to solve (4.13).

B.6. Proof of Theorem 4.1

As a result of Propositions 4.5 and 4.6, there exists a number k such that

q1 ≥ q2 ≥ · · · ≥ qk > 0 (B.40)

and

qk+1 = qk+2 = · · · = qN = 0. (B.41)

Thus the KKT equations reduce to

− |hi|2

(qi + qN+1)2 + γPi = 0, i = 1, 2, . . . , k (B.42)
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− |hi|
2

q2
N+1

+ γPi − µi, i = k + 1, k + 2, . . . , N (B.43)

−
k∑
i=1

|hi|2

(qi + qN+1)2 −
N∑

i=k+1

|hi|2

q2
N+1

+ γPT = 0 (B.44)

PT qN+1 +
k∑
i=1

Piqi = P. (B.45)

The problem now boils down to finding the optimal k and γ. Combining (B.42) and
(B.44) we have

γ

(
PT −

k∑
i=1

Pi

)
= 1
q2
N+1

N∑
i=k+1

|hi|2 (B.46)

and thus

qN+1 = 1
√
γ

√√√√√ ∑N
i=k+1 |hi|2(

PT −
∑k
i=1 Pi

) . (B.47)

Furthermore, combining (B.47) with (B.42) we obtain

qi = 1
√
γ

|hi|√
Pi
− qN+1 = 1

√
γ

 |hi|√
Pi
−

√√√√√ ∑N
i=k+1 |hi|2(

PT −
∑k
i=1 Pi

)
 . (B.48)

We may now substitute (B.47) and (B.48) into (B.45) to yield the closed-form solu-
tion in Theorem 4.1.

B.7. Proof of Theorem 4.2

We can write the KKT conditions for the considered problem as

µiqi = 0 (B.49)

ψi −
1

qN+1 + qi
+ γPi − µi = 0, i = 1, 2, . . . , N (B.50)
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ψN+1 −
∑N

i=1
1

qN+1 + qi
+ γPT − µN+1 = 0, i = N + 1. (B.51)

From (B.49), if qi > 0 for i = 1, 2, . . . , N then the corresponding µi = 0 which
results in

µN+1 = γ(PT −
∑N

i=1 Pi). (B.52)

In this chapter, we only consider the case where the sum power constraint is less
than the total power of PAPC i.e., PT <

∑N
i=1 Pi, therefore µN+1 = 0, qN+1 > 0.

Without loss of generality, we can sort { 1
ψi+γPi} in decreasing order. Following

similar arguments to those in Propositions 4.3, 4.4, 4.5 and 4.6, we can find an
integer k such that

q1 ≥ q2 ≥ · · · ≥ qk > 0 (B.53)

and

qk+1 = qk+2 = · · · = qN = 0. (B.54)

Based on these results, combining (B.50) and (B.51) results in

qN+1 = N − k
(ψN+1 −

∑k
i=1 ψi) + γ(PT −

∑k
i=1 Pi)

(B.55)

qi = 1
ψi + γPi

− N − k
(ψN+1 −

∑k
i=1 ψi) + γ(PT −

∑k
i=1 Pi)

. (B.56)

Substituting these values of qi into the power constraint ∑N+1
i=1 Piqi = P , we obtain

k∑
i=1

Pi
ψi + γPi

+ (N − k)(PT −
∑k
i=1 Pi)

(ψN+1 −
∑k
i=1 ψi) + γ(PT −

∑k
i=1 Pi)

= P (B.57)

whose value of γ can be solved easily by the Newton method or bisection method.
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