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Abstract 

Exogenous phytases have the capacity to increase the nutritional value of animal feeds 

through the hydrolysis of phytate-bound phosphorus. Inorganic trace minerals (ITM) 

routinely added to feed can negatively impact phytase activity. Recent research has 

shown that replacement of ITMs with organic trace minerals (OTMs) may overcome 

these inhibitory effects due to their greater levels of stability. 

 The objective of the present study was to assess the effects of ITMs and OTMs 

on the enzyme activities of five different commercial phytases. Exposure to copper 

sulphate (ITM) greatly inhibited phytase activity compared to OTMs, at reflective 

inclusion levels. Similarly, exposure to iron sulphate (ITM) had a greater effect on 

phytase activity than OTMs, at reflective inclusion rates. The observed responses were 

instigated by trace mineral source, elemental concentration and phytase mode of action. 

Additional studies assessed the effects of simulated mineral mixes containing 

sequentially added copper, iron, zinc, and manganese. Similar to previous findings, 

exposure to ITM mixes resulted in high losses of phytase activity (85 – 95 %). 

Comparatively, considerably more phytase activity was retained with OTM mixes (55 – 

80 %). Interestingly, diverse activity retentions were observed after the exposure of 

phytase to commercial organic premixes (20 – 80 %), further indicating that the 

classification of OTM was a key determinant of phytase function. 

The effect of pH changes, reflective of the poultry gastrointestinal tract (GIT), 

on the activity of a 3- and 6-phytase in the presence of mineral mixes was assessed. 

Once again, OTMs had greater enzyme retention for both phytases. Unlike the 3-

phytase, 6-phytase was dependent on pH, again emphasising that phytase mode of 

action was integral for activity retention. 

Findings from the present study indicated that the retention of exogenous 

phytase function was dependent on trace mineral source. These responses differed 

between individual minerals and phytases, an important formulation consideration for 

maximising feed quality. 
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1 Introduction 

By 2050, the global population is projected to increase by 2.3 billion people, 

representing over a third of today’s population. As the world’s population grows and 

life expectancy increases, the agricultural industry faces a number of challenges, in 

particular food security, environmental concerns and the use of feedstocks for biofuel 

production (FAO, 2009). Moreover, as consumer health and environmental awareness 

grows, the demands for high quality animal goods produced following safe and 

sustainable practices is being matched with stricter levels of regulation and legislation. 

Health promotion and disease prevention are important considerations for the future, of 

which food chain integrity and safety are of primary concern (Kumar and Preetha, 

2012). 

Animal feed and associated enzymes play a significant role in the production of 

safe, high quality and affordable food. It is well established that specific enzymes can 

increase the nutritional value of animal feeds, potentially improving feed and cost 

efficiencies (Brufau et al., 2006). In the past 20 – 30 years, the supplementation of these 

enzymes has improved the efficiency of meat and egg production, particularly for 

monogastric animals (Barletta, 2011). Improved feed efficiencies can lead to higher 

levels of production, as well as reduced costs due to reduced need for additional 

supplements (Ravindran, 2013). This can also allow for the use of lower grade raw 

materials, of which the nutritional value is increased with the use of feed enzymes 

(Paloheimo et al., 2011). Moreover, feed enzymes can help to reduce the excretion of 

feed components (such as trace minerals and phosphorus) into the environment (Singh, 

2008). 

 The following sections look to assess how feed-grade commercial phytases, 

routinely used in monogastric nutrition, interact with other feed components. It also 

describes the effects of phytic acid on the nutritional quality of feed. Finally, 

considerations for the supplementation of trace minerals are discussed, with regards to 

mineral source, the importance for animal health, and the potential interactions with 

other dietary components which may affect overall feed value. 
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1.1 Overview of phytic acid 

1.1.1 Origin, structure, and occurrence in plant sources 

Phytic acid, also referred to as myo-inositol 1,2,3,4,5,6-hexakis dihydrogen phosphate 

or IP6, is a naturally occurring compound present in many plant sources. It consists of 

an inositol ring linked to six phosphates and has a molecular weight of 660.04 g/mol 

(Figure 1.1). The occurrence of phytic acid in foods can have a significant effect on 

functional and nutritional properties (Singh, 2008). 

 

 

Figure 1.1 Structure of phytic acid. 

Sourced from Humer et al., 2015. 

 

Phytic acid can be present as a free acid, phytate, or phytin depending on the 

environmental pH and presence of metal ions. These terms are often interchangeably 

used in literature to describe the substrate of phytases. Phytate refers to the chelated salt 

form of phytic acid, a chelation which typically occurs with divalent metal ions such as 

zinc and iron. Phytin refers to a salt form of phytic acid, involving calcium and 

magnesium (Singh, 2008). 

 Phytic acid is the principle storage unit of phosphorus in plant sources and is 

predominantly found in cereal seeds, pulses, and oleaginous plants. It can account for 

up to 80 % of the total phosphorus in animal feed ingredients, as depicted in Table 1.1. 

Although often abundant in nature, phosphorus retained in phytic acid is largely 

unavailable to monogastric animals due to low levels of intrinsic phytase activity. 
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Table 1.1 Phytate content of various feed ingredients commonly used in animal nutrition. 

 

Adapted from Singh (2008). 

*Phosphorus 

**Dry matter 

 

In general, greater amounts of phytate are found in cereal by-products and 

oleaginous seeds than in cereals and pulses. Concentration is dependent on the part of 

the plant from which they are derived (Table 1.1). In cereals, phytate is predominantly 

found in the outermost part of the endosperm (aleurone layer), whereas in pulses and oil 

seeds, phytate is dispersed in protein globoids in the kernel (Singh, 2008). In 

germinating seeds, phytate is broken down to release inorganic phosphate, providing 

energy for the emerging seedling (Azeke et al., 2011). A number of different factors 

affect the phytic acid content of crops, including fertiliser application, climate and soil 

conditions, as well as the level of plant maturity (Reddy, 2001). 

 

Feed Ingredients Phytate - P* Phytate - P* 

(g/100g DM**) (% of Total P*)

Cereals

Rice (unpolished) 0.27 77

Corn/Maize 0.24 72

Wheat 0.27 69

Oats 0.29 67

Sorghum 0.24 66

Barley 0.27 64

Rice (polished) 0.09 51

Cereal by products

Rice bran 1.03 80

Wheat bran 0.81 73

Oil seed meals

Sunflower 0.89 77

Soya bean 0.39 60

Oil Seed Rape 0.7 59

Pulses

Field peas 0.24 50

Roots and Tubers

Potato 0.24 21
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1.1.2 Antinutritional characteristics of phytic acid 

Phytic acid is widely regarded as an antinutritional factor (ANF) in diets due to its 

ability to readily interact (directly or indirectly) with various feed ingredients, such as 

feed enzymes, macro- and micro-minerals, proteins, starch, and lipids (Oatway et al., 

2001). Phytic acid has a propensity to interfere with mineral availability due to its 

strong chelating ability. The chemical composition of phytic acid is reflective of its 

chelating potential. As depicted in Figure 1.1, phytic acid is a highly negatively charged 

molecule with 12 protons that can be easily displaced. Half of these protons are highly 

acidic, while the remaining six have decreasing levels of acidity (Pang and Applegate, 

2006). These characteristics make phytic acid a strong chelator for multivalent cations. 

It also retains its negative charge across a broad pH range, enhancing the potential to 

chelate positively charged agents, such as macrominerals, trace minerals, and proteins 

with acidic, neutral and basic states (Greiner et al., 2006). Such interactions can occur 

within the plant, as well as in the gastrointestinal tract (GIT) of animals and humans 

(Yu et al., 2012). 

 

1.1.2.1 Phytate-mineral interactions 

It had been demonstrated in the literature that phytic acid can readily bind to divalent 

minerals, some of which include Zn
2+

, Fe
2+

, Ca
2+

, Mn
2+

, and Cu
2+

 (Greiner et al., 2006; 

Yu et al., 2012). Binding of cations to phytate reduces bioavailability and absorption of 

these minerals by plants and animals; potentially leading to mineral deficiencies. 

Various factors determine the solubility and stability of mineral-bound phytate, 

including the metal ion, environmental pH, presence of potential competing compounds, 

and the molar ratio of metal ion to phytate (Greiner et al., 2006). The solubility of 

phytate is highly dependent on pH. In mildly acidic conditions (~ pH 4 upwards), 

phytate and minerals tend to interact to form insoluble complexes, whereas more 

soluble complexes are formed at lower pH values (Tangkongchitr et al., 1982; Bohn et 

al., 2008). Although phytate may be soluble in the more acidic sections of the GIT, it 

can become insoluble in the more neutral environment of the small intestine (Vieira, 

2008). Different ratios of metal ion to phytic acid will also affect the solubility of 

phytate, with excess metal ions forming insoluble phytate complexes and vice versa 

(Bohn et al., 2008). This poses a problem when formulating diets with respect to 

predicting phosphorus release and trace mineral absorption. 
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1.1.2.2 Phytate-protein interactions 

Phytate is also known to interact with proteins, forming binary or ternary protein-

phytate structures. Phytate can interact with positively charged proteins to form binary 

structures at pH values less than their isoelectric point (Cosgrove, 1966). Conversely, 

ternary structures are likely to form if a protein is negatively charged and the pH is 

above its isoelectric point. Binary structures arise from phytate interacting with basic 

amino acids, whereas ternary structures are stabilised by metal ion bridges between 

proteins and phytates. Ca
2+

 usually forms the cationic bridge in this instance (Selle et 

al., 2012). These interactions can have a negative impact on the digestibility of amino 

acids and peptides. 

 

1.1.2.3 Phytate-starch interactions 

Phytic acid has also been shown to negatively affect starch digestibility; however, this 

relationship hasn’t been fully elucidated due to the different potential interactions. One 

way in which phytic acid may reduce starch digestibility is through interactions with the 

starch-degrading enzyme, amylase. Knuckles and Betschart (1987) reported that the 

presence of phytate reduced starch digestion by 91.5 % using human α-amylase. In an 

alternative approach, dephytinisation of navy beans was shown to increase starch 

digestibility by 25 % (Thompson, 1986). Another potential way in which phytic acid 

can affect starch digestibility is through chelation of metal ions associated with the 

activation of amylases (Rickard and Thomspon, 1997). Phytic acid may also interact 

with starch through phosphate linkages or by binding to proteins associated with the 

carbohydrate molecule (Yoon et al., 1983). 

 Inhibition of these intrinsic enzymes can greatly impact digestibility and 

absorption of nutrients by the animal, leading to decreased feed efficiencies and lower 

production outputs, often resulting in financial losses. The implementation of enzyme-

enriched feed formulations in monogastric nutrition has the ability to overcome these 

antinutritional effects. Exogenous feed enzymes, like carbohydrases, proteases and 

phytases, are routinely added to monogastric diets as a cost-effective method of 

increasing the nutritional value of feed, thereby improving feed efficiencies and 

maximising production (Barletta, 2011). 
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1.1.3 Phytic acid in animal nutrition 

Phosphorus is an essential macromineral, fundamental to all life forms and holds great 

importance in animal nutrition. After calcium, phosphorus is the most abundant mineral 

within an animal, with 80 % of it deposited in the skeleton and the remainder dispersed 

throughout the body, incorporated within proteins and fats (Suttle, 2010). Phosphorus is 

required for overall animal health and function, playing a vital role in numerous 

metabolic processes. The largest proportion of absorbed phosphorus is involved in the 

growth and maintenance of a healthy skeleton. It also has key roles in energy utilisation 

and transfer, blood buffering, protein synthesis, reproduction, and feed efficiency 

(Suttle, 2010; Oster et al, 2016). Low levels or unavailable forms of phosphorus can 

quickly result in deficiency of the mineral, manifesting itself in a number of ways in the 

animal. The initial sign of a phosphorus deficiency presents as decreased blood plasma 

phosphate levels, which can lead to calcium and phosphorus withdrawal from skeletal 

deposits, potentially resulting in bone weakness and breakages. Compromised 

immunity, loss of appetite, and poor feed efficiencies are typically associated with 

phosphorus deficiency and can have performance and financial implications (Lόpez-

Alonso, 2012). 

 

1.1.3.1 Environmental pollution 

Phytic acid is the primary storage form of phosphorus in plant sources, such as corn, oil 

seed rape and potatoes. The availability of this form of phosphorus to different animal 

species varies greatly. Ruminants have the ability to dephosphorylate phytic acid to 

release inorganic phosphate, which is mediated by microbial enzymes within the rumen. 

Conversely, phosphorus release by monogastric animals, such as poultry and swine, 

differs greatly from that of ruminants as they possess much lower levels of intrinsic 

phytase activity (Yank et al., 1998). Consequently, monogastric feeds are often 

supplemented with an additional source of inorganic phosphorus to help meet 

nutritional needs. Monogastric meals are typically cereal-based with phosphorus 

predominantly in the form of phytic acid. The combination of unusable phytate-

phosphorus and high levels of supplemented inorganic free phosphorus often results in 

diets that exceed actual dietary requirements. High levels of phosphorus, in either 

organic or inorganic form, will inevitably result in its excretion via manure, and quickly 

become a pollution concern (Oster et al., 2016). Eutrophication (from excessive 
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phosphorus levels) of aquatic systems stimulates the prolific growth of different 

microorganisms such algae and cyanobacteria, leading to hypoxia, and subsequently 

harming and/or killing fish and other forms of aquatic life (Singh, 2008). 

 

1.1.3.2 Improving phosphorus availability with exogenous phytases 

Reducing the excessive levels of phosphorus present in poultry feed (and other 

monogastric animals) is of utmost importance to protect the environment. This can be 

achieved by the formulation of specialist diets containing highly digestible feed 

ingredients and supplements to aid the degradation of phytic acid, meeting the 

nutritional needs of poultry while minimising the need for supplemental phosphorus. 

The benefits of exogenous microbial phytases in monogastric feeds has been reviewed 

extensively (Singh, 2008; Humer et al., 2015). Amongst numerous studies in this area, 

Manangi and Coon (2008) demonstrated that phytate hydrolysis and phytate retention 

levels increased with higher applications of a commercial 6-phytase. Similarly, Truong 

et al. (2017) reported phytate degradation levels of 95.5 %, as well as increased starch 

and protein digestibility in phytase-supplemented diets. Another study illustrated that 

the addition of a fungal phytase to broiler diets significantly reduced phosphorus 

excretion, as well as significantly improving weight gain in the chicks (Abdel-Megeed 

and Tahir, 2015). 

 The degradation of phytic acid through exogenous phytases offers many 

potential benefits such as the overall improvement of phosphorus availability, reduced 

need to supplement inorganic phosphorus sources; the absorption of trace minerals, 

amino acids, and proteins, and the reduction of phosphorus excretion into the 

environment. Phytase supplementation may also be superior to alternative methods 

(such as phosphorus extraction and precipitation) as it doesn’t have a negative effect on 

the nutritional quality of the product and has the potential to incur less cost through 

reduced inorganic phosphorus supplementation and better mineral uptake (Pandey et al., 

2001). 

 

1.2 Overview of phytases 

Enzymes are proteins produced by all living organisms that catalyse biochemical 

reactions within cells. Under normal conditions, they can initiate and regulate catalytic 

reactions without any permanent changes to themselves. Enzymes catalyse reactions by 
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binding to specific substrates and lowering the activation energy required for 

hydrolysis. Products of the reaction are released, and the enzyme is then free to catalyse 

more reactions. For example, xylanases are glycosidic enzymes that are involved in the 

degradation of complex xylan chains present in plant cell walls, to smaller subunits 

through the hydrolysis of 1,4-β-D-xylosidic linkages (Collins et al., 2005) 

 Phytases (myo-inositol hexakisphosphate phosphohydrolase) are hydrolytic 

enzymes which are members of the phosphatase family. They are responsible for 

catalysing the step-wise dephosphorylation of phytic acid (myo-inositol 

hexakisphosphate) and its salt (phytate) resulting in the release of inorganic 

orthophosphate and the generation of myo-inositol after complete hydrolysis. In 1907, 

four years after the discovery of phytic acid (Posternak, 1903), the first report of 

phytases in literature was documented (Suzuki et al., 1907). The nutritional benefits of 

phytic acid are often unrealised with monogastric species unless the compound is 

degraded to release the inorganic phosphate locked within. Consequently, phytases are 

of great commercial importance for monogastric diets, as they have the potential to 

liberate bound phosphate, helping to meet the nutritional requirements of the animal 

while reducing costs associated with inorganic phosphate supplementation. 

 Natuphos
®
 was the first commercial phytase produced for use in poultry diets 

and was introduced to the EU market in 1991 by BASF. Natuphos
®
 is a 3-phytase 

produced from the fermentation of a genetically modified A. niger strain. Since its 

advent, many other phytase preparations have come to the market, including Phyzyme
®
, 

Quantum Blue
®
, Ronozyme

®
, and Optiphos

®
.  

 

1.2.1 Classification of phytases 

Phytases are a broad group of enzymes, varying in size, function and structure. They are 

typically classified based on their catalytic function; histidine acid phytases (HAPhys), 

β-propeller phytases (BPPhys), cysteine phytases (CPhys), and purple acid phosphatases 

(PAPs). Phytases can be sub classified as acid or alkaline phytases depending on their 

pH optimum. They can also be separated based on their mode of action, to either 3-

phytases, 4/6-phytases and 5-phytases. 3-phytases (E.C.3.1.3.8) initiate 

dephosphorylation at the C3 position, and are typically produced by fungi (Wyss et al., 

1999). 4/6-phytases (E.C.3.1.3.26) initiate hydrolysis at the C4 or C6 position and are 

typically found in bacteria and plants (Greiner and Konietzny, 2011). 5-phytases 
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(E.C.3.1.3.72) initiate hydrolysis at the C5 position and tend to be less common, having 

previously been identified in lily pollen and Selenomonas ruminantium (Puhl et al., 

2008). 

 

1.2.1.1 Histidine acid phytases 

Most known phytases belong to the histidine acid phosphatase group of phytases and 

have been found in microorganisms, plants and animal tissues. Histidine acid phytases 

(HAPhys) are a diverse group of phytases that share a unique active site motif, 

RHGXRXP and a dipeptide (HD), both of which are responsible for hydrolysis (Greiner 

and Konietzny, 2011). Dephosphorylation of phytic acid to release orthophosphate and 

myo-inositol is catalysed by a two-step reaction involving an initial nucleophilic attack 

by histidine to the scissile phosphoester bond, followed by protonation of the leaving 

group by the HD motif. It has been noted in the literature that not all HAPhys have 

specificity for phytic acid. Wyss et al. (1999) identified two classes of phytases within 

the HAP family; the first was a group of fungal HAPhys that had broad substrate 

specificity but a low affinity for phytic acid, the second group was one that had narrow 

substrate specificity but a high affinity for phytate. To date, all commercial phytases 

qualified for use in animal feeds are HAPhys belonging to 3- and 6-classes. 

 

1.2.1.2 Beta-propeller phytases 

Βeta-propeller phytases (BPPhys) are a distinct class of phytases that do not share 

amino acid sequence homology with any other known phosphatases (Mullaney and 

Ullah, 2003). They also do not contain the conserved active site motif, RHGXRXP, or 

the HD dipeptide of HAPhys (Kerovuo et al., 2000), making them a distinct class of 

phytases. BPPhys were initially purified from the Gram positive bacterial species, 

Bacillus sp. (Kumar et al., 2017). They have a propeller-like structure containing six 

blades. It has been reported that the catalytic activity of these phytases is dependent on 

the binding of calcium ions (Oh et al., 2001; Shin et al., 2001). It has also been 

suggested that calcium ions are associated with the enhanced thermostability of BPPhys 

(Mullaney and Ullah, 2003). 
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1.2.1.3 Purple acid phosphatases 

Purple Acid Phosphatases (PAPs) are another group of enzymes that display phytase 

activity in some instances (Hegeman and Grabau, 2001). PAPs are responsible for the 

hydrolysis of phosphorylated molecules. They are also distinct from HAPhys as they do 

not contain the conserved active site motif. PAPs have been identified across a range of 

sources, including animals, plants, and fungi. To date, they have not been identified in 

bacterial sources; however, homology with known gene sequences suggests a possible 

presence in cyano- and mycobacteria (Schenk et al., 2000). The mass and structure of 

PAPs can differ depending on their source. Mammalian PAPs tend to be smaller (~ 35 

kDa), monomeric enzymes, whereas plant sources are typically larger (~ 110 kDa), 

homodimeric enzymes. Each subunit of their active site contains Fe
3+

 linked to a 

divalent metal. PAPs purified from red kidney beans were shown to have active sites 

containing Fe
3+

 linked to Zn
2+

 (Truong et al., 2005), whereas a PAP purified from sweet 

potato contains a Fe
3+ 

– Mn
2+

 unit (Schenk et al., 2005). However, in the case of 

mammalian PAPs, the active site contains a ferric – ferrous/ferric unit (McGeary et al., 

2009). Few PAPs display specificity for phytic acid or its salt, phytate. The first PAP 

displaying phytase activity was identified in the germinating seedling of soybeans 

(Hegeman and Grabau, 2001). To date, most PAPs exhibiting phytase activity have 

been reported in plant sources (Zhang et al., 2008; Dionisio et al., 2011). 

 

1.2.1.4 Cysteine phytases 

Cysteine Phytases (CPhys), also referred to as Protein Tyrosine Phosphatase-like 

Phytases (PTPLPs), are the last group of enzymes that exhibit phytate degrading 

abilities. They are classified as PTPLPs due to their similarities to protein tyrosine 

phosphatases in catalytic mechanism and protein folding (Chen et al., 2015). Many of 

the reported CPhys have been purified from Selenomonas ruminatium, a bacterium 

present in the ruminant GIT (Gruninger, 2012; Puhl et al., 2008; Chu et al., 2004). Their 

active site contains the HCXXGXXR(T/S) motif, sharing homology with protein 

tyrosine phosphatases (Chen et al., 2015). 
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1.2.2 Use of phytase in monogastric animal nutrition 

Various feeding studies have demonstrated the advantages of incorporating phytase into 

the diets of monogastric animals to improve the availability of inorganic phosphorus, as 

well as improving mineral bioavailability through the degradation of phytate complexes. 

One of the early studies by Nelson et al. (1971) reported that the addition of exogenous 

phytase to broiler feeds helped to improve the availability of phosphorus within corn 

and soybean meals. Similarly, Cromwell et al. (1995) reported the improved 

bioavailability of phosphorus when Allzyme
®

, a fungal-derived phytase, was included 

in pig diets. Although earlier research showed the potential benefits of phytase 

supplementation in monogastric diets, it was not until the early 1990s that a phytase was 

developed for commercial feed inclusion (Selle and Ravindran, 2007). 

 The application of microbial phytases in monogastric diets was also prompted 

by the need to reduce phosphorus pollution caused by the accumulation and leaching of 

excreted phosphorus into the soil and water sources (Selle and Ravindran, 2007). 

Simons et al. (1990) reported that the supplementation of 1500 FTU/kg phytase reduced 

the phosphorus load of faeces by 50 % in broilers and by 35 % in pigs. More recently, 

Htoo et al. (2007) reported that the supplementation of Natuphos
® 

to pig feeds improved 

the digestibility and uptake of phosphorus, resulting in lower levels of phosphorus 

excretion. 

 The supplementation of exogenous phytases has also been associated with other 

potential health benefits for monogastric species, such as enhanced egg shell quality in 

laying hens (Zyla et al., 2012), improved growth performance of poultry and swine 

(Dilger et al., 2004; Onyango et al., 2005; Olukosi et al., 2007), increased weight gain 

and feed intake in poultry and swine (Lei et al., 1993; Pirgozliev et al., 2007). 

 

1.3 Mineral nutrition 

There are approximately thirty different known elements required to sustain animal and 

plant life. These can be classified into four major groups; bulk elements, macrominerals, 

microminerals, and trace minerals (including metals and non-metals) (Roat-Malone, 

2007). Macrominerals, including Ca, K, Mg, and Na, are elements that are required at 

relatively high levels (above 100 ppm), whereas trace elements, including Cu, Fe, and 

Zn, are microminerals typically required at levels below 100 ppm. Although 
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microminerals are required in trace amounts, even as low as ppb, it does not mitigate 

their importance in the animal diet (Lukić et al., 2009). 

Trace mineral requirements in animal nutrition is of particular interest to 

producers, premix manufacturers, veterinarians, and scientists, as they are of great 

importance to the overall health and productivity of the animal; with vital roles in 

immunity, growth, and reproduction (Yatoo et al., 2013). Adequate dosing rates and 

bioavailability of trace minerals is crucial in preventing potential mineral deficiencies. 

Antagonism of minerals with other feed components can lead to issues with uptake 

efficiency resulting in deficiencies of certain minerals. Animal diets are routinely 

supplemented with trace minerals in an attempt to meet nutritional demand, due to low 

levels of minerals or lack of availability within the basal feed source (Nollet et al., 

2007). 

 

1.3.1 Importance of trace minerals in poultry nutrition 

There are a number of factors that make a trace mineral an essential requirement; if 

physiological deficiency occurs upon removal or reduction of a mineral, if a deficiency 

is remedied by the addition of a mineral, and if the mineral is specifically responsible 

for a biological function (Roat-Malone, 2007). Their functions can be described by four 

broad categories, encompassing structural, physiological, catalytic, and regulatory 

considerations. Structural function refers to minerals integral for forming structural 

components, such as the role of copper in the synthesis and maintenance of collagen 

(Richards et al., 2010). Physiological roles refer to when trace minerals maintain 

osmotic pressure, acid-base balance and membrane permeability. Catalytic function 

refers to trace minerals which act as co-factors to metalloenzymes and hormone 

systems, such as manganese acting as an activator for enzymes involved in the 

production of polysaccharides and glycoproteins. Regulatory function refers to the 

influential role of trace minerals in cell replication and differentiation (Suttle, 2010). 

Given all of these key functions, it is imperative to ensure adequate mineral status of the 

animal. 

 Basal poultry diets are considered nutritionally insufficient; thus, the 

supplementation of trace minerals is required to meet or exceed dietary requirements. 

Deficiencies are often due to intensive production practices or a lack of bioavailable 

nutrients within animal feed ingredients. Although appreciation for the necessity of 
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trace minerals in animal diets has increased in the last number of years, the importance 

of mineral source is often overlooked. An inadequate supply of trace minerals often 

results in subclinical deficiencies which can be difficult to identify as they do not 

present with specific symptoms. As depicted in Figure 1.2, even slight deficiencies in 

trace mineral status can greatly impact the overall health of an animal (Lόpez-Alonso, 

2012). The initial sign of a subclinical deficiency is reduced immunity and enzyme 

function. As trace mineral status of the animal declines, maximum growth rates, poor 

feed efficiencies and reproduction frequencies decrease, resulting in reduced production 

and output. 

 

 

Figure 1.2 Effect of trace mineral intake on animal performance. 

General symptoms are often difficult to detect, leading to major issues for animal health and 

performance when this transitions into diagnosable clinical conditions 
Sourced from Olson (2007). 

 

Trace minerals, such as zinc (Zn), copper (Cu), iron (Fe), and manganese (Mn), 

are crucial for a wide number of metabolic processes in animals and humans alike 

(Richards et al., 2010). Although trace minerals have highly specific individual 

functions, they are also important across multiple roles, often acting in synergistic 

fashion along various biochemical pathways. Table 1.2 provides a general overview of 

the role of trace minerals in animal nutrition, as well as some of the potential symptoms 

arising from deficiencies, demonstrating the importance of trace minerals animal diets. 
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Table 1.2 Role of trace minerals and potential deficiency symptoms in agricultural 

animals. 

Trace mineral Role Deficiency symptoms 

Copper Co-factor to a number of enzymes 

involved in structural strength, 

elasticity of connective tissues and 

blood cells. 

Reduced growth rates, 

delayed feathering, weak 

bones, abnormal skeletal 

disorders, lack of 

keratinisation. 

Iron Forms haemoglobin and myoglobin 

which are necessary for oxygen 

transport and cellular use. Co-factor 

for certain enzymes. 

Anaemia, poor growth, 

compromised immunity, 

de-pigmentation of 

feathers, diarrhoea. 

Zinc Co-factor to several hundred 

enzymes, comprising all six classes. 

Essential for immunity, reproduction 

and sexual maturity. 

Reduced growth rates, loss 

of appetite, compromised 

immunity, weak bones, 

poor skeletal development. 

Manganese Co-factor to enzymes involved in 

metabolism of fats, carbohydrates, 

and proteins. Plays a role in structure 

and growth. 

Reduced growth rates, 

impaired metabolism of 

nutrients, reduction in 

hatchability. 

Adapted from Ewing and Charlton (2007), Richards (2010) and Suttle (2010). 

 

1.3.2 Trace mineral source 

Traditionally, the supplementation of trace minerals to animal feeds has been done 

through the means of inorganic sulphates, chlorides, oxides, and carbonates. These trace 

minerals are often added at excessive levels to meet the nutritional requirements of the 

animal, largely due to poor bioavailability and lower solubility within the GIT. 

Although there is a shifting trend in animal production to utilise organic mineral 

sources, inorganic minerals are still often employed (Nollet et al., 2007) 

 Upon entering the GIT, inorganic trace minerals are solubilised by digestive 

fluids and metal ion dissociation occurs. Some metal ions can be absorbed via normal 

metal ion channels in the small intestine; however, this process can be inefficient (Rutz 

et al., 2004). Divalent metal ions readily attach to certain feed components, having 
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positive or negative effects on mineral absorption. Certain ligands, such as amino acids 

and organic acids, have the capacity to improve mineral absorption (Lönnerdal, 2000). 

More often than not, dissociated metal ions associate with other dietary components, 

forming complexes which prevent uptake of the mineral and contribute to excessive 

waste pollution. Phytic acid has a strong chelating potential and can bond with 

dissociated metal ions, forming soluble and insoluble mineral-phytate complexes, which 

limit mineral uptake and absorption (Akter et al., 2015). Trace minerals, particularly in 

their inorganic form, have been shown to influence phytase function, both directly and 

indirectly. Inorganic sulphates of Cu, Fe and Zn are known to be potent inhibitors of 

HAPhy activity (Greiner and Konietzny, 2011). Numerous studies have demonstrated 

the negative effects of these minerals on the phytase function of fungal and bacterial 

sources of HAPhys (Igamnazarov et al., 1999; Maenz et al., 1999; Quan et al., 2004). 

Commercial phytases in the form of HAPhys are routinely added to monogastric feeds, 

thus there is an inherent risk of antagonistic relationships developing between trace 

minerals and exogenous phytases. Due to their perceived stability, the use of organic 

sources of trace minerals may help to overcome these potential antagonistic 

relationships. With production efficiencies typically gained through feed composition, 

these factors should be taken into consideration when formulating feeds.  

Minerals can also interact with each other, leading to reduced mineral absorption 

and metabolism (Vieira, 2008). These factors should also be considered when 

formulating animal feeds, to eliminate potential antagonisms. Figure 1.3 illustrates the 

broad range of mineral-mineral interactions that can occur. Calcium has been shown to 

negatively affect the absorption of iron (Hallberg et al., 1991). Zinc has also been 

reported to affect iron and copper absorption (Sandström, 2001).  
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Figure 1.3 Potential interactions between minerals. 

Antagonistic relationships can arise between different minerals potentially affecting their 

metabolism and absorption. 
Sourced from Vieira (2008). 

 

 Various forms of organic trace minerals (OTM) have been available since the 

1980s. OTMs have the potential to offer greater stability and bioavailability to animals 

than their inorganic counterparts due to their ligand bonding properties. Greater stability 

of these complexes may also help to reduce mineral-mineral interactions. A number of 

different types of organic trace mineral products have been developed since their 

advent, including metal amino acid complexes, metal amino acid chelates, metal 

proteinates, metal polysaccharide complexes, metal propionates, and metal methionine 

hydroxy analogue chelates. While all are classed as OTMs, they have very distinct and 

individual definitions as laid out by AAFCO (1998) (Table 1.3). 
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Table 1.3 Definitions of organic trace mineral products. 

Organic trace mineral Definition 

Metal amino acid complex Product resulting from complexing a soluble 

salt with an amino acid (≤300 Da). 

Metal (specific amino acid) 

complex 

Product resulting from complexing a specific 

soluble metal salt with an amino acid. 

Amino acid chelate Product resulting from the reaction between a 

cation from a soluble metal salt with amino 

acids in a 1:1 – 3 (preferably 2) of metal to 

amino acids to form coordinate covalent bonds. 

The average weight should of the amino acids 

should be ~ 150 Da, and the end product 

should not exceed 800 Da. 

Metal proteinate Product resulting from the chelation of a 

soluble metal salt with amino acids and/or 

partially hydrolysed protein. 

Metal polysaccharide complex Product resulting from the complexing of a 

specific soluble metal salt with a 

polysaccharide solution. 

Metal propionate Product resulting from the reaction of a soluble 

metal salt with propionic acid. 

Metal methionine hydroxy 

analogue chelate 

Product resulting from the reaction of a metal 

salt with 2-hydroxy-4-methylthiobutanoic acid 

(HMTBa), having a chelated molar ratio of one 

mole of metal to two moles of HMTBa to form 

coordinate covalent bonds. 

Adapted from AAFCO (1998). 

  



Chapter 1  Introduction 

18 

 

Although the trace minerals presented in Table 1.3 are defined as organic 

sources, they do not share identical chemical properties, primarily due to their ligand 

and bond type. Organic trace minerals are formed by complexing or chelating mineral 

salts with organic compounds (ligands). A metal complex consists of a central metal ion 

electrostatically or covalently linked to atom(s) within a ligand. Monodentate ligands 

contain only one interactive atom, whereas polydentate ligands contain two or more, 

inferring enhanced stability. Chelation arises from polydentate ligands (or chelating 

agents) complexing to a metal ion to form a heterocyclic ring structure (Vieira, 2008). It 

is important to note that while all chelates are complexes, not all complexes are 

chelates. Chelated trace mineral sources, such as proteinates and amino acid chelates, 

have greater stability due to the bond strength between the mineral and ligand. Stability 

constants of OTMs define bond strength, with a high stability constant indicating 

greater bond strength, which also infers that the mineral is less likely to interact with 

other feed components. Furthermore, it has been suggested that OTMs can be effective 

at reduced inclusion rates due to their enhanced integrity within the GIT. Manangi et al. 

(2012) reported that reduced rates of chelated sources of copper, manganese and zinc 

were effective as alternative mineral sources to inorganic counterparts in poultry, 

resulting in improved foot pad health and decreased levels of trace minerals within 

excreta. 

Comparatively, inorganic trace minerals have limitations in animal nutrition, 

primarily due to their low bioavailability, high supplementation levels and potential 

toxicity at higher levels (NRC, 1994; Yenice et al., 2015). It has been proposed that 

chelated minerals are superior alternatives to inorganic minerals as they can overcome 

these limitations (Nollet et al., 2007). Organic trace minerals are more bioavailable due 

to their stability, which helps to protect the metal from dietary antagonists that can 

prevent the absorption of the mineral. In general, chelated minerals are soluble across a 

broad range of pHs and are free to pass through the GIT without interacting with other 

potentially limiting agents, such as phytic acid. It should be noted that some organic 

trace mineral sources are more bioavailable than others, which is due to the 

characteristics of the organic ligand and differences in their dissociation rates within the 

GIT (Richards et al., 2010). 
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1.3.3 Potential mineral interactions with feed enzymes 

Trace minerals have been shown to interact with a number of different feed enzymes, 

including xylanases, glucanases and phytases. In the case of phytase, it is difficult to 

ascertain whether this is through direct interaction with the enzyme or indirectly with 

phytic acid (Konietzny and Greiner, 2002). Relevant in vitro studies have typically been 

conducted using inorganic sources of trace minerals, in order to determine potential 

modulators of phytase activity (Wyss et al., 1999; Tai et al., 2013; Monteiro et al., 

2015). The effects of inorganic trace minerals on phytase function have been reported 

across numerous sources. Ca
2+

 was shown to enhance the activity of a phytase from 

Pantoea sp. 2-fold, whereas Cu
2+

 slightly inhibited the activity (Suleimanova et al., 

2015). Casey and Walsh (2003) reported that CaCl2
 
moderately inhibited (32 %) the 

activity of a phytase from A. niger. CuSO4 and FeSO4 were reported to inhibit the 

enzyme activity of a phytase from A. niger by ~ 96 % and ~ 40 %, respectively 

(Sariskya et al., 2005). Previous studies have demonstrated that organic trace mineral 

sources may have less of an impact on the phytate degrading activity of phytases. 

Santos et al. (2015) reported higher phytase retention in the presence of Fe and Zn 

proteinate sources for phytases from P. lycii and E. coli sources. Additionally, the 

authors reported that Cu proteinate sources caused significantly less inhibition to E. coli 

and A. niger derived phytases in comparison to other trace mineral sources. 

Furthermore, a varying degree of phytase activity was observed in the presence of 

different OTM sources. Pang and Applegate (2006) reported higher levels of phytate 

degrading activity in the presence of organic copper lysinate in comparison to inorganic 

copper sulphate. These collective studies emphasise the potential use of OTMs in 

animal nutrition with respect to minimising antagonisms between exogenous phytases 

and trace minerals within feeds. 
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1.4 Future perspectives 

It is imperative that the animal production industry continues to evolve to meet 

consumer demands, the needs of animals and the growing population. By 2050, the 

population is predicted to rise by one-third of the current population, correlating to a 70 

% increase in food production demand (FAO, 2009). Feed enzymes have an important 

role to play in the efficient production of safe, high quality and affordable food to meet 

these demands. With their capacity to increase the nutritional value of feed sources, 

alternative, lower grade food substances can be utilised, allowing higher value cereals, 

like wheat and corn, to be used directly in human nutrition.  

 Supplementation of exogenous phytases to monogastric diets is required to 

enhance the nutritional value of feeds, leading to increased productivities and 

efficiencies. Likewise, it is of utmost importance to add bioavailable trace minerals to 

monogastric diets to satisfy dietary requirements and minimise potential antagonistic 

relationships which may occur between dietary components. Organic trace minerals 

may help to achieve this, with the potential to result in improved overall health, as well 

as feed and production efficiencies.  
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1.5 Objectives of the project 

The overall objective of the study was to determine the effects of different inorganic and 

organic trace mineral sources on the activity of commercially-available phytases. 

Within this, the following aims were investigated: 

 

1. To determine the phytate-degrading capacities of commercial phytases at pH 

values associated with the digestive tract of poultry. 

 

2. To elucidate the effects of potential modulators, such as trace minerals, protein 

disrupting agents and chelating agents, on the activity of a commercial phytase, 

as a means to determine what substances could potentially alter phytase 

function. 

 

3. Given the ability of phytase activity to be compromised, the effects of individual 

feed-grade trace mineral sources on enzyme function of commercial phytases. 

 

4. To determine the effects of simulated mineral mixes on enzyme function of 

commercial phytases. Additional research was conducted to look at the 

combined effect of trace minerals. 

 

5. Following the effects of simulated mineral mixes, the effects of commercially 

obtained premixes were assessed. 

 

6. To examine the effect of gastric pH on phytase function in the presence of feed-

grade mineral mixes, as a way of modelling potential activity in vivo. 
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2 Materials and Methods 

2.1 Materials 

2.1.1 Chemicals, solvents, and other reagents 

All materials used were of ACS grade or higher where appropriate. 2-mercaptoethanol, 

acetic acid, acetone, ammonium molybdate, calcium chloride, dithiothreitol, 

ethylenediaminetetraacetic acid (EDTA), magnesium sulphate, phytic acid, potassium 

chloride, sodium acetate, sodium chloride, sodium dodecyl sulphate (SDS), and 

sulphuric acid were obtained from Sigma Aldrich, Arklow, Ireland. 

 

Five commercially available phytases from different bacterial and fungal sources were 

obtained for the purpose of this study. Phy 1 and Phy 5 were from bacterial sources and 

were characterised as 6-phytases. Phy 2, 3, and 4 were from fungal sources and were 

characterised as 3-phytases. Phytases were supplied by industrial sources. 

 

Trace minerals came in the form of copper, iron, manganese, and zinc. Organic 

proteinates and inorganic sulphates were kindly supplied by Alltech. All other organic 

minerals were obtained from independent distributors. Commercial premixes were also 

supplied by Alltech and other independent distributors. 

 

2.2 Methods 

2.2.1 Mineral analysis 

Elemental concentrations of Cu, Fe, Mn, and Zn from organic and inorganic trace 

mineral sources were analysed using inductively coupled plasma-mass spectrometry 

(ICP-MS) (Agilent Technologies, Waldbronn, Germany). Briefly, 0.1 g of each mineral 

source was weighed in triplicate and digested with 10mL of HNO3 for 35 minutes at 

180 °C in a CEM Discover microwave (CEM Corporation, Matthews, NC). After 

digestion, the samples were diluted with >18 MΩcm water to the expected mineral 

concentration. Samples and standards were matrix-matched to 2 % HNO3 prior to 

analysis. 
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2.2.2 Phytase activity assay 

Commercial phytases were examined for phytase activity using a modified version of 

the assay described by Engelen et al. (1994). The assay was based on the hydrolysis of 

0.5 mL aliquots of 2.5 mM phytic acid (from rice) in 0.2 M acetate buffer pH 5.0, by 

0.5 mL of appropriately diluted phytase sample in 5 mM acetate buffer. After 10 

minutes, the reaction was terminated by the addition of 2 mL of colour/stop solution. 

The colour/stop solution was composed of a 2:1:1 ratio of acetone, 10 mM ammonium 

molybdate, and 5 N sulphuric acid, respectively. Excess molybdate was bound by the 

addition of 0.1mL of 1 M citric acid. Blanks were prepared by adding colour/stop 

solution before the addition of phytic acid. Sample absorbance was then assessed at 

λ380nm to determine the level of orthophosphorus release from the hydrolysis of phytic 

acid. Absorbance readings of the samples were converted to inorganic phosphorus 

(KH2PO4) concentrations using a standard curve (ranging from 0.1 µmol/mL to 0.5 

µmol/mL of KH2PO4). Relative phytase activity was calculated thereafter. 

 Phytase activity was defined as the amount of enzyme that can liberate 1 μmol 

of inorganic phosphate per minute and is calculated as outlined below: 

  

 
   

             

  
  

 

ΔA380 = the difference in absorbance between the sample and the blank 

F = the phosphate concentration (µmol/mL) corresponding to the absorbance (λ380 nm) 

2 = multiplication factor to a standard of 1 mL 

10 = the time of the reaction 

D = the required dilution to be within the limits range of the standard curve 

 

2.2.3 Commercial phytase preparation 

Stock solutions of phytases were prepared in 5 mM acetate buffer (pH 5) and extracted 

for 1 hour at room temperature. Supernatant was collected by centrifugation (4000 rpm 

for 1 min9ute) and phytase was diluted appropriately to fall within assay absorbance 

parameters. Phytases were prepared fresh each day. 
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2.2.4 Optimal pH of commercial phytases 

The effect of simulated gastric pH on phytase activity was assessed by incubating 

extracted phytase preparations for 15 minutes in different buffers. The pH range 

assessed was between 2.0 – 6.0, with increasing increments of 0.5. pH values were 

reflective of poultry gastric conditions, ranging from the highly acidic environment of 

the stomach (~ pH 2.5 – 3.5), to the mildly acidic environment of the crop (~ pH 4 – 5), 

to the neutral environment of the small intestine (~ pH 6). Buffers included glycine-HCl 

buffer (pH 2 and 2.5) and 50 mM acetate buffer (pH 3 – 6). Residual phytase activity 

was assessed in triplicate as detailed in Section 2.2.2. 

 

2.2.5 Effect of potential modulators of phytase activity 

The effect of metal ions and other potential modulators (as detailed in Section 2.1.1) on 

phytase activity was assessed by incubating phytase preparations in 1 mM and 10 mM 

treatments for 15 minutes. Treatments are fully detailed in Table 3.1. Residual phytase 

activity was assessed as detailed in Section 2.2.2. 

 

2.2.6 Commercial mineral preparation 

Stock solutions of minerals were prepared in 5 mM acetate buffer (pH 5). Minerals were 

extracted for 20 minutes at room temperature and supernatant was collected by 

centrifugation (4000 rpm for 1 minute). Further concentrations were prepared to reflect 

the levels of elemental mineral that would be employed at higher levels in industrial 

settings and relatively lower levels for Total Replacement Technology (TRT). Minerals 

were prepared fresh each day. 

 

2.2.7 Effect of trace minerals on activity of commercial phytases 

Phytases and minerals were prepared as detailed in Sections 2.2.3 and 2.2.6, 

respectively. The effects of individual inorganic and organic copper and iron mineral 

sources were assessed by incubating phytase preparations in mineral extracts for 15 

minutes, followed by testing for residual phytase activity. 

 The effect of inorganic and organic mineral combinations on enzyme activity 

was assessed thereafter. Phytase preparations were incubated in the presence of a 2-way, 
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3-way and 4-way mineral mix composed of copper, iron, zinc, and manganese. The 

same experimental parameters were applied as previously described. 

Sulphates were employed to represent inorganic trace minerals. Organic 

equivalents included proteinates, amino acid complexes, and chelates. Both inorganic 

and organic trace minerals were applied at rates indicative of those commonly used in 

the poultry industry and under TRT programmes.  

 

2.2.8 Commercial premix preparation 

Stock solutions of premixes were prepared in 5 mM acetate buffer (pH 5). Premixes 

were extracted for 20 minutes at room temperature and supernatant was collected by 

centrifugation (4000 rpm for 1 minute). 

Premixes were normalised to one elemental mineral, i.e.: copper or iron. Further 

concentrations were prepared to reflect the levels of elemental mineral that would be 

applied in industrial settings and for TRT (as detailed in Table 2.1). Premixes were 

prepared fresh daily for each experiment. 

 

Table 2.1 Recommended trace mineral levels for poultry premixes. 

 

 

2.2.9 Effect of gastric pH on mineral-phytase interactions 

Stock solutions of phytases and mineral were prepared as detailed in Sections 2.2.3 and 

2.2.6. Phytase stock (9 mL) was then dispensed into sterilins in triplicate. Mineral mix 

(1 mL) was then added to the phytase. Phytase-mineral mixes were then incubated at 40 

ºC for 15 minutes. After 15 minutes, the pH of the phytase-mineral mixes was adjusted 

to pH 2.5 using 1 M hydrochloric acid. They were then incubated at 40 ºC for 15 

minutes. After each incubation step, residual phytase activity was measured as detailed 

in Section 2.2.2. 

 

Level Cu (ppm) Fe (ppm) Zn (ppm) Mn (ppm)

Commercial 16 80 100 100

TRT 4 11 30 40
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2.2.10 Statistical analysis 

All data was tested for significance by a one-way analysis of variance (ANOVA) based 

on a confidence interval of 95 % unless otherwise stated. Data were analysed using the 

Minitab statistical software package, version 17.0 (Coventry, UK). 



Chapter 3  Results and Discussion 

27 

 

3 Results and Discussion 

The supplementation of exogenous phytases to monogastric animal feeds has been 

described as an effective method of increasing the availability of phosphorus within 

feed as well as reducing its presence within faeces, subsequently minimising excretion 

into the environment (Selle and Ravindran, 2007; Dersjant-Li et al., 2015). Trace 

minerals are also added to monogastric premixes, often at excessive levels, in an 

attempt to maximise production and avoid potential deficiencies (Leeson, 2003). 

Published literature has demonstrated that certain inorganic mineral salts can have an 

antagonistic effect on phytase function (Chantasartrasamee et al, 2005; Shao et al., 

2008; Greiner et al., 2009; Rani and Ghosh, 2011; Yao et al., 2014). Recent research 

conducted by Santos et al. (2015) reported that certain organic trace mineral sources had 

less of a negative impact on phytase function than inorganic sources. 

Following initial biochemical assessments of commercially-available phytases 

(Section 3.1), an overall objective was established to determine the effects of inorganic 

and organic trace mineral sources on the activity of five phytases, the results of which 

are presented in Sections 3.2 – 3.4. 

 

3.1 Influence of extrinsic factors on commercial phytases 

The extent that an enzyme retains its function is dependent on a number of factors, such 

as pH, metal ions, salinity, and temperature. An enzyme can become reversibly or 

irreversibly denatured depending on the extent of damage caused by these external 

factors. Denaturing can be induced by disruption of disulfide bridging or other internal 

bonds that may stabilise the enzyme. 

pH has a strong influence on enzyme function. Changes in pH can induce 

alteration of the catalytic site and affect the overall stability of enzymes. These catalytic 

groups are composed of amino acids, and are subject to protonation or deprotonation 

with changing pH. While minor changes in pH can have a negative impact on the 

overall function of an enzyme, major changes in acidity or alkalinity can cause complete 

denaturation (Bisswanger, 2014). 

Metal ions have also been shown to have both positive and negative effects on 

enzyme function. They can reduce or enhance enzyme activity by binding to non-

specific sites of the enzyme, as well as the active site, altering the enzyme’s shape. They 
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can also bind directly to substrates thereby preventing enzyme-substrate binding (Berg 

and Jain, 2002). Metal ions have been shown to affect a broad range of enzymes 

commonly used in animal feeds. These effects have been previously reported on 

phytases (Yao et al., 2014; Santos et al., 2015), xylanases (Isil and Nilufer, 2005), and 

cellulases (Zeng et al., 2016). A 10 mM treatment of Ca
2+ 

was shown to have inhibitory 

effects on a xylanase from Thermomyces sp. (Gaffney et al. 2009). Conversely, a 

treatment of 1 mM Ca
2+

 was shown to enhance the activity of a xylanase produced from 

Trichoderma sp. (Isil and Nilufer, 2005). Furthermore, it is important to note that these 

metal ions, often in the form of inorganic salts, are supplemented to animal feeds at 

levels typically higher than recommended rates. This can lead to unwanted enzyme-

mineral interactions, potentially leading to reduced enzyme function, which was the 

focus of the present study. This section focuses on the effect of pH and modulators on 

the activity of commercial phytases. 

 

3.1.1 Effect of pH on commercial phytase activity 

The optimum pH range of a phytase can vary greatly depending on its biological source. 

Phytases, often found in plants, bacteria, fungi, and yeasts, can be classed into either 

acid or alkaline phytases depending on their optimum pH range (Pandey et al., 2001). In 

general, phytases have one pH optimum; however, some fungal phytases have been 

shown to have a secondary peak of activity (Han et al., 1999). As previously mentioned 

in Section 1.2, phytases are classified based on their catalytic function. The majority of 

phytases used in animal nutrition are histidine acid phytases (HAPhys) which typically 

have optimal activity under acidic conditions. This makes them suitable in poultry 

nutrition, as well as in swine and fish diets, given the broad acidic pH range associated 

with the gastrointestinal tract of these animals (Konietzny and Greiner, 2002). pH is 

also an important consideration with regards to storage of an enzyme, as storage outside 

of its optimum pH can negatively impact performance in the long term (Bisswanger, 

2014). 

The effect of pH on phytase activity was assessed by incubating phytase 

preparations in glycine-HCl buffers (pH 2 and 2.5) and 50 mM sodium acetate buffers 

(pH 3 – 6). pH values were chosen based on poultry gastric conditions, ranging from the 

highly acidic environment of the stomach (~ pH 2.5 – 3.5), to the mildly acidic 

environment of the crop (~ pH 4 – 5), to the neutral environment of the small intestine 
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(~ pH 6). Commercial phytases (Phy 1 – 5) from different microbial sources were used 

for the purpose of this study. The relative activities of Phy 1 – 5 were presented in 

Figure 3.1 and were based on the highest phytase activity measured for each respective 

phytase.
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Figure 3.1 pH profiles of commercial phytases, Phy1 – 5. 

Data was presented as means of triplicate values with standard deviation. 

Phy 1, 3, and 5 were commercially-available bacterial phytases. Phy 2 and 4 were commercially-available fungal phytases. Phytases were subjected to pH 

values reflective of the poultry GIT, i.e.: pH 2 – 6 (increments of 0.5) to determine the effect on relative activity. Buffers included glycine-HCl buffer (pH 2 

and 2.5) and 50 mM acetate buffer (pH 3 – 6). 
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Activities of all the commercial phytases studied varied over the gastric pH 

range assessed (Figure 3.1). Highest relative activities were observed from pH 3 – 5.5. 

Although Phy 1 and Phy 4 were from different microbial sources, both had optimal 

activities around pH 5 to 5.5, demonstrating similarities between biochemical 

characteristics of HAPhy enzymes. Phy 2 and Phy 4 were both from A. niger sources 

but had slightly different pH profiles which may have been due to the strain of A. niger 

used and the different fermentation techniques, Solid State Fermentation (SSF) and 

Submerged Fermentation (SmF). 

The optimum pH range of Phy 1 was between pH 5 and 5.5, with relative 

activities of 100 % and 91.1 %, respectively. However, Phy 1 was considerably stable 

across a broad pH range (pH 3.5 – 5.5), only losing ~ 17.8 – 27.4 % of its activity when 

incubated at pH 3.5 – 4.5. This agrees with the literature as the pH optima of phytases 

produced from E. coli typically falls around pH 4.5 – 5.5 (Naves et al., 2012; Shao et 

al., 2008). In the present study, activity decreased outside of the optimum pH range; 

however, comparatively good levels were still retained. At pH 2.5 and 3, phytase 

activity was 55.1 % and 58.4 %, respectively; demonstrating that Phy 1 had moderate 

tolerance at more acidic pHs. The lowest levels of activity were observed at pH 2 (38.3 

%) and pH 6 (44.7 %). These low levels of activity demonstrated the phytase’s inability 

to dephosphorylate phytic acid/phytate at pH 2 and pH 6 which may an indication of 

lower activity in the stomach and small intestine (in vivo). 

 Phy 2 had optimal levels of activity from pH 3.5 – 4, with a second peak in 

activity at pH 5. The pH maximum of 3.5 – 4 was slightly lower than expected for a 

phytase produced and expressed by A. niger (Wyss et al., 1999; Casey & Walsh, 2003); 

however, pH optima as low as 2.5 and 3.5 have been observed for certain fungal 

phytases, including A. niger (Wyss et al., 1999; Quan et al., 2004). At pH 5, a peak in 

activity (~ 80 %) was observed in Phy 2. Conversely, the second peak in activity has 

been typically observed below pH 3 (Greiner et al., 2009). High levels of activity were 

also observed at pH 2.5 and 3 (68.1 % and 73.6 %, respectively), demonstrating that 

Phy 2 had a broad range of considerably high activity. Overall, the high levels of 

activity maintained at pH 2.5 – 3.5 demonstrated that Phy 2 may perform well in the 

acidic regions of the GIT in vivo. However, the lower levels of activity observed at 

mildly acidic to neutral pH values may indicate impacted ability of Phy 2 to 

dephosphorylate phytic acid/phytate in the small intestine. Igbasan et al. (2000) reported 

that phytases produced by Aspergillus sp. had a broad range of activity from pH 2 – 6, 
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retaining at least 50 % of their maximal activity in this range. In the present study, at 

least 30 % of activity was retained across the gastric pH range, with retentions of at 

least 70 % from pH 2.5 – 4 and at pH 5. 

Phy 3 had highest levels of activity (89.1 – 100 %) from pH 4 – 5, with 

maximum activity at pH 4.5. This was similar to relevant literature with regards to 

phytases originating from Buttiauxella sp. (Shi et al., 2008; Dersjant-Li et al., 2015). 

High levels of activity still remained at pH 2.5 – 3.5 (72 – 80 %); demonstrating the 

phytase’s stability over a wide range of pH values associated with gastric pHs. Of all 

the commercial phytases assessed, Phy 3 exhibited the highest level of activity at pH 2 

(55.4 %), showing the phytase’s pH stability and potential for phytate hydrolysis in the 

stomach.  

 Phy 4 had a relatively narrow range of optimal activity; with highest activity 

levels observed at pH 5 and 5.5 (91.7 % and 100.1 %, respectively). Decreases in 

activity were observed outside this optimal pH range; however, activity was consistent 

between pH 3 and 4.5 (~ 54.7 – 69.9 % of maximum activity). The lowest level of 

activity (9.2 %) was observed at pH 2; showing the phytase’s sensitivity to highly acidic 

environments. A comparatively high level of activity remained at pH 6 (67.4 %). 

 Phy 5 had a maximum activity range around pH 3 – 4, with the highest activity 

reported at pH 3.5. Kim et al. (2003) reported similar results for a phytase produced by 

Citrobacter sp. Outside of the optimal pH range, changing pHs negatively impacted 

activity of Phy 5. Similar to Phy 4, a reduction in activity of ~ 75 % was observed 

between pH 2 and 2.5, demonstrating the phytase’s sensitivity to acidic environments. 

From pH 5 – 6, reductions in activity were observed (45.2 – 53.0 %); however, levels 

were relatively stable within this range. Overall, Phy 5 had a very narrow range of 

activity; pH had a detrimental impact on the phytase’s activity outside of its optimal 

range (pH 3 – 4). These results indicated that the efficacy of Phy 5 may be affected at 

different areas of the poultry GIT, especially in the stomach. 

 All commercial phytases displayed a broad range of activity across the gastric 

pH range employed for this study. Although the optimum pH values of these enzymes 

fell between pH 3.5 – 5.5, differences in activity were observed outside of this range. 

All phytases retained at least 40 % activity when exposed to a pH range representing 

that of the stomach (pH 2.5 – 3.5), with Phy 5 displaying maximum activity at pH 3.5. 

Within this pH range, Phy 1 – 5 were subject to reductions in activity of ~ 15 – 40 % 

when acidity was increased from pH 2.5 to 2, indicating varying degrees of sensitivity 
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to increased acidity. In the majority of cases, at least 70 % activity was observed from 

pH 4 – 5, with the exceptions of Phy 2 at pH 4.5 and Phy 5 at pH 5. These results may 

be an indication of potential activity levels in the crop section of the GIT, which is of 

importance as the main area for exogenous phytase activity in poultry is within the crop 

and upper part of the GIT (Dersjant-Li et al., 2015). Activity retentions of ~ 30 – 70 % 

were observed when Phy 1 – 5 were exposed to pH levels similar to that of the small 

intestine (pH 6). Phy 1 – 3 and Phy 5 displayed relative activities of 30 – 45 % at pH 6, 

demonstrating their similar catalytic responses at this pH, whereas Phy 4 retained ~ 70 

% activity showing its higher tolerance level at pH 6. 

As the optimum pH of the phytase enzymes studied were within the range of pH 

3.5 – 5, an assay condition of pH 5 was employed for the study. 

 

3.1.2 Effect of potential modulators of commercial phytases 

Commercial phytases are typically produced via microbial fermentation, either through 

SSF or SmF. Mineral salts are one of the key components of the growth media 

responsible for sustaining microbial growth (Basu et al., 2015). Similarly, mineral salts 

are often supplemented to animal feed to fulfill nutritional requirements. They can be 

added as macronutrients, such as calcium and phosphorus, or micronutrients, such as 

copper and iron (Lukić et al., 2009). Traditionally, trace minerals, such as copper and 

iron,  have been added to feed in their inorganic salt form (e.g.: CuSO4.5H2O, 

FeSO4.H2O). These compounds have the potential to interact with different high-value 

animal feed components, particularly enzymes like phytases, xylanases, and glucanases. 

Enzyme function can be influenced through interactions with amino acid residues at 

active catalytic sites or through alterations to enzyme structure (Ullah and Mullaney, 

1996; Igamnazarov et al., 1999). These interactions can result in agonistic and 

antagonistic modulation of enzyme activity (Tran et al., 2011). 

Herein, the effects of metal ions (typically found in animal feed) on phytase 

activity were assessed, as well as other potential modulators. A commercial phytase of 

bacterial origin was used for the purpose of this study. Phy 1 was exposed to 1 mM and 

10 mM treatments of metal ions and other potential modulators. Residual phytase 

activity was measured after 15 minutes by means of a colorimetric assay as detailed in 

Section 2.2.2. Relative activities were expressed as a percentage of activity observed 
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after treatment with deionised water in Table 3.1. Statistical analysis (ANOVA) was 

completed to determine any significant differences across the group. 

 Phytase activity was significantly affected by a number of compounds at both 1 

mM and 10 mM treatment concentrations (p≤0.05) (Table 3.1). Most notable was the 

significant inhibition of activity observed when the phytase was exposed to metallic 

coumpounds commonly added to animal feeds. Table 3.2 provides the elemental levels 

of each trace mineral per modulator treatment. 
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Table 3.1 Effect of metal ions and potential modulators of phytase activity from a bacterial 

source. 

Relative activities (RA) are represented by mean triplicate readings with standard deviations 

compared to a control sample (water). Means lacking the superscript letter 
(a)

 in the same line 

differ significantly (p≤0.05) by way of the Dunnett’s test. 

 

 

Table 3.2 Elemental levels of trace minerals per modulator treatment. 

 

 

As demonstrated in Table 3.1, treatment with 1 mM and 10 mM copper, ferrous, 

and zinc sulphate strongly inhibited phytase activity (p≤0.05). Enzyme activity was not 

detected after exposure to 10 mM ferrous and zinc sulphate, and little activity remained 

after 1 mM treatments (10 ± 0.5 % and 8.5 ± 0.3 %, respectively). As depicted in Table 

3.2, 1 mM treatments of ferrous and zinc sulphates equated to 54 ppm Fe
2+

 and 64 ppm 

Zn
2+

; 1.5 – 2-fold lower than application rates recommended for use in poultry nutrition. 

Similarly, exposure to cupric sulphate at levels higher than 1 mM resulted in < 10 % 

Modulator Chemical Formula

RA (%) SD RA (%) SD

Water H2O 100.0 
a 1.9 100.0 

a 1.9

Calcium Chloride CaCl2 108.9 0.2 105.6 1.6

Copper Sulphate CuSO4
11.7 0.5 5.2 0.1

Ferrous Sulphate FeSO4
10 0.5 - -

Magnesium Sulphate MgSO4 103.2 
a 2.1 111.5 0.6

Manganese Sulphate MnSO4
89.1 1.7 82.4 1.3

Potassium Chloride KCl 82.9 1.4 94.8 0.5

Sodium Chloride NaCl 102.8 
a 4.8 97.2 

a 1.2

Zinc Sulphate ZnSO4
8.5 0.3 - -

2-Mercaptoethanol C2H6OS 95 1.8 90.1 2.7

Dithiothreitol C4H10O2S2
89.2 1.1 89.3 0.6

SDS NaC12H25SO4 - - - -

EDTA C10H16N2O8 103.4 
a 2.5 104.7 0.8

Treatment (1 mM) Treatment (10 mM)

Trace Mineral Metal ion 1 mM 10 mM 

CuSO4.5H20 Cu 60 600

FeSO4.H2O Fe 54 540

MnSO4.H2O Mn 55 550

ZnSO4.H2O Zn 64 640

Elemental concentration (ppm)

per modulator treatment
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phytase activity. It is widely documented that these metal ions can have a highly 

inhibitory effect on phytase activity (Igamnazarov et al., 1999; Konietzny & Greiner, 

2002; Tai et al., 2013; Monteiro et al., 2015). It has been suggested that inhibitory 

effects can arise from enzyme-mineral interactions, as well as phytate-mineral 

interactions, particularly in the case of Fe
2+ 

(Greiner & Farouk, 2007). Although cupric, 

ferrous and zinc sulphates
 
had highly inhibitory effects on phytase activity in the present 

study, it is important to note that not all phytases may be affected in the same fashion. 

Monteiro et al. (2015) demonstrated that a phytase from A. niger UFV-1 retained 81.2 

% and 87.7 % activity after exposure to 5 mM treatments of CuSO4 and ZnSO4, 

respectively. Conversely, Quan et al. (2004) observed that a 1 mM treatment of Zn
2+

 

reduced activity of a phytase from Cladosporium sp. FP-1 by 46 %. These findings 

demonstrate the different responses of phytases to mineral interference, highlighting the 

different properties of microbial phytases. 

In the present study, exposure of a bacterial phytase (Phy 1) to Ca
2+

 ions slightly 

improved activity (p≤0.05). Higher Ca
2+

 stimulations of phytase activity in BPPhy-

producing strains of bacteria have been described in the literature (Igamnazarov, 1999; 

Sariyska et al., 2005; Suleimanova et al., 2015). However, the slight increase in phytase 

activity observed in the present study does not strongly imply that Ca
2+

 is required for 

optimal phytase activity. Furthermore, Ca
2+

 activation is not a common biochemical 

characteristic of acid phytases (Oh et al., 2004). In addition to this, EDTA did not have 

an inhibitory effect on phytase activity, further suggesting that the phytase in question 

did not require metal ions, like Ca
2+

, for maximal activity (Tai et al., 2013). Exposure to 

10 mM treatments of magnesium sulphate also slightly improved phytase activity (+ 

11.5 ± 0.6 %). Similar responses have been seen in phytases produced by E. coli (Tai et 

al., 2013). 

 It is also important to note that treatment with protein denaturing agents (2-

mercaptoethanol and dithiothreitol) only slightly affected phytase activity, resulting in 

reductions of 5 – 11 % at both treatment levels. These denaturing agents disrupt 

disulfide bridging within the enzyme, altering its structure and ultimately its activity 

(Ullah et al., 2005). These results may have indicated that strict rigidity was not a 

prerequisite of enzyme function. 

 It can be concluded that various types of compounds can have an impact on 

phytase function. The trace minerals copper, ferrous and zinc sulphate, had the most 

inhibitory effect on phytase activity, which is highly significant as they are the mineral 
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form traditionally used in monogastric feeds. From these findings, the influence of 

copper and iron sources and their effective concentrations were further investigated in 

Section 3.2. 

 

3.2 Effect of individual feed-grade mineral sources on activity of 

commercial phytases 

As previously mentioned in Section 1.3, minerals are classified as either macro or 

micro, depending on their required concentrations and function. They play a central role 

in many metabolic systems within animals, and are required for overall good health. 

Minerals have been utilised in the poultry industry since the 1950s, largely in the form 

of inorganic sulphates, oxides, and carbonates. These trace minerals are often added at 

excessive levels, in an attempt to avoid potential deficiencies by exceeding dietary 

needs, as well as trying to maximise production and performance (Nollet et al., 2007). 

However, research has demonstrated that minerals in their inorganic form may not fulfil 

poultry nutritional requirements, with efficacy compromised by their lack of 

bioavailability. Although sulphates are considered more bioavailable than oxides, they 

are still not as readily absorbed by the animal (Nollet et al., 2007). This lack of 

bioavailability and excess concentration can lead to mineral excretion which can 

accumulate in the environment, potentially leading to land pollution and eutrophication 

of water sources (Jungbloed et al., 1999; Grana et al, 2013). 

In recent years, interest in organic trace mineral sources has garnered more 

attention due to their increased bioavailability and overall stability (Carvahlo et al., 

2015). Furthermore, it is suggested that it is not necessary to add organic trace minerals 

to animal feeds at the high levels proposed by the industry for inorganics because of the 

enhanced characteristics of organic minerals in the GIT and their reduced propensity to 

interact with other dietary components (Asku et al., 2010; Manangi et al., 2012). 

 

3.2.1 Effect of copper-based mineral sources on the activity of commercial 

phytases 

Copper plays a key role in many metabolic processes, including immune functions, 

energy production, and acting as a co-factor for certain enzymes, such as lysyl oxidase 

which is responsible for the maturation of collagen subunits into more stable protein 
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structures (Richards et al., 2010). The EU feed industry recommends the 

supplementation of copper to poultry feed at an inclusion rate of 16 ppm (EFSA, 2016).  

 As previously mentioned in Section 3.1.2, a number of compounds had a 

significant effect on phytase activity. Most notable of these results was the inhibitory 

effect of feed-grade inorganic trace minerals on phytase activity. Following on from 

these results, the effect of individual feed-grade mineral sources (at levels consistent 

with feed inclusion) on the activity of commercial phytases, Phy 1 – 5, was investigated. 

Commercial phytases were incubated in the presence of inorganic and organic sources 

of copper as per Section 2.2.7. Copper sulphate (CuSO4.5H2O) was used as an inorganic 

source of copper as it is typically used in poultry nutrition. Organic sources of copper 

employed were in the form of proteinates, chelates, and amino acid complexes. As 

previously illustrated in Table 2.1, inorganic minerals are typically added at high levels 

to animal feeds as guided by the EU feed industry (NRC, 1994; ESFA, 2016), whereas 

organic minerals tend to be added at lower levels. Certain practises involve total 

replacement technology (TRT), i.e.: the complete replacement of an inorganic mineral 

source with an alternative organic one based on greater bioavailability (Nollet et al., 

2007). The effects of both inorganic and organic minerals on phytase activity were 

assessed at TRT (4 ppm copper) and commercial (16 ppm copper) levels. Residual 

phytase activity was assessed as detailed in Section 2.2.2. 

 The effect of copper-based minerals, at both TRT and commercial levels, on the 

activity of commercial phytases (Phy 1 – 5) is presented in Table 3.3 (a) and (b). 

Copper sources assessed included inorganic feed-grade copper sulphate (ITM) and 

organic feed-grade proteinates (OTM 1 and 4), a chelate (OTM 3) and an amino acid 

complex (OTM 2). All copper sources had an inhibitory effect on activity of Phy 1 – 5; 

however, the level of inhibition appeared to be dependent on the copper source and 

concentration, as well as individual phytase source. 
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Table 3.3 Effect of copper-based mineral sources at (a) TRT and (b) commercial levels on activity of commercial phytases.  

Relative activities are presented as means of triplicate values from triplicate experiments, with corresponding deviations. Statistical analysis is presented as a 

one-way ANOVA with Tukey’s test. Trace minerals included: copper sulphate (ITM), a proteinate (OTM 1), an amino acid complex (OTM 2), an amino acid 

chelate (OTM 3), and alternative proteinate (OTM 4). 

(a) 

 

 

(b) 

 

 

Mineral Source

RA (%) SD (±) RA (%) SD (±) RA (%) SD (±) RA (%) SD (±) RA (%) SD (±)

ITM TRT 75.45 
a,b

2.6 35.2 
a

3.5 75.7 
a,b

9.8 66.2 
a

2.6 45.7 
a

2.6

OTM 1 TRT 78.5 
a

1.7 37.4 
a

2.5 81.7 
a,c

3.2 70.3 
b

1.8 66.0 
b

2.3

OTM 2 TRT 73.5 
b

0.9 52.4 
b

2.2 73.0 
b

1.1 83.8 
c

1.2 55.9
 c

3.9

OTM 3 TRT 77.0 
a

2.9 53.0 
b

8.2 84.4 
c

1.1 71.4 
b

2.9 75.8
 d

3.9

OTM 4 TRT 73.2 
b

3.1 34.7 
a

1.7 75.7 
a,b

1.8 76.0 
d

1.8 57.8 
c

3.5

Phy 1 Phy 2 Phy 3 Phy 4 Phy 5

Mineral Source

RA (%) SD (±) RA (%) SD (±) RA (%) SD (±) RA (%) SD (±) RA (%) SD (±)

ITM Commercial 42.6 
a

4.1 12.9
 a

2.1 42.8 
a

3.0 34.3 
a

1.5 16.1
 a

1.1

OTM 1 Commercial 50.9
 b

2.1 15.6 
a

4.4 57.4
 b,c

2.8 62.1 
b

1.8 28.5 
b

1.2

OTM 2 Commercial 46.4 
c

1.7 28.5 
b

1.3 39.7
 d

1.4 59.8 
c

1.2 17.7 
a

1.4

OTM 3 Commercial 57.4 
d

2.0 24.3 
c

2.8 58.8
 b

1.1 61.4 
b,c

1.2 36.2 
c

0.7

OTM 4 Commercial 45.3
 a,c

0.9 19.8 
d

1.3 55.5 
c

2.2 67.4 
d

1.2 27.1
 b

1.3

Phy 1 Phy 2 Phy 3 Phy 4 Phy 5
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Inorganic trace minerals are added to animal feeds with large safety margins to 

help prevent potential mineral deficiencies and maximise potential production outputs 

(Lόpez-Alonso, 2012). Relevant literature has shown organic trace minerals to be more 

bioavailable to the animal and consequently, are typically added at lower inclusion rates 

(Bao et al., 2007). Taking this into account, the impact of inorganic and organic sources 

of copper on phytase activity was compared at both TRT and commercial levels to gain 

perspective on an in vitro level. 

 Varying degrees of inhibition were observed when Phy 1 – 5 were exposed to 

inorganic copper (ITM) at TRT and commercial levels. At TRT levels (4 ppm copper), 

decreases of 25 – 65 % were observed after exposure to ITM across the range of 

phytases (Table 3.3 (a)). Higher mineral levels, reflective of inclusion in a commercial 

setting (16 ppm copper), had a greater inhibitory effect of activity of Phy 1 – 5, 

resulting in reductions of ~ 57 – 87 % (Table 3.3 (b)). Similarly, different levels of 

inhibition were observed when Phy 1 – 5 were exposed to OTM 1 – 4 at TRT and 

commercial levels. In the majority of cases, the least inhibition was observed when Phy 

1 – 5 were exposed to OTM 1 – 4 at TRT levels. A greater level of inhibition was seen 

when commercial phytases were exposed to organic copper sources at higher 

commercial levels; however, in most cases, relative phytase activity was at least 40 %. 

The phytase source also appeared to have an effect on the outcome of mineral 

interactions. For example, exposure of Phy 2 and Phy 3 to TRT levels of ITM resulted 

in reductions of 65 % and 25 %, respectively. Phy 2 was from a fungal source, whereas 

Phy 3 originated from a bacterial source and was expressed in a fungal host, which may 

be indicative of the different responses observed. Overall, these results indicated copper 

source and concentration, as well as the phytase source influenced activity of Phy 1 – 5. 

In the case of Phy 1, a bacterial phytase, ITM significantly reduced activity by 

57.4 % at commercial levels (p≤0.05), whereas OTM 1 – 4 has less of an inhibitory 

effect at TRT levels, reducing activity by only 21.5 – 26.8 %. The reduction in activity 

after exposure to ITM was not unexpected due to the high levels of inhibition caused by 

1 mM treatments of copper sulphate in Section 3.1.2. It was also interesting to observe 

that the increase in ITM concentration (from TRT to commercial levels) caused a 

further decrease in activity of approximately 43 %, whereas increasing the concentration 

of OTM 1 – 4 reduced activity by ~ 25 – 36 %; potentially indicating greater stability of 

organic copper sources in certain instances. Exposure to OTM 1 and OTM 3 resulted in 

significantly higher retentions of phytase activity in comparison to exposure to OTM 2 
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and OTM 4 (p≤0.05). Organic copper sources included two proteinates (OTM 1 and 

OTM 4), an amino acid complex (OTM 2), and an amino acid chelate (OTM 3). These 

results demonstrated that copper source influenced phytase efficacy and that the amino 

acid complex (OTM 2) may have had different properties to the other chelated mineral 

sources. Although Pang and Applegate (2006) determined that copper concentration and 

source had an effect on the ability of a bacterial phytase to hydrolyse phytic acid, they 

reported that copper lysinate, an amino acid complex, didn’t impact activity as much as 

inorganic copper sources. At pH 5.5, the presence of inorganic copper sulphate and 

copper chloride significantly reduced phosphorus release by approximately 20 – 80 % 

(Pang and Applegate, 2006). 

 The efficacy of Phy 2, a fungal phytase, was negatively affected by ITM at 

commercial levels. Activity was reduced by 87.1 % after exposure to the inorganic 

copper sulphate (Table 3.3 (b)). It has been demonstrated in the literature that phytases 

produced by A. niger can be strongly inhibited by 1 mM CuSO4. Soni et al. (2010) 

reported that copper sulphate negatively impacted the activity of A. niger NCIM 563 by 

89 %. Similarly, relative activity of just 4.6 % was observed after a phytase produced 

from A. niger 306 was exposed to copper sulphate at levels as low as 1 nM. Higher 

levels of phytase activity remained after exposure to OTM 1 – 4; however, organic 

mineral source still had quite a negative effect on phytase function, with only 34.7 – 

53.0 % of total activity retained. Exposure to OTM 2 and OTM 3 had the lowest level of 

impact on relative activity of Phy 2, which was also reflected when the concentration of 

these OTMs was increased to commercial levels. It was evident that copper, in both its 

inorganic or organic form, had a negative impact on the ability of Phy 2 to hydrolyse 

phytic acid. 

 The ability of Phy 3 to dephosphorylate phytic acid was hampered by the 

presence of ITM. Activity was significantly reduced to 75.7 % after exposure to the 

inorganic copper source at TRT levels. After increasing the concentration of ITM to 

commercial levels, relative phytase activity dropped to 42.8 %, representing a decrease 

of ~ 43 %. Conversely, this retention was higher than results reported in published 

literature whereby a phytase produced by Buttiauxella sp. was highly susceptible to 

Cu
2+

 ions (Shi et al., 2008). OTM 1 – 4 had less of an inhibitory effect on activity, with 

reductions ranging from 15.6 – 27.0 %. Some significant differences were observed 

between organic copper mineral sources at lower TRT levels; however, OTM 2 induced 
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a significantly higher level of inhibition in comparison to ITM and the other OTMs at 

higher commercial levels (p≤0.05), in a similar trend to Phy 1. 

 A significant reduction in activity (65.7 %) was detected when Phy 4 was 

exposed to ITM at commercial levels (p≤0.05), which represented a 48 % decrease in 

activity following exposure to TRT levels. Similar to the other phytases previously 

mentioned, OTM 1 - 4 had less of a negative effect, reducing activity by only 16.4 – 

29.7 % at TRT levels (Table 3.3 (a)). In addition to this, significant differences were 

observed between the organic copper sources (p≤0.05), with OTM 2 causing the lowest 

levels of inhibition. This again demonstrated that each organic copper source affected 

the ability of Phy 4 to degrade phytic acid. In this instance, the amino acid complex 

caused significantly less inhibition of phytase activity in comparison to the other 

organic sources. Similar results were seen when commercial phytases were exposed to 

copper lysinate; they concluded that this may have been due to copper lysinate forming 

less insoluble copper-phytate structures compared to copper sulphate and copper 

chloride (Pang and Applegate, 2006). Interestingly, the increased concentration of 

organic copper at commercial levels inhibited the activity of Phy 4 to a lesser extent 

than the previous phytases mentioned (Table 3.3 (b)). This was represented by ~ 10 – 30 

% reduction of activity seen after exposure to TRT levels of OTMs. This demonstrated 

that the activity of Phy 4 may not have been dependent on the concentration of organic 

copper source (within the limits typically used in poultry feed). 

 Similar to Phy 4, a significant reduction in activity (45.7 %) was observed when 

Phy 5 was exposed to ITM at TRT levels (p≤0.05). A further reduction of 29.6 % was 

seen when Phy 5 was exposed to higher commercial levels of ITM, representing a 65 % 

loss in activity between the two concentration levels. Similar results were observed in a 

phytase produced by Citrobacter sp., whereby low concentrations of Cu
2+

 strongly 

inhibited activity (Kim et al., 2003). Exposure to organic copper sources resulted in 

significantly higher retentions in phytase activity. Relative activity ranged from 55.9 % 

to 75.8 % after exposure to OTM 1 – 4. Highest phytase activity was observed after 

exposure to proteinate sources of copper (OTM 1 and 4); however, OTM 1 had more of 

a negative effect than OTM 4. Increasing the concentration of OTMs to commercial 

levels (16 ppm) caused further reductions in phytase activity of up to ~ 68 % of those 

observed after exposure to OTMs at TRT levels. Phy 5 was similar to Phy 2 as both 

inorganic and individual copper sources had a considerable impact on their efficacies. 
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 Overall, the results in the present study demonstrated that copper was influential 

to the ability of phytases to dephosphorylate phytic acid and consequently, its ability to 

release inorganic phosphate. In the case of Phy 2 (a 3-phytase from a fungal source) 

copper source and concentration had a highly negative impact on phytase activity 

(p≤0.05). These effects were observed with both inorganic and organic Cu sources at 

TRT and commercial rates, and may have been due to its mode of action and biological 

source. Similarly, both organic and inorganic copper sources (at the higher commercial 

inclusion levels) caused high inhibition in the phytate-degrading ability of Phy 5 which 

was a 6-phytase from a bacterial source. Some significant differences were observed 

between organic copper sources at TRT levels in the cases of Phy 1, Phy 3, and Phy 4, 

indicating dependence on organic copper source in certain instances. The phytase 

function of Phy 4 did not appear to be highly dependent on the concentration of organic 

copper sources; however, its activity was dependent on the concentration of inorganic 

copper source. These results demonstrated the diverse range of phytase activities in 

response to copper sources and concentrations, indicating individual mode of action is 

an important factor when predicting retained phytase function in feed. 

 

3.2.2 Effect of iron-based mineral sources on the activity of commercial 

phytases 

Iron is another trace mineral that plays a vital role in animal health and performance. It 

forms part of many proteins, such as haemoproteins like haemoglobin and myoblobin, 

and non-haemoproteins like ferritin. It also acts as a co-factor for many iron-dependent 

enzyme systems (Shinde et al., 2011). Like copper (and other trace minerals), iron is 

traditionally supplemented to animal feeds in an inorganic form and in excess amounts 

in an attempt to maximise production at low cost (Yang et al., 2011). The National 

Research Council had previously recommended iron supplementation levels of 80 ppm 

for poultry (NRC, 1994); however, iron is often reported to be used at much higher 

levels than these recommendations. Phytic acid is a known chelator of many divalent 

metal ions, such as calcium, copper, iron, and zinc. Mineral deficiencies can occur in 

animals due to mineral-phytate complexes forming from the interaction between phytic 

acid and minerals. Phytate complexes can be soluble or insoluble depending on the pH 

at which they form, which affects mineral uptake (Akter et al., 2015). Ferrous sulphate 
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has been shown to be a potent inhibitor of phytate hydrolysis (Maenz et al., 1999; Kalsi 

et al., 2016). 

As demonstrated in Section 3.1.2, exposure of Phy 1 to 1 mM ferrous sulphate 

resulted in a reduction in phytase activity of ~ 90 %, demonstrating the highly inhibitory 

nature of ferrous sulphate. It was also important to note that 1 mM of ferrous sulphate 

had an elemental iron concentration of 54 ppm, which was 40 % lower than the levels 

often used in the poultry industry (in excess of 80 ppm). Following on from these 

results, the effect of individual feed-grade mineral sources on phytase activity was 

investigated. Commercial phytases were incubated in the presence of inorganic and 

organic sources of iron. Ferrous sulphate was utilised as an inorganic source of iron as it 

is commonly used in poultry nutrition. Organic sources of iron included two proteinates 

(OTM 1 and 3) and an amino acid complex (OTM 2). The effects of both inorganic and 

organic minerals on phytase activity were assessed at TRT and commercial levels. As 

depicted in Table 2.1, inorganic minerals are typically added at high levels to animal 

feeds as guided by the EU feed industry, whereas organic minerals are typically added 

at lower levels, in this case at TRT levels. In the case of iron, inorganic minerals are 

typically added at 80 ppm, whereas organic minerals are added at 11 ppm. In the present 

study, a reflective value for each organic and inorganic level was used; 2 ppm and 15 

ppm for TRT and commercial levels, respectively, due to the highly inhibitory nature of 

iron. Residual phytase activity was assessed as detailed in Section 2.2.2. 

The effect of iron-based minerals, at both TRT and commercial levels, on the 

activity of commercial phytases (Phy 1 – 5) is presented in Table 3.4 (a) and (b). All 

iron sources had an inhibitory effect on activity of Phy 1 – 5; however similar to copper 

sulphate, the level of inhibition appeared to be dependent on the iron source and 

concentration, as well as the phytase source. 
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Table 3.4 Effect of iron-based mineral sources at (a) TRT and (b) commercial application rates on activity of commercial phytases. 

Relative activities are presented as means of triplicate values from triplicate experiments, with corresponding deviations. Statistical analysis is presented as a 

one-way ANOVA with Tukey’s test. Trace minerals included: iron sulphate (ITM), a proteinate (OTM 1), an amino acid complex (OTM 2), an alternative 

proteinate (OTM 3). 

(a) 

 

 

(b) 

 

 

Mineral Source

RA (%) SD (±) RA (%) SD (±) RA (%) SD (±) RA (%) SD (±) RA (%) SD (±)

ITM TRT 81.4 
a

1.5 76.8 
a

1.7 73.0 
a

2.1 88.2 
a

1.7 82.5 
a

1.9

OTM 1 TRT 66.1 
b

1.0 72.8 
a,b

4.2 54.6
 b

1.3 50.6
 b

1.3 37.7 
b,c

1.7

OTM 2 TRT 75.2 
c

2.7 72.2 
b

4.1 17.3 
c

1.9 39.0
 c

2.4 27.2 
b

1.4

OTM 3 TRT 65.3
 b

3.0 82.1 
c

2.6 48.3 
d

2.8 77.3 
d

1.8 43.2 
c

4.7

Phy1 Phy2 Phy3 Phy4 Phy5

Mineral Source

RA (%) SD (±) RA (%) SD (±) RA (%) SD (±) RA (%) SD (±) RA (%) SD (±)

ITM Commercial 28.3 
a

1.7 23.3 
a

1.2 26.4
 a

0.6 35.9
 a

1.0 23.4
 a

0.7

OTM 1 Commercial 39.3 
b

1.1 49.9 
b

3.2 16.4 
b

0.1 15.7 
b

2.6 23.4 
a

0.6

OTM 2 Commercial 43.6 
c

0.6 35.3
 c

2.5 8.6 
c

0.6 40.9
 c

0.7 13.5
 b

0.4

OTM 3 Commercial 61.5 
d

1.3 67.7 
d

0.6 32.0
 d

0.6 72.5
 d

1.1 46.3 
c

1.5

Phy1 Phy2 Phy3 Phy4 Phy5
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A range of relative phytase activities were observed after the exposure of Phy 1 

– 5 to organic and inorganic sources of iron (Table 3.4). Inorganic ferrous sulphate 

(ITM) at TRT levels caused the least amount of phytase inhibition in all cases (p≤0.05). 

Although ferrous sulphate appeared less inhibitory to Phy 1 – 5, only reducing activity 

by a maximum of ~ 27 %, it is important to note that it is not as readily available to 

animals in comparison to organic sources, thus this supplementation level wouldn’t be 

effective in vivo. Iron supplementation of poultry feed to be effective (in vivo) from 25 – 

150 ppm (Arnaudova-Matey et al., 2013), thus it is unlikely that FeSO4 would be 

applied at lower levels in normal circumstances. Reductions of up to ~ 70 % were 

observed when higher levels (15 ppm) of ITM were applied; demonstrating the 

influence of inorganic iron concentration on phytase activity. It is possible that low 

levels of ITM (2 ppm) were not high enough to influence the phytase or phytate present; 

however, this concentration was used to keep the concentrations relative to each other. 

In the majority of cases, exposure to OTMs resulted in higher levels of phytic acid 

degradation at both reflective TRT and commercial levels. 

Results in Table 3.4 (a) illustrated that relative activity of Phy 1 was reduced by 

18.6 % when TRT levels of ITM were applied. A further reduction (53.1 %) in activity 

was observed with commercial levels of ITM (p≤0.05) (Table 3.4 (b)). ITM at 

commercial levels had a more inhibitory impact on the activity of Phy 1 compared to 

ITM at TRT levels. These results demonstrated that the concentration of ITM used had 

a significant effect on the activity of Phy 1 (p≤0.05). These results were in agreement 

with published literature; Akter et al. (2015) demonstrated that iron significantly 

reduced the ability of Quantum Blue to hydrolyse phytate-iron complexes. Similarly, 

Maenz et al. (1999) observed that Fe
2+

 was a potent inhibitor of phytase activity. 

 In comparison to ITM, exposure to organic iron sources, OTM 1 – 3, resulted in 

significantly higher levels of phytase activity (65.3 – 75.2 %) when reflective TRT 

levels were applied. This was possibly due to the higher level of stability often observed 

in organic mineral sources (Arnaudova-Matey et al., 2013; Manangi et al., 2012). Phy 1 

was least affected by OTM 2, followed by OTM 1 and 3. OTM 2 was an amino acid 

complex, whereas, OTMs 1 and 3 were proteinate sources of iron. Significant 

differences were seen between relative activities after exposure to OTM 2 and OTMs 1 

and 3 (p≤0.05), which indicate that the source of organic iron had an influence on 

activity. The most probable reason that less inhibition occurred with the organic trace 
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minerals was enhanced stability (Tamin and Angel, 2003). The higher application rates 

of OTM 1 and OTM 2 resulted in further decreases in phytase activity; however, this 

was not observed with OTM 3. An increased concentration of OTM 3 did not cause 

further inhibition, demonstrating that the activity of Phy 1 was independent to iron 

concentration for this particular organic proteinate. 

ITM at higher commercial levels had the most inhibitory effect on activity 

(retention of 23.3 %) of Phy 2. The increase from reflective TRT levels to commercial 

levels caused a 69 % reduction in activity, demonstrating that Phy 2 activity was 

dependent of ITM concentration. Organic mineral sources, OTM 1 – 3, at lower TRT 

levels were significantly less inhibitory to Phy 2 (p≤0.05). OTM 1 – 3 at higher 

commercial levels also had less of an effect on phytase activity (retentions of ~ 35.3 – 

67.7 %) than ITM at commercial levels. Exposure to OTM 3 resulted in significantly 

higher activity retentions in comparison to OTM 1 and 2 (p≤0.05). Exposure of Phy 2 to 

a higher concentration of OTM 3 resulted in a reduction of 18 %, whereas reductions of 

31 % and 51 % were observed in the cases of OTM 1 and OTM 2, respectively. This 

illustrated that individual organic Fe sources also had the potential to impact phytase 

activity differently. 

Results in Table 3.4 (a) showed that ITM at TRT levels had the least effect on 

activity of Phy 3 (retention of 73 %). Considerable decreases in activity were observed 

when ITM was increased to reflective commercial levels, representing a 63 % reduction 

in activity from levels seen after exposure to TRT levels (Table 3.4 (b)). It has been 

reported in the literature that inorganic sources of iron can have a highly inhibitory 

effect on activity of bacterial phytases. Iron chloride was found to be highly inhibitory 

to an E. coli phytase over-expressed in P. pastoris, resulting in levels as low as 13.3 % 

(1 mM) and 19.3 % (5 mM) (Tai et al., 2013). 

In the present study, both organic and inorganic sources of Fe were quite 

inhibitory to phytate hydrolysis ability of Phy 3. Furthermore, the effects of organic 

minerals on the activity of Phy 3 were more detrimental than on Phy 1 and Phy 2. Table 

3.4 (a) illustrated activity retentions of 17.3 – 54.6 % after exposure to OTM 1 – 3, with 

OTM 2 causing the highest level of inhibition. Exposure to OTM 1 and OTM 3 (at TRT 

levels) resulted in significantly higher levels of activity in comparison to ITM (at 

commercial levels) (p≤0.05). Higher levels of activity may have been observed due to 

the type of chelation associated with proteinates, which enhances their stability (Santos 
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et al., 2015). OTM 2 had the most negative impact on activity of Phy 3, resulting in an 

activity retention of 17.3 %, which may have happened due to greater levels of 

dissociation, as OTM 2 was an amino acid complex with different degrees of binding 

strength compared to proteinates.. 

ITM at TRT levels had the least inhibitory effect on activity of Phy 4 (Table 3.4 

(a)). A further reduction of 52.3 % was observed when commercial levels of inorganic 

Fe were applied (p≤0.05), demonstrating that the concentration of inorganic Fe used had 

an effect on the ability of Phy 4 to hydrolyse phytate. Akter et al. (2015) also 

demonstrated that Fe
2+

 levels of 70 – 90 ppm negatively impacted phytate hydrolysis. 

Organic Fe sources had less of a negative impact on phytase activity at TRT 

levels in comparison to ITM at commercial levels (Table 3.4). Exposure to OTM 1 – 3 

resulted in reductions of activity levels of 22.7 – 61 %, with OTM 2 again having the 

most negative impact. As previously mentioned, the stabilities of OTM 1 and 3 might 

be higher than that of OTM 2 due to the different bond strengths, i.e.: OTM 1 and 3 

were chelated organic sources, whereas OTM 2 was an amino acid complex. This may 

have accounted for the higher levels of activity observed after incubation with OTM 1 

and 3. Significant differences were observed between organic iron sources, which may 

have indicated that phytase activity was dependent on organic iron source used. As with 

Phy 1, the activity of Phy 4 did not decrease further with increased levels of OTM 3, 

implying that the activity of this phytase did not depend on the concentration of this 

organic mineral. Increasing the level of OTM 2 also did not affect the activity of Phy 4, 

showing that phytase activity was independent of OTM 2’s concentration. 

Overall, incubation of phytase with iron mineral sources had an inhibitory effect 

on the activity of Phy 5 (Table 3.4). As observed with Phy 1 – 4, increasing the 

concentration of ITM further reduced the activity of Phy 5; representing the greatest 

reduction in activity over all of the phytases (~ 79 %). This result implied that Phy 5 

was most susceptible to ITM at commercial levels. Exposure to organic iron at lower 

TRT levels resulted in reductions in activity of 56.8 – 72.8 % (Table 3.4 (a)). 

Commercial levels of OTM 1 and OTM 2 had an additional negative impact on Phy 5, 

resulting in relative activities of 23.4 % and 13.5 %. No significant differences were 

observed between ITM and OTM 2 at commercial levels. These results indicated that 

Phy 5 was highly susceptible to negative interactions from both inorganic and organic 

mineral sources. Tamim and Angel (2003) reported similar reductions in phytate 
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hydrolysis after exposure to both inorganic and organic mixes of minerals (including 

iron). Another potential reason may have been due to the pH properties of Phy 5. 

Phytate-mineral destruction has been shown to be pH dependent owing to different 

solubilities (Akter et al., 2015; Pang and Applegate, 2006). In addition, the pH optimum 

of phytases may also influence this action; Phy 5 was operating above its optimal pH 

(4), thus may not have been capable of efficient hydrolysis. Moreover, it is possible that 

there were insoluble phytate complexes present in the mixture that may have also led to 

decreased inorganic phosphate release, hence lower relative activity was observed. 

Similar to Phy 1 and Phy 4, increased levels of OTM 3 did not further impact phytase 

activity suggesting that concentration of this mineral may not hinder activity of Phy 5. 

Overall, the results in the present study demonstrated that iron was influential to 

the ability of Phy 1 – 5 to break down phytic acid. Negative impacts of ITM were 

observed across all phytases at TRT levels, with further reductions in activity of 59 – 72 

% when the ITM concentration was increased to reflective commercial levels. This 

suggested that phytase activities of Phy 1 – 5 were dependent on the concentration of 

inorganic iron applied. Various responses were seen when Phy 1 – 5 were exposed to 

TRT and commercial levels of OTMs. In most cases, a high degree of phytase inhibition 

was observed after exposure to commercial rates of OTMs due to the higher 

concentration of iron. Higher levels of OTM 1 affected Phy 1 – 5 to different degrees; 

with further reductions of 31 – 70 % detected. Similar levels of reduction were observed 

when all phytases (excluding Phy 4) were exposed to OTM 2 at commercial levels (42 – 

51 %). Higher commercial levels of OTM 3 only negatively impacted Phy 2 and Phy 3. 

These results demonstrated that iron source and concentration, in addition phytase 

source can all have an influence on enzyme activity. 

 

3.3 Effect of feed-grade mineral mixes on activity of commercial 

phytases 

In general, trace minerals are not added to poultry diets individually, but rather 

incorporated as a premix containing a number of different trace minerals, as well as 

vitamins. These premixes are designed to optimise health and performance of poultry. It 

is important for nutritionists to identify optimal concentrations of these dietary 

components to minimise any potential negative interactions between them, while 

fulfilling the nutrient requirements of the animal (Henry & Miles, 2000). Common trace 
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minerals added to poultry diets include copper, iron, zinc, and manganese. As 

demonstrated in Sections 3.1 and 3.2, these minerals, although present in trace amounts, 

can have a huge effect on phytate hydrolysis. Additionally, agonistic or antagonistic 

interactions may occur between individual trace minerals due to their stability or lack 

thereof (Henry and Miles, 2000). These interactions between inorganic trace minerals 

can occur in the GIT due to their readiness to dissociate at low pHs (Richards et al., 

2010). For example, high levels of zinc can impair copper absorption in the intestine, 

resulting in copper-based deficiencies. Similarly, high levels of copper can reduce zinc 

absorption. An antagonistic relationship has been proposed between these two minerals 

due to similar uptake channels (Ao et al., 2009.) 

 

3.3.1 Effect of feed-grade mineral mixes on phytase activity 

The individual effects of copper and iron on the activity of Phy 1 – 5 were assessed in 

Sections 3.2.1 and 3.2.2. In both cases, it was demonstrated that copper and iron 

sources, as well as concentration, were influential on phytase function. However, as 

premixes contain multiple trace mineral components, the effect of feed-grade mineral 

mixes on the activity of commercial phytases was assessed. Trace minerals commonly 

added to poultry feeds include copper, iron, zinc, and manganese, thus the additive 

effects of these minerals on phytase activity were determined as outlined in Section 

2.2.7. Inorganic (sulphates) and organic (proteinates; OTM 1) mineral combinations 

were assessed at commercial and TRT levels. Inorganic and organic copper sources 

were included at rates typically used in feed. Inorganic and organic sources of iron, zinc 

and manganese were applied at lower relative rates to allow for detection within the 

range of the in vitro assay. Inorganic and organic sources of iron, zinc and manganese 

were applied at rates of 1 ppm and 7.5 ppm, 5 ppm and 20 ppm, and 5 ppm and 20 ppm, 

respectively. The results of these experiments were summarised in Figures 3.2 – 3.6. 

As previously seen in Sections 3.2.1 and 3.2.2, mineral source influenced the 

activities of Phy 1 – 5. In the majority of cases, high levels of inhibition were observed 

when phytases were exposed to inorganic copper and iron at commercial levels. 

Figure 3.2 demonstrates the combinatorial effects of inorganic and organic 

mineral mixes on phytase activity in vitro. As with previous findings, the source of 

mineral mix had a significant effect on activity of Phy 1 (p≤0.05). 
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Figure 3.2 Effect of inorganic sulphate and organic proteinate mineral mixes on the 

activity of a commercial bacterial phytase, Phy 1. 

The mineral mixes are presented as ITM (inorganic sulphate) and OTM (organic proteinate). 

Average values that lack a common superscript differ in statistical significance (p≤0.05). 

 

Both inorganic and organic sources had a significant effect on activity of Phy 1 

(p≤0.05); however, organic mineral combinations caused considerably less inhibition 

than inorganic counterparts. Relative activity decreased by 85 % when Phy 1 was 

exposed to inorganic mixes of copper and iron. This result was in agreement with the 

individual mineral assessments in Section 3.2, with copper and ferrous sulphates 

reducing activity by 42.6 % and 28.3 %, respectively. It is likely that the combination of 

ITM copper and iron caused additional inhibition on the activity of Phy 1 in comparison 

to the individual ITM sources. This may have been due to non-specific binding of 

copper and/or iron to the phytase causing a change in its conformation (Kerovuo et al., 

2000). It may have also been due to one or both of the ITMs binding to the phytic acid 

causing it to form mineral-phytate complexes. Phytic acid has been shown to chelate 

Cu
2+

 and Fe
2+

 which can block phytate hydrolysis due to the formation of insoluble 

complexes at higher pHs (4 – 7) (Tang et al., 2006; Maenz et al., 1998). These potential 

interactions may have caused additional antagonism to Phy 1. Numerical differences 

were observed with the additions of zinc and manganese sulphate. Individually, 1 mM 

of ZnSO4 (equating to 64 ppm Zn) was found to have a highly inhibitory effect on the 

activity of Phy 1 in Section 3.1.2, resulting in an activity reduction of 91.5 %. Mineral 
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saturation of the phytase or phytic acid may account for the lack of further inhibition, 

due to blocking of respective binding sites, or structure conformation. Another potential 

reason could be that copper and/or ferrous sulphate may have bound to the phytase with 

greater affinity. 

 The presence of organic mineral mixes (OTM) also negatively impacted activity 

of Phy 1 but to a far lesser extent than ITM mixes (Figure 3.2), with copper and ferrous 

sulphates resulting in a 40 % reduction in phytase activity. Phy 1 significantly retained 

~ 45 % more activity after exposure to the OTM mix of copper and iron in comparison 

to the ITM mix of copper and iron (p≤0.05). Similar to the ITM mix, numerical 

differences were observed when OTM zinc and manganese were added to the mix; 

however, the observed reductions were minimal (± 5 %). Higher retention levels of Phy 

1 after exposure to OTM mixes may have occurred due to higher stability of the organic 

proteinates over the inorganic sulphates. Inorganic sulphates are known to dissociate 

readily in mildly acidic environments, whereas it has been suggested that organic trace 

minerals can offer greater stability in acidic conditions due to their bonding to an 

organic ligand (Pang and Applegate, 2006; Richards et al., 2010).  

 Figure 3.3 demonstrates the effect of inorganic and organic mineral mixes on the 

activity of Phy 2. Greater inhibitory effects were observed with the addition of ITM 

mixes (a further decrease of ~ 60 %). It was evident that the source of mineral mix had a 

significant effect on phytase activity (p≤0.05). 
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Figure 3.3 Effect of inorganic sulphate and organic proteinate mineral mixes on the 

activity of a fungal phytase, Phy 2. 

The mineral mixes are presented as ITM (inorganic sulphate) and OTM (organic proteinate). 

Average values that lack a common superscript differ in statistical significance (p≤0.05). 

 

Both ITM and OTM mixes had a significant impact on the activity of Phy 2; 

however, the inhibitory effect of OTM mixes was considerably less than that of ITM 

mixes (p≤0.05) (Figure 3.3). An activity retention of just ~ 5% was observed after 

exposure to a combination of ITM copper and iron, which was less than the retentions 

observed after exposure to individual inorganic sources of copper (12.9 %) and iron 

(23.3 %) in sections 3.2.1 and 3.2.2, demonstrating the potential negative interaction of 

combining minerals. Significant differences were not observed with the additions of 

ITM zinc or manganese; indicating that maximum inhibition occurred with the 

combined exposure to copper and ferrous sulphates. As previously mentioned, cations 

of inorganic minerals can be detrimental to the enzymatic activity of phytases. 

Inhibitory effects can occur due to non-competitive interactions between cations and the 

phytase or from phytic acid chelating metal ions and forming phytate complexes (Tang 

et al., 2006; Bekalu et al., 2017). These phytate complexes can be highly resistant to the 

action of phytase; reducing phytase efficacy. It has been reported in the literature that 

metal ions can cause varying degrees of inhibition to the phytase function of Aspergillus 

sp.. Tang et al. (2006) reported that a phytase from A. ficuum was incapable of breaking 

down phytate in the presence of Fe
2+

, Cu
2+

, and Zn
2+

, due to the stability of these 
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phytate complexes. Similarly, Maenz et al. (1999) demonstrated that Zn
2+

 and Fe
2+ 

were 

potent inhibitors of phytate hydrolysis by a phytase produced by A. niger, which again 

was due to the stability of the mineral-phytate complex. Conversely, Casey and Walsh 

(2003) reported that CuSO4 and ZnSO4 enhanced the activity of a phytase from A. 

niger. It was also reported that FeSO4 had no effect on the efficacy of that specific 

phytase (Casey & Walsh, 2003). The results reported in the literature demonstrate that 

phytases produced from the same genus (or similar strains) may not always have 

identical responses, indicating that biological source has an effect on biochemical traits. 

It was evident that the addition of organic minerals and subsequent incubation 

had far less of an inhibitory effect than inorganic minerals on activity of Phy 2 (Figure 

3.7). Significantly higher phytase activity retentions of ~ 70 % were observed across all 

OTM combinations, representing ~ 65 % more activity when compared to ITM mixes 

(p≤0.05). Significant differences were not observed between OTM mixes suggesting 

that maximum inhibition occurred with organically bound copper and iron. Overall 

proteinate stability may have accounted for this. Phy 2 may have been more susceptible 

to organic copper and iron in comparison to organic zinc and manganese, hence no 

further inhibition occurred when these minerals were added to the mix. Interestingly, 

phytase activity after exposure to organic copper and iron was similar to the activity 

retention observed in the presence of organic iron in Section 3.2.2, suggesting that 

organic iron impacted phytase function of Phy 2 the most. 

 Figure 3.4 demonstrates the effects of inorganic and organic mineral mixes on 

the activity of Phy 3. The source of the mineral mix had a significant effect on phytase 

activity, as seen previously (p≤0.05). 
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Figure 3.4 Effect of inorganic sulphate and organic proteinate mineral mixes on the 

activity of a bacterial phytase, Phy 3. 

The mineral mixes are presented as ITM (inorganic sulphate) and OTM (organic proteinate). 

Average values that lack a common superscript differ in statistical significance (p≤0.05). 

 

 Both ITM and OTM mixes had an inhibitory effect on the activity of Phy 3; 

however, ITM mixes caused significantly greater losses in activity (p≤0.05) (Figure 

3.4). Moreover, Figure 3.4 depicts the highest levels of inhibition after exposure to ITM 

mixes in comparison to Phy 1 and Phy 2, as phytase activity of Phy 3 was not detectable 

thereafter. Less than 5 % was detected after incubation with inorganic copper and iron, 

with no significant differences between ITM mixes (p≥0.05). It is likely that the 

inorganic mineral combination of copper and iron caused the most inhibition due to lack 

of significant differences with the addition of inorganic zinc or manganese. In the case 

of exposure to individual mineral sources of copper and iron, Phy 3 retained at least 25 

– 40 % of its activity (Section 3.2). This may indicate that there was a combined effect 

of the two minerals which caused the near depletion of phytase activity in this instance. 

 Significantly higher levels of phytase activity (~ 75 – 80 %) were retained after 

exposure of Phy 3 to mixes of OTM sources (p≤0.05). In Section 3.2, individual organic 

sources of copper and iron reduced phytase activity of Phy 3 by approximately 19 – 45 

% (Tables 3.3 and 3.4). In this instance, retention levels were similar to those observed 

after exposure to organic copper, suggesting that within the organic mix, organically 

bound copper may have caused the most inhibition. Phytase activity varied minimally 
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with the addition of chelated zinc and manganese. Overall, phytase activity appeared to 

be more stable after exposure to OTM mixes in comparison to ITM mixes. 

 Figure 3.5 illustrates the effects of inorganic and organic mineral mixes on the 

activity of Phy 4. As in previous instances, mineral mix source had a significant effect 

on phytase activity (p≤0.05). 

 

 

Figure 3.5 Effect of inorganic sulphate and organic proteinate mineral mixes on the 

activity of a fungal phytase, Phy 4. 

The mineral mixes are presented as ITM (inorganic sulphate) and OTM (organic proteinate). 

Average values that lack a common superscript differ in statistical significance (p≤0.05). 

 

Both inorganic and organic mineral mixes significantly affected the activity of 

Phy 4 (p≤0.05). ITM mixes caused the highest level of phytase inhibition, with low 

activity retentions of ~ 10 – 20 %; however, these retentions were the highest out of 

commercial phytases previously discussed (Figure 3.5). In Section 3.2, individual 

sources of inorganic copper and iron reduced activity to ~ 35 %, with the combination 

of both reducing activity to ~ 10 %, suggesting that inorganic minerals had combined 

inhibitory effects on Phy 3 (Figure 3.5). A numerical increase in activity was observed 

with the further addition of inorganic zinc, which may have indicated a slight 

stimulatory affect; however, the effect was not significant (p≥0.05). It was likely that 

inorganic copper and iron caused the most inhibition due to lack of significant 

differences with the additions of ITM zinc or manganese. 
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 Similar to the other phytases, significantly less inhibition was caused by OTM 

mixes to the efficacy of Phy 4 (p≤0.05). Phytase activity retentions ranged from ~ 60 – 

70 %, which was considerably higher (~ 50 – 60 %) in comparison to the retentions 

seen after exposure to ITM mixes (Figure 3.5). Activity further decreased by ~ 10 % 

with the addition of organic zinc and manganese, demonstrating that the addition of 

extra trace minerals to the organic mix did not have a detrimental effect on activity of 

Phy 4. Similar activity retentions were observed when Phy 4 was exposed to individual 

organic sources of copper and iron, suggesting that an organic mix of minerals may not 

further hinder phytase activity. As before, this may have been down to greater stability 

of the OTMs. 

 Similar to the previous commercial phytases assessed, mineral mix source had a 

significant effect on activity of Phy 5 (Figure 3.6). Phy 5 displayed significantly higher 

levels of activity after exposure to OTM mixes compared to ITM mixes (p≤0.05). 

 

 

Figure 3.6 Effect of inorganic sulphate and organic proteinate mineral mixes on the 

activity of Phy 5. 

The mineral mixes are presented as ITM (inorganic sulphate) and OTM (organic proteinate). 

Average values that lack a common superscript differ in statistical significance (p≤0.05). 
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Exposure to inorganic and organic mineral sources had adverse effects on 

phytase activity; however, with ~ 5 % activity remaining, ITM mixes had a much 

greater inhibitory effect on the activity of Phy 5 (Figure 3.6). Individually, inorganic 

copper and iron both had detrimental effects on the activity of Phy 5; reducing phytase 

activity by ~ 78 – 84 %. As with the previous phytases, the combined effect of inorganic 

copper and iron resulted in a large reduction in the activity of Phy 5. The addition of 

inorganic zinc and manganese did not have any additional significant effects on phytase 

activity, suggesting that maximum inhibition had occurred. Again, this may have been 

due to saturation of the phytase or phytic acid thereby reducing function of the phytase 

or access to the phytic acid molecule, respectively. 

 Conversely, OTM mixes had much less of an impact that their ITM 

counterparts; approximately 55 % more activity was retained when Phy 5 was exposed 

to organic mineral mixes. No significant differences were observed following the 

addition of organic zinc or manganese, indicating that organic zinc and manganese had 

negligible impact on the activity of Phy 5. Activity levels after exposure to OTM mixes 

were higher than those observed after exposure to individual organic iron minerals 

(Section 3.2.2). However, activity levels were similar to those observed after exposure 

to individual organic copper sources (Section 3.2.1), suggesting that most of the impact 

was due to OTM Cu in comparison to the other OTM sources. This may have been due 

to a greater reactivity with Phy 5. 

 The results of this study demonstrated that the source of mineral mix had an 

impact on the phytase activity of Phy 1 – 5. Overall, the effects of ITM mineral mixes 

were highly inhibitory, with most phytases only retaining 10 % of their initial activity. 

Conversely, significantly higher levels of activity were observed after exposure to OTM 

mineral mixes; with retained activity ranging from 50 – 70 % higher than activity 

observed after ITM counterparts (p≤0.05). In general, further inhibition of phytase 

function was not observed with the addition of inorganic zinc and manganese, 

suggesting that copper and iron had the most inhibitory effect. However, a numerical 

increase (~ 10 %) in phytase activity was observed when Phy 4 was exposed to 

inorganic zinc, indicating that the mineral may have had a slight stimulatory effect on 

activity but this result was not significant. In the majority of cases, the addition of OTM 

Zn caused a significant decrease in activity (~ 5 – 10 %); however, this effect was 

minimal as all the affected phytases still retained activity levels of ~ 55 – 75 %. As 
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previously mentioned, proteinates possess a higher stability due to their chelated 

structure and lack of charge; these characteristics may account for the higher levels of 

retained activity observed in Phy 1 – 5, these characteristics may account for the higher 

levels of retained activity observed across the commercial phytases tested. 

 

3.3.2 The effect of commercial premixes on phytase activity 

While it is important to assess the individual and combined effects of trace minerals on 

phytase function in vitro, it is also useful to look at the effects of commercially 

formulated premixes which may be formulated with a mixture of different OTM and 

ITM sources. The current section looked to assess the effects of commercial premixes 

(containing similar levels of copper, iron, zinc, and manganese) on the phytase function 

of Phy 1. The commercial premixes chosen were marketed as organic sources of trace 

minerals, which included a proteinate (A), an amino acid chelate (B), a metal propionate 

(C), and a methionine hydroxy analogue chelate (D). All premix samples were 

normalised to their iron content and applied at a reflective TRT level of 2 ppm (as was 

utilised in Section 3.2.2 and 3.3.1). Figure 3.7 summarises the effects of organic 

premixes on the activity of Phy 1. As demonstrated with individual organic sources of 

copper and iron in Sections 3.2.1 and 3.2.2, the source of organic premix had a 

significant effect on the activity of Phy 1 (p≤0.05).  
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Figure 3.7 Effect organic premixes on the activity of a bacterial phytase, Phy 1. 

Average values that lack a common superscript differ in statistical significance (p≤0.05). 

OTM premixes were as follows: proteinate (A), amino acid chelate (B), metal propionate (C), 

and methionine hydroxy analogue chelate (D). 

 

A varied response was observed when Phy 1 was exposed to organic premixes, 

with relative activity ranging from ~ 10 – 80 %. Exposure to Premix A resulted in the 

highest retention of phytase activity (~ 80 %). As mentioned previously, proteinates are 

highly stable due to their degree of chelation, which may have accounted for higher 

levels of phytate hydrolysis in this instance. High levels of activity were also observed 

after Phy 1 was incubated with Premix C (~ 75 %). Premix C contained trace minerals 

defined as metal propionates. These organic minerals are formed by the reaction of a 

metal salt with excess propionic acid and may be more tightly bound than other OTMs, 

inferring greater stability and less reactivity. Significantly lower levels of phytase 

activity were observed when Phy 1 was incubated with Premix B (~ 53 %). Although 

Premix B was composed of chelated trace minerals (inferring greater stability), phytase 

function was considerably lower in its presence. This may have occurred due to 

components of the premix binding to the phytase inducing conformation changes, or it 

may have been due to a greater affinity between phytate and the metal portion of the 

chelate than their organic ligands. Exposure to Premix D resulted in the lowest phytase 

activity (~ 10 %). This premix consisted of trace minerals in the form of chelated 

methionine hydroxy analogues (MHA). The MHA within the premix may have had a 
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lower stability constant due to its chelation process, inferring less stability, which may 

have led to greater reactivity between phytic acid and/or the phytase, reducing phytate 

degradation. Another potential reason for the low activity exhibited in the presence of 

Premix D may have been due to the higher Cu content of the premix, Cu was 1.7- to 

2.5-fold higher than the other premix sources. Additionally, Zn was 1.5- to 1.8-fold 

higher in Premix D than the other premixes. 

 These results demonstrated the difference between commercial organic premix 

sources on the phytase function of Phy 1. The results illustrated the potential 

interactions between organic premixes a bacterial phytase, showing that different forms 

of organic trace minerals elicit different phytase responses, indicating that not all 

organic premix sources react in the same manner. 

 

3.4 Effect of feed-grade mineral mixes on phytase activity in 

simulated gastric pHs 

The poultry gastrointestinal tract (GIT) is comprised of a number of different 

compartments, with the main areas of importance for phytase activity being the crop, 

gizzard and small intestine. The pH of these different compartments varies greatly; 

ranging from pH 4.5 – 5.5 in the crop, pH 2.5 – 3.5 in the gizzard, and pH 5 – 7.5 in the 

small intestine. Ideally, an exogenous phytase should be able to maintain a moderate to 

high level of activity across the GIT, but especially in the gizzard and crop, as was 

demonstrated in Section 3.1.1. As previously illustrated, trace minerals can have an 

inhibitory effect on phytase activity through non-competitive interactions. Phytic acid 

can also interact with trace minerals through chelation of their metal ions forming 

phytate-mineral complexes. At different pHs, soluble or insoluble complexes can arise 

from these interactions which can potentially reduce or block the action of phytase, 

compromising dephosphorylation of phytic acid. 

 The effect of gastric pH on the ability of phytase to dephosphorylate phytic acid 

in the presence of trace minerals was assessed herein. Two phytases (Phy 1 and Phy 4) 

were selected based on their catalytic differences; Phy 1, a 6-phytase, from a bacterial 

source and Phy 4, a 3-phytase, from a fungal source, both with pH optima between pH 5 

and 5.5. Both phytases displayed similar responses to individual copper sources and 

mineral mix sources (Sections 3.2.1 and 3.3.1, respectively), however, slight differences 

were observed when exposed to individual iron sources (Section 3.2.2). Figure 3.8 and 
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3.9 demonstrate the effect of pH on phytase-mineral interactions of Phy 1 and Phy 4, 

respectively. 

 Figure 3.8 demonstrates the effect of simulated gastric pH and temperature on 

the catalytic function of Phy 1 in the presence of trace mineral mixes. The temperature 

of the simulated gastric incubation was 40 ºC, reflective of the internal temperature of 

poultry. The acidity of the reaction was increased from pH 5 to pH 2.5, reflecting the 

change of pH conditions in the crop to the gizzard. ITM (sulphate) and OTM 

(proteinate; OTM 1) mixes used were identical to those used in Section 3.3.1. As seen 

previously, the relative activity of Phy 1 was negatively impacted after exposure to ITM 

and OTM mixes. Increasing the pH of incubation significantly affected the phytase 

activity of Phy 1 when exposed to OTM at TRT levels and ITM at commercial levels 

(p≤0.05). 

 

 

Figure 3.8 Relative activity of a bacterial phytase, Phy 1, after exposure to OTM and ITM 

mixes at gastric pHs. 

Relative activities are presented as n = 9. Average values that lack a common superscript differ 

in statistical significance (p≤0.05). 
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Exposure to ITM and OTM mixes negatively impacted the activity of Phy 1 

(Figure 3.8); however, the ITM mix had more of an adverse effect than the OTM mix. 

Exposure to ITM at pH 5 significantly impacted the activity of Phy 1 at both mineral 

inclusion levels; 30 % of activity remained at TRT levels, whereas a significant 

decrease of ~ 15 % was observed when ITM was applied at commercial levels (p≤0.05). 

These results were as expected given the relative activities observed in Section 3.3.1. A 

slight numerical increase in activity of ~ 8 % was observed when Phy 1 was exposed to 

TRT levels of ITM mixes at pH 2.5 (representing the environment of the gizzard). 

However, as this increase wasn’t significant, it suggested that increasing the acidity did 

not have a definitive impact on the efficacy of Phy 1 in the presence of ITM mixes at 

this lower concentration. In Figure 3.8, a significant decrease in phytase activity when 

Phy 1 was exposed to the ITM mix at higher commercial levels at pH 2.5 (p≤0.05). This 

may have occurred due to increased dissociation of mineral salts and subsequent higher 

cation concentration. Similar results have also been reported in the literature whereby 

higher pHs hindered phytate hydrolysis in the presence of inorganic minerals (at typical 

application rates) commonly added to animal feeds (Pang & Applegate; 2006; Akter et 

al., 2015). 

 OTM mixes negatively affected phytase activity but to a lesser extent (Figure 

3.8). At pH 5, ~ 50 % activity was retained, which was in agreement with results 

observed previously (Section 3.3.1). At pH 2.5, the relative activity of Phy 1 increased 

to ~ 63 % in the presence of the OTM mix at TRT levels. In Section 3.1.1, the relative 

activity of Phy 1 was found to be ~ 55 % at pH 2.5, which may have indicated that the 

OTM mix did not have an adverse effect on activity in this instance. This may have 

been due to increased stability of the organic minerals, leading to lower levels of 

mineral dissociation, resulting in higher levels of phytate hydrolysis. Organic chelated 

minerals tend to be more chemically inert in comparison to their inorganic sulphate 

counterparts thus they are less susceptible to dissociation, which may have contributed 

to increased phytate hydrolysis (Vieira, 2008). Pang & Applegate (2006) reported that 

pH and copper mineral source and concentration affected phytase activity. They 

demonstrated that organic Cu sources were less detrimental to phosphorus release at pH 

5.5 and 6.5, in comparison to various inorganic Cu sources. They also reported higher 

phytic acid hydrolysis due to lower levels of dissociation of phytic acid protons at pH 

2.5. The authors also noted that phytic acid solubility was higher at more acidic 
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conditions which would have contributed to higher levels of phytic acid hydrolysis. This 

may also be an explanation as to higher phytase activities in the current study (Figure 

3.8). 

Figure 3.9 demonstrates the effects of pH on activity of Phy 4 in the presence of 

inorganic and organic mineral mixes. The lack of significant differences between 

simulated gastric environments suggested that pH did not influence the activity of Phy 4 

in the presence of mineral mixes (p≥0.05); however, the source of mineral mix did have 

a significant effect on phytase activity as previously demonstrated (p≤0.05). 

 

 

Figure 3.9 Relative activity of a fungal phytase, Phy 4, after exposure to OTM and ITM 

mixes at gastric pHs. 

Relative activities are presented as n = 9. Average values that lack a common superscript differ 

in statistical significance (p≤0.05). 

 

Figure 3.9 illustrates that mineral mix source influenced phytase activity of Phy 

4. Although both mineral mix sources affected the efficacy of Phy 4, the ITM mix was 

significantly more inhibitory than the OTM mix, resulting in reduced activity of ~ 55 % 

(p≤0.05). Interestingly, the activities observed at pH 5 in the presence of the ITM mix 

were ~ 30 % higher than those observed in Section 3.3.1. A potential reason for this 

may have been the temperature of the incubation; 40 ºC was selected to represent the 

physiological temperature of poultry. It has been reported in the literature that phytases 
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have optimal activity at temperatures ranging from 30 – 80 ºC (Singh and 

Satyanarayana, 2013). Naves et al. (2012) reported an optimum temperature range of 40 

– 45 ºC for two different phytases produced by Aspergillus sp.; with decreasing levels 

of activity from 50 – 60 ºC. This may be indicative as to why higher levels of activity 

were observed in the current study; the catalytic activity of Phy 4 may have been more 

effective at 40 ºC than at 50 ºC (temperature employed for Sections 3.1 – 3.3). 

Increasing the pH of the reaction did not have an effect on phytase activity in the 

presence of the ITM mix. Increasing the concentration of ITM mix also did not 

influence the phytase activity. 

 Phytase activity of Phy 4 was significantly higher in the presence of the OTM 

mix at both pH values (p≤0.05). As with the ITM mixes, phytase activity observed was 

higher (~ 20 %) than that reported in Section 3.3.1, again potentially due to the reduced 

reaction temperature. As with the ITM mixes, significant differences were not observed 

when the acidity of the reaction was increased, implying that the interaction was pH 

independent. Overall, these results were unexpected with regard to pH influence, and 

also differed to those demonstrated in the literature. Tamim & Angel (2003) reported 

that inorganic and organic mineral mixes had a negative impact on phytase activity at 

both pH 2.5 and pH 6.5; with lower levels of phosphorus release at pH 6.5. However, it 

was also noted that organic mineral mixes in the form of amino acid complexes did not 

improve phosphorus release (Tamin & Angel, 2003), whereas the results of the present 

study demonstrated that Phy 4 performed better in the presence of OTM mixes (in the 

form of proteinates), demonstrating that organic mineral mix source can have an 

influence on phytase function. 

 Under simulated gastric conditions, there were clear differences in the activity 

profiles of Phy 1 and Phy 4 in the presence of trace mineral mixes. Mineral mixes 

negatively impacted the activity of both phytases; with ITM mixes (at both TRT and 

commercial application levels) having more of an inhibitory effect than OTM mixes. 

ITM had more of a negative impact on the activity of Phy 1 than that of Phy 4, with Phy 

4 retaining ~ 25 – 45 % more activity. The concentration of ITM had a significant effect 

on phytase function of Phy 1 but not for that of Phy 4. The activity of Phy 1 decreased 

from ~ 30 % to 15 % at pH 5, and from ~ 38 % to 9 % at pH 2.5, whereas activity of 

Phy 4 remained at ~ 55 % when exposed to ITM mixes at both pH levels. pH had an 

influence on the activity of Phy 1 but not on Phy 4; greater levels of activity were 
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observed when Phy 1 was exposed to TRT levels of the OTM mix at pH 2.5 than at pH 

5. The activity of Phy 4 did not change when the acidity was increased, demonstrating 

that its activity (in the presence of mineral mixes) was independent of pH changes. As 

previously mentioned, Phy 4 may have been more effective at 40 ºC, hence the higher 

levels of activity, firstly in the presence of mineral mixes, and secondly under pH 

changes. 

Overall, it was evident that OTM mixes had less of an inhibitory effect on 

enzyme activity of both phytases in comparison to ITM counterparts. This was likely 

due to the enhanced stability of the organic minerals, inferred by their bond strength and 

orientation. Higher phytase activity in the presence of OTM mixes was also observed at 

pH 2.5, which was likely due to lower levels of metal ion dissociation at acidic pHs. In 

addition, phytic acid is more soluble at acidic pHs, thus it was possible that there was a 

complementary effect of greater phytate solubility and OTM stability. These results 

demonstrated the vast difference in catalytic activity under simulated gastric conditions, 

providing a model for testing numerous feed formulations, after which a selection can 

be validated in vivo. 
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4 General conclusions 

Phytases are naturally occurring enzymes that facilitate the dephosphorylation of phytic 

acid or its salt, phytate, to liberate inorganic phosphorus. They are ubiquitous in nature 

and are found in an array of microorganisms, plants and animals. In general, 

monogastric animals have low intrinsic levels of phytases, requiring exogenous 

microbial phytases to be supplemented to their feedstuffs as a way of increasing the 

availability of naturally occurring phosphorus. Degradation of phytate also has the 

capacity to improve digestibility and nutritional value of feed, as phytate has a tendency 

to chelate nutrients, such as minerals, amino acids and proteins. The addition of phytase 

to monogastric animal feeds also has the potential to reduce the levels of excreted 

phosphorus within their faeces, subsequently reducing sources of pollution into the 

environment (Lei et al., 2013). 

 The initial objective of the present study was to assess the biochemical 

properties of five commercial phytases (designated Phy 1 – 5) and how activity is 

influenced by pH and potential modulators. Enzyme activity profiles were determined 

for all commercial phytases over a broad pH range in vitro, as an indicator of potential 

activity in vivo. Although each of the commercial phytases had diverse pH profiles, 

maximum activity was observed between pH 3.5 – 5 in all cases. This maximum pH 

range was expected, as most common feed phytases are classified as HAPhys, which 

display optimal activity within this range (Greiner and Konietzny, 2011). The pH range 

investigated broadly covered that of the upper intestinal tract of poultry (encompassing 

the crop, gizzard and proventriculous), which generally transitions between ~ pH 2.5 

and ~ pH 5 (Menezes-Blackburn et al., 2015), demonstrating the potential application 

and functionality of these commercial phytases in poultry nutrition. The second 

biochemical property assessed was phytase activity in the presence of different 

chemicals and minerals (including those typically used in the diets of monogastrics). 

Inorganic trace minerals (ITM), in the form of cupric sulphate, ferrous sulphate and zinc 

sulphate, caused the highest levels of phytase inhibition. These findings subsequently 

formed the main basis for the wider study; that, when added to the diet, trace mineral 

source could negatively affect the activity of exogenous commercial phytases.

 Initially, the effect of individual feed-grade trace mineral sources on phytase 

function was assessed. Individual sources of copper and iron were utilised for this part 

of the study, as they had the most inhibitory effect on phytase function in Section 3.1. 
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Inorganic mineral salts have traditionally been added to feed as sulphates, and as such 

sulphates were utilised as the source of inorganic trace mineral (ITM) for the present 

study. The use of organic trace mineral sources (OTM) in feeds is increasing; however, 

it is important to note that OTM is a generic term and that not all OTMs are identical as 

illustrated in Table 1.3. Consequently, a range of OTMs were employed for use in the 

present study, including proteinates, chelates and amino acid complexes. Trace mineral 

concentrations typically applied in animal nutrition were also assessed, i.e.: the higher 

commercial rates often reported when ITMs are used in commercial settings and the 

lower levels often recommended for OTM inclusion. Application rates of OTMs are 

typically lower than those of ITMs due to their enhanced bioavailability. Some 

manufacturers recommend full replacement of ITMs with OTMs at reduced inclusion 

levels. In general, copper source and concentration were influential for retaining phytase 

function in the majority of cases. Copper sulphate had the most inhibitory effect on 

phytase activity in each case when assessed at commercial inclusion rates. Greater 

phytase retention was observed when OTMs were assessed at lower recommended 

levels. The activity of Phy 4 was not highly affected by increased commercial 

concentrations of OTMs; however, its activity was reduced by ~ 45 % in the presence of 

equivalent levels of ITM, demonstrating the benefits of enhanced stability associated 

with OTMs over ITMs. Additionally, biological source was a key determinant to how 

the enzyme responded in the presence of copper. Exposure of 6-phytases (Phy 1, 3 and 

5) to OTM 2 (an amino acid complex of copper) resulted in lowest levels of activity 

even at reduced mineral levels. Conversely, exposure of the remaining 3-phytases (Phy 

2 and 4) to OTM 2 resulted in the highest levels of activity retention for those respective 

phytases. This is an important consideration for feed formulation, given that the mineral 

source, even within organic classifications, may not be compatible with the exogenous 

phytase being used in the feed. 

 The source and concentration of iron also had a similar effect on phytase 

function in the majority of cases. Greater reductions in activity were observed when 

commercial levels of inorganic iron sulphate were applied in comparison to organic 

sources. OTM 2 (an amino acid complex of iron) at reduced mineral levels had a 

considerable impact on enzyme function for Phy 3 – 5, resulting in the greatest 

reduction of phytase activity. Further decreases in activity were observed when higher 

levels of OTM 2 were applied to all commercial phytases, except in the case of Phy 4, 
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suggesting that phytase activity can be independent of iron concentration depending on 

its biological source (3-phytase). 

 Following on from assessments of individual minerals, the effects of simulated 

inorganic and organic mineral mixes (at reduced levels and higher commercial levels) 

on phytase function were investigated. Simulated mineral mixes consisted of 

sequentially added copper, iron, zinc, and manganese, with sulphates employed as the 

ITM source and proteinates as the OTM source. All commercial phytases were 

negatively impacted by the mineral mixes; however, the ITM mix source caused the 

highest levels of inhibition, resulting in activity reductions of ~ 80 – 95 % for each of 

the commercial phytases assessed. Further reductions in activity were not observed with 

the additions of ZnSO4 and MnSO4, suggesting that CuSO4 and FeSO4 had the most 

detrimental impact on the activity of Phy 1 – 5, particularly when acting in conjunction 

with each other. OTM mixes had a far less negative impact on phytase activity than 

ITM mixes, corresponding to enzyme retention levels of ~ 55 – 80 %. The addition of 

organic zinc and manganese proteinates did not cause further inhibition of Phy 2 and 

Phy 5, demonstrating that phytases with different modes of action (i.e.: 3- vs 6-

phytases) can react similarly to specific minerals. It was evident that the commercial 

phytases were less affected by the organic proteinate mixes than their inorganic 

counterparts, which was likely due to the greater ligand stability associated with these 

OTMs. 

 In order to validate the findings from simulated mineral mixes, a number of 

commercially available premixes were assessed to quantify the effect on phytase 

function. Phy 1 was exposed to various commercial premixes marketed as organic 

sources. Premix sources included proteinates, chelates, propionates, and chelated 

methionine hydroxy analogues. Commercial premixes impacted the phytase function of 

Phy 1 to varying degrees. The proteinate source had the least inhibitory effect of the 

premixes tested, resulting in an activity retention of 80 %, which was likely due to 

higher stability. The amino acid chelated premix source reduced phytase activity by 45 

% which was unexpected as these trace mineral sources generally infer greater stability. 

The findings suggested that not all organic chelated mineral sources interacted with the 

phytase in the same fashion, which was most likely due to the stability of the binding 

between ligand and mineral salt. 



Chapter 4  General Conclusions 

 

70 

 

 The final aim of the present study was to determine the effects of simulated 

gastric conditions (pH 5 to pH 2.5 at 40 °C) on phytase function in the presence of 

OTM and ITM mixes. Phy 1 and Phy 4 were utilised for the purpose of this experiment 

and selected based on their biochemical differences. Overall, it was determined that 

both phytases were negatively impacted by the presence of mineral mixes; however, 

similar to previous findings, ITM mixes caused greater inhibition in both cases. Higher 

levels of activity were observed when Phy 1 was exposed to the OTM mix at pH 2.5 

than at pH 5, which was likely due to greater stability of the organic proteinate and the 

increased solubility of phytic acid at lower pHs. Although Phy 4 was also negatively 

impacted by mineral mixes, it was not affected by changes in acidity, which may be 

reflective of the different modes of action the two commercial phytases, that is 6- vs 3-

phytase. 

 In conclusion, findings from the present study demonstrated that the activity of 

commercial phytases can be greatly affected by the trace minerals routinely added to 

animal feeds. While the use of OTMs resulted in the retention of greater levels of 

phytase function overall, a number of different factors contributed to this, such as the 

individual OTM source, the type of organic ligand bound to the mineral, the 

concentration of OTM and the biological source of the phytase. In the majority of cases, 

proteinate sources of copper and iron had the least inhibitory effects on phytase function 

and ITMs had the greatest negative effect on enzyme activity. It is important to note that 

although these results are not directly reflective of activity in vivo, they are a good 

indicator of the potential interactions which may occur. Overall, the use of OTM 

sources at lower application levels may help to maximise phytase activity and minimise 

potential antagonisms between feed components. This is an important consideration for 

feed formulation due to the costs associated with supplemental feed additives and 

ensuring feed quality. 
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