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The Bigger Picture

Squaramides are an intriguing

class of compounds that, as a

result of numerous advantageous
This review covers recent advances in the useof the squaramidemoiety in chemical

research. We focus on the varied applications of squaramides under the broad

headings of self-assembly, organocatalysis, molecular recognition, medicinal

chemistry, and bioconjugation and highlight several examples of each application.
properties, have found use across

a diverse array of the chemical

sciences. With their inherent

ability to partake in strong

bidirectional hydrogen bonding,

in recent years, an explosion of

research interest has led to a

number of potential applications

at the borders of materials science

and biology, where newmaterials,

molecular sensors, synthetic

methodologies, and new drug

candidates toward a diverse set of

diseases have all been reported.

With such a wide range of

potential applications coupled

with facile and robust synthetic

approaches, it is clear that interest

in the squaramide motif is likely to

increase rapidly in the coming

years. This review aims to

summarize the recent uses of

squaramides from scientific fields

as diverse as supramolecular

chemistry and chemical biology

and to highlight the

Brobdingnagian potential that

this small building block has to

effect real change and solve some

of the challenges facing the world

today.
INTRODUCTION

Squaramides, a family of conformationally rigid cyclobutene ring derivatives, are

rapidly gaining research interest across diverse areas of the chemical and biological

sciences.1–3 Composed of two carbonyl hydrogen-bond acceptors in close proximity

to two NH hydrogen-bond donors, this small molecular scaffold benefits from

unique physical and chemical properties that render it extremely useful as a tool

in areas as diverse as catalysis, molecular recognition, bioconjugation, and self-as-

sembly. One of its most striking properties arises from the delocalization of a nitro-

gen lone pair into the cyclo-butenedione ring system conferring the four-membered

ring with aromatic character (Hückel’s rule: [4n + 2] p electrons, n = 0). In addition,

the capacity of squaramides to form strong hydrogen bonds that simultaneously in-

crease the aromatic character of the four-membered ring is highly advantageous

where self-assembly and molecular recognition processes can benefit from favor-

able thermodynamic stability brought about by aromatic gain.4,5 This fact, along

with synthetic versatility, conformational rigidity, and relative stability, has stimu-

lated a burgeoning research effort over the past number of years toward exploiting

this most useful of scaffolds. Derived from squaric acid (diketocyclobutenediol),

itself first synthesized by Cohen et al. in 1959 via the hydrolysis of dichlorotetrafluor-

ocyclobutene,6 it was West and colleagues who provided an explanation for the sta-

bility and aromaticity of the dianionic diketocyclobutene.7 Although a large body of

work on squarate derivatives has been theoretical in nature, establishing the relative

aromaticity of CnOn
2� systems,8,9 it is the facile synthesis of alkyl squarates that has

opened the door to the synthetic accessibility of the squaramide that we enjoy

today.10 One of their particularly useful characteristics is the ability to be sequentially

substituted whereby increased aromatic stabilization afforded by the first substitu-

tion reaction relative to the parent alkyl squarate is thought to render the mono-

substituted intermediate less reactive thus allowing facile synthetic access to

unsymmetrical squaramides.9 Indeed, the alkyl esters have become increasingly useful

tools as bioconjugation moieties and as the key starting materials for the synthesis of

bothmono- anddi-substituted squaramides11 and squaraine dyes12 andmost recently

for the facile synthesis of thiosquaramides.13 With the increasing research interest in

exploiting the squaramide moiety, the aim of this review article is to focus on some

recent advances in the field and highlight some of the interdisciplinary applications

of the squaramides.Wewill focus on the useof squaramides at theborders ofmaterials
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Figure 1. Chemical Structure of Compound 1 and Its X-Ray Crystal Structure Showing the

Relationship between Adjacent Hydrogen-Bonded Molecules
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science and biology under the broad headings of self-assembly, organocatalysis, mo-

lecular recognition, medicinal chemistry, and bioconjugation, where a number of

recent elegant examples have been reported. Although non-exhaustive, this review

aims to include a selection of recently published examples to highlight the utility, di-

versity, and future potential that this most useful of scaffolds holds.

SQUARAMIDES AS SUPRAMOLECULAR SELF-ASSEMBLY MOTIFS

Molecular self-assembly has emerged as a particularly useful approach for the bot-

tom-up assembly of nanoscale materials where a wide variety of morphologies can

be achieved either in bulk or in solution ranging from cylinders and spheres to mi-

celles and vesicles.14,15 The shape and size of self-organized morphologies can be

accurately controlled both through judicious design and through a number of vari-

ables such as concentration, light, pH, temperature, etc.16 As mentioned above,

squaramides benefit from several characteristics that make them amenable for use

in self-assembled materials, in particular their structural rigidity, aromaticity, and

ability to form strong two-dimensional hydrogen bonds. This has led to a number

of reports detailing the formation of non-covalent bonding networks, soft materials,

and metal-organic frameworks.

One of the earliest examples of supramolecular self-assembly based on the squara-

midemotif was reported byDavis and co-workers whodescribed the synthesis of com-

pound 1 (Figure 1).17 X-ray crystallography analysis of 1 revealed that the carbamoyl

squaramide unit displayed planarity around the four-membered ring but importantly

showed intramolecular hydrogen bonding. 1was shown to exist as a centrosymmetric

dimer in the solid state, sustained by four NH.O=C hydrogen bonds. The structure of

the 1:1 dimerwas confirmedby calculation of dimerization constants (Kd) (values range

from 53 103 to 104M–1 with chemical shift differences ddimer – dmonomery 2.3–3 ppm)

with 1H NMR dilution analysis in CDCl3–CD3CN (95:5).

Costa et al. subsequently reported further conformational analysis of secondary

squaramidemodels 2–5 throughNMR analysis in a range of different solvent systems

(Figure 2).18 The C–N bonds of several squaramide compounds were shown to be

analogous to amide like structures whereby partially restricted rotation around the

C–N bond gave rise to syn- and anti-conformations. The study showed that an en-

ergy barrier z 63 kJ Mol–1 exists between the syn- and anti-modes of the various

squaramide structures, allowing ready interconversion between the two conformers

at room temperature (RT). In addition, mixtures of syn/anti- and anti/anti-conforma-

tions could be observed through molecular mechanics calculations and X-ray

crystallographic analysis, thus supporting the earlier NMR evidence; however, the
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Figure 2. Chemical Structures of Compound 2–5 and Representations of the anti/anti- and anti/

syn-Conformations of Bis-secondary Squaramides
syn/syn-conformation was not observed to be a result of a high energy barrier

brought about by significant steric hindrance.

Prohens and co-workers have conducted several follow up conformational studies

on a range of squaramides under variable conditions. In one report, three poly-

morphs of dibenzylsquaramide 6 were examined in different solvents and at varying

temperatures (Figure 3).19 Synthesized through reaction between diethylsquarate

and benzylamine in ethanol, 6 was subjected to polymorphic screening in different

combinations of DMF and DMSO with polar and non-polar solvents.
Figure 3. Single-Crystal X-Ray Structures of Forms 6A and 6C

(A) Form 6A.

(B) Form 6C.
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DSC analysis revealed three distinct polymorphs and showed that forms 6B and 6C

transform into form 6A at 257�C. Crystal structures of metastable forms 6A and 6C

were studied by single-crystal X-ray diffraction (XRD) and demonstrated well-

defined head-to-tail hydrogen bonding (N–H$$$O 2.834 and 2.779 Å, respectively)

between the intermolecular squaramide units with different packing directions.

Form 6A showed parallel packing but formed an antiparallel chain, whereas form

6C exhibited an anti-parallel packing arrangement with parallel chains. This study

confirmed earlier reports18 of the favorable anti/anti-conformation in the solid struc-

ture of simple squaramides (Figure 3). Moreover, the inability to distinguish between

these three polymorphs by differential scanning calorimetry (DSC) told a cautionary

tale to those involved in pharmaceutical research about the limitations of DSC when

characterizing crystalline solids. A follow-up study examined cooperativity in solid-

state squaramides.20 Here, polymorph preferences of a dipyridyl squaramide 7

were examined, and conformational equilibrium constants were calculated at

different concentrations of CHCl3. The results showed the existence of two dimers

in solution, forms 7A and 7B (Figure 4A), and revealed that form 7B dominates in su-

persaturated CHCl3 solution.

The authors also performed a polymorphic screening under varying thermody-

namic and kinetic conditions. Just two polymorphic forms, forms 7I and 7II,

directly related to the form 7A dimer (head-to-tail motif) were obtained, and there

was no evidence of the existence of form 7B. However, DSC and thermomicro-

scopy analysis suggested an enantiotropic relationship between the two poly-

morphs whereby form 7I (melting point [m.p.] = 166�C) showed more stability

below the transition temperature (<160�C), and polymorph form 7II

(m.p. =188�C) was only observed when form 7I was heated to 175�C. The results

suggested that both modes of interaction remain effective only in low-polarity sol-

vents where cooperative hydrogen bonding favors the formation of the catemeric

cluster. Although both polymorphs (forms 7I and 7II) exhibited the same catemeric

head to-tail motif, Hirshfeld surface plots for both polymorphs revealed that

different secondary interactions led to the corresponding structural differences be-

tween the two polymorphs: p-p stacking interactions dominated in form 7I,

whereas edge-to-face C–H-p interactions dominated in form 7II (Figure 4B).

Prohens, Portell, and Alcobé later investigated the preorganization effect on the

polymorphism and co-crystallization of squaramide 8 and described new chain

and ribbon synthons (Figure 5).21 Bis-squaramide 8 with four predicted supramolec-

ular synthons indeed produced four different solid-state structures through varying

intramolecular hydrogen bonding. The structures of the different synthons were

characterized by powder XRD, where two of the synthons showed a trans-configura-

tion (a head-to-tail polymer and an intramolecular monomer) and the remaining two

synthons showed a cis-configuration (a ribbon assembly and another intramolecular

monomer). The head-to-tail polymer (form 8A) was obtained in pure form during the

synthesis, whereas the ribbon assembly (form 8B) was obtained through slow-rate

crystallization after form 8A melted at 160�C. As expected, form 8A presented

the, by now well-known, head to-tail hydrogen-bonding motif associated with the

squaramide structure and additionally demonstrated p-stacking interactions that re-

sulted in the parallel layers observed in the polymorphic structure (dcentroids 3.851 Å).

Form 8B contained a pseudo six-membered ring structure perpendicular to the

plane defined by the piperazine ring again brought about by the propensity of the

squaramide to partake in intramolecular hydrogen bonding between the amidic

NH and the piperazine nitrogen [N�H$$$N 2.843(8) Å] and resulted in a symmetric

shortening of the assembly.
Chem 5, 1398–1485, June 13, 2019 1401



Figure 4. Polymorphic Behaviour of Dipyridyl Squaramide 7

(A) Potential catemeric dimers of bis-secondary squaramide 7 show forms 7A and 7B.

(B) Crystal structures and Hirshfeld surfaces of forms 7I and 7II.

Reproduced with permission from Prohens et al.20 Copyright 2011 American Chemical Society.
Portel and Roffel continued to pursue the synthesis of supramolecular synthons

based on the squaramide motif and reported the helical crystal structure of a dis-

quaramide compound 9 through powder XRD (Figure 6).22 The asymmetric com-

pound 9 was synthesized by a condensation reaction between diethylsquarate

and N,N-dimethylethylenediamine and tyramine. The result was an achiral com-

pound capable of forming both clockwise and anti-clockwise rotating helical assem-

blies in a racemic crystal structure. Again, the self-assembly of 9 exhibited strong

CO$$$HN hydrogen bonding within the squaramide portion of the molecule

(the aforementioned head-to-tail motif) and provided a skeletal template for periph-

eral interactions to occur between a tertiary amine and a phenolic hydroxyl group.

Additional weak CH$$$p interactions between the methylamino group and the aro-

matic phenol ring were also thought to contribute to the helical packing.
1402 Chem 5, 1398–1485, June 13, 2019



Figure 5. XRD Structure of Head-to-Tail Polymer Form 8A and Ribbon Assembly Form 8B
More recently, Portell, Bardia, and Prohens reported another supramolecular assem-

bly based on the squaramide scaffold, this time with zwitterionic squaramide com-

pound 10.23 The synthesis of 10 was achieved in a single step from squaric acid

and N,N-dimethylethylendiamine in water and was expected to yield two distinct

supramolecular synthons through charge-assisted hydrogen-bond formation and

face-to-face p-stacking (Figure 7A). Indeed, through a polymorph screening, the

structures of two anhydrate polymorphs (forms 10I and 10II) and a hydrate

(form 10III) were solved by single-crystal XRD. Both anhydrous crystals showed

similar N�H$$$O interactions between adjacent dimers but with different centroids

distances (3.47 and 3.70 Å, respectively). The most important difference between

forms 10I and 10II stems from the carbonylic oxygen involved in intermolecular

hydrogen bonding. Whereas in form 10I the oxygen is syn with respect to the NH
N N

O O

N
H H

HO

9

Figure 6. Chemical Structure of Compound 9 and the Resulting Clockwise and Anti-clockwise

Rotating Supramolecular Helical Assemblies

Reproduced with permission from Portell and Prohens.22 Copyright 2014 American Chemical

Society.
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Figure 7. Supramolecular Assembly of Zwitterionicquaramide 10

(A) Different assembly motifs expected for 10 through charge assisted hydrogen bonding.

(B) Supramolecular synthons observed in forms 10I and 10II show connected electrostatically

compressed dimers.
with which it is forming the hydrogen bond, in Form 10II this interaction is anti. This

minor difference in conformation leads to important consequences for the connec-

tion of the electrostatically compressed dimers, giving rise to completely different

supramolecular synthons for both polymorphs: form I yields chains, whereas form

II yields rings (Figure 7B). Interestingly, a dissimilar supramolecular synthon is ob-

tained in the hydrate form 10III, where the addition of water molecules results in a

stabilization of the entire structure through hydrogen-bonding interactions between

the water molecules and the free carbonyls of a neighboring dimer.

Self-assembly of squaramides promoted by hydrogen-bonding interactions with a

range of anions has also garnered significant research interest. One of the examples

reported by Costa and co-workers in 2011 provided a combined crystallographic

and computational study concerning the first example of a squaramide-nitrate salt

crystal structure.24 The study reported the synthesis of compound 11 and its subse-

quent crystallization from EtOH solution (Figure 8). The X-ray structure of 11 ex-

hibited the familiar intermolecular head-to-tail arrangement by the formation of

N–H$$$O hydrogen bonds between neighboring squaramide groups. The

hydrogen-bonded network revealed additional stability promoted by the syn orien-

tation of both the pyridine N atom and two additional C–H$$$Nbonding interactions
1404 Chem 5, 1398–1485, June 13, 2019



Figure 8. Single-Crystal X-Ray Structure of Dipydridyl Squaramide 11

(A) Head-to-tail hydrogen-bonded crystal structure of 11.

(B) ORTEP drawing of 11 shows the pyridinium-nitrate and squaramide-nitrate units held together by a strong N–H$$$O and two N–H$$$O hydrogen

bonds.
between neighboring molecules. The stability was further increased via two offset

p-stacking interactions between the electron-rich squaramide and the electron-defi-

cient pyridine rings at a centroid distance of 3.93 Å. The binding nature of 11 with

nitrate was also revealed through X-ray crystallography and computational

methods. Here, the crystal structure of 11 was bound to two nitrate anions in two

distinct locations. The first nitrate was bound via coplanar N–H$$$Ohydrogen bonds

to the squaramide moiety, whereas the second was shown to be bound to the pyr-

idinium ring via N–H$$$O hydrogen bonds. The simultaneous participation of the

two squaramide N–H groups in a nitrate-squaramide motif prevents the formation

of the head-to-tail packing observed in the crystal structure of 11 lacking nitrate;

such an observation suggests the possibility of switchable supramolecular assem-

blies based on the addition of anion salts.

Recently, Prohens et al. discovered another example of an anion-promoted supra-

molecular assembly; they reported the synthesis of an anion-anion complex stabi-

lized by hydrogen bonds to a secondary squaramide receptor 12 (Figure 9).25 Using

X-ray crystal-structure analysis, the authors were able to show the formation of a

‘‘H–G–G–H’’ (H = host, G = guest) system where hydrogen fumarate chains were

shown to reside inside a channel formed by a series of hydrogen-bonded secondary

squaramides (repeating units of 12). The ability of 12 to form the hydrogen-bonding

pattern shown in Figure 9 was thought to act as one of the driving forces behind the

formation of the assembly. This combined with the presence of tertiary amine groups

helped to facilitate the formation of the assembly. Moreover, ab initio calculations

suggested that the anion-anion complex is thermodynamically unstable but kineti-

cally stable relative to the isolated anions.

Costa and co-workers synthesized three structurally related squaramides, 13–15

(Figure 10); using a number of techniques such as elemental analysis,
Chem 5, 1398–1485, June 13, 2019 1405



Figure 9. Chemical Structure of 12 and the Crystal Structure of ‘‘H–G–G–H’’ Supramolecular

Assemblies Formed between 12 and Hydrogen Fumarate Showing the Hydrogen Fumarate

Chains (in Spacefill Format) inside the Channel Formed by 12

Reproduced from Prohens et al.25 with permission from the Royal Society of Chemistry.
thermogravimetric analysis (TGA), DSC, powder X-ray diffraction (PXRD), single-

crystal XRD, solid-state 13C NMR, and fourier-transform infrared spectroscopy-

attenuated total reflection (FTIR-ATR), they studied changes in their self-assembly

behavior brought about by N-methylation.26 The authors showed that compounds

13–15 form dihydrates in the solid state and self-assemble into pillars of stacked

squaramide units but with marked structural differences in the position of the water

molecules, highlighting the influence of N-methylation in their self-assembly.

N-Methyl groups appear to block the formation of N�H$$$O=C hydrogen bonding
H N N

OO

H

13

H N N

OO

N N

OO

14 15

A

DCB

Figure 10. Self-Assembly of Squaramides 13–15

(A) Chemical structures of 13–15 and the crystal structure of supramolecular assemblies of 13–15.

(B) Top view of the crystal structure of squaramide 13$2H2O shows the 1D water tapes.

(C) Top view of the crystal structure of squaramide 14$2H2O shows the 2D water layers.

(D) Top view of the crystal structure of squaramide 15$2H2O shows the 1D water chains.

Reproduced with permission from Ximenis et al.26 Copyright 2018 American Chemical Society.
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Figure 11. Squaramide-Based Zr-MOFs

(A) Schematic representation of the Zr-based MOF containing squaramide organocatalyst 16.

(B) Solid-state X-ray crystal structure of 16.

Reproduced with permission from McGuirk et al.28 Copyright 2015 American Chemical Society.
that normally dominates the self-assembly of bis-secondary squaramides, thus fa-

voring the appearance of dipolar stacking and weak C�H$$$O=C interactions. As

a result, three distinct water clusters were observed: 13$2H2O formed water tapes, =

14$2H2O formed 2D hexagonal water layers, and 15$2H2O formed 1D water chains.

In all cases, the water molecules formed strong hydrogen bonds with the carbonyl

oxygens of the squaramides, whereas weak CH$$$O=C interactions helped to main-

tain the columnar assemblies. The authors remarked that such results could provide

future applications of cyclic squaramides toward artificial water confinement and

transport systems.

Another recent application of squaramide containing compounds in self-assembly

materials has been in the synthesis of metal-organic frameworks (MOFs). MOFs

are an extensively studied class of porous materials made by linking inorganic and

organic subunits. A vast array of metals and diverse organic linkers have been ex-

ploited for the synthesis of high-surface-area materials with large internal pore sizes

in a 3D-ordered crystalline structure. Potential applications of MOFs are diverse and

have already been investigated in areas such as chemical sensors, biomedicine,

catalysis, and hydrogen storage to name just a few key areas.27

In 2015, McGuirk et al. incorporated the squaramide-based organocatalyst 16 into

the framework of a Zr-basedMOF (Figure 11).28 The structure of the Zr-based cluster

was probed by NMR spectroscopy and powder XRD techniques, which confirmed

that the 3D architecture of the MOF was retained upon incorporation of 16, and

the surface area of the MOF was estimated at 1,700 m2/g via the Brunauer-Em-

mett-Teller (BET) equation. The catalytic performance of the MOF was also

evaluated in a model Friedel-Crafts reaction between indole and b-nitrostyrene;

incorporation of 16 in theMOFwas found to prevent the self-association of the active

catalyst, known to be detrimental to its catalytic effect. This gave rise to a reaction

yield of 78% in the presence of the MOF when conducted in DCM at RT over 24 h.

When the same reaction was conducted in the presence of the free catalyst 16 under

the same conditions, no product was isolated. Moreover, a direct comparison of the

activity of the squaramide MOF catalyst with an identical urea MOF catalyst was also

conducted and showed that the squaramide MOF was more than twice as active.

Cohen et al. subsequently reported a small family of Zr-based MOFs incorporating

squaramides 17–19 (Figure 12).29 Synthesized via a combination of the appropriate

squaramide and ZrCl4 under solvothermal conditions, PXRD structures of the
Chem 5, 1398–1485, June 13, 2019 1407



17

N
H

N
H

OO

OH

O

HO

O

18

N
H

N
H

OO

OH

O

HO

O

19

N
H

N
H

OO

OH

O

HO

O

F F

OH HO

Figure 12. Chemical Structures of Compounds 17–19 and a Model of Zr-Based Squaramide-

Containing MOF

Reproduced with permission from Cohen et al.29 Copyright 2016 American Chemical Society.
squaramide MOFs exhibited a linear anti/anti-conformation with respect to the

squaramide and allowed for highly effective pre-organization in favor of MOF forma-

tion. The carboxylate groups of the squaramides revealed intermolecular hydrogen

bonds (O�H$$$O = 2.59 Å) that form 1D chains; however, hydrogen bonds

(N�H$$$O = 2.82 Å) with the solvent NMP prevented the well-known head-to-tail

self-assembly motif.

In another example, Cohen and co-workers developed squaramide-based Cu(II)-

MOFs based around compound 20 (Figure 13), and these are also able to catalyze

the Friedal-Crafts reaction of indole with b-nitrostyrenes.30 Synthesized through a

post synthetic exchange (PSE) reaction from its Zn(II) analog, the Cu(II) MOFs showed

greater stability and catalytic activity than the parent Zn(II) derivative. Moreover, a

catalytic study of a series of isostructural squaramide-based Cu(II)-MOFs showed

that the catalytic performance increased as the amount of squaramide ligand

increased, thus confirming the promise that squaramide MOFs show in the field of

MOF-supported heterogeneous organocatalysis.

Macrocyclic compounds containing the squaramide moiety have also been exempli-

fied in the literature. Although Costa and co-workers have previously demonstrated

the self-templated formation of macrocycles containing both squaramides and a

hydrogen-bond acceptor unit18,31 and Elmes, Jolliffe, and co-workers have synthe-

sized macrocyclic squaramides for anion recognition32 (vide infra), a more recent

report from Shimiziu and co-workers reports the self-assembly of squaramidemacro-

cycles. A crystallographic comparison between squaramide 21 and its urea and

thiourea analogs 22 and 23 (Figure 14) was conducted, and it was found that the

macrocycles containing urea, thiourea, or squaramides each display a preference

for trans-trans conformers in their crystal forms.33 Moreover, squaramide 21 was

found to assemble in the solid state in a ‘‘head-to-tail’’ hydrogen-bonding assembly

where only one of the squaramide carbonyls participates in hydrogen bonding with a

neighboringN–H (N$$$Odistancesz 2.87 Å) and the second carbonyl exhibits just a

close contact with an aromatic hydrogen. This behavior is rare for trans-trans squar-

amides, for which the usual arrangement is with both amide protons bonding to both
1408 Chem 5, 1398–1485, June 13, 2019



Figure 13. Squaramide-Based Cu(II)-MOFs

(A) Chemical structure of compound 20.

(B) X-ray crystal structure of the Zn(II) MOF based on compound 20.

(C) Observed packing of the squaramide-based Zn(II) MOF.

Reproduced from Zhang et al.30 with permission from the Royal Society of Chemistry.
carbonyls in a ribbon-type structure. The DMSO solvate of 21 was also reported and

exactly matched the previously reported crystal structure; again, the macrocycle dis-

played a trans-trans squaramide conformation with each of the NH groups hydrogen

bonded to the DMSO oxygen.32

Another emerging use of the squaramide scaffold in supramolecular self-assembly

has been toward the construction of polymers and gels. Early advances in this

area focused on the development of traditional covalently linked biopolymers based

on peptides and polysaccharides to develop materials for use in biomedical applica-

tions, such as MRI imaging.34,35 In these examples, the squaramide was utilized for

its ability to crosslink two amines; however, in recent times, the self-assembly prop-

erties of squaramides have been exploited for use in supramolecular polymers.

These materials, crosslinked by various reversible supramolecular interactions,

give rise to bulk materials that display unique properties such as self-healing, stim-

uli-responsiveness, and adaptability and have been investigated for use in a vast

array of potential applications.36 With their strong hydrogen-bond donor and

acceptor behavior, squaramides are ideal candidates for building such materials,

and early examples in the field have been reported in recent years.

Kieltyka et al. have taken advantage of the ‘‘head-to-tail’’ hydrogen-bonding pattern

in bis-squaramide 24 to form a supramolecular polymer that gains additional stabil-

ity through aromatic gain (Figure 15).4 Consisting of two oligo(ethylene glycol)

methyl ether chains on either side of a central hydrophobic core containing two

squaramide units, 24 was shown to self-assemble into stiff micrometer-long fibers

with a uniform diameter in water by a combination of cryogenic transmission elec-

tron microscopy (cryo-TEM) and X-ray scattering analysis. The authors were able

to show not only that the self-assembly process was dictated by hydrogen-bonding
Chem 5, 1398–1485, June 13, 2019 1409



Figure 14. Macrocyclic Squaramides

(A) Chemical structures of macrocyclic compounds 21–23.

(B) X-ray crystal structure of squaramide macrocycle 21 exhibiting the trans-trans conformation and

demonstrating ‘‘head-to-tail’’ hydrogen-bonding assembly.
interactions between squaramide sub-units but that the self-assembly process itself

promoted an increase in the aromatic character of the squaramides, thus providing

an additional level of thermodynamic stability to the entire assembly. The gain in

aromatic character upon assembly was demonstrated through a combination of

experimental and computational techniques and is a key consideration for such ap-

plications because other analogous ditopic scaffolds, such as ureas and thioureas,

cannot exhibit such behavior.

Kieltyka and co-workers have also synthesized a series of squaramides based around

a flexible tripodal tris(2-aminoethyl)amine core, 25–28, where 26 and 27 were shown

to form transparent hydrogels in deionized water, and 25 and 28 were found to be

ineffective as supramolecular hydrogelators (Figure 16).37 Notably, for compound

29, where the squaramide moieties of 26 are replaced with ureas, no hydrogelation

occurred, demonstrating the importance of the squaramide motif. The properties of

gels formed from 26 and 27were studied by various techniques, including oscillatory

rheology, cryo-TEM, and small-angle X-ray scattering experiments (SAXS); the gels

were found to be self-recovering and formed from a network of entangled fibrils on

the nanometer scale in width and micrometers in length. Spectroscopic measure-

ments such as UV-vis absorption and infrared spectroscopy showed that monomer

aggregation is mainly driven by a combination of both hydrogen bonding and

hydrophobicity. The hydrogels formed from 26 and 27 were further examined for

their ability to encapsulate mammalian cells in 3D. Fluorescence-activated cell

sorting (FACS) and confocal laser scanning microscopy (CLSM) revealed that the
1410 Chem 5, 1398–1485, June 13, 2019



Figure 15. Squaramide-Based Supramolecular Polymers

(A) Chemical structure of squaramide 24.

(B) Schematic representation of the self-assembly of 24 into fibrillar structures and disassembly

promoted by hexafluoroisopropanol (HFIP).

(C) Proposed ‘‘head-to-tail’’ hydrogen-bonding interactions between monomers of 24.

Reproduced with permission from Saez Talens et al.4 Copyright 2011 Wiley-VCH Verlag GmbH &

Co. KGaA.
squaramide-based supramolecular hydrogels were cytocompatible toward the NIH-

3T3 cell line and the more sensitive human-induced pluripotent stem cells (hiPSCs).

Moreover, hydrogel materials allowed the formation of 3D spheroids from single

cells, and the hiPSCs retained their pluripotent state while under culture and upon

release. The results suggest that such squaramide-based hydrogels could find bio-

logical application as a new 3D cell-culture medium and as cell delivery vehicles.

Another example of a squaramide-based low-molecular-weight gelator (LMWG) was

recently described by Schiller et al., who described the synthesis of compound 30

and showed its ability to undergo self-assembly in a variety of alcohols to form alco-

gels (Figure 17).38 Compound 30 was assembled by sequential reactions of

N-((1R,2R)-2-aminocyclohexyl)-4-methylbenzenesulfonamide and 4-tertbutylaniline

with 3,4-dimethoxy cyclobut-3-ene-1,2-dione in methanol before being evaluated

as a LMWG in various solvents. 30 was found to be capable of forming gels in a num-

ber of alcoholic solvents, including primary, secondary, tertiary, lineal, and branched

alcohols; critical gelation concentration (CGC) values ranged from 3 to 21 g L�1.

Quantum-mechanical calculations of 30 and comparison with a range of structurally

similar analogs revealed that dimers calculated for 30 show a large and complex

network of inter- and intramolecular interactions that grow a stable gel network. In-

spection of the lowest-energy dimer for 30 (Figure 18) showed that the squaramide

moiety of each molecule was effectively stabilized through intramolecular p—p

stacking, and NH—p and CH—p intermolecular interactions with multiple

phenyl—phenyl and squaramide—phenyl stacking interactions provided extra sta-

bility to the assembly. Field emission scanning electron microscopy (FESEM), trans-

mission electron microscopy, and atomic force microscopy (AFM) demonstrated the

effect of solvent on gel formation where the nature of the gelling solvent was shown

to have a dramatic effect on the morphology of the aggregates formed. For

example, straight laths of ca. 0.2–1.4 mm were formed in benzylalcohol, whereas
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Figure 16. Supramolecular Hydrogels

(A) Chemical structures of tripodal squaramides 25–28 and tripodal urea 29.

(B) Cryo-TEM image of hydrogel 27. Inset: histograms of fiber width distribution for a sample size of

n = 50.

(C) Cryo-electron tomography image of a hydrogel of 27 (scale bar: 200 nm).

Reproduced with permission from Tong et al.37 Copyright 2018 American Chemical Society.
fibrillar networks of entangled fibers of ca. 10–20 nm in diameter were observed in

hexan-1-ol and methanol.

Amphiphilic squaramide-squaramate conjugates have been designed by Costa and

co-workers as potential hydrogelators (Figure 19).39 Conjugates 31–33 were re-

ported, and although 31 and 32 successfully formed, low-molecular-weight
Figure 17. Squaramide-Based Low-Molecular-Weight Alcogels

(A) Chemical structure of 30.

(B) Alcogels of 30 formed in a range of alcohol solvents.

Reproduced from Schiller et al.38 with permission from the Royal Society of Chemistry.
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Figure 18. Alcogel Assembly

Graphical representation of the three most stable complexes (A–C) obtained for 30 through quantum-mechanical calculations. Hydrogen bonds are

represented by black dashed lines, N–H.p and C–H.p interactions are represented by red and blue arrows, and intramolecular p.p stacking

interactions are represented by green double arrows. Reproduced from Schiller et al.38 with permission from the Royal Society of Chemistry.
supramolecular hydrogels 33 did not. Indeed, the authors found that the

squaramide substituents had a profound effect on the gelation properties of the

amphiphilic squaramide-squaramate conjugates whereby 31, containing a para-ni-

trophenyl substituent, formed a hydrogel at relatively low concentration (0.1%–

0.2% w/v), whereas 32, containing a para-CF3
_phenyl substituent, exhibited a

significantly higher critical gelation concentration (1.6% w/v). Moreover, AFM anal-

ysis of hydrogels formed from 31 and 32 revealed both similarities and marked

morphological differences. Micrometer-sized disordered fibers were observed in

both gels of 31 and 32; however, 31 showed bundled fibrous assemblies composed

of one or more strands with an apparent width of 42 nm, whereas 32 was composed

of both right-and left-handed helical ribbons with an average diameter of 52 nm

twisting around a central axis of the fiber (Figure 19). SEM and TEM images

confirmed the formation of networks of bundled fibers. The authors suggested

that these morphological differences were a consequence of varying the peripheral

substituents on the self-assembly of the precursor hydrogelators 31 (para-nitro-

phenyl) and 32 (para-CF3
_phenyl). The self-assembly behavior was confirmed

through various techniques, including NMR spectroscopy, mass spectrometry, UV-

vis spectroscopy, and DSC. The biocompatibility of the hydrogels formed from
Chem 5, 1398–1485, June 13, 2019 1413



Figure 19. Amphiphilic Squaramide-Squaramate Hydrogelators

(A) Chemical structures of 31–33.

(B and C) Vial inversion tests on samples of hydrogel 31 (B) and hydrogel 32 (C).

(D and E) AFM images of hydrogel 31 (D) and hydrogel 32 (E) obtained on mica show the

morpholigcal differences between both hydrogels.

Reproduced with permission from López et al.39 Copyright 2017 Wiley-VCH Verlag GmbH & Co.

KGaA.
31 was also evaluated; U87 cells were grown in the presence of 31 at increasing con-

centrations, and no toxicity was observed up to 500 mM. Indeed, the hydrogel

composed of 31 was also found to be thermoreversible, thixotropic (viscosity dimin-

ishes under compression), and injectable and could be loaded with zwitterionic bio-

molecules such as L-carnitine,g-aminobutyric acid (GABA) and D,L-Ala-D,L-Ala

without disrupting the hydrogel structure. Finally, to demonstrate the applicability

of 31 as a potential delivery vehicle, the authors showed that the loaded hydrogel

could release its zwitterionic guest in a controlledmanner upon treatment with either

water or saline (for more rapid release).
1414 Chem 5, 1398–1485, June 13, 2019
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Figure 20. Substrate Activation by Squaramide Organocatalysts
From the above examples, it is clear that the squaramide moiety has the potential to

be exploited across a broad spectrum of self-assembled materials and is only now

beginning to be explored in greater detail. The strong hydrogen-bond donating

and accepting ability of squaramides dominates their self-assembly characteristics;

however, it is also clear that their aromatic nature and indeed ability to increase their

aromatic character when partaking in non-covalent binding interactions that confers

a great deal of additional stability to squaramide-based self-assembled aggregates

and assemblies. Indeed, the very same characteristics have been exploited in the

area of organocatalysis where, again, the strong hydrogen-bond-donating ability

of the squaramide is key to its success as an excellent catalyst across a broad range

of synthetic transformations.

SQUARAMIDES AS ORGANOCATALYSTS

Organocatalysis can be described as the use of relatively simple organic molecules as

effective and often highly enantioselective catalysts for a variety of synthetic transforma-

tions.40 The field of organocatalysis has, since its reawakening in 2000,41 been estab-

lished as a proven and highly robust and important tool in modern synthesis. Various

research groups havemade considerable efforts at developing new and improved orga-

nocatalysts, with several focused on establishing novel bifunctional hydrogen-bonding

catalysts. Initial efforts using a thiourea hydrogen-bonding core proved highly successful

and dominated the area of hydrogen-bonding organocatalysis for some time.42,43 The

related hydrogen-bonding squaramidemotif first found use as an anion receptor as pre-

viously mentioned. It was not until the pioneering work of the Rawal group in 2008,44 on

the development of Cinchona-squaramide organocatalysts, that the potential and range

of applications of squaramide organocatalysts became apparent.

The squaramidemoiety is considered to be able to form strong hydrogen bonds with

reaction substrates that bear hydrogen-bond-accepting functionalities, such as

carbonyl, nitro, nitrile, and imino substrates (Figure 20).40

It is this hydrogen-bonding ability that makes squaramides such effective organoca-

talysts, as it can substantially increase the reactivity of a substrate. Often, the squar-

amide catalyst has a basic moiety, typically a tertiary amine, and a chiral scaffold

incorporated. This strategy results in a chiral bifunctional organocatalyst that can

simultaneously activate both the electrophile and nucleophile while controlling

the stereochemistry of the transition state. The precise nature of the catalyst, elec-

trophile, and nucleophile interaction is perhaps not easily defined and at least three

closely related mechanisms can be considered (Figure 21).45
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A joint experimental-theoretical study was conducted by Soós and co-workers in

201445 and explored the mechanism of a bifunctional squaramide-amine-catalyzed

Michael addition reaction between 1,3-dioxo nucleophiles and nitrostyrene

(Scheme 1). The squaramide organocatalyst 34 was chosen and allowed computa-

tional analysis at a reasonably high level of theory. Catalyst 34 also performed

well, with high yields and high stereoselectivity, in the experimental Michael addi-

tion of acetyl acetone and ethyl 2-oxo-cyclopentanecarboxylate to nitrostyrene.

Subsequent density functional theory (DFT) calculations were conducted to investi-

gate the potential pathways, A–C (Figure 21), operating in the rate-determining

step. Here, Soós and co-workers suggested that reaction pathway B, corresponding

to activation of the electrophile via the protonated amine, is the most plausible

mechanism.6 However, they also noted that some of the reaction channels described

as pathway A were also accessible, implying that a single reactivity model may not

always be able to sufficiently rationalize the stereoselectivity outcome and the pre-

cise role of the squaramide organocatalyst. The alternative path C could not be iden-

tified as a viable mechanism for the Michael addition reaction in their DFT study.

In the organocatalytic section of this review, we would like to highlight a selection

of recently published synthetic transformations that have exploited the powerful

catalytic and stereodirecting ability of squaramide organocatalysts. We recom-

mend that readers consult the referenced articles in order to fully explore each

citation and the examples not covered in this review. Finally, we regret the
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O NO2+
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O

R

O

NO2
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Scheme 1. Michael Addition of Acetyl Acetone and Ethyl 2-Oxo-cyclopentanecarboxylate to

Nitrostyrene

(A) Chemical structure of squaramide catalyst 34.

(B) General reaction for the stereoselective Michael addition to nitrostyrene.
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Scheme 2. Enantioselective Michael Addition of b-Dicarbonyl Compounds to Nitroolefins ‘‘on Water’’

(A) Chemical structures of cinchona-based squaramide catalysts 35 and 36.

(B) General reaction scheme for squaramide catalyzed Michael addition of malonates to nitroalkenes.

(C) Asymmetric synthesis of (S)-pregabalin.
omission of relevant work, as the field of squaramide organocatalysis is vast in

terms of publications and contributors, which points to the significance of this

area of research.

Squaramide-catalyzed conjugate addition reactions have garnered significant

research attention in recent years. The hydrogen-bonding-promoted enantioselec-

tive Michael addition of b-dicarbonyl compounds to a diverse range of nitroolefins,

with cinchona-based squaramide catalysts, was explored by Song and co-workers

in 2015 (Scheme 2).46 In this work, a significant increase in the rate of reaction was

observed when the reaction was performed ‘‘on water.’’ This rate acceleration un-

der ‘‘on water’’ conditions allowed a reduction in catalyst loading, where 0.01 mol

% of catalyst was sufficient to allow complete reaction at RT with high diastereo-

and enantioselectivity of >99:1 and up to 99%, respectively. This enhanced reac-

tion performance ‘‘on water,’’ compared with that of conventional organic solvents,

was attributed to the hydrophobic hydration effect. The hydrophobic amplification

depended on the catalyst used, where catalysts with increased hydrophobicity

(vinyl or ethyl C3 substituents) gave superior performance. A number of aryl-,

alkyl-, and heteroaryl-substituted nitroolefins were explored with malonate pronu-

cleophiles, and both the R and S enantiomers of the products were obtained for

some examples when different pseudo enantiomers of the catalysts (35 and 36)

were employed. b-Ketoesters and b-diketones were also utilized as pronucleo-

philes, and in all cases, high yields and stereoselectivity were reported (up to

99% yield, 99:1 diastereomeric ratio [d.r.], 99% enantiomeric excess [ee]). In order
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(A) General reaction scheme for the Michael addition reaction of dithiomalonates to b,b-disubstituted nitroalkenes using catalyst 36.

(B) Synthetic applications of catalyst 36 toward a one-pot synthesis of a chiral b-substituted GABA analog.
to demonstrate synthetic utility, the ‘‘on water’’ protocol was successfully applied

for the scalable syntheses of an antidepressant (S)-rolipram and an anticonvulsant

(S)-pregabalin (Scheme 2).

Subsequently, in 2017, Song and co-workers expanded their ‘‘on water’’ squaramide

work and studied unreactive b,b-disubstituted nitroalkene substrates (Scheme 3).47

Here, they found that the ‘‘on water’’ conditions enabled new catalytic reactions for

otherwise unreactive substrate systems. The Michael addition reaction of dithiomal-

onates (DTMs) to the b,b-disubstituted nitroalkenes, using the chiral squaramide

catalysts 35 and 36, afforded both enantiomers of the Michael adducts with all-car-

bon-substituted quaternary centers. High yields and enantioselectivities were

observed in most cases using b,b-disubstituted nitroalkenes with methyl as one of

the b-substituents (up to 99% yield and 96% ee). A lower yield and ee were recorded

when one of the b -substituents was an ethyl group (42% yield and 42% ee). To

demonstrate the synthetic utility and potential large-scale applications, the reported

‘‘on water’’ protocol was applied to the gram-scale one-pot syntheses of chiral GABA

analogs, with all carbon quaternary stereogenic centers at the b position (Scheme 3).

In 2017, Palomo and co-workers employed a Brønsted base-squaramide bifunc-

tional catalyst to promote the conjugate addition of either unsubstituted or a-mono-

substituted b-tetralones to nitroalkenes (Scheme 4).48 One of the difficulties in

working with a nonsymmetric cycloalkanone such as a b-tetralone is that enolization

may occur at either the a or a0 site. Paloma and team suggested that the fused aro-

matic ring in b-tetralones might induce preferential enolization at Ca rather than Ca0

and that the use of a Brønsted base would generate relatively high concentrations of

the enolic form and drive the catalytic process forward. This regioselective question

was accompanied by a second challenge, control of the stereochemistry during con-

struction of the new quaternary carbon stereocenter. In this case, a solution lay in the

use of a chiral squaramide bifunctional catalyst to control the stereochemistry of the

transition state. A catalyst screen identified squaramide 37 as the preferred bifunc-

tional catalyst, furnishing the product of the test reaction in a 93% yield and an ee of

80%. Exploration of substrate scope, with respect to the a-substituted b-tetralones
1418 Chem 5, 1398–1485, June 13, 2019
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(B) General reaction scheme for the catalytic addition of b-tetralones to nitroalkenes.
and a selection of nitroolefins, generated the expected products in high yields and

enantioselectivities (up to 84% yield and 99% ee). The reaction of the unsubstituted

b-tetralone, R = H, with a number of nitroalkenes was also investigated, resulting in

the smooth conversion to the Ca-alkyled b-tetralone products in high yields and

stereoselectivities (up to 88% yield, >20:1 d.r., and 99% ee). To demonstrate syn-

thetic utility, the adducts were readily converted into diverse polycyclic compounds

featuring up to six stereogenic centers.

Oiarbide, Palomo, and co-workers, also in 2017, reported their successful attempt at

controlling the a/g-reactivity of vinylogous ketone enolates in squaramide catalyzed

Michael reactions (Scheme 5).49 The majority of catalytic reactions that involve vinylo-

gous enolate equivalents proceed with a nucleophilic attack from the g-carbon atom,

and not the a-site, of the unsaturated substrate. Switching the reactivity from the

more typical g- to the a-carbon atom is challenging. In this report, a regio-, diastereo-

, and enantioselective direct Michael addition of b,g-unsaturated ketones with nitro ole-

fins is described, where a squaramide bifunctional catalyst enables the reaction of a

range of b,g-unsaturated ketones to proceed exclusively at the a-site. Different subsets

of b,g-unsaturated ketones, including those with aryl, alkyl, alkynyl, and hydroxyalkyl

side chains, as well as a variety of nitroolefins, all participated well. This gave access

to a variety of a-branched ketone products, generally with two vicinal tertiary carbon

stereocenters and with high stereoselectivity. The enantioselectivity was typically

>90% ee, with yields ranging from 68% to 98%.
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(A) Chemical structures of squaramide-based catalysts 38 and 39.

(B) Schematic representation of site selectivity in functionalization of vinylogous enolates.

(C) General reaction scheme for the Michael addition to nitroalkenes.
An intramolecular aza-Michael addition, also catalyzed by chiral cinchona-squaramide

38, was developed by Ghorai and co-workers in 2018 and allowed the enantioselective

synthesis of dihydroisoquinolines and tetrahydropyridines (Scheme 6).50 A variety of

Michael acceptorswere employed, includinga,b-unsaturatedesters, thioesters, enones,

and Weinreb amides, and showed generally good yields and high enantioselectivities

(up to 90% yield and >99% ee). It is of note that in this work, Ghorai and co-workers

were able to recover the catalyst almost quantitatively and that the ee value remained

unchanged in additional reaction cycles. A possible mechanism and transition state

were proposed (Scheme 6). Attempts to use 1H NMR analysis to identify the imine or

enamine intermediates was unsuccessful andmay be due to a possible fast N cyclization

step and consumption of the shorter-lived intermediates. The proposed transition state

reflects the observed absolute stereochemical outcome of the reaction and is consistent

with other reports suggesting electrophile activation by the squaramide catalyst. Subse-

quent reactionof thedihydroisoquinolineswithmeta-chloroperoxybenzoic acid allowed

oxidation of both the keto and enamine functionalities. This led to the generation of an

interesting tetracyclic core with fused tetrahydroisoquinoline, ketal, and amino-ketal

moieties, as a single diastereomer and without loss of enantioselectivity.

Organocatalytic asymmetricMichael addition reactions (1,4-addition) are apowerful and

atom-economic method for the formation of C–C and C–X bonds in a stereoselective

manner. Recently, the related enantioselective 1,6-conjugate addition has gained
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significant attention in the organocatalysis field. Various catalytic systems have been

explored; for example, Enders and co-workers reported the use of a chiral squaramide

catalyst in 2016.51 Here, a highly stereoselective organocatalytic 1,6-conjugate addition

of 3-substituted oxindoles topara-quinonemethides allowed the construction of all-car-

bon quaternary stereocenters (Scheme 7). A selection of cinchona, thiourea, and squar-

amide catalysts were employed in the catalyst screen, and squaramide catalyst 40

proved most effective. The scope of the para-quinone methide and the oxindole was

investigated. A broad range of p-quinone methides could be used and furnished the
HN

HN

O

O
N

O

40

A

40

N

F3C

CF3

N
Boc

O

R

R2

O
tButBu

R2

HO
tBu

tBu

N
Boc

O
R

R1

B

up to 96% yield, >20:1 dr, 96:4 er

R1

R = aryl
R1 = H, Me
R2 = aryl, heteroaryl

Scheme 7. 1,6-Conjugate Addition of 3-Substituted Oxindoles to para-Quinone Methides for the
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(A) Chemical structure of catalyst 40.

(B) General reaction scheme for the asymmetric synthesis of 3-diarylmethine substituted oxindoles

via 1,6-conjugate addition to p-quinone methides.
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Scheme 8. Dithiomalonates as Efficient Mannich Donors in Squaramide-Catalyzed

Enantioselective Mannich Reactions

(A) Chemical structure of catalyst 41.

(B) General reaction scheme for the asymmetric Mannich reaction of malonates with N-Boc

protected imines.

(C) General reaction scheme for the asymmetric reaction of dithiomalonates with a-amidosulfones.
expectedproducts in 68%–96%yield with high diastereo- and enantioselectivities (up to

>20:1 d.r. and 96:4 enantiomeric ratio [e.r.]). In addition, a number of 3-aryl oxindoles,

bearing electron-withdrawing or electron-donating groups on the benzene ring or elec-

tron-donating groups on the aromatic ring of the oxindole moiety, could be converted

into thedesiredproducts in 80%–89%yieldwithgood to verygooddiastereo- andenan-

tioselectivities (up to >20:1 d.r. and 97:3 e.r.).

Squaramide-catalyzedMannich reactions have also been the subject of several research

endeavors. In a 2016 study, Song and co-workers were able to show that DTMs are effi-

cient Mannich donors, in terms of both reactivity and stereoselectivity, in cinchona-

based-squaramide-catalyzed enantioselective Mannich reactions (Scheme 8).52 Here, a

diverse rangeof imines anda-amidosulfones acting as imine surrogateswere employed.

The DTMs displayed superior reactivity compared with that of conventional malonates,

and this increased reactivity was attributed to the significantly higher acidity of its

a-hydrogen atom than of monothiomalonate and malonate. Song and team utilized

deuterium-exchange experiments with malonate derivatives to demonstrate this higher
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Scheme 9. Squaramide Catalyzed Asymmetric Mannich Reaction of 3-Fluorooxindoles to Isatin-Derived Imines

(A) Chemical structure of catalyst 42.

(B) General reaction scheme for the asymmetric Mannich reaction of 3-fluorooxindoles to isatin-derived imines.

(C) Proposed mechanism and transition states for the transformation.
a-hydrogen acidity. The squaramide catalyst 41 was identified as the catalyst of choice

and allowed the addition of DTMs to imineswith Boc, Cbz, or CO2Meprotecting groups

(97%–99% yield and 95%–99% ee). The benzyl-substituted DTM was the most suitable

Mannichdonor andwas used in reactionwith a varietyof aromatic, heteroaryl, secondary

alkyl, and primary alkyl aldimines. High yields and enantioselectivities were observed in

all cases (85%–99%yield and88%–99%ee). The reaction scopewasexpanded to include

challenging primary alkyl substrates via a one-pot Mannich reaction of the alkyl-

substituted a-amidosulfone imine surrogates. The same squaramide organocatalyst

was employed, but this time under biphasic conditions, and showed high yields and

enantioselectivities (up to 95% yield and 97% ee). Furthermore, the synthetic utility of

the chiral Mannich adducts obtained from primary alkyl substrates was highlighted by

the synthesis of the antidiabetic drug (�)-(R)-Sitagliptin.

More recently, in 2018, Du and co-workers reported the squaramide-catalyzed

asymmetric Mannich reaction of 3-fluorooxindoles to isatin-derived imines

(Scheme 9).53 This methodology, using squaramide catalyst 42, furnished fluori-

nated 3,30-bisoxindoles with two contiguous stereocenters in high yields with high

diastereo- and enantioselectivities (up to 99% yield, >99:1 d.r., and >99% ee). In

order to account for the observed absolute configuration of the Mannich adduct

(obtained via X-ray structure determination), possible transition states and a mech-

anistic path that included catalyst control of Re-face attack on the imine substrate

were proposed. To demonstrate synthetic utility, the p-methoxy phenyl (PMP) group

for one derivative was removed, using cerium ammonium nitrate, to generate the

free amine product in 98% yield and without any loss of stereochemical purity.

Furthermore, the scalability of this Mannich reaction was demonstrated, on a gram

scale, where a bisoxindole was obtained in slightly lower yield (97%) but with the

same excellent diastereoselectivity (>99:1 d.r.) and enantioselectivity (>99% ee).

Cycloaddition reactions are another class of synthetic transformations that have em-

ployed squaramide organocatalysis. Cycloaddition reactions involve the reaction of

twop-systems, forming new ring structures, and are a versatile method for the stereose-

lective synthesis of a variety of cyclic compounds. Many cycloaddition reactions can be

accelerated by Lewis acid catalysts, with chiral hydrogen bonding organocatalysts,

such as squaramides, enjoying significant success. In 2014, Connon and Manoni

employed a novel bifunctional tert-butyl-substituted squaramide-based catalyst 43 in a

Tamura cycloaddition reaction of enolizable anhydrides with alkylidene oxindoles. The

methodology furnished spirooxindole structures in excellent enantio- and diastereocon-

trol (Scheme10).54 Exploration of the substrate scope determined that a range of enoliz-

able anhydrides could be utilized, and the expected products were generated in up to

98% yield and >99% ee. Employment of the less electrophilic benzylidene indole deriv-

ative, in reaction with a number of anhydrides, was also found to allow the formation of

thecorrespondingspirooxindoles ingoodyields, albeitwithmarginallydiminishedenan-

tioselectivities in some cases (65%–98% yield and 89%–>99% ee). An interesting obser-

vation was the unusual influence of temperature on diastereocontrol, where reactions

performed at 30�C and �30�C delivered products epimeric at one stereocenter only.

In 2015, Vicario, Reyes and co-workers utilized in-situ-generated benzopyrylium ylides,

in reaction with a,b-unsaturated aldehydes, to furnish 8-oxabicyclo[3.2.1]octane
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cycloadducts (Scheme 11).55 The benzopyrylium ylides were generated in situ from

1-acetoxyisochroman-4-ones, and the use of a bifunctional secondary-amine-squara-

mide catalyst 44 allowed their smooth conversion to [5 + 2] cycloaddition products in

good yield with high diastereo- and enantioselectivity (up to 92% yield, d.r. > 20:1,

and 99% ee). Here, they suggested that the reaction exploited a HOMO-raising effect

associated with dienamine activation and involved b,g-functionalization of the enal. It

was suggested that the ability of the bifunctional secondary-amine/squaramide catalyst

to engage in hydrogen-bonding interactions with the yield made the methodology

particularly effective in terms of yield and stereoselectivity.

Zhao and co-workers successfully applied a Cinchona alkaloid based squaramide or-

ganocatalyst in the [3 + 2] cycloaddition of isatin-derived azomethine ylides with

maleimides (Scheme 12).56 A number of Cinchona and hydrogen-bonding organo-

catalysts were screened, and the bifunctional squaramide catalyst 38 proved most

effective. A screen of acid additives was also performed, and stearic acid in combi-

nation with molecular sieves gave the best results (81% yield, >20:1 d.r., and

90% ee). The scope of the methodology was explored with structural variation of

all three starting materials. Here, the 1,3-dipolar cycloaddition proceeded smoothly

in almost all cases, generating the desired pyrrolidine-fused spirooxindoles in

61%–89% yields with >20:1 d.r. and up to >99% ee. The absolute configuration of

one of the products spirooxindoles was unambiguously determined by means of

X-ray single crystal structure analysis and used to support a possible reaction mech-

anism that accounted for its enantioselective formation. A transition state TS1 was

proposed, where the Si face of the 1,3-dipole attacked the 3Si-4Re face of the mal-

eimide and delivered the final product in a stereocontrolled fashion.

A recent example of a squaramide catalyzed [3 + 2] cycloaddition can be found in

the work reported by Weng, Lu, and co-workers.57 Here, an asymmetric exo-selective

[3 + 2] cycloaddition reaction of CF3-containing isatin-derived azomethine ylides with

methyleneindolinones is described (Scheme 13). The reaction leads to the formation
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(A) Chemical structure of catalyst 44.

(B) General reaction scheme for the asymmetric cycloaddition.
of dispiro products bearing four contiguous chiral centers, including the two adjacent

spiro quaternary stereocenters. Under bifunctional organocatalysis, by the cinchona-

derived squaramide catalyst 45, a series of interesting trifluoromethylated 3,30-pyrroli-
dinyl-dispirooxindoles were generated with high stereoselectivity (84%–99% yields, up

to >20:1 d.r., and >99%ee). A variety of ketimine andmethyleneindolinone startingma-

terials were tolerated, and the absolute configuration of one of the products was ob-

tained by X-ray crystallographic analysis. The stereochemical outcome of this study re-

vealed that the cyclization occurred in an exo-selective manner and not by the

perhaps expected endo-selective reaction. This suggested that that the reaction was

not a concerted1,3-dipolar cycloaddition, andWeng, Lu, and teamproposeda stepwise

anti-selective Michael-Mannich mechanism. A possible transition state was suggested

where the squaramide catalyst simultaneously activated both the azomethine ylide

and the methyleneindolinone. It was postulated that this transition state could have

induced the Re face anti-Michael addition and subsequent intramolecular Re-face Man-

nich reaction to furnish the 3,30-pyrrolidinyl-dispirooxindole product in a stereoselective
manner. The equilibration between the stereoisomers obtained in the cycloadditionwas

explored by treating the (R) isomer of one of the products (>20:1 d.r.) with a strong base.

This resulted inadecrease in the ratioof (R)/(S), andequal amounts of theR andS isomers

were generated after a prolonged reaction time (24 h). This epimerization took place at

the quaternary C-20 atom, which suggested that the proposed Mannich reaction

was reversible, returning to the preceding intermediate, and then the intramolecular

Mannich reaction of the intermediate afforded the (R) and (S) products via Re-face and
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Scheme 14. Enantioselective Azlactone Dynamic Kinetic Resolution for the Generation of Orthogonally Protected Amino Acids

(A) Chemical structure of catalyst 46.

(B) General reaction scheme for the dynamic kinetic resolution.

(C) Proposed mechanism and transition states for the resolution.

(D) Demonstration of the orthogonally masked amino acids.
Si-face attack, respectively. This result provided additional support for the proposed

stepwise Michael-Mannich cyclization mechanism. A gram-scale experiment was per-

formedanddemonstrated that the reactioncouldbeperformedona larger scalewithout

obvious loss of diastereo- or enantioselectivity.

Squaramide organocatalysts have found use in the dynamic kinetic resolution (DKR)

of a variety of substrates and have employed a number of catalytic methods,

including bifunctional, Brønsted basic or nucleophilic, and Brønsted acidic systems.

In 2014, Connon and co-workers described an enantioselective azlactone DKR that

generated orthogonally protected amino acids.58 A key findingwas the successful re-

action of the tetrachloroisopropoxycarbonyl (TCIC)-substituted alanine-derived

azlactone (rac) with a range of C- and N-protected serines (Scheme 14). This gener-

ated the correspondingN-phthalimido amino acid esters in good to excellent yields

and high diastereocontrol (up to 99% yield and 99:1 d.r.). The addition of catalytic

DABCO, after DKR had taken place, allowed the efficient one-pot formation of the

phthalimides. A mechanism was proposed, where the catalytic addition of the

alcohol to (rac) azlactone resulted in the ring-opened adduct intermediate, which

was identified by 1H NMR spectroscopic analysis. The hindered isopropyl ester moi-

ety of the starting azlactone is a structural requirement, as employing analogs of the

starting azlactone that incorporated simpler methyl or ethyl esters in place of the iso-

propyl ester was unsuccessful. In these cases, the methanol or ethanol liberated dur-

ing phthalimide formation competed effectively as nucleophiles with the protected

serine starting material for the starting azlactone. This led to the formation of some

undesiredphthalimidemethyl or ethyl ester products. The scopeof themethodology

was also explored with a range of amino-acid-derived TCIC-substituted azlactones.

This sequence of reactions allowed the synthesis of the phenylalanine- and valine

derived O-acyl serines in good yields and diastereocontrol (up to 99% yield and

99:1 d.r.). Finally, benzyl alcohol was reacted with the TCIC-substituted azlactones

to generate the phthalimide products, which can act as masked amino acids. The

phthalimides were orthogonally N and C protected and could be selectively depro-

tected through the use of ethylene diamine or hydrogenolysis. It was also demon-

strated that the process could be utilized to bring about a highly stereoselective liga-

tion-type coupling of protected serines with racemic TCIC-substituted azlactones.

In 2017, Berkessel and co-workers employed kinetic resolution and squaramide

organocatalysts in the generation of N-protected b2-amino acid esters from racemic

5-substituted oxazinones (Scheme 15).59 A number of bifunctional chiral base-squar-

amide organocatalysts, 47–51, were utilized and allowed the alcoholytic ring open-

ing of the oxazinones to occur with selectivity factors up to 43. Oxazinones with i-Bu,

c-hexyl, and aryl substituents at the 5 position were used, and squaramide 47 gener-

ated the best ee for the i-Bu- and c-hexyl-substituted N-protected b2-amino acid

esters (82% and 90%, respectively). Squaramide 49 proved the most selective for

the aryl-substituted oxazinones, whereby an ee of 74% was obtained for the

phenyl-substituted N-protected b2-amino acid ester.

Organocatalytic cascade, tandem, and domino reactions provide a convenient method

for the stereoselective construction of complex molecular structures with one or

more stereocenters.60 Such transformations can be considered to resemble natural
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biosynthetic processes, where an enzymatic active site can contain a set of different

functionalities that can act either alternatively or contemporaneously in multiple

catalytic cycles.61 Many organocatalysts have been successfully applied in asymmetric

organocascade sequences, and bifunctional squaramides have emerged as powerful

hydrogen-bonding catalysts for the promotion of a wide variety of organocatalyzed

cascades.60,61

In 2014, Du and co-workers reported an effective asymmetric sulfa-Michael-aldol

cascade reaction between benzylidenechroman-4-ones and 1,4-dithiane-2,5-diol

by using a bifunctional squaramide organocatalyst (Scheme 16).62 They conducted

a catalyst, solvent, temperature, and additive screen in order to identify the

preferred reaction conditions. The resulting methodology, employing squaramide

52 in toluene at 55�C, allowed the stereoselective construction of chiral spirocyclic

tetrahydrothiophene chromanone derivatives with three contiguous stereocenters

in a single operation. The reaction proceeds in high isolated yield and with good di-

astereoselectivity and enantiocontrol (up to 99% yield, 92: 8 d.r., and 92% ee).

A wide variety of substrates were utilized, giving access to a diverse range of spiro-

cyclic tetrahydrothiophene chromanone derivatives. However, the desired products

could not be obtained when (E)-3-alkylidenechroman-4-ones (R = alkyl) served as

substrates. Additionally, an interesting temperature effect on reaction efficiency

was observed, where either increasing or decreasing temperature led to a decrease

in stereoselectivity. A gram-scale synthesis was also performed and found to pro-

ceed smoothly with the same efficiency as the smaller-scale reactions.
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(B) General reaction scheme for the Michael-initiated cascade.
A method, exploiting a Michael-Mannich cascade reaction, for the construction of

five-membered spirocyclic oxindoles was developed by Sun and co-workers in

2015.63 Here, Sun and team generated a ketimine intermediate, which subsequently

underwent reaction with a methyleneindolinone via a Michael-Mannich sequence.

All steps were catalyzed by a single bifunctional quinine-derived squaramide 53

(Scheme 17). The substrate scope was explored with a variety of ketimine intermedi-

ates, generated from b-dicarbonyl compounds with different carbon chains and

additional p-MeO and p-Br nitrosobenzenes, as well as a selection of methylenein-

dolinones. The desired products were obtained in excellent yields (up to 94%) and

stereoselectivities (up to >20:1 d.r. and >99% ee). A mechanism was proposed,

where enolization of acetylacetone, promoted by the amino group of the bifunc-

tional catalyst, is followed by N-selective addition to nitrosobenzene. The resulting

ketimine, an interesting multi-active synthon with two different electrophilic sites

and nucleophilic carbons, is transformed into the corresponding enoate. The

methyleneindolinone is activated by the same squaramide catalyst and subsequent

intermolecular Michael addition with the ketimine enoate, followed by the final irre-

versible cyclization, furnished the enantioenriched product. The one-pot reaction

was scaled up and performed in the presence of only 2 mol % of a bifunctional qui-

nine-derived squaramide catalyst.

A method for the rapid generation of a series of spiro-pyrrolidine-pyrazolones via an

aza-Michael-Michael-addition cascade was developed by Du and co-workers in

2016.64 Here, Du targeted bifunctional hydrogen-bonding organocatalysis to

promote the reaction of tosylaminomethyl enones or enoates with unsaturated pyr-

azolones (Scheme 18). A catalyst screen identified squaramide 54 as the preferred

organocatalyst and, along with a solvent and temperature study, allowed the final

reaction conditions to be established (5 mol % catalyst [cat.], CHCl3, RT). A range

of substrates were utilized, and variations in both the tosylaminomethyl enones

and enoates and the pyrazolones were tolerated. The tandem reaction sequence

proceeded well and afforded the desired products in high yields (up to 98%) with
1432 Chem 5, 1398–1485, June 13, 2019



N
H

N
H

O O

F3C

CF3

N

OMe

N
H

R1 R2
O O

N
O

53, 4 Å MS

CHCl3, RT, 2 h

NBoc

R4

O

R5

R3

RT, 48 h
N
Boc

R4
R1

O
NH

O O R2

R3

R5

R1 = H, Me
R2 = H, alkyl
R3 = H, Br, OMe
R4 = COOalkyl, COalkyl, COPh, gem-COMe
R5 = H, Me, halogen

up to 94% yield, >20:1 dr, >99% ee

OO

O O

O O

N
HO

O O

N

O O

N N
Boc

EtOOC

O

O O COOEt

NBocO N
Boc

EtOOC
O
NH

O
O

N
Ph

multi-active

Michael
Mannich

Desired
Product

N

A

B

C

53

N
O

N-addition
Dehydration

+

Scheme 17. Squaramide Michael-Mannich Cascade Reaction for the Construction of Five-Membered Spirocyclic Oxindoles

(A) Chemical structure of catalyst 53.

(B) General reaction scheme for the Michael-Mannich cascade reaction.

(C) Proposed mechanism for the transformation.

Chem 5, 1398–1485, June 13, 2019 1433



N N

O OF3C

F3C N

N
N

R3 R1

O

R2

TsHN
R4

O N
N

R3

R2

O

N

R4

O

Ts
R1

54
CHCl3, RT

R1 = aryl
R2 = aryl
R3 = Me, Et, Ph
R4 = aryl, Oalkyl,

up to 98% yield, >20:1 dr, 98% ee

N
N

PhO

Ph

TsHN
Ph

O

H H

H

N
N

Ph

O

Ph

NTs

Ph
O

H

N N

O OF3C

F3C HN

N
N

O

Ph

H H

N

O
Ph

Ph Ts

N N

O OF3C

F3C HN

N
N

O

Ph

H H

N

O
Ph

Ph Ts

N N

O OF3C

F3C NH H

N
N
Ph

O

N

Ph

O

Ts
Ph

N
H

N
H

O OF3C

F3C N

A

B

C

54

+

+

1434 Chem 5, 1398–1485, June 13, 2019



Scheme 18. Generation of Spiro-Pyrrolidine-Pyrazolones via an Aza-Michael-Michael-Addition Cascade

(A) Chemical structure of catalyst 54.

(B) General reaction scheme for the Michael-initiated cascade.

(C) Proposed mechanism for the transformation.
high diastereoselectivities (up to >20:1 d.r.) and high enantioselectivities (up to 98%

ee). The absolute configuration of one of the spiro-pyrrolidine-pyrazolones was

unambiguously established by single-crystal XRD analysis and formed the basis

for a proposed mechanism. Here, Du and team suggested that chiral squaramide

54 acts as a bifunctional catalyst to deprotonate the tosylaminomethyl enone and

activate the unsaturated pyrazolone by forming two hydrogen bonds. The deproto-

nated tosylaminomethyl enone then attacks the pyrazolone, and a subsequent intra-

molecular Michael addition by a Si face attack forms the (20S,30R,40R)-configured
product. To highlight the synthetic value of this method, a gram-scale preparation

where the high yield was maintained without loss of enantioselectivity was

performed.

Subsequently, in 2018, Du and co-workers reported another Michael-reaction-initi-

ated organocatalyzed cascade.65 In this report, a highly efficient method for the con-

struction of oxindolepyrrolidone-thiazolidinone bispirocyclic heterocycles bearing

three contiguous chiral centers was disclosed (Scheme 19). Here, a bifunctional

cinchona-derived squaramide catalyst allowed the selective generation of the three

stereocenters, including two quaternary centers via a Michael-cyclization cascade

reaction between 3-isothiocyanato oxindoles and unsaturated thiazolidinones.

The squaramide catalyst 42was identified by a catalyst screen, and once more, a sol-

vent and temperature study allowed the preferred reaction conditions to be deter-

mined (5 mol % cat., CH2Cl2, RT). Exploration of the substrate scope showed that a

variety of isothiocyanato oxindoles and thiazolidinones could be employed with

high yields (up to 99%) and high diastereo- and enantioselectivities (up to >99:1

d.r. and >99% ee). A single crystal of one of the products was obtained, which

enabled its absolute configuration to be established. A plausible mechanism for

this Michael/cyclization cascade reaction was proposed by Du and team on the basis

of a dual activation model. In the first Michael addition step, the amine unit of the

quinine deprotonates the 3-isothiocyanato oxindole, and it is stabilized by forming

two hydrogen bonds with the catalyst. The thiazolidinone is simultaneously acti-

vated by hydrogen bonding with the protonated amine. The thiazolidinone is then

attacked by the deprotonated 3-isothiocyanato oxindole from the Re-face, which

then completes the Michael addition-cyclization sequence to furnish the final

product.

Squaramides have also been exploited in the development of catalytic systems

capable of stimulating Friedel-Crafts initiated cascade reactions. In 2017, Zhao,

Hu, and co-workers investigated organocatalyzed cascade reactions, and in this

case, they employed an asymmetric Friedel-Crafts alkylation-lactonization sequence

to afford a-aryl-b-trifluoromethyl dihydrocoumarin derivatives.66 Naphthols and

3-trifluoroethylidene oxindoles were reported to undergo the squaramide catalyzed

Friedel-Crafts initiated reaction, which represented a novel [3 + 3] strategy for the

enantioselective synthesis of dihydrocoumarins bearing a CF3 moiety at the b posi-

tion (Scheme 20). A catalyst screen identified squaramide 55 as the catalyst of

choice, and enantioselectivity improved slightly upon addition of 4 Å molecular

sieves. An exploration of the substrate scope of the methodology determined that

a variety of 3-trifluoroethylidene oxindoles and naphthols, including both 1- and

2-naphthols (at 0�C and �30�C, respectively), could be tolerated with high yields
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(A) General reaction scheme for the Michael-initiated cascade.

(B) Proposed mechanism and transition states for the transformation.
(up to 99%) and high enantio- and diastereoselectivities (up to 98% ee and >20:1

d.r.). The lactonization step was suggested to proceed by nucleophilic attack of

the naphthol hydroxyl group at the amide motif of the oxindoles, and this protocol

represents a new strategy for the formation of dihydrocoumarins by intramolecular

amide C–N bond cleavage and a concurrent esterification process. The absolute

configurations of the newly formed chiral centers for one of the products were as-

signed as aR and bS according to the X-ray crystallographic analysis. Finally, to

demonstrate the utility of this asymmetric Friedel-Crafts alkylation-lactonization pro-

tocol, the reaction was scaled up to 3 mmol, and the product was obtained with a

comparably high yield and stereoselectivity. The products were also shown to be

versatile intermediates that could be readily converted into indole derivatives.

Later in 2017, Enders and co-workers reported another Friedel-Crafts initiated

cascade, this time an unprecedented domino aza-Friedel-Crafts N,O-acetalization
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of N-Boc ketimines with 2-naphthols (Scheme 21).67 The N-Boc ketimines were

derived from pyrazolin-5-ones and upon reaction with a 2-naphthol, in the presence

of a bifuncational squaramide catalyst, furnished furanonaphthopyrazolidinone
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derivatives bearing two vicinal tetra-substituted stereogenic centers. A screen of re-

action conditions revealed squaramide 38 as the catalyst of choice; a loading of only

0.5 mol % was required, and performance was optimal with CHCl3 as the solvent (re-

action time of only 10 min with 5 mol % catalyst). Because of the higher toxicity of

CHCl3, CH2Cl2 was chosen for further studies (reaction time of 25 min with 5 mol

% catalyst). A substrate scope study showed that a variety of N-Boc ketimines and

2-naphthols could be successfully employed in the aza-Friedel-Crafts N,O-acetaliza-

tion with high yields (95%–98%) and stereoselectivity (>99:1 d.r. and 97%–98% ee).

However, a different reactivity was observed in the case of 1-naphthols and other

electron-rich phenols. For these examples, the acetalization step did not occur,

and instead, the aza-Friedel-Crafts adducts were isolated in 70%–98% yield and

47%–98% ee. It was proposed that a possible explanation for this diverse

reactivity is that the different rotation barriers around the C–C bond after the aza-

Friedel-Crafts reaction of the 2-naphthol and the 1-naphthol might be responsible.

The absolute configuration of a product furanonaphthopyrazolidinone was

determined as (S,S) by X-ray crystallographic analysis. The synthetic efficiency of

the methodology was demonstrated via a scale-up reaction that prepared gram

amounts of product in high yield and stereoselectivity.

Cascade reactions that begin with a squaramide-catalyzed Mannich reaction have

also been reported. An example of this is the asymmetric domino reaction of

4-bromo-3-oxobutanoates with isatin-derived ketimines as reported by Wu, Sha,

and co-workers in 2014.68 The work described the enantioselective construction of

3-amino-2-oxindoles, with a quaternary stereocenter, via a Mannich-cyclization

cascade (Scheme 22). A catalyst screen was conducted, and although the highest

enantioselectivity was achieved with the bifunctional squaramide catalysts 56, in

the presence of 1 equiv of NaHCO3, the yields of the reactions were somewhat un-

satisfactory. It was suggested that the low yields might have resulted from the low

conversion rate of the substrates and/or the initial Mannich adduct. The use

of Na2CO3 as a base additive (0.5 equiv) resulted in a significant increase in yield

with catalyst 56. The catalyst loading of 56 could be reduced to 5 mol %, and under

these conditions, the desired product was formed in an 82% yield and 97% ee.
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Interestingly, using Et3N as a base did promote the domino reaction and gave the

product in a 98% yield but with very low enantioselectivity, which was probably

due to a background reaction. A solvent screen resulted in the selection of CH2Cl2
as the preferred solvent. The subsequent substrate-scope study demonstrated

that a variety of 4-bromoacetoacetates and isatin-derived ketimines could furnish

the expected products, with 1 equiv of Na2CO3 and only 1 mol % of the squaramide

catalyst, in high yields (90%–97%) and high enantioselectivities (92%–99% ee). The

absolute configuration of one of the products was determined to be R by X-ray

analysis.

Squaramide-catalyzed aldol reactions have been utilized as the first step in cascade

sequences. In 2016, Han and Chang described one such transformation involving the

highly enantioselective organocatalytic vinylogous aldol-cyclization cascade reac-

tion of 3-alkylidene oxindoles to isatins.69 Here, an unexpected intramolecular lacto-

nization that followed the initial aldol reaction and led to cleavage of the oxindole

ring and generation of enantioenriched spirooxindole dihydropyranones was re-

ported (Scheme 23). The squaramide catalyst 38 was found, once more, to give the

best combination of yield andenantioselectivitywhenCH2Cl2was used as the solvent

and the reaction was performed at RT. Exploration of the substrate scope revealed

that a broad range of enantioenriched spirooxindole dihydropyranones could be

synthesized in good to high yields and high enantioselectivities (up to 99% yield

and 99% ee). The authors were pleased to find that the unprotected isatin also

took part in the cascade reaction and furnished the product in a 90% yield and 95%

ee. The unprotected oxindole, in contrast, delivered no desired product. However,

the N-benzyl-protected oxindole provided the vinylogous aldol product. Here, it

was suggested that these results might show that occurrence of the intramolecular

lactonization was due to an increase in reactivity of the oxindole ring by replacing

the Boc protecting group on the nitrogen atom with a benzyl group. An interesting

observation was that only a single spirooxindole was obtained, in high yield and

enantioselectivity, regardless of whether the (E) or (Z) oxindole starting material
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was used. The absolute configurationof the productswas assigned on thebasis of the

X-ray crystallographic analysis, and a possible mechanism was proposed. Here, the

authors suggested that the oxindole was deprotonated by the catalyst and gener-

ated s-cis enolate. This enolate then added through the Si face to the isatin to give

an alkoxide intermediate, which formed the final product upon protonation. It was

noted that another possible direct hetero-Diels-Alder reaction pathway cannot be

ruled out and that the model of dual activation of both the nucleophile and the elec-

trophile by means of the bifunctional squaramide catalyst was also a possibility.

Squaramide-basedmolecules have become a leading and powerful family of organoca-

talysts ina very short time.A largenumberofpublicationshaveshownsquaramides tobe

effective catalysts for the promotion of stereoselective carbon-carbon and carbon-het-

eroatom bond formations, as well as various domino and cascade sequences involving

multiple reactive components.40,60,61 There is significant potential for squaramides tobe

used in catalyzing the asymmetric synthesis of additional valuable enantioenriched nat-

ural products, drugmolecules, and other biologically active compounds. Further expan-

sion of the utility of squaramides as catalysts in important asymmetric transformations

can be expected into the future. Such expansion will continue to take advantage of

the ability of squaramides to interact and bind to substrates, a characteristic that is

also heavily exploited in their use as an anion recognition motif.
SQUARAMIDES AS ANION RECOGNITION MOTIFS

The field of anion recognition has developed dramatically in recent years, and a

large body of research has now been reported in the areas of anion receptors,70

anion sensors,71,72 and, more recently, anion transporters.73 A number of binding

motifs dedicated to hydrogen bonding have been exploited for anion recognition

(including but not limited to imidazoles, pyrroles, calixarenes, amides, ureas, thio-

ureas, amidothioureas, and thiosemicarbazides); thus, it was inevitable that the

squaramide, with its many favorable characteristics, would also be explored as an

anion recognition motif. Below, we will highlight some of the more recent advances

in the field where the use of squaramides has evolved from anion receptors to sen-

sors and most recently as highly effective anion transporters.

The early pioneering work of Costa and co-workers on squaramide-facilitated anion

recognition74,75 was later followed by a report by Fabbrizzi and co-workers, who

undertook a direct comparison between the anion-recognition ability of urea-con-

taining 57 and squaramide-containing 58, which possessed identical aromatic sub-

stituents (Figure 22).76 Using a combination ofNMR spectroscopy, UV-visible (UV-vis)

analysis, X-ray crystal structure analysis, and theoretical calculations, the authors

were able to show that both 57 and 58 were able to form 1:1 receptor/anion com-

plexes with Cl� via hydrogen-bonding interactions, but the squaramide derivative

58 exhibited a higher binding affinity than urea derivative 57whenmeasuredby spec-

trophotometric titration (logK = 4.55 for 57 versus logK = 6.05 for 58whenmeasured

in MeCN at 25�C). Indeed, a subsequent study from the same groups also saw supe-

rior binding from another squaramide derivative 60 than from urea 59 and sulfon-

amide-based receptor 61.77 The results of spectrophotometric titrations, isothermal

calorimetry (ITC), and 1H NMR spectroscopic titrations in acetonitrile again sug-

gested that the squaramide was capable of forming stable 1:1 receptor-anion com-

plexes with Cl� and with other oxoanions, such as AcO� and H2PO4
�.

More recently, a small family of N-tert-butyl sulfinyl squaramide receptors, 62–64,

was synthesized by Li et al. (Figure 23).78 Using 1H NMR titration studies to establish
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binding constants of the receptors for a range of anions, the authors found that the

receptors had the highest affinity for Cl� in all cases and that their binding constants

in DMSO-d6with 0.5% water were similar to those of squaramide analogs containing
Figure 23. N-tert-Butyl Sulfinyl Squaramide Anion Receptors

(A) Chemical structures of 62–64.

(B) DFT optimized geometries for the complexes formed between the Cl� anion and (A) 62, (B) 63, and (C) 64 show the contribution from C�H$$$Cl�

interactions.

Reproduced with permission from Li et al.72 Copyright 2017 American Chemical Society.
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two aromatic substituents (e.g., Ka = 820 G 67 M�1 in the case of compound 64).

DFT calculations and single-crystal analysis established that there were weak tert-

butyl C–H$$$anion interactions in binding to Cl�, further increasing the binding affin-

ity (Figure 23). These results suggest that not only the acidity of the squaramide NH

protons but also the overall structure of the receptor can have a major influence on

the binding of squaramides to anionic species.

Indeed, Elmes et al. have synthesized larger constructs by using a solid-phase syn-

thetic strategy to form a small family of amino-acid- and dipeptide-based anion

receptors, 65–70, which incorporated either thiourea or squaramide moieties (Fig-

ure 24A).79 It was demonstrated that these anion receptors, particularly those con-

taining squaramides, displayed a significantly higher affinity for SO4
2� over various

other anions (AcO�, BzO�, H2PO4
�, and Cl�) such that 1H NMR titrations exhibited

large modulations in chemical shift upon titration with SO4
2� (Figure 24B). The ste-

reochemistry of the amino acid backbone showed little influence on the binding

affinity of the receptors toward their target anions. However, the presence of the

backbone amide NH protons was shown to be particularly important to the recep-

tor-anion interaction given that dipeptide receptors 67–70 displayed significantly

higher binding affinities for SO4
2� than their single-amino-acid analogs 65 and 66.

A subsequent study by Elmes and Jolliffe synthesized L-lysine-based squaramide

anion receptors 71–78 by using both solid- and solution-phase methods (Fig-

ure 25).80 Their anion-binding ability was evaluated by 1H NMR spectroscopic titra-

tions, and all of the receptors demonstrated the ability to bind to anions in aqueous

DMSO solution, and selectivity was again observed for SO4
2� over other anions,

such as Cl�, AcO�, and BzO-. Additionally, the authors demonstrated that the lipo-

philicity of the receptors could be fine-tuned by functionalization at the C and N

termini without interfering with anion-binding capabilities.

A more recent report by Tzioumis et al. details the synthesis of another small library of

peptide-based anion receptors, 79–84, in order to further examine the effect structure

has on SO4
2� recognition (Figure 26).81 The authors probed the importance of various

design features, including shortening the side chain length, increasing the length and

flexibility of receptor backbone, increasing the acidity of the squaramide NH protons,

and introducing a water-solubilizing group to the N terminus of the peptide scaffold.

In all cases, the receptors displayed a strong selectivity for SO4
2�, as seen in earlier

reports. Surprisingly, the addition of the hydrophilic TriTEG group did not markedly

increase solubility of the receptors in aqueous solution, so the effect of higher concentra-

tions of water on SO4
2� binding in DMSO-d6 could not be evaluated.

A recent report from the same research group produced a family of macrocyclic squar-

amides, 21 (vide supra) and 85–89, containing either two or three squaramide units (Fig-

ure 27).32 1H NMR titration studies confirmed that the macrocyclic squaramide (MSQ)

receptors 21, 85, 88, and 89 also displayed very high selectivity for SO4
2� in aqueous

DMSO-d6 solution. Upon complexation to SO4
2�, the 1H NMR spectrum of 21 showed

large modulations in chemical shift, and interestingly, the signal for the methylene pro-

tons was seen to split into two distinct signals. The authors suggested that the freemac-

rocyclewas capable of adopting several conformations in solution at RT but upon SO4
2�

complexation became fixed in a single conformation. Indeed, X-ray crystal-structure

analysis revealed that in the presence of SO4
2�, the conformation adopted by 21 was

markedly different from the chair-like conformation found for the free macrocycle.

Instead, 21 was shown to form a 1:1 (receptor/anion) complex with SO4
2� whereby

the receptor adopted a bowl-like conformation reminiscent of a calixarene in the
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Figure 24. Peptide-Squaramide Anion Receptors

(A) Chemical structures of 65–70.

(B) Stack plot of 1H NMR spectra of 69 upon addition of (TBA)2SO4 (0–12 equiv) in 20% H2O in

DMSO-d6 at 25
� C shows large modulations in chemical shift.

Reproduced with permission from Elmes et al.79 Copyright 2014 Wiley-VCH Verlag GmbH & Co.

KGaA.
cone conformation (Figure 28). Furthermore, the larger MSQs containing three squara-

mide units (85 and 89) were found to better match the size and shape of the SO4
2� ion

than their smaller counterparts (21 and 88) and provided high affinity and selectivity for
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SO4
2� even in mixtures of anions mimicking the composition of either nuclear waste or

blood plasma.

Calix[4]arene-based anion receptors incorporating the squaramide moiety 90–92

have been reported byWang and co-workers (Figure 29).82 The anion-binding capa-

bility of each receptor was examined via UV-vis spectroscopy and 1H NMR analysis,

which showed that the receptors could selectively recognize F�, AcO�, and H2PO4
�

over other anions. 90 was shown to bind to anions via hydrogen-bond interactions,
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resulting in downfield shifts of the NH protons in the 1H NMR spectra, concomitant

with bathochromic shifts in the UV-vis spectra. Meanwhile, 91 and 92 both displayed

an acid-base interaction between the receptor and anion, resulting in a naked-eye

color change. This was purported to be due to the increased acidity of the squara-

mide NH protons of 91 and 92 as a result of the electron-withdrawing nitro groups.

A subsequent study by the same research group reported the synthesis of two

mono-squaramide-functionalised pillar[5]arenes, 93 and 94 (Figure 29).83 Using 1H

NMR titrations, Job’s plot analysis , ESI-MS, and 2D NMR techniques, the authors

showed that 93 forms a 1:1 stoichiometric complex with both n-hexylphosphonic
1446 Chem 5, 1398–1485, June 13, 2019



Figure 28. Sulfate Recognition Using Macrocyclic Squaramides

Single-crystal XRD structures of (A) 21 and (B) the complex formed between 21 and SO4
2� clearly

show the interaction between SO4
2� and the squaramide NH protons inside the macrocyclic cavity.
acid (HPA) and n-heptanoic acid (HA) with high affinity (log K = 3.83 and 1.98,

respectively). As expected, 94, with a strongly electron-withdrawing CF3 group,

showed a similar ability to recognize HPA and HA but with slightly higher affinity

(log K = 5.74 and 2.06, respectively).

Squaramides have also been incorporated into polymeric materials. Manesiotis et al.

synthesized a series of polymerizable squaramides, 95–100, and compared their

anion-binding ability to urea analog 101 by using UV-vis spectroscopy (Figure 30).84

As seen previously, the squaramides with the most electron-withdrawing groups

attached to the aromatic substituents exhibited the highest association constant values

for anions tested (Table 1). Themore acidic NHprotons of 98 and 100underwent a color

change due to deprotonation in the presence of excess fluoride, as seen with the
OHOH OO
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Figure 29. Chemical Structures of 90–94
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appearance of an absorbance band at 470 nm, which indicated a charge transfer be-

tween two species. Molecularly imprinted polymers (MIPs) were also prepared from

squaramide 95, and its binding performance to a model anion, tetrabutylammonium

benzoate (TBAOBz), was comparedwith that of a polymer preparedwith ureamonomer

101.MIP95 exhibited both the highest affinity and capacity toward its template, higher

than that ofMIP101, the urea-based polymer, asmeasured by UV-absorption-based re-

binding experiments. These results confirmed that the squaramideMIP retained a stron-

ger affinity for anionic species than the equivalent ureas after polymerization.Moreover,

a MIP prepared with 98 and TBAF as the template resulted in polymer particles capable

of rapid and reversible association of TBAF in acetonitrile, as evidenced by intense color

changes clearly visible to the naked eye.

Another interesting example is the switchable rotaxane organocatalyst 102, synthe-

sized by Beswick et al. (Figure 31).85 102 contains two catalytic sites, one of which is

blocked by amacrocycle under a given set of conditions. The positioning of the mac-

rocycle is switched via acid-base mediation whereby under acidic conditions, the

crown ether portion of the macrocycle interacts with the protonated secondary

amine, inhibiting catalytic activity at this site while exposing the squaramide catalytic

site. Conversely, under neutral or basic conditions, the macrocycle preferentially

binds to the squaramide moiety, inhibiting its ability to hydrogen bond and thus de-

activating the catalytic activity at this site. This exposes the secondary amine and

permits it to promote iminium catalysis. The rotaxane was found to successfully cata-

lyze Michael additions and demonstrated a high level of selectivity in both modes.

It is of note that the vast majority of squaramide-based compounds reported in the

area of ion recognition deal specifically with anion recognition. Given the ability of
Table 1. Association Constants (Ka, L mol�1) between 95 and 101 and Tetrabutylammonium Salts

of Common Anions as Determined by UV Titration Experiments in DMSO

Receptor C6H5COO� H2PO4
� F� I�

95 1.0 3 105 3.6 3 105 6.7 3 105 <103

96 5.1 3 104 6.5 3 104 4.1 3 105 <103

97 7.8 3 105 4.0 3 105 >106a 9.8 3 104

98 9.1 3 105 5.1 3 105 >106a 3.8 3 105

99 3.0 3 103 1.3 3 104 6.4 3 104 <103

100 1.2 3 104 2.1 3 104 1.5 3 105 <103

101 5.1 3 105 8.2 3104 6.3 3 105 7.1 3 103

aDeprotonation occurred upon addition of excess TBAF.
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squaramides to act as both a hydrogen-bond acceptor and a hydrogen-bond donor,

it is surprising that the squaramide moiety has not been exploited to the same de-

gree as a cation recognition motif by taking advantage of the two squaramide

carbonyl functionalities. Some early examples of cation recognition include two

pioneering papers by Ballester, Costa, and co-workers, who outline the use of squar-

amide-based tripodal receptors for the recognition of tetraalkylammonium com-

pounds such as choline, acetylcholine, and related ammonium salts.86,87 These

examples of cation recognition and fluorescent sensing of membrane phospholipids

were rare until more recent reports of the use of squaramides for the construction of

ion-pair zwitterion receptors.

Costa and co-workers reported a self-complementary amidosquarate-squaramide

host for miltefosine 103 (Figure 32).88 The authors exploited the charged amidos-

quarate unit as the binding site for the cationic quaternary amine of miltefosine

and a neutral squaramide unit, located at a precise distance away to act as a binding

site for the anionic phosphate. The combination of two different squaramide units

effectively enhanced the affinity and selectivity for miltefosine by using a structurally

simple receptor. In another study, Costa and co-workers reported the synthesis of

Janus-like tripodal squaramide-based ditopic receptors such as 104 and 105

for ion-pair recognition (Figure 32).89 1H NMR spectroscopy and UV dilution exper-

iments revealed that compound 105 could form dimeric assemblies in organic solu-

tion. Further microscopic analysis showed that aggregation of 105 resulted in the
Chem 5, 1398–1485, June 13, 2019 1449



103

N
H

OO

N
H

O2N

N
H

O

O

O

Na

NH

HN

N
HNH

O
O

HN
O

O

NH
O

O

104 = N

105 =
O
3

O

O

Figure 32. Chemical Structures of 103–105
formation of a network of bundled fibers and a macroscopic gel-like morphology in

CDCl3. Studies with tetraalkylammonium tricarboxylate and iodide salts showed that

105 exhibited two different and mutually exclusive binding modes whereby reorga-

nization of the squaramide groups could be effected depending on the nature of the

ion pair introduced. Indeed, the authors suggest that such conformational transi-

tions driven by ion-pair recognition could have application in controlling more elab-

orate movements within molecular devices.

The group of Piatek and co-workers has also reported ion-pair receptors, 106 and 107,

which incorporate two anion-binding functionalities and a sodium-selective N-acyl aza-

18-crown-6domain (Figure33).90 Through single-crystal XRDanalysis, itwas found that a

methyl groupeffectively aligns thebindingdomains inonedirection, thus optimizing the

binding of the ion pair. Their study showed that binding at one domain increases the

binding affinity at the other binding site, demonstrating a cooperative binding effect.

For example, upon the binding of chloride to 106, the strength of sodium complexation

increased by up to 23 times. Squaramide-based receptor 107 was shown to bind at a

similar strength but at a lower cooperativity with log Ka = 6.52 M�1. However, receptor

107was found to bind to sodium cations more than twice as strongly than receptor 106.

This is believed to be due to a complimentary interaction of the squaramide carbonyl

groups with the crown ether where cation complexation of the squaramide provides a

more favorable interaction than the urea carbonyls.

A related study from Zdanowski et al. investigated the use of 108 as an ion-pair re-

ceptor capable of facilitating the extraction of chloride from an aqueous to an

organic environment (Figure 34).91 The study found that the presence of two

anion-binding sites was optimal for the formation of anion-receptor complexes

where 108 was found to bind both NaCl and TBACl with association constants (Ka)

in the region of 106 M when measured in MeCN via UV spectroscopy. Given the

strong affinity of 108 toward Cl� anions, a series of salt extraction and transport

studies were performed to assess its ability to transport salts from an aqueous phase

into an organic phase. Toluidine blue with a Cl� counteranion was used to monitor

the transfer of the salt, and 108 was shown to effectively transfer Cl� salts from the
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Figure 33. Squaramide-Based Ion-Pair Receptors

(A) Chemical structures of 106 and 107.

(B) X-ray crystal structure of 107 shows the alignment of both squaramide binding domains in a

single direction.
aqueous to the organic phase (Figure 34). The transport of Cl�was facilitated by soft

counter cations such as TBA+; however, the transport study failed when a salt con-

sisting of two hard ions was used.

Most recently, the Roma�nski group has reported ion-pair receptors 109 and 110,

which also consist of a crown ether cation-binding site coupled to either a squara-

mide or a urea anion-binding domain (Figure 35).92 Spectrophotometric and

spectroscopic studies revealed that salt binding occurred in both acetonitrile

and acetonitrile-water mixtures, where a host of anions (nitrate, nitrite, bromide,

and chloride) were found to associate with receptor 109 and 110 more strongly in

the presence of sodium cations than in the presence of tetrabutylammonium cations.

Single-crystal XRD analysis was also used to demonstrate the ability of 109 to form

complexes with sodium chloride, even in the presence of water. Moreover, in

contrast to the urea-based compound 110, compound 109 was shown to be able

to extract sodium chloride from the aqueous to the organic phase by 1H NMR,

mass spectrometry, and atomic absorption spectroscopy analysis.

While squaramide-based anion receptors have received significant research atten-

tion in recent years, in parallel, squaramide-based sensors that are capable of re-

porting colorimetrically or fluorometrically on the binding event have also been

explored. Initially taking advantage of dye-displacement-based sensors, such as
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Figure 34. Chloride Extraction with Squaramides

Chemical structure of 108 and extraction of aqueous solution of toluidine blue (top layers) with (A)

20% n-butanol in chloroform, (B) 1 equiv of receptor 108 in the organic phase, (C) 10 equiv of

receptor 108 in the organic phase, and (D) 100 equiv of receptor 108 in the organic phase (bottom

layers). Adapted from Zdanowski et al.91 with permission from the Royal Society of Chemistry.
those developed by Costa,74,93,94 in more recent years, a number of other ap-

proaches have been explored.

Elmes et al. synthesized a family of squaramide-based colorimetric and luminescent

anion sensors, 111–114, by covalently appending an anthracene moiety to the

squaramide scaffold (Figure 36).95 The sensors exhibited little interaction with

non-basic anions, such as Br�, I� and NO3
�; however, upon addition of Cl� to 111

and 112, their absorption spectra underwent hyperchromic shifts at 393 nm, with

a hypochromic shift at 355 nm, resulting in a naked-eye color change from colorless

to yellow. The addition of chloride to the nitro-substituted derivative 113 resulted in

similar hyperchromic and hypochromic shifts but also underwent a hypsochromic

shift of approximately 5–10 nm, resulting in a stark color change from orange to

deep red, which was clearly visible to the naked eye (Figure 36). Moreover, the fluo-

rescence properties of these receptors were also found to be significantly modu-

lated upon interaction with Cl�, whereby fluorescence excimer emission centered

at 530 nm was significantly ‘‘switched off’’ by 66% for 111 in the presence of Cl�

ions. The authors suggested that the observed spectroscopic changes were related

to the acidity of the squaramide that can be effectively tuned by various aryl substit-

uents, thus giving the ability to selectively recognize anions via deprotonation of the

squaramide NH proton.

Marchetti et al. found similar behavior with a small family of squaramidoquinoxaline

chemosensors, 115–117 (Figure 37).96 Compound 116 displayed a sensitivity for F�

over other halides and exhibited a stark color change from purple to green in organic

solvent. This was attributed to the enhanced acidity of the NH protons due to the

presence of the electron withdrawing nitro substituent. Moreover, computational

analysis predicted that the observed color change would arise from a reduced
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Figure 36. Squaramide-Based Colorimetric and Luminescent Anion Sensors

(A) Chemical structures of 111–114.

(B) Changes observed in the absorption spectrum of 113 upon addition of TBACl in DMSO. Inset:

the corresponding changes seen by the naked eye with various halide anions.

Adapted with permission from Elmes et al.95 Copyright 2013 American Chemical Society.
HOMO-LUMOgap in the intramolecular charge-transfer process between the squar-

amide ring system and the nitro group upon deprotonation of one of the NHs. The

authors were able to demonstrate the utility of 116 as a F� chemosensor by using a

paper-based colorimetic assay where the sensor was easily able to detect F� by the

naked eye but did not display any sensitivity for other halide anions in either organic

or aqueous solution.

Muthyala and co-workers reported an alternative strategy for fluorescent Cl� detec-

tion based on suppression of an excited-state intramolecular proton transfer

(ESIPT).97 Squaramides 118 and 119 (Figure 38) had been reported previously98

and showed a fluorescence ‘‘turn on’’ response in the presence of Cl– in acetonitrile

solution as a result of a conformational change brought about by the binding event.

A later article explored the origin of the Cl–-induced emission enhancement in these

ortho-substituted squaramides, where it was suggested by computational analysis

that two degenerate excited states exist because of two charge-transfer pathways.99
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Figure 37. Squaramidoquinoxaline Colourimetric Anion Sensors

(A) Chemical structures of 115–117.

(B) Changes observed in the absorption spectrum of 116 upon addition of TBAF in 0.5% H2O in

DMSO solution. Inset: colorimetric changes observed for 116 under acidic conditions, under basic

conditions, and in the presence of various halides in DMSO at 25�C.
In the unbound state, competition between the two pathways decreases the fluores-

cence intensity of the receptor. However, upon Cl� recognition, a suppression of the

charge transfer into the cyclobutenedione ring occurs, thereby enhancing the

observed emission intensity from the anthranilate portion of the molecule.

An article by Rostami et al. reported the design and synthesis of two squaramide-

based polymers, 120 and 121, and an investigation of their spectroscopic response

to various anions.100 The authors were able to demonstrate that polysquaramide 120

exhibits a selective ‘‘turn-on’’ fluorescence response to dihydrogenphosphate

(H2PO4
�) ions in aqueous N-methylpyrrolidinone (NMP) (10% H2O) (Figure 39).

120 was synthesized by condensation of a 9,9-dioctylfluorene-2,7-diamine deriva-

tive with diethyl squarate, and it was suggested that upon addition of H2PO4
� to

compound 120, the ions engage in hydrogen bonding with multiple squaramide

groups along the polymer. Non-polymeric control receptor 122 showed a minimal

spectroscopic response to H2PO4
�; thus, it was proposed that the cooperative ag-

gregation of the organic polymer in response to the anion exploited the repeating
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Figure 38. Chemical Structures of 118 and 119
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Figure 39. Fluorescent Squaramide-Based Polymers

(A) Chemical structures of poly(squaramide) compounds 120 and 121 and non-polymeric control

receptor 122.

(B) Fluorescence response of polymer 120 to increasing concentrations of Bu4N
+H2PO4

� in 10%

water in NMP (lex = 415 nm).

Reproduced with permission from Rostami et al.100 Copyright 2011 Wiley-VCH Verlag GmbH & Co.

KGaA.
hydrogen-bond donor groups and resulted in large enhancements in anion affinity

and selectivity compared with those of the non-polymeric reference.

Delgado-Pinar et al. created a simple indicator displacement assay system of

boehmite (g-AlO(OH)) or silica-coated boehmite based on a squaramide scaffold

with a quaternized amine group, 123 (Figure 40).101 UV-vis spectrometry showed

that these nanoparticles could selectively bind to SO4
2� over H2PO4

� and halide an-

ions in pure water. The signaling in this system arises from the displacement of
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Bromocresol Green when an anion binds to the receptor, resulting in a color change

from blue to yellow.

López et al. followed a similar approachwith iron nanoparticles functionalizedwith com-

pound 124 (Figure 40), which could efficiently detect the presence of mono- and dicar-

boxylates in aqueous solution.102 On their surface, these nanoparticles contained a high

density of 124 capable of complexing the fluorescent dye fluorescein. Once complexed

to the surface of the nanoparticles, fluorescein’s fluorescence was quenched and subse-

quently restored upon release of the fluorescein when the carboxylate anion bound to

the receptor. The nanoparticles were easily removed from solution magnetically and

could detect mono- and dicarboxylates at mM levels in water.

As outlined above, a number of approaches have been reported for the use of squar-

amides for anion recognition and sensing, but more recently, one of the emerging

applications of squaramides has been toward anion transport through lipid mem-

branes. The development of synthetic anion transporters has been driven by the po-

tential application of anion receptors in the treatment of various diseases caused by

dysregulated anion transport or as ameans of perturbing anion homestasis in cells.73

Busschaert et al. were the first to evaluate squaramides as potential anion trans-

porters by synthesizing a family of analogous squaramide-, thiourea-, and urea-

based anion transporters, 125–133 (Figure 41), to establish and compare the

anion-transport ability of squaramides against ureas and thioureas.103 Using POPC

liposomes, the authors found that these compounds acted as extremely efficient

transporters promoting both nitrate-chloride exchange and bicarbonate-chloride

exchange in an antiport process. The squaramides, in particular 131, displayed

considerably lower EC50 values than their urea and thiourea analogs, establishing

them as superior anion transporters with potential biological applications (vide infra).

Analogous systems 134–136 (Figure 41) were reported by Busschaert and Elmes

et al., who found that these thiosquaramide-based anion transporters exhibit

pH-switchable anion-transport behavior.104 Anion-binding studies showed that thi-

osquaramide 134 had a greater binding affinity for Cl� than the oxosquaramide
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analog 125; however, the CF3-substituted thiosquaramides 135 and 136 had signif-

icantly lower anion-binding affinity. Computational and experimental data estab-

lished that the thiosquaramide NHs display lower pKa values in aqueous solution

than their oxosquaramide analogs and predominately exist in their deprotonated

form at neutral pH, thus leading to extremely weak anion binding due to electro-

static repulsion. Indeed, using POPC liposomes loaded with NaCl solution, buffered

at pH 7.2, the authors were able to determine that the anion transport ability of 134–

136 was limited at this pH. However, when the anion-transport studies were

repeated at pH 4.0, a significant increase in the transport abilities of 134 and 135

was observed, demonstrating the ability to switch anion transport ‘‘on’’ or ‘‘off’’ de-

pending on the pH of the environment (Figure 42). A subsequent report from Elmes,
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Figure 42. Thiosquaramide-Based pH-Switchable Anion Transporters

(A) Chloride efflux from POPC vesicles at pH 7.2 (empty symbols) and pH 4.0 (filled symbols)

mediated by thiosquaramide 135 (1 mol % with respect to lipid) as measured by an ion-selective

electrode (ISE). DMSO was used as a control.

(B) Schematic representation of the pH-switchable anion transport exhibited by compound 135.

Adapted from Busschaert et al.104 with permission from the Royal Society of Chemistry.
Busschaert, et al. also demonstrated the pH-switchable nature of the oxothiosquar-

amide derivative 137.105

Gale and co-workers have also exploited the squaramide motif to create a three-

component assembly that can facilitate the transmembrane transport of amino

acids.106 Taking advantage of a combination of squaramide 131 (Figure 42) and

3,5-bistrifluoromethylbenzaldehyde (BTFMB), the authors proposed that the amino

portion of glycine can form a hemiaminal or imine with the lipophilic aldehyde before

131 subsequently forms non-covalent hydrogen bonds to the glycine carboxylate

group, thus facilitating reversible binding and releasing of the amino acid. This dy-

namic covalent approach increases the lipophillicity of the hydrophilic glycine, thus

allowing facile transmembrane transport. Influx of glycine was measured by a novel

fluorescence assay involving a Cu2+-calcein complex whereby sequestration of the
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Figure 43. Squaramide-Facilitated Transmembrane Transport of Amino Acids

(A) Glycine transport kinetics mediated by squaramide 131 and BTFMB as measured by the

Cu2+-calcein assay. DMSO was used as a control.

(B) Schematic representation of the dynamic covalent chemistry approach to amino acid transport

mediated by compound 131 and BTFMB.

Adapted with permission from Wu et al.106 Copyright 2015 American Chemical Society.
copper from the calcein by the amino acid resulted in a restoration of calcein fluores-

cence, which was quenched by Cu2+ (Figure 43).

Gale, Davis, and co-workers have recently developed a family of steroid-based anion

receptors with squaramides appended at the axial position, 138–143 (Figure 44).107

The squaramide NH protons were shown to co-operatively bind to target anions,

and the steroid ensured solubility in nonpolar media and efficient transmembrane

transport ability. The acidic NH protons of the squaramide were shown to increase

the binding affinity to a greater extent than those of urea and thiourea analogs syn-

thesized previously.108 Receptor 143 demonstrated the highest binding affinity to

Cl�, which can be attributed to the presence of the electron-withdrawing bis-3,5-tri-

fluoroaniline moiety attached to the squaramide. Interestingly, the transmembrane

transport abilities did not correlate with the anion affinities, which would suggest an

upper limit to the binding strength of this class of anion receptors in the context of

transmembrane anion transport.
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Jin et al. developed tripodal squaramide-based anion receptors 144–146 (Figure 45)

and assessed their anion-binding abilities via 1H NMR titration studies in

DMSO-d6.
109 The receptors displayed a higher affinity for SO4

2� than for H2PO4
�,

HSO4
�, AcO�, and Cl� (Table 2). Receptors 145 and 146 with electron-withdrawing

moieties displayed acid-base interactions with themore basic AcO� and H2PO4
� an-

ions because of the increased acidity of the squaramide NH protons. X-ray crystal-

structure analysis showed that receptor 144 bound to SO4
2� via encapsulation

and hydrogen bonding, where a dimeric complex was observed, whereas in organic

solution, a 1:1 complex was observed through 1H NMR analysis.

Liu et al. subsequently used 144–146 to produce a SO4
2� ion-selective electrode.110

The ionophore was added into a solution of THF, PVC, and a plasticizer, which was

then drop cast onto gold electrodes, effectively embedding the ionophore in a poly-

meric membrane on the electrode. The tripodal squaramides mimicked the sulfate-

binding protein by providing a cavity in which the SO4
2� anion can participate in

hydrogen bonding, in this case to the squaramide NH protons. The electrode con-

taining ionophore 145 demonstrated the ability to determine the SO4
2� concentra-

tion in drinking water from as low as 1 mM to 100 mM. The electrodes were also able

to detect the presence of sulfate in cell lysate from 10 mM to 100 mM.

Cai et al. explored the transmembrane anion-transport ability of tripodal squaramide

conjugates 146 and 147 (Figure 45) by measuring Cl� efflux across egg yolk phosphati-

dylcholine (EYPC)-based liposomal membranes, monitored by a chloride-ion-selective

electrode.111 A pyranine assay was also used to characterize the efficiency of the Cl�
Table 2. Binding Constants of Receptors 144–146 with Various Anions Determined by 1H NMR

Aniona Receptor 144 Receptor 145 Receptor 146

SO4
2� 4.75 G 0.11 4.95 G 0.12 4.87 G 0.07

H2PO4
� 4.15 G 0.14 NAb NAb

HSO4
� 3.65 G 0.12 3.78 G 0.05 3.65 G 0.14

AcO� 2.82 G 0.07 NAb NAb

Cl� 2.58 G 0.08 2.61 G 0.11 2.65 G 0.09

NA, not applicable.
aAnions were used as tetrabutylammonium salts.
bDeprotonation was observed.
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Figure 45. Tripodal Squaramide-Based Sulfate Receptors

(A) Chemical structures of tripodal receptors 144–147.

(B) X-ray crystal structure of the dimeric complex formed between 144 and SO4
2� in the solid state.
transport, where EC50 values of 0.14 and 0.75 mol % were determined for 146 and 147,

respectively, indicating that both receptors represent an effective class of anion trans-

porters. Although compound 146 demonstrated a high binding affinity for SO4
2� anion,

as seenpreviously, it displayedminimal transport of SO4
2� across liposomalmembranes.

In addition, the presenceof SO4
2� inside the liposomes inhibitedCl� efflux, possibly as a

result of the receptors’ greater affinity for SO4
2� anions than for Cl� anions.

A squaramide-linked bis(choloyl) conjugate, 148, was also successfully synthesized

by members of the same research group: Deng et al. reported an evaluation of its

anionophoric activity (Figure 46).112 Using techniques similar to those previously

described (pyranine assay and chloride-ion-selective electrode measurements),

the authors observed potent ionophoric activity across EYPC-based liposomal mem-

branes. The authors found that the rate of Cl� release was independent of external

cations and highly hydrophilic sulfate but was affected by external monoanions, sug-

gesting that 148 functions via an anion-cation co-transport or symport process and

highlighting the fact that the squaramide portion alone does not determine aniono-

phoric ability and that the linker plays a crucial role in the process.
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Gale and co-workers have recently reported a small series of fluorescent squaramide-

based anion transporters, 149–152, containing the 1,8-naphthalimide moiety (Fig-

ure 47).113 These transporters displayed a strongbinding affinity towardCl� and facil-

itated chloride transport via Cl�/NO3
� anti-port and Cl�/H+ symport mechanisms.

Compound 149was found to be the most active transporter in the series, correlating
Figure 47. Fluorescent Squaramide-Based Anion Transporters

(A) Chemical structures of 1,8-naphthalimide-conjugated squaramides 149–152.

(B) Fluorescent micrographs of A549 cells after incubation with compounds 149 (1.0 mM, left) and

151 (1.0 mM, right) for 24 h. The bright-field and fluorescent images are displayed in the upper and

lower rows, respectively. Scale bar: 25 mm.

Reproduced from Bao et al.113 with permission from the Royal Society of Chemistry.
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Figure 48. Chemical Structures of Squaramides 128, 146, 147, and 153–155
with its superior chloride affinity, and importantly, it was found to exhibit homoge-

nous bright-green fluorescence within the cytoplasm of A549 cells (Figure 47). In

addition, a CCK-8 toxicity assay showed that 149 had no toxicity in A549 cells.

Such fluorescent transmembrane anion transporters will be useful for studying the

sub-cellular localization and pharmacokinetics of anion transporters, where their

development as potentially new drug candidates is another burgeoning area.

Indeed, Busschaert, Park, et al. recently examined the biological effect of squaramide-

based anion transporters 128, 146, 147, and 153–155 on a range of mammalian cell

types (Figure 48).114 The transport ability of the anionophores was first examined in

POPC vesicles, where the efflux of Cl�wasmonitored via a chloride-ion-selective elec-

trode. Receptor 128 proved to be the most efficient anionophore across the POPC

vesicles, followed by 154 and 155. The tripodal receptors 146 and 147 were found

to be inactive transporters, most likely because their binding affinity for Cl� is too

high, thereby inhibiting the release of the anion even after it crosses the membrane.

Transporters 128, 154, and 155 were found to function as Cl� transporters in combi-

nation with channel-mediated sodium co-transport in Fischer rat thyroid epithelial

(FRT) cells. The effects of the anion transporters in HeLa and A549 cells were also

investigated and shown to have the ability to induce caspase-dependent apoptosis

by disrupting the intracellular chloride concentrations. 128 alone exhibited the ability

to transport chloride anions out of lysosomes, decreasing the lysosomal chloride

concentrations while increasing the pH, thereby reducing the activity of lysosomal en-

zymes, disrupting autophagy, and inducing apoptosis. This discovery is a major step

toward elucidating the effects of transmembrane transporters in cells and could

pave the way toward their use as a new class of anti-cancer agents. Indeed, a more

recent report by Gale, Felix, and co-workers further investigated the transmembrane
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Figure 49. Chemical Structures of Some Squaramide-Based Drug Candidates under Investigation
anion-transport mechanism of squaramides by using in silico investigations; it found

that compounds such as 128 showed assisted chloride translocation across phospho-

lipid bilayers, which is thermodynamically favored.115

Although utilizing squaramides as anion transporters and exploiting their ability to

disrupt normal cell function is a novel approach in medicinal chemistry, squaramides

have also been reported in more traditional medicinal chemistry drug candidates

and show potential across a broad range of illnesses.

SQUARAMIDES IN MEDICINAL CHEMISTRY

Squaric acid itself is known for the treatment of warts, and squaric acid dibutylester

(SADBE) is alsomarketed as a treatment for alopecia. However, in more recent times,

a number of squaramide-containing small-molecule drugs have entered clinical trials

(Figure 49). Perzinfotel (EAA-090), a drug developed by Wyeth (now a wholly owned

subsidiary of Pfizer), acts as a potent NMDA antagonist and was brought to phase 2

clinical trials for the treatment of neuropathic pain associated with diabetic neurop-

athy.116,117 Navarixin (MK-7123) is an antagonist of the cysteine-X-cysteine chemo-

kine receptor 2 (CXCR2) and is under development by Merck. This compound was

brought to phase 2 clinical trials for chronic obstructive pulmonary disease

(COPD) and is currently being investigated in phase 2 clinical trials as a combination

therapy against a range of metastatic solid tumors.118,119 Both Novartis and Boher-

inger Ingleheim have also reported squaramide-based drug candidates (156 and

157, respectively) for COPD treatment and even an early process-development

study; however, despite multiple patent filings relating to CXCR2 antagonists,

neither company appears to have progressed a candidate into development.120,121

Nevertheless, with such fervent squaramide-based research activity within industry,

it is clear that the potential of squaramides is now being realized, and early-stage

development of small-molecule drugs containing the squaramide motif has

continued apace. Below, we review some of the more recent advances showing

the versatility and potential of squaramide-based therapeutics across a broad range
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of disease states from anti-malarials to anti-cancer agents and treatments for more

neglected diseases, such as Chagas disease.

A team of scientists led by Ravishankar and Hameed at AstraZeneca recently

reported the synthesis of potent squaramide-based inhibitors of mycobacterial

adenosine triphosphate (ATP) synthase as a new approach to fighting tuberculosis

infection.122 A structure-activity relationship (SAR) study for potency and selectivity

identified a series of squaramide-based inhibitors, such as 158–160 (Figure 50),

which were then evaluated in an ATP synthesis inhibition assay, where potencies

in the nanomolar range were reported. Moreover, the lead compound, 160, was

found to be extremely specific as an inhibitor of ATP synthase without any observed

cytotoxicity and retained activity against a panel of drug-sensitive and single-drug-

resistant strains of Mycobacterium tuberculosis.

The Santos group has used the squaramide moiety in the search for a novel class of

anti-malarial drugs that provide anti-parasitic activity against drug-resistant strains
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Santos and Co-workers
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Figure 52. N,N’-Squaramides for Treating Chagas Disease

Chemical structure of squaramide 169 and TEM images of (A) a Trypanosoma cruzi control parasite

showing typical organelles, such as mitochondria (M), glycosomes (G), microtubules (MT), vacuoles

(V), reservosomes (R), kinetoplast (K), and flagellum (F) and (B) treatment with squaramide 169

showing ultrastructural alterations. Scale bar: 1 mm. Reproduced with permission from Olmo

et al.126 Copyright 2014 American Chemical Society.
of Plasmodium falciparum. The synthesis of a library of 38 squaric derivatives was re-

ported, whereby each candidate was evaluated against several drug-resistant strains

of P.falciparum.123 Aza-dipeptidyl squaric acid derivatives displayed good anti-plas-

modial activity, and the most active compounds, such as 161 and 162, contained an

‘‘azahomoPhe’’ moiety and displayed IC50 values in the mM range (Figure 51). No

cysteine protease inhibition was observed for these compounds, thus leading the

authors to speculate that the anti-plasmodial activities of 161 and 162 might stem

from inhibition of other proteases involved in the parasite life cycle—a key point

of difference to many known anti-malarial drugs.

A subsequent report detailed the synthesis and a SAR analysis of a series of hybrid

compounds containing a squaramide moiety conjugated to the heteroaromatic core

of 4-amino-7-chloroquinoline (Figure 51).124 Three of the reported structures, 163,

164, and 165 (IC50 values = 99, 95, and 105 nM, respectively), had greater in vitro

potency than the known anti-malarial chloroquine 166 (IC50 = 140 nM) against a chlo-

roquine resistant strain of P. falciparum. Moreover, these compounds were found to

be non-cytotoxic against NIH-3T3 and Hek 293T cells, thus representing a promising

new class of anti-plasmodial agents.

Most recently, a report from the same group detailed a SAR study generating ten

8-aminoquinoline-squaramide conjugates that are active against liver stage malaria

parasites.125 In human hepatoma cells (Huh7) infected by Plasmodium berghei par-

asites, conjugates 167 and 168 showed 7.3-fold more potency against the liver stage

of P. berghei infection than the known anti-malarials primaquine and bulaquine,

again highlighting the importance of the squaramide moiety for anti-plasmodial ac-

tivity in this class of compounds.

In a related therapeutic area, Costa and co-workers synthesized a series of N,N’-

squaramides with high in vivo efficacy and low toxicity for treating Chagas disease,
1466 Chem 5, 1398–1485, June 13, 2019



Figure 53. Squaramides as Antimicrobials

(A) Chemical structures of some squaramide-based anti-bacterial drugs under study at Astra

Zeneca.

(B) Schematic representation of the RNA polymerase-squaramide complex structure showing the

overall structure of the E. coli RNAP in complex with compound 172 and a representation of the

squaramide-binding pocket.

Reproduced with permission from Molodtsov et al.128 Copyright 2015 American Chemical Society.
a Trypanosoma cruzi infection that is considered one of the world’s neglected trop-

ical diseases with the highest death rates.126 Compound 169 was found to be the

most effective and gave rise to a 67% decrease in the infection rate of Vero cells,

making it much more effective than other clinically available drugs, such as benzni-

dazole. Moreover, in vivo studies revealed that compound 169 was an effective

treatment in both the acute and chronic phases of Chagas disease in that minimal

toxicity was observed. From transmission electron microscopy (TEM) analysis 169
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was shown to induce a complete breakdown of the parasites cellular structure char-

acterized by significant modifications to many cytoplasmic organelles (Figure 52).

This promising in vivo activity together with its minimalist molecular structure and

simple synthesis prompted the authors to patent the drug in advance of preclinical

development.

Squaramides have also been exploited as a novel class of antimicrobials. Fleming

and co-workers at AstraZeneca originally reported the synthesis of a series of squar-

amide-based anti-bacterials, 170–173 (Figure 53).127 Although the series of com-

pounds displayed weak to moderate antimicrobial activity against a range of bacte-

ria, their mode of action was found to be through inhibition of RNA and protein

synthesis, specifically via inhibition of the switch region of RNA polymerase—a

known target of naturally occurring antimicrobials, such as myxopyronin, corallopyr-

onin, and ripostatin. Importantly, these squaramides were the first reported non-nat-

ural-product-related inhibitors of the switch region of RNA polymerase, and with

their ease of synthesis and facile derivatization, a subsequent report led by Mura-

kami and co-workers soon followed.128 From the starting point of 174, a SAR study

determined that the terminal isoxazole and a benzyl group appended to a squara-

mide are crucial for biochemical potency and bind into distinct relatively narrow, hy-

drophobic pockets in the enzyme. Moreover, 172, 173, and 175 were found to

display 20- to 60-fold higher in vitro antimicrobial activity against an efflux-negative

strain of Haemophilus influenzae than 174. Through X-ray crystal-structure analysis

of Escherichia coli RNA polymerase co-crystallized with compound 172 (Figure 53),

the authors predicted that drug binding in this region interfered with the conforma-

tional change of the clamp domain and/or with binding of template DNA to RNA po-

lymerase, a mechanism similar to that of natural product myxopyronin.

The use of squaramides in the development of novel anti-cancer agents has also

gained research attention in recent years. Triola and co-workers synthesized a large

series of squaramates and squaramides and conducted an investigation into their

cytotoxic activity in different cancer cell lines.129 Compound 176 (Figure 54) was re-

vealed as the lead compound because it exhibited potent and selective cytotoxicity

against the human gastric cancer cell line HGC-27. Cell-cycle distribution analysis

and cell-death studies showed that compound 176 induces cell-cycle arrest at the

G1 phase and subsquent caspase-dependent apoptosis, leading the authors to pur-

sue squaramide 176 as a novel agent for the treatment of gastric carcinoma.

Very recently, Fournier et al. at Nestlé Skin Health reported a series of squaramide-

based hydroxamic acids, 177–180 (Figure 55), that were found to act as histone de-

acetylase (HDAC) inhibitors. Such HDAC inhibitors, which can disrupt chromatin

folding, have been exploited in recent years for the oral treatment of cutaneous

T cell lymphoma (CTCL), culminating in the FDA approval of vorinostat and romidep-

sin. Squaramides 177 and 178were found to exhibit subnanomolar binding values to

HDAC1 and nanomolar EC50 values against the HuT78 cell line (cutaneous T
1468 Chem 5, 1398–1485, June 13, 2019
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Panobinostat and Squaramide-Based HDAC Inhibitors 177–180
lymphocyte). Several series of compounds were explored, and it was found that

many candidates suffered from problems of solubility but showed high potency,

whereas those with improved solubility suffered from a reduction in potency. Over-

all, compound 180 displayed the most promising activity with cellular potency com-

parable to those of investigated or approved drugs, such as quisinostat and pano-

binostat, but with a profile better suited for topical treatment of CTCL.

In a further example of squaramide-based anti-cancer agents, Zhou and co-workers

have reported several novel estrogen-derived metal complexes, in which the

squaramide moiety was used as a metal chelator.130 Ligand 181 was prepared by

a four-step synthetic strategy before reaction with three transition metals (Pd, Ni,

and Zn) yielded metal complexes 182a–182c (Figure 56). Estrogen receptor (ER)-

binding affinities of complexes 182a–182c were measured by a competitive fluores-

cence polarization binding assay using both purified human subtypes (ERa and ERb)

and compared with estradiol. The authors demonstrated that all complexes retained

binding affinity for both subtypes (except 182c, which was selective for ERa); 182b

showed the highest affinity for ERa (2.3% G 0.5%), and 182a showed the highest af-

finity for ERb (0.85%G 0.05%). Furthermore, transcriptional activity tests using Lucif-

erase reporter gene assays in human embryonic kidney (HEK-293T) cells showed that

all of the complexes were agonists of ERa, and 182a and 182c showed greater

agonist activity than the neutral free ligand 181. Several ER agonists are clinically

approved for the treatment of breast cancer; thus, the results of this study could yield

a new approach for novel squaramide-based breast cancer therapeutics.

Wan et al. have also reported squaramide-based metal complexes for medicinal appli-

cation; for example, bisperoxovanadium(pyridine-2-squaramide) 183 has been shown

to exert a neuroprotective effect in cerebral ischaemia-reperfusion (Figure 57).131

The study demonstrated that 183 inhibited the activity of phosphatase and tensin

homolog deleted on chromosome 10 protein (PTEN) (a phosphatase that dephos-

phorylates proteins and lipids; IC50 = 39.44 G 5.92 nM) and increased Akt activity
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(Akt is a multi-isoform serine/threonine kinase implicated in cell survival and growth).

Moreover, 183 was also shown to elevate ERK1/2 (believed to mediate cell survival,

neuronal plasticity, and migration) albeit via an independent pathway, thus prevent-

ing neuronal death in vitro and promoting functional recovery in stroke animals. The

authors concluded that 183 confers its neuroprotective action by suppressing PTEN

and activating ERK1/2 and thus yields a bi-target neuroprotectant that could be

developed as a future treatment for stroke.

Although this has been a non-exhaustive list, we have used the above examples to

highlight recent progress in the use of squaramides in both academic and industrial

research programs for new drug candidates. The breadth of disease states under

investigation in addition to the diverse structures involved shows the vast scope

and potential of squaramides for use in medicinal chemistry. The recent increased

interest in drug-based squaramides serves to further highlight the future potential

of this class of compounds, where the surface has barely been scratched. The final

area that we focus on in this review is the utility of squaramides in bioconjugation
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Figure 57. Chemical Structure of Bisperoxovanadium(pyridine-2-squaramide) 183
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Figure 58. Synthesis of Squaramate-RNA for Peptidyl-RNA Synthesis and Cross-Linking with Active Site K305 of the Aminoacyl-Transferase FemXWv

Reproduced with permission from Fonvielle et al.133 Copyright 2016 Wiley-VCH Verlag GmbH & Co. KGaA.
reactions, where again, the versatility and simplicity of the squaramide moiety serve

many advantages for the chemistry and biology communities.

SQUARAMIDES AS A TOOLS FOR BIOCONJUGATION

Coupling reactions with squaric acid derivatives, such as diethyl-, dimethyl, ditertbu-

tyl, and dichloro squarate, have found increased utility as a useful method of

bioconjugation because of facile reaction protocols, high reaction yields and high

functional-group tolerance, and usually very high conversions. Glüsenkamp et al.

were some of the first authors to recognize the potential of squaric acid derivatives

as useful bioconjugation scaffolds; they synthesized a range of squaric acid amides

containing lysine, biotin, bovine serum albumin, and adenine.132 Since then, many

examples of squarate-mediated bioconjugations covering a diverse range of bio-

molecules have been reported. Below, we review some recent examples.

Etheve-Quelquejeu, Arthur, and co-workers utilized a squarate conjugation strategy

toward facile RNA functionalization whereby the introduction of a squaramide

monoester provides an electrophilic site at the 30 end of RNA (Figure 58).133 The au-

thors showed that they could synthesize peptide-RNA conjugates in a facile manner
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by taking advantage of the reduced reactivity of themonosquaramide resulting from

the first amidation step. This feature enabled sequential amidation reactions leading

to asymmetric squaramide containing peptidyl-RNA conjugates with high selectivity

and in high yields. The strategy proved particularly attractive because the electro-

philic squaramate-RNAs had the ability to specifically react with the primary amines

of the targeted unprotected peptides in spite of the presence of phosphate, hy-

droxyl, and carboxylic acid functional groups. The authors used the protocol to syn-

thesize an RNA-UDP-MurNAc-pentapeptide in 23% yield in aqueous buffer (500 mM

borate at pH = 9.2) and also showed that increasing the size of the RNA moiety did

not reduce the efficiency of the coupling reactions. Indeed, a newly synthesized

RNA-UDP-MurNAc-pentapeptide conjugate was further biologically evaluated

where it was shown to successfully inhibit the aminoacyltransferase FemXWv from

Weissella viridescens, an aminoacyl-transferase involved in bacterial cell wall

synthesis, with an IC50 value of 123 G 6 nm. A squaramate-RNA was also found to

specifically react with FemXWv enzyme at the catalytic Lys 305 residue despite the

presence of several other lysines. This result further highlights the useful properties

of the squarate moiety and its ability to act as a versatile tool for the synthesis of both

peptidyl- and protein-RNA conjugates.

McGouran and co-workers recently reported the first example of a squaramide

modification at the 50-terminal position of oligonucleotides. The authors reported

the synthesis of oligonucleotides 184–186 (Figure 59), where the 50-phosphate
was replaced by different squaramides introduced chemoselectively after solid-

phase synthesis.134 The resulting oligonucleotides were evaluated for their ability

to perform as phosphate isosteres by using the Zn2+-dependent exonuclease

SNM1A. This enzyme has 50-to-30 activity and requires a terminal 50-phosphate for

substrate recognition and catalysis. This model system revealed that introduction

of the squaramide modification yielded minimal recognition as a 50 phosphate

mimic; however, inhibition of SNM1A was observed and thought to occur

through Zn2+ coordination at the enzyme active site.

Donnelly, Hicks, and co-workers reported the synthesis of a squarate derivative of

desferrioxamine B, a hexadentate bacterial iron siderophore that can act as a ligand
1472 Chem 5, 1398–1485, June 13, 2019
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for 89ZrIV radiopharmaceuticals.135 The study reported a simple squaramate deriva-

tive of desferrioxamine B, 187 (Figure 60), which was found to be an excellent ligand

with potential to label antibodies, proteins, and peptides with 89ZrIV while having the

desired shelf stability and the ability to react rapidly with amino groups in proteins

and peptides under mild conditions (labeling was complete in%30 min, ca. 100% la-

beling was measured by iTLC, and the ligand was found to be stable forR5 months

when stored at 20�C). Moreover, the use of the squaramide linker provided the pos-

sibility that the dione backbone of the squaramide might coordinate to ZrIV to give

putative 8-coordinate complexes. The versatility of 187 to partake in antibody conju-

gations was demonstrated in separate conjugation reactions with the anti-CD20 anti-

body, rituximab, the metalloprotein transferrin, and trastuzumab, an antibody that

binds to the extracellular domain of human epidermal growth factor receptor 2

(HER2) and is used as a therapy for treatment ofHER2-positive breast cancer. Imaging

studies with human ovarian high-copy HER2 cell line SKOV3 xenograft models

demonstrated enhanced imaging capability of the 89Zr-187-trastuzumab conjugates

compared with the thiourea derivative 188, for which reduced liver and bone uptake

and increased tumor and spleen uptake were measured.

Ito and co-workers reported a similar approach for the conjugation of the BODIPY-

modified Man9GlcNAc2derivative 189, equipped with a reactive squarate (Fig-

ure 61).136 Probe 189 was evaluated for its ability to label UDP-glucose:glycoprotein

glucosyltransferase (UGGT), an enzyme with the ability to transfer a glucose residue

to N-glycan moieties of incompletely folded glycoproteins. As in the previous

examples, the authors exploited the electrophilic nature of the squarate moiety to

promote bioconjugation with nucleophilic amino acid residues in the aglycon-recog-

nition site of human UGGT, resulting in squaramide formation. Indeed, the authors

were able to successfully label the UGGT active site by reaction at a unique lysine

residue (K1424), thus gaining valuable insight in to the folding sensing mechanism

of human UGGT1 (HUGT1).

After the original work of Glüsenkamp et al.132 nucleotide conjugation was further

explored by Sekine and co-workers, who designed novel analogs of 20-deoxynucleo-
tides and ribonucleotides that incorporated the squaramide moiety.137 By replacing

the phosphoric acid residues of natural nucleotides with squaric acid the authors

suggested that such molecules might act as electronic isosters of 50-nucleotides.
Because of their strong acidity (pKa= 2.3), the nucleotide analogs were thought to

exist in the mono-anionic form; thus, under physiological conditions, they would

display unique structural, electronic, and conformational properties that would

mimic those of the natural nucleotides and could give rise to potential biologically
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Figure 61. Squaramide-Based Protein Labeling

(A) Chemical structure of probe 189.

(B) Labeling of UGGT with probe 189.

Reproduced with permission from Ohara et al.136 Copyright 2015 American Chemical Society.
active compounds, such as anti-viral or anti-cancer agents. Indeed, Honek and

co-workers subsequently investigated some novel squarate-based carbocyclic

nucleosides for their anti-viral and anti-cancer properties (Figure 62).138 Although

compounds 190–192 displayed some modest anti-cancer activity against a range

of cancer cell lines (including non-small cell lung cancer [NCI-H522], ovarian cancer

[OVCAR-8]), leukemia [CCRF-CEM], renal cancer [UO-31], colon cancer [KM12], mel-

anoma [UACC], and CNS cancer [SF-295]), no anti-viral properties were reported.

Another interesting example of squaramide conjugation to nucleotides was recently

reported by Kieltyka and co-workers, who investigated the use of bis-squaramide 24

as a supramolecular polymer (vide supra).4 They subsequently synthesized squara-

mide bola-amphiphile DNA oligonucleotide conjugates 193 (DNA sequence =

5-hexynyl/TTAACCCACGCCGAAT) and 194 (5-hexynyl/TATACGTGCATACGAT)
1474 Chem 5, 1398–1485, June 13, 2019



190

NH
HO NH2

O

O

191

NH
HO O

O

O

192

NH
HO O

O

O
Na

Figure 62. Chemical Structures of Squarate-Based Carbocyclic Nucleosides 190–192
and demonstrated their capacity to act as effective multi-component supramolecu-

lar polymers capable of recognizing DNA-labeled gold nanoparticles (Figure 63).139

Through TEM analysis, gel electrophoresis, fluorescence quenching, and thermal

denaturation experiments, they observed reversible loading and exchange of

AuNPs by orthogonal self-assembly. Moreover, the recognition event could be

addressed in a programmable and reversible fashion through the orthogonal self-as-

sembly of varying DNA strands. Taking advantage of azide-alkyne coupling

chemistry, the authors could tether nanoparticles of different sizes to the same

DNA-conjugated squaramide polymer. They highlighted the potential of this strat-

egy for the reversible labeling of DNA-grafted squaramides with various complex

biological molecules (e.g., peptides or proteins), which could enable selective pre-

sentation of biochemical signals on the surface of such squaramide-based supramo-

lecular polymers.
Figure 63. Squaramide Conjugation to Nucleotides for Reversible Labeling of DNA

(A) Chemical structures of bis-squaramide bola-amphiphiles 193 and 194.

(B–D) Schematic illustration of the reversible loading of squaramide-based supramolecular polymers with AuNPs by orthogonal self-assembly.

Adapted with permission from Noteborn et al.139 under CC BY-NC 4.0.
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Shinada and co-workers have reported a number of examples of a-amino acid ana-

logs in which the carboxylic acid group of an a-amino acid is replaced with a 2,3-di-

oxocyclobut-1-enyl group to form so-called a-amino squaric acids (a-Asq), such as

195 and 196 (Figure 64).140,141 Recently, they further developed their methodology

to allow the synthesis of a-Asq-containing peptides by using a solid-phase peptide

synthesis approach. FmocHN-Gly[a-Asq]-Oi-Pr 197 was successfully exploited as a

bioconjugation moiety, allowing the construction of a selection of squaramide con-

taining hexapeptides, including Sq-peptide 198. 198, containing the squaramide

moiety, was subjected to enzymatic hydrolysis with carboxypeptidaseY, and

MALDI-TOF MS analysis indicated that the a-Asq moiety was stable to cleavage un-

der these conditions. Such results suggest that the inclusion of a-Asqs could be an

effective strategy for increasing the metabolic stability of peptides—a significant

limitation to the development of peptide-based drugs.142

Rotger and co-workers have exploited the squaramidemotif as amethod of inducing

folds and turns in peptides and peptidomimetics and as a preorganization strategy

for the macrocyclization of oligosquaramides.143–145 One of their more recent exam-

ples reported aN-methylated squaramide, 199, that was capable of inducing folding

in short peptidomimetic structures (Figure 65).146 Using Fmoc strategy solid-phase

peptide synthesis, 199 was incorporated into a-peptide sequence 200, where it was

shown by various NMR experiments (TOCSY, NOESY, and ROESY), X-ray crystallog-

raphy, and circular dichroism (CD) that the inclusion of 199 in the sequence induces

the formation of hairpin structures in water through the formation of both a- and

b-turns (Figure 65).

The squarate ester bioconjugation strategy has been exploited by Luk and co-workers,

who reported the synthesis of a new class of squaramides, 201–205, that mimic the nat-

ural tripeptide ligand Arg-Gly-Asp (RGD), a well-known integrin ligand that mediates

mammalian cell adhesion (Figure 66).147 By exploiting dietheyl squarate, the authors

were able to construct a number of RGDmimics that contained a positive and a negative

charge separated by the rigid and hydrophobic cyclobut-3-ene-1,2-dione moiety.

Indeed, squaramides 201 and 202 were shown to inhibit cyclic RGD-mediated cell

adhesion at concentrations at least 5-fold lower than that of the linear natural peptide

GRGDS, whereas 204, when immobilized on a gold surface, facilitated faster and
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(A) Chemical structures of squaramide-based turn inducer 199 and the model peptido-squaramide 200.

(B) Schematic representation of typical b-turn and a-turn induced by the squaramide 199.
stronger cell adhesion than that measured for GRGDS. Interestingly, the authors also

reported the bioconjugation of cyclic(RGDfK) with an alkanethiol to form self-assembled

monolayers of the alkanethiol 205 on a gold surface.

Fluorophore conjugation to squaramides has also become an active area of

research. A recent report from Rotger, Costa, and co-workers described the syn-

thesis of two fluorescent cyclosquaramides, 206 and 207; an analog of the known

cyclosquaramide 208 was appended to either a bodipy or a FITC fluorophore via

an amino alkyl linker.31 Photopysical evaluation of 206 and 207 demonstrated emis-

sion maxima at 510 and 525 nm, respectively, in aqueous solution, where at

physiological pH the emission was largely switched on in both cases. Interestingly,

206 showed a 5-fold increase in emission under acidic conditions (pH < 6) with

the emission quantum yield at pH 5.5 = 0.15, slightly higher than that measured

at neutral pH. Moreover, flow cytometry and confocal fluorescence microscopy

analysis revealed that both 206 and 207 were rapidly uptaken by human glioblas-

toma cells (U87MG) and nontransformed mouse fibroblast cells (NIH-3T3); both
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probes were shown to localize largely in vesicle-like structures in the cytosol

(Figure 67). Further co-localization experiments with 206 demonstrated that the

observed staining pattern in well-defined punctated sub-cellular structures was

most likely a result of accumulation within early and late endosomes; the slightly

acidic nature of these organelles led to optimal emission characteristics. The

process is thought to arise through an endocytotic receptor-mediated mechanism

that disturbs late endosome maturation and causes compound 206 to be seques-

tered in the late endosome for a prolonged period of time and presents an

application of 206 as a fluorescent probe for selective imaging of late endosomes

in live cells.

Direct conjugation of a fluorophore to the squaramide ring has also been

demonstrated recently by Herrera, Concepcion Gimeno, and co-workers, who syn-

thesized a series of luminescent squaramide monoesters, 209–216 (Figure 68).148

The compounds that exhibited wide-ranging emission maxima from 474 to

616 nm in DMSO solution were, in some cases, also found to be highly cytotoxic

to HeLa cells. Conversely, those with modest cytotoxicity (210, 212, and 213) were

found to be readily uptaken by the cells and showed varied cellular distribution

such that both lysosomal (210 and 213) and nuclear localization (212) were

observed (Figure 68). The authors highlighted the potential of such monoesters

for chiral and non-planar bioprobes given the synthetic versatility of squarate

esters.
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Figure 67. Fluorophore Conjugation with Squaramides

(A) Chemical structures of cyclosquaramides 206–208.

(B) Confocal images of U87MG and NIH-3T3 cells stained with cyclosquaramides 206 (top) and 207 (bottom).

Reproduced with permission from Sampedro et al.31 Copyright 2014 American Chemical Society.
CONCLUSIONS

The use of squaramides has developed rapidly in recent years with the number of

research articles reporting that the four-membered ring structure has increased

over 5-fold in the past 10 years. Numerous advantageous properties, such as aroma-

ticity, structural rigidity, stability, and facile synthetic approaches, have rendered the
Chem 5, 1398–1485, June 13, 2019 1479



Figure 68. Luminescent Squaramide Monoesters for Cellular Imaging

(A) Chemical structures of luminescent squaramide monoesters 209–216.

(B) Fluorescence microscopy images of HeLa cells incubated with compound 212. (a) Image upon excitation at 405 nm. (b) Image upon excitation at

578 nm. (c) Superimposed image of (a) and (b). IS, internal standard LysoTracker Red DND-99.

Reproduced from Fernández-Moreira et al.148 with permission from the Royal Society of Chemistry.
squaramides as an attractive scaffold for use across a diverse set of the chemical sci-

ences. This review has attempted to give an overview of recent developments where

major advances have been reported in the use of squaramides to construct large and
1480 Chem 5, 1398–1485, June 13, 2019



complex self-assembly structures and materials, to catalyze a diverse set of synthetic

transformations, to bind anionic guests, to sense anionic analytes, and most recently

to stimulate transmembrane anion transport. Similarly, medicinal chemists have

taken note of the scaffold, thought of as a bioisostere for biologically ubiquitous

phosphate, where both academic research programs and pharmaceutical com-

panies are pursuing new drug candidates containing the squaramide scaffold in a

diverse range of therapeutic areas. The field of chemical biology is also gaining

advantage from this useful class of compounds; for example, the sensitive and selec-

tive reaction of squarate esters with amines is being exploited as a mild and robust

method for bioconjugation of peptides, proteins, carbohydrates, nucleosides, and

fluorescent dyes. It is exciting to see such diverse development of squaramide chem-

istry, and this points to a natural evolution toward more applied uses of the scaffold.

This class of simple organic building blocks has the potential to affect our lives

through solving problems faced by the modern world; sensors for environmental

pollution, new drug candidates, improved biomolecular assays, and novel functional

materials are all possible. The future is bright for squaramides, and new and exciting

developments are on the horizon as many more applications emerge and their true

potential is fully realized.
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López, E., Herrera, R.P., Casanovas, J.,
Alemán, C., and Dı́az Dı́az, D. (2016). Self-
assembled fibrillar networks of a multifaceted
chiral squaramide: supramolecular
multistimuli-responsive alcogels. Soft Mater.
12, 4361–4374.
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Deyà, P.M., and Costa, A. (2006). Efficient
macrocyclization of preorganized palindromic
oligosquaramides. Angew. Chem. Int. Ed. 45,
6844–6848.

145. Martı́nez-Crespo, L., Escudero-Adán, E.C.,
Costa, A., and Rotger, C. (2018). The role of
N-methyl squaramides in a hydrogen-
bonding strategy to fold peptidomimetic
compounds. Chem. Eur. J. 24, 17802–17813.

146. Martı́nez, L., Martorell, G., Sampedro, Á.,
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