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The hepatitis C virus (HCV) protein, p7, suppresses
inflammatory responses to tumor necrosis factor (TNF)-
a via signal transducer and activator of transcription
(STAT)3 and extracellular signal-regulated kinase
(ERK)-mediated induction of suppressor of cytokine
signaling (SOCS)3
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ABSTRACT: Viruses use a spectrum of immune evasion strategies that enable infection and replication. The acute
phase of hepatitis C virus (HCV) infection is characterized by nonspecific and often mild clinical symptoms,
suggesting an immunosuppressive mechanism that, unless symptomatic liver disease presents, allows the virus to
remain largely undetected. We previously reported that HCV induced the regulatory protein suppressor of cytokine
signaling (SOCS)3, which inhibited TNF-a—mediated inflammatory responses. However, the mechanism by which
HCV up-regulates SOCS3 remains unknown. Here we show that the HCV protein, p7, enhances both SOCS3 mRNA
and protein expression. A p7 inhibitor reduced SOCS3 induction, indicating that p7’s ion channel activity was
required for optimal up-regulation of SOCS3. Short hairpin RNA and chemical inhibition revealed that both the
Janus kinase-signal transducer and activator of transcription (JAK-STAT) and MAPK pathways were required for
p7-mediated induction of SOCS3. HCV-p7 expression suppressed TNF-a-mediated IkB-a degradation and sub-
sequent NF-kB promoter activity, revealing a new and functional, anti-inflammatory effect of p7. Together, these
findings identify a molecular mechanism by which HCV-p7 induces SOCS3 through STAT3 and ERK activation
and demonstrate that p7 suppresses proinflammatory responses to TNF-a, possibly explaining the lack of in-
flammatory symptoms observed during early HCV infection.—Convery, O., Gargan, S., Kickham, M., Schroder, M.,
O’Farrelly, C., Stevenson, N. J. The hepatitis C virus (HCV) protein, p7, suppresses inflammatory responses to tumor
necrosis factor (TNF)-o via signal transducer and activator of transcription (STAT)3 and extracellular
signal-regulated kinase (ERK)-mediated induction of suppressor of cytokine signaling (SOCS)3. FASEB ].
33, 8732-8744 (2019). www.fasebj.org
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Hepatitis C virus (HCV) infection can lead to cirrhosis, many years (3, 4). HCV is detected by pathogen recogni-
liver failure, and hepatocellular carcinoma (1, 2); however, tion receptors of the innate immune system, which stim-
infected individuals often remain outwardly healthy for ulate the secretion of type I interferons (IFNs) (5-7).
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Binding of IFN-a activates the IFIN-a receptor complex
(IFN-a receptors 1 and 2), resulting in the subsequent
phosphorylation and activation of the receptor-associated
protein tyrosine kinases, Janus kinase (JAK)1 and ty-
rosine kinase 2, which phosphorylate receptor tyrosine
residues in the cytoplasmic region. This enables signal
transducer and activator of transcription (STAT) pro-
teins to bind the receptor via their Src homology 2 do-
mains (8). Phosphorylated STAT proteins translocate
to the nucleus and bind to y-activated sites (GASs) and
IFN-stimulated response elements (ISREs), inducing
transcription of IFN-stimulated genes (ISGs), which
are essential for viral clearance (9-11). Specifically,
activated STAT3 dimers bind GAS promoter se-
quences (12, 13), whereas activated STAT1, STAT2,
and IFN regulatory factor 9 trimers recognize the ISRE
DNA elements (13), resulting in distinct antiviral and
proinflammatory gene induction.

Interestingly, even though innate immunity provides
an immediate and effective response, the acute phase of
HCV infection is often asymptomatic (14), for reasons
that remain poorly understood. However, this lack of
clinical symptoms indicates that HCV has evolved anti-
inflammatory mechanisms to effectively counteract im-
mune responses. Indeed, cleavage of adaptor proteins,
mitochondrial antiviral signaling protein (MAVS),
and Toll/interleukin-1 receptor (TIR) domain—containing
adaptor protein-inducing IFN-B (TRIF) disrupt retinoic
acid inducible gene-I (RIG-I) and Toll-like receptor (TLR)3
signaling, respectively, revealing viral processes that
block HCV detection and subsequent type I IFN induction
(15-17). We have previously shown that HCV also de-
grades essential components of the type I IFN JAK-STAT
pathway via the ubiquitin-proteasome system, thereby
blocking induction of functional antiviral ISGs (18). We
also found that HCV induces expression of the intracel-
lular inhibitor, suppressor of cytokine signaling (SOCS)3,
a negative regulator of both the JAK-STAT and NEF-
kB pathways (19). Therefore, we propose that HCV-
mediated SOCS3 induction, in turn, suppresses TNF-a’s
proinflammatory signaling (19), perhaps providing some
explanation for HCV’s clinical silence during the period of
acute infection.

The SOCS family of proteins consists of 8 members
[cytokine-inducible Src homology 2 domain—containing
protein (CIS) and SOCS1-7] that regulate signal trans-
duction (20). Although SOCS classically inhibit the JAK-
STAT pathway through direct interaction with JAKSs, or
the receptor, or both (21, 22), they also suppress other
pathways, including the NF-«B signaling cascade. In fact,
SOCS3 is thought to suppress NF-kB signaling via associ-
ation with TNF receptor-associated factor (TRAF) family
member-associated NF-kB activator (TANK)-binding ki-
nase 1 (TBK1) TRAF2, and TRAF6 (19, 23-26). Because
SOCS proteins control many inflammatory responses, it
is no surprise that viruses have evolved to harness this
suppressive power, essentially controlling the host’s
innate antiviral activity (27). Bode et al. (28) previously
reported that HCV’s core protein up-regulated SOCS3,
which is thought to block IFN-a—induced STAT1 phos-
phorylation. Additionally, Hsieh et al. (29) found that HCV
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E2 expression led to a dose-dependent increase in the
SOCS3 gene and protein of Huh? cells. They also showed
that E2 expression resulted in insulin receptor substrate-1
degradation, which was restored following MG132 treat-
ment. The authors suggested that E2-mediated SOCS3
may target insulin receptor substrate-1 for degradation,
thereby regulating insulin signaling. Although elevated
SOCS3 has been observed in the liver of HCV-infected
humans and chimpanzees (30), its high expression may
explain the lack of response to pegylated IFN-a and riba-
virin treatment (31, 32). The correlation between chronic
HCV infection and increased SOCS3 indicates an impor-
tant role for this protein in HCV’s immune evasion and
modulation strategy. However, whether other HCV pro-
teins (apart from HCV core and E2) induce SOCS3 and the
exact mechanism by which HCV enhances SOCS3 ex-
pression have not been explored.

Diverse stimuli, including cytokines, growth factors,
and bacterial and viral pathogen-associated molecular
patterns, stimulate SOCS3 induction (33). Transcrip-
tional activation of SOCS genes is classically mediated
by the STAT transcription factors (34). STAT3 has been
found to regulate SOCS3 induction (35-37), with both
STAT1 and STATS5 also playing a role (38, 39). In addi-
tion to the JAK-STAT cascade, there is a growing body
of evidence implicating other signaling pathways in the
induction of SOCS3, such as that of MAPK (40). The
conventional mammalian MAPKs include ERK, JNK
and p38 (41). MAPK signaling can be activated by TLR
or receptor tyrosine kinase engagement (42, 43), leading
to activation of transcription factors, such as activating
protein 1 (AP-1) and ETS-like protein-1 (ELK1) (44-49).
All 3 MAPKs (ERK, JNK, and p38) have been shown
to regulate SOCS3 expression (50-55). Although
induction through these alternative pathways was ini-
tially a surprise, this insight into SOCS3’s transcrip-
tional regulation gives us a distinct advantage when
explaining the mechanism by which HCV stimulates its
induction.

HCV’s ion channel, p7, is vital to producing infectious
viral particles during viral egress (56). Although immune
evasion mechanisms of several HCV proteins have been
described, p7’s effect on the immune response has gone
largely unstudied, with p7 having only been shown to
inhibit the induction of the ISG, interferon-o inducible
protein (IFI)6-16 (57). In this study, we show that p7 en-
hances SOCS3 mRNA and protein expression in hepato-
cytes. Using a p7 inhibitor, we discovered that p7 ion
channel activity was required for this SOCS3 induction.
We found that p7 expression led to enhanced phosphor-
ylated STAT3, whereas short hairpin RNA (shRNA)
knockdown of STAT3 prevented p7-mediated induction
of SOCS3. p7 also stimulated activity of the well-known
STAT3-driven promoter, GAS, revealing a downstream
transcriptional effect of this viral protein. In addition, ERK
phosphorylation was enhanced by p7, whereas chemical
inhibition of upstream MEK suppressed p7-mediated in-
duction of SOCS3. Furthermore, activation of TNF-a—
mediated NF-«B signaling was reduced in the presence of
p7, indicating a functional inhibitory effect of p7 upon
inflammation. Together, these findings reveal a novel
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mechanism by which p7 induces SOCS3 and modulates
proinflammatory signaling.

MATERIALS AND METHODS
Cell culture

Huh7, Huh?7.5, and human embryonic kidney (HEK)293T cells
were grown in MEM, supplemented with 10% fetal calf serum,
100 U/ml penicillin, and 100 pg/ml streptomycin; and cultured
at 37°C in 5% CO,. Cells were treated with 1000 IU/ml human
IFN-a2A (Roche, Basel, Switzerland), 10 ng/ml human TNF-«
(PeproTech, Rocky Hill, NJ, USA), 50 ng/ml lipopolysaccharide
(LPS), or 50 ng/ml phorbol myristate acetate (PMA). During
experiments using N-(n-Nonyl)deoxynojirimycin (NNDN]),
cells were transfected with 1 wg of HCV-p7-human influenza
hemagglutinin (HA) or empty vector (EV) control for 16 h, prior
to 8 h treatment with 20 or 100 uM of NNDNJ.

Constructs

p7 genotype 2a (GT2a) was amplified from pWPI_sp_p7_BLR (a
kind gift from Ralf Bartenschlager, University of Heidelberg,
Heidelberg, Germany) using the primers 5'-ATGGAGGCCC-
GAATTGCACTAGAGAAGCTGGTCATC-3' (forward) and 5'-
AGAGATCTCGGTCGATCAAGCATAAGCCTGTTGGGG-3'
(reverse) and Velocity DNA polymerase (Bioline, London,
United Kingdom). The product was inserted into EcoRI-and Sall-
(New England Biolabs, Ipswich, MA, USA) digested pCMV
vector, in frame with the N-terminal HA epitope tag by In-Fusion
Cloning (Clontech Laboratories, Mountain View, CA, USA). p7
genotype 1a (GT1a) was amplified from pCMV-p7-HA using the
primers 5'-ATGGAGGCCCGAATTGATGGCTTTGGAGAAC-
CTCG-3' (forward) and 5'-AGAGATCTCGGTCGACTATGCG-
TATGCCCGCTG-3' (reverse) and Velocity DNA polymerase
(Bioline). The product was inserted into EcoRI- and Sall- (New
England Biolabs) digested pCMV vector out of frame with the
N-terminal HA epitope tag by In-Fusion Cloning (Clontech
Laboratories).

Transfection
Huh? cells were transfected with 1 or 4 pg of HCV-p7-HA (HCV
GT1a), HCV-p7 GT2a, or the corresponding EV controls for 24 h

using Lipofectamine 2000 (Thermo Fisher Scientific, Waltham,
MA, USA), according to the manufacturer’s instructions.

TABLE 1. Primers for PCR amplification

HEK293T cells were transfected in 6-well plates with 1 pg of
shRNA STAT3 and scrambled control (InvivoGen, San Diego,
CA, USA) or with 1 or 4 ug of HCV-p7 GT1a or HCV-p7 GT2a-
HA, using Lipofectamine 2000 for 24 h.

HCV infection

Huh?.5 cells were transfected with 1 pg of Jc1, Jc1 with a partial
p7 deletion (Jc1Ap7, a mutant lacking residues 1-32) (58) (kind
gifts from Ralf Bartenschlager, Heidelberg University), or an
EV control. Supernatants were collected 24 and 48 h post-
transfection. Huh7.5 cells were then infected with serial dilutions
of the virus-containing supernatants for 72 h, and the median
tissue culture infectious dose (TCID50) was calculated by mea-
suring HCV-nonstructural protein (NS)2 mRNA expression by
quantitative RT-PCR (qRT-PCR) using the following primers:
5'-AGGGTATGCGCTTTGG-TGAA-3' (forward) and 5'-CCC-
AGTCCGACATAGGTGTG-3' (reverse).

qRT-PCR analysis

Total RNA was isolated from cells using the Tri Reagent (Milli-
poreSigma, Burlington, MA, USA) method. RNA yields were
assessed using a NanoDrop ND-1000 spectrophotometer
(Thermo Fisher Scientific). One microgram of total cell RNA was
reverse-transcribed into cDNA using the SensiFast cDNA Syn-
thesis Kit (Bioline) according to the manufacturer’s instructions.
PCR amplification was performed using primer specific pairs, as
detailed in Table 1. Each reaction was carried out in duplicate
using the following cycling parameters: 95°C for 15 min followed
by 40 cycles of 92°C for 30's, 65°C for 1 min, and 72°C for 30 s. All
gene amplifications were normalized to 40S ribosomal protein
S15 (RPS15). Data analysis was carried out using the 2-DD
comparative method.

Immunoblotting

Cells were harvested in radioimmunoprecipitation assay (RIPA)
lysis buffer and supplemented with protease and phosphatase
inhibitors (1 mM sodium orthovanadate, 1 mM phenyl-
methylsulfonyl fluoride (PMSF), 5 pg/ml leupeptin) and 1 mM
dithiothreitol (DTT). Following 1 h incubation at 4°C, extracts
were pelleted at 12,000 g at 4°C for 10 min. Sodium dodecyl
sulfate (SDS) loading buffer was added and samples were boiled
at 100°C for 7 min. Equal quantities of lysate were resolved by
SDS-polyacrylamide gel electrophoresis (PAGE), and proteins
were transferred from the gel onto a Polyvinylidene fluoride

Primer sequence, 5-3’

Gene Forward Reverse
RPS15 CGGACCAAAGCGATCTCTTC CGCACTGTACAGCTGCATCA
CIS GATCTGCTGTGCATAGCCAA ACAAAGGGCTGCACCAGTTT
SOCS1 CACTTCCGCACATTCCGTTC AGGGGAAGGAGCTCAGGTA
SOCS2 GAGCTCGGTCAGACAGGAT CAGAGATGGTGCTGACGTGT
SOCS3 ATCCTGGTGACATGCTCCTC CAAATGTTGCTTCCCCCTTA
SOCS4 CTTAGATCATTCCTGTGGGC ATGCCACCTAAAGGCTAAATC
SOCS5 TACAGCAAGCAGTCAAAGCC ACAGAGAAGAGGTAGTCCTC
SOCS6 TCTCACCATTGCTACCTCCA GAGTCCCTGATTGAATGCTC
SOCS7 CTTCTCGGAAGGGCTCCTTC AAGGCTGGCTGCAAAGCTGC
p7 GTla GGGAATTCGGGCTTTGGAGAACCTCGTAA ATTTGTCGACTCATGCGTATGCCCGCTG
p7 GT2a TTTCGTGGCTGCTTGGTACA GGGCAATGCTAGGAGCAGTA
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(PVDF) membrane. Primary antibodies were diluted 1:1000 in
5% (w/v) Marvel in 1X Tris-buffered saline with Tween or 3%
(w/v) bovine serum albumin and incubated overnight at 4°C.
Primary antibodies against SOCS3 (Abcam, Cambridge, MA,
USA), SOCS4 (GeneTex, Irvine, CA, USA), SOCS5 (Santa Cruz
Biotechnology, Dallas, TX, USA), phosphorylated STAT3
(Cell Signaling Technology, Danvers, MA, USA), total STAT3
(Santa Cruz Biotechnology), phosphorylated ERK1/2 (Cell
Signaling Technology), total ERK1/2 (Cell Signaling Tech-
nology), phosphorylated STAT1 (Cell Signaling Technology),
total STAT1 (Cell Signaling Technology), HA (Cell Signaling
Technology), IkB-a (Prof. Ron Hay, University of Dundee,
Dundee, United Kingdom), B-actin (MilliporeSigma), and
secondary anti-mouse or anti-rabbit antibodies (Thermo
Fisher Scientific) were used. Membranes were developed us-
ing enhanced chemiluminescent horse radish peroxidase
substrate (Bio-Rad, Hercules, CA, USA) and analyzed using
Image Lab software from Bio-Rad.

Luciferase reporter gene assays

Huh? cells were plated onto 6-well plates at a density of 2.5 X 10°
cells per ml. After 24 h, cells were transfected using Lipofect-
amine 2000 with NF-«B firefly luciferase reporter construct
(1 pg), GAS firefly luciferase reporter construct (1 pg), or positive
regulatory domain (PRD)IV (AP-1) firefly luciferase reporter
construct (1 pg) (a kind gift from Dr. Andrew MacDonald,
Leeds University, Leeds, United Kingdom) (59), constitutively
expressed pGL3 luciferase reporter construct, and HCV-p7-HA
(1 pg), pPCMV-HA (1 pg), Flag-TRAF6 (1 ng), or Flag-TRAF2
(1 ug). The activation of ELK1 was determined using Gal4-firefly
luciferase reporter plasmid pFR-luciferase (1 pg) with the trans-
activator plasmid pFA-ELK1 (activation domain of ELK is fused
with the yeast GAL4 DNA binding domain) (1 pg), pGL3 (1 pg),
and either HCV-p7-HA (1 wg) or pPCMV-HA control (1 ng). Cells
were treated with 10 ng/ml of TNF-a,, 1000 IU/ml of IFN-e,
50 ng/ml of LPS, or 50 ng/ml of PMA for 24 h. Cell extracts were
generated 24 h posttreatment using reporter lysis buffer (Prom-
ega, Madison, WI, USA), and extracts were assayed for firefly
luciferase and Renilla luciferase activity using the luciferase assay
system (Promega) and coelenterazine (Thermo Fisher Scientific),
respectively. Firefly luciferase values were normalized to Renilla
values, and data shown are the means * Sem of at least 3 in-
dependent experiments in triplicate.

Confocal

Huh? cells were seeded on poly-L-lysine coated cover slips for
24 h prior to transfection. Cells were fixed in 4% para-
formaldehyde for 20 min, permeabilized in 0.5% Triton X-100
for 15 min, and blocked with 5% bovine serum albumin in
PBS-Tween (0.05%) for 1 h. The cells were then stained with
1:500 anti-HA (Covance, Princeton, NJ, USA) or anti-calnexin
(Santa Cruz Biotechnology) overnight at 4°C. The cells were
then stained with 1:1000 anti-mouse—Alexa Fluor 594 and
anti-rabbit-Alexa Fluor 488 (Thermo Fisher Scientific) and
1:500 DAPI. The cover slips were then mounted in ProLong
Antifade Reagent (Thermo Fisher Scientific) before being vi-
sualized using the Olympus Fluoview confocal microscope
and analyzed using the Olympus Fluoview FV10-ASW soft-
ware (Olympus, Tokyo, Japan).

Statistical analysis

Statistical analysis was carried out using GraphPad Prism version 6
for Mac (GraphPad Software, La Jolla, CA, USA). Statistical analysis
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was performed using unpaired Student’s f test assuming Gaussian
distribution. A value of P <0.05 was deemed statistically significant.

RESULTS

HCV-p7 (GT1a) enhances SOCS3 mRNA and
protein expression

Having previously observed that HCV polyprotein ex-
pression induced SOCS3 (19), to determine which specific
region of HCV was responsible for this immune regulatory
effect, we analyzed the effect of the first nonstructural
HCV protein, p7, upon the entire SOCS family of genes.
Huh? cells were transfected with p7 or EV control for 24 h
before total RNA was analyzed for p7 and CIS-SOCS7
mRNA by qRT-PCR. SOCS3 (Fig. 1E), SOCS4 (Fig. 1F),
and SOCS5 (Fig. 1G) mRNA were significantly induced
upon the expression of p7 (Fig. 1A). In contrast, p7 had no
significant effect upon CIS (Fig. 1B), SOCS1 (Fig. 1C),
SOCS2 (Fig. 1D), SOCS6 (Fig. 1H), or SOCS7 (Fig. 1)
mRNA levels. Having observed a statistically significant
induction of SOCS3, SOCS4, and SOCS5 mRNA upon p7
expression, we next analyzed if their mRNA induction
was translated to protein by immunoblotting lysates with
the SOCS3-5 antibodies. We found that p7 enhanced
SOCS3 protein expression compared with EV control (Fig.
2A). Quantitative densitometry analysis revealed SOCS3
induction by p7 was statistically significant (Fig. 2B).
However, when we analyzed SOCS4 and SOCS5 protein,
we observed high basal expression of both proteins that
did not change upon p7 expression (Fig. 2C, E). Indeed,
densitometry analysis confirmed that neither SOCS4 nor
SOCSS5 protein expression was significantly altered by p7
(Fig. 2D, F). In summary, we found that p7 expression did
not affect CIS, SOCS1, SOCS2, SOCS6, or SOCS7 mRNA;
however, although this viral protein significantly induced
SOCS3-5 mRNA, only the induction of SOCS3 mRNA by
p7 was mirrored at the protein level. Therefore, because
SOCS3 was the only SOCS protein to be increased by p7, it
is likely to be the only family member to have a functional
impact upon immune signaling.

To confirm that the HA tag of the p7-HA construct was
not responsible for the SOCS3 induction, we next expressed a
construct in HEK293T cells encoding an untagged p7 before
analyzing SOCS3 levels. We observed that p7 alone induced
SOCS3 mRNA and protein expression (Supplemental Fig.
514, C, D). We also confirmed the expression of p7 in these
cells by measuring p7 mRNA (Supplemental Fig. S1B).

Because p7 localizes to intracellular membranes, such
as the endoplasmic reticulum (ER), we next analyzed, by
confocal microscopy, the intracellular location of our p7-
HA. Indeed, we observed that our p7-HA colocalized with
the ER marker calnexin (a molecular chaperone that lo-
cates at the ER) (Supplemental Fig. S2), confirming its
predicted location.

HCV-p7 inhibition reduces induction of SOCS3

Having identified that the expression of p7 led to an in-
crease in SOCS3, we next used a p7 inhibitor, NNDNJ, to
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Figure 1. HCV-p7 expression induced SOCS3, SOCS4, and SOCS5 mRNA. Huh7 cells were transfected with 1 or 4 pg of DNA
encoding HCV-p7-HA or EV control, and mRNA levels of p7 (A), CIS (B), SOCSI (C), SOCS2 (D), SOCS3 (E), SOCS4 (F),
SOCS5 (G), SOCS6 (H), and SOCS7 (I) were analyzed after 24 h by qRT-PCR. Results are the means = sem of 7 independent
experiments. Gene values were calculated relative to the housekeeping control, and p7-expressing cells are displayed relative to
EV controls, which were normalized to 1. *P < 0.05 (Student’s ¢ test).

investigate if its ion channel activity was responsible for
this induction. HEK293T cells were transfected with p7 or
EV control for 16 h prior to an 8-h treatment with 20 or
100 uM of NNDNJ. Cells were lysed and SOCS3 expres-
sion was analyzed by immunoblotting. We found that
treatment with 100 uM of NNDNJ]J decreased SOCS3 ex-
pression in p7-transfected samples compared with EV
control (Fig. 3), indicating that p7 ion channel activity may
be required for SOCS3 induction.

GT2a HCV-p7 promotes SOCS3 induction

Having identified that GTla p7 expression induced
SOCS3, we next analyzed if this was genotype specific by
transfecting Huh? cells with HCV GT2a p7 or the empty
WPI_BLR vector. As with p7 GT1a, we found that p7 GT2a
also enhanced SOCS3 protein expression (Fig. 4A). Den-
sitometric analysis of the experimental repeats confirmed
significantly up-regulated SOCS3 in p7 GT2a—expressing
Huh? hepatocytes (Fig. 4B). The expression of p7 in these
cells was also confirmed by measuring mRNA levels of p7
GT2a (Fig. 4C). HEK293T cells were also transfected with 1
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or 4 pg of GT2a p7-HA. Similar to our finding in Huh?7
cells, the expression of p7 GT2a in HEK293T cells en-
hanced SOCS3 protein expression (Supplemental Fig.
S3A). Densitometric analysis of the experimental repeats
confirmed significantly up-regulated SOCS3 in cells
transfected with 4 wg of GT2a p7-HA (Supplemental Fig.
S3B). These results suggest that p7 uses a conserved mech-
anism of SOCS3 up-regulation across HCV GT1a and GT2a.

Replicating HCV (Jc1) induces SOCS3 partially
through p7

Having identified that the individual p7 protein induced
SOCS3, we next investigated the role of p7 in the context of
HCV infection. Specifically, we infected highly permissive
Huh?.5 cells with the chimeric HCV genome Jc1, a hybrid
of J6CF and JFH1, or Jc1Ap7 before analyzing SOCS3
mRNA induction by qRT-PCR. We observed that infection
with full-length Jcl significantly induced SOCS3; how-
ever, this significance was lost upon infection with Jc1Ap7
(Fig. 4D, E). Interestingly, SOCS3 was partially (although
not significantly) induced by JclAp7; this was of no
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surprise, because HCV core (which is present in both our
Jcl and Jc1Ap7 constructs) has previously been shown to
also induce SOCS3 (28, 60); furthermore it is also possible
that the remaining region of p7 could be involved in the
induction of SOCS3. Indeed, it has also been reported that
HCV E2 up-regulates SOCS3 expression (29). These find-
ings support our initial observations that p7 can induce
SOCS3.

HCV-p7-mediated STAT3 activity
induces SOCS3

Because SOCS3 is classically known to be induced by
STAT3 (61), we hypothesized that STAT3 might have a
significant role in p7-mediated induction of SOCS3. To test
this hypothesis, we first investigated the effect of p7 ex-
pression upon STAT3 tyrosine phosphorylation. Huh?7
cells were transfected with p7 or EV control for 12 h, and
STAT3 phosphorylation was measured by immunoblot-
ting. We observed that STAT3 phosphorylation was en-
hanced after 12 h of p7 expression (Fig. 5A). In addition, we
also found that p7 expression had no effect on STAT1
phosphorylation after 12 h (Supplemental Fig. S4). Having
observed p7-mediated STAT3 phosphorylation, we next
investigated if this effect was passed downstream to the
GAS promoter, which is driven by STAT3 homodimers (12,

HCV-p7 INDUCES SOCS3 VIA STAT3 AND ERK

62). We observed that expression of p7 in Huh? cells sig-
nificantly induced GAS reporter activity compared with
EV; in fact, p7-mediated GAS promoter activity was as
strong as that observed in IFN-a—treated control cells (Fig.
5B). In contrast to GAS, there was no significant induction
of ISRE (Fig. 5C). This result was not surprising, because
ISRE activity requires binding of the STAT1-STAT2-IFN
regulatory factor (IRF)9, ISG factor (ISGF) 3 complex (63,
64).

Having discovered that p7 could induce both phos-
phorylated STAT3 and GAS activity, we next investigated
if STAT3 was essential for p7-mediated induction of
SOCS3. HEK293T cells were transfected with STAT3
shRINA or control shRNA for 24 h prior to 24-h transfection
of HCV-p7 or EV control. We found that by significantly
reducing STAT3 protein levels (via ShARNA knockdown)
(Fig. 6A, B), induction of SOCS3 upon p7 expression was
no longer possible (Fig. 6A). Furthermore, densitometric
analysis confirmed that the statistical significance of p7-
mediated induction of SOCS3 protein was lost in the ab-
sence of STAT3 (Fig. 6C). Collectively, because STAT3 is
classically known to be required for SOCS3 induction (61),
these data suggest that STAT3 and its subsequent phos-
phorylation are also required for p7-mediated induction of
SOCS3, possibly revealing a mechanism by which HCV
up-regulates this inhibitory protein.
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Figure 3. p7 induction of SOCS3 is blocked
by the NNDNJ p7 inhibitor. A) HEK293T cells
were transfected with 1 wg of DNA encoding
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HCV-p7-mediated ERK activity induces SOCS3

Because MAPK signaling also regulates SOCS3 expression
(65), we wondered if ERK signaling might also be involved
in p7 induction of SOCS3. Therefore, we initially analyzed
the effect of p7 on ERK phosphorylation by transfecting
Huh? cells with p7 or EV control for 24 h and subjecting
lysates to immunoblotting for ERK, total ERK, B-actin and
p7 (HA). We discovered that expression of p7 enhanced
ERK phosphorylation compared with EV control (Fig. 7A).
To further investigate the effects of p7 upon the MAPK
pathway, we also measured the promoter activity of 2
known transcription factors downstream of ERK: AP-1 and
ELK1 (66, 67). We found that p7 significantly enhanced the
promoter activity of both AP-1 and ELK1 compared with
EV control (Fig. 7B, C). Having observed that p7 could in-
duce both phosphorylated ERK- and ERK-driven promoter

Figure 4. HCV GT2a p7 induces SOCS3. Huh7
cells were transfected with 1 pg p7 GT2a or EV
control for 24 h. A) Cells were harvested, and
lysates were probed for SOCS3 and p-actin.
Blots shown are representative of 3 indepen-
dent experiments. B) Densitometric analysis of
3 Western blots was performed using Image
Lab; the bar graph illustrates the mean = SEm
increase in SOCS3 relative to B-actin and
compared with EV control, which was normal-
ized to 1. C) mRNA levels of p7 were analyzed
by qRT-PCR. Results are the means * seM of 3
independent experiments. Gene values were
calculated relative to the housekeeping control,
and p7-expressing cells are displayed relative to
EV controls, which were normalized to 1. D, E)
Huh7.5 cells were mock infected or infected
with Jcl or JelAp7 for 72 h, and mRNA levels
of SOCS3 (D) and p7 (E) were analyzed by
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activity, we next investigated if MAPK signaling was di-
rectly involved in p7-induced SOCS3 by inhibiting MEK,
which is upstream of ERK. Huh? cells were pretreated with
the MEK inhibitor, PD98059, for 45 min, prior to 24 h
transfection of p7 or EV control. Our immunoblotting
and densitometric analysis indicated that MEK inhibition
dampened p7-mediated induction of SOCS3 protein (Fig.
8), further suggesting that expression of p7 enhances MAPK
ERK signaling, which also may lead to SOCS3 induction.

HCV-p7 inhibits proinflammatory TNF-«
signal transduction

We previously reported that HCV-induced SOCS3 regu-
lated proinflammatory TNF-a signaling (19); therefore,
we next investigated if p7’s induction of SOCS3 could
also inhibit TNF-a signal transduction. Huh?7 cells were
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Figure 5. HCV-p7 induces STAT3 phosphorylation and GAS activity. A) Huh7 cells were transfected with DNA encoding HCV-p7-
HA or EV control (1 pg) for 12 h, and lysates probed for phosphorylated STAT3 (pSTAT3), total STAT3, B-actin, and HA. Blots
are representative of 3 independent experiments. B, C) Huh7 cells were transfected with plasmids encoding GAS-regulated firefly
luciferase (1 pg) (B) or ISRE-regulated firefly luciferase (1 wg) (C), along with constitutively expressed pGL3 Renilla luciferase
(1 pg) in the presence of DNA encoding HCV-p7-HA or EV control (1 pg) for 24 h. Cells were then treated with IFN-o for 24 h.
Cell lysates were assayed for firefly luciferase activity and normalized for transfection efficiency using pGL3 Renilla luciferase
activity. p7 (HA) expression and B-actin control were confirmed by Western blotting. Results shown are the means * sem of 7
(GAS) and 4 (ISRE) independent experiments in triplicate and analyzed by Student’s ¢ test; ns, not significant. **P < 0.01.

cotransfected with 1 pg of NF-kB-regulated firefly lucif-
erase and 1 g of constitutively expressed pGL3 Renilla, in

transfected with EV control or p7 for 24 h prior to stimu-
lation with TNF-« for 20 min. TNF-a-mediated NF-«xB

signaling was subsequently measured by immunoblotting
for IkB-o protein degradation. We found that p7 blocked
normal TNF-a—mediated IkB-o degradation (Fig. 94), and
densitometric analysis confirmed that the statistically sig-
nificant degradation of IkB-a was lost in the presence of p7
(Fig. 9B). To further analyze the effect of p7 upon NF-«B
signal transduction, we next analyzed the effect of p7 upon
NF-kB-dependent reporter activity. Huh7 cells were

the presence of 1 ug of either p7, EV control, or Flag-
TRAF6. After 24 h, cells were stimulated with 20 ng of
TNF-a for 24 h. Cells were harvested and assayed for
firefly and Renilla luciferase activity after 48 h. In agree-
ment with our IkB-a protein analysis, we found that
overexpression of p7 significantly inhibited TNF-a—
induced NF-«kB promoter activity compared with control
cells (Fig. 9C). In addition, we also investigated the effect
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Figure 6. STAT?3 is required for p7-mediated SOCS3 induction. A) HEK293T cells were transfected with 1 g of STAT3 shRNA or
control for 24 h prior to transfection with 1 wg of DNA encoding HCV-p7-HA or EV control for 24 h. Lysates were probed for
STAT3, SOCS3, B-actin, and HA (p7). Blots shown are representative of 3 independent experiments. B, C) Densitometric
analysis of 3 Western blots was performed using Image Lab. Bar graphs illustrate the means * sem of STAT3 (B) and SOCS3 (C)
expression calculated against B-actin housekeeping control and displayed relative to EV control, which was normalized to 1. Data
were analyzed by Student’s ¢ test. *P < 0.05.
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shown are the means * sem of 3 (AP-1) and 4 (ELK1) independent experiments in triplicate and analyzed by Student’s ¢ test.

*P < 0.05, **P < 0.01.

of p7 on both TRAF2- and TRAF6-mediated NF-kB-
dependent reporter activity. HEK293T cells were
cotransfected with 1 g of NF-kB-regulated firefly lucif-
erase and 1 pg of pGL3 Renilla in the presence of 1 ug of
either Flag-TRAF2, Flag-TRAF6, p7, or EV control. Cells
were harvested after 48 h for firefly and Renilla luciferase
activity. We also observed that p7 expression reduced
both TRAF2- and TRAF6-induced NF-«kB promoter ac-
tivity (Supplemental Fig. S5). Taken together, these results
strongly suggest that p7 regulates TNF-a—mediated NF-
kB activation, thus pointing towards a new and specific
role for p7 in controlling inflammatory signaling.

DISCUSSION

SOCS proteins are critical negative regulators of cyto-
kine and growth factor signaling, required to switch
off signaling cascades, which, if unregulated, could
have pathologic consequences (68). Many viruses have
hijacked this mechanism to dampen innate antiviral
activity (27). Interestingly, clinicians have long reported
that HCV infection has mild pathology, resulting in the
virus going undetected in many patients until liver
disease presents its own clinical symptoms (69). The
lack of inflammatory symptoms, associated with nor-
mal viral infection, suggests that HCV has developed
mechanisms to suppress the host innate antiviral im-
mune response. Indeed, HCV has evolved multiple
strategies of evasion, enabling the silent progression of
disease (70). Our laboratory previously discovered that
PBMCs from patients infected with HCV had signifi-
cantly enhanced SOCS3 levels compared with healthy
controls and that HCV-mediated SOCS3 induction
inhibited proinflammatory TNF-a signaling in Huh7
cells (19). Therefore, the mechanism of SOCS3 up-
regulation warranted further investigation.

Here, we show that HCV-p7 significantly induced
SOCS3 mRNA and protein expression. Moreover, we also
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report that infection of Huh7.5 cells with Jc1 HCV virus
significantly up-regulated SOCS3 mRNA expression and
that this significance was lost following infection with
Jc1Ap7. We observed that SOCS3 was partially induced by
Jc1Ap7; however, because Jc1Ap?7 is a partial deletion, the
remaining section of p7 may be inducing some SOCS3;
furthermore, because the HCV core (28) and E2 (29) pro-
teins are known to also up-regulate SOCS3, they may also
account for the partial increase in SOCS3. Because p7 can
affect several cellular processes, including membrane
permeability and ion flux, future studies using p7 mutants
should analyze the specific role of these processes in
SOCS3 induction. Because SOCS3 induction is associated
with STAT3 activity (36), we speculated that STAT3 might
be important for the up-regulation of SOCS3 expression.
Because STAT3 phosphorylation is required for propaga-
tion of its pathway (71), we first investigated the effect of
p7 upon phosphorylated STAT3. We found that STAT3
phosphorylation was enhanced following p7 expression;
indeed, downstream GAS luciferase activity was also
significantly up-regulated. Taken together, these results
indicate that in the presence of p7, STAT3 activity was
increased and that this may have led to functional pro-
moter activity.

Interestingly, when STAT3 was suppressed by shRNA,
p7 expression no longer enhanced SOCS3 levels, further
indicating that STAT3 is essential for p7-mediated SOCS3
induction. Indeed, our results are in line with several
studies showing that STAT3 deletion prevents SOCS3 in-
duction. Baker et al. (65) illustrated that oncostatin M
stimulation leads to the robust recruitment of STAT3 to
the SOCS3 promoter and that small interfering RNA-
mediated STAT3 inhibition prevented SOCS3 induc-
tion. Additionally, overexpression of STAT3 dominant
negative mutants inhibited leukemia inhibitory factor—
mediated SOCS3 expression (72). Previous studies have
reported that HCV infection modulates STAT3 signaling,
including STAT3 activation by the core and NS5A viral
proteins (73, 74), in addition to oxidative stress—induced
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Figure 8. MEK activity is required for p7-mediated SOCS3
induction. A) Huh?7 cells were pretreated with 10 or 20 pM of
PD98059 for 45 min prior to 24 h transfection with DNA
encoding 1 ug HCV-p7-HA or EV control. Lysates were probed
for SOCS3, B-actin, and HA. Blots shown are representative of
5 independent experiments. B) Densitometric analysis of 5
Western blots was performed using Image Lab. The bar graph
illustrates the mean * sem of SOCS3 expression calculated
against (-actin control and displayed relative to DMSO-EV
control, which was normalized to 1.

STAT3 activation by HCV replication (75). Interestingly,
INS4B causes ER stress, which activates STAT3 signaling,
leading to the induction of STAT3-dependent genes, in-
cluding vascular endothelial growth factor (VEGF), c-Myc,
and matrix metalloproteinase (MMP)9 (76). Furthermore,
McCartney et al. (77) showed that STAT3 is actively
phosphorylated in the presence of HCV and that STAT3
knockdown significantly decreases HCV RNA levels,
implicating STAT3 as a proviral host factor. Together these
findings indicate that STAT3 signaling is important for
HCV infection, and our discovery, that p7 modulates
STATS3 expression and activation, is in keeping with these
published reports. STAT1 is also reported to regulate
SOCS3 transcription (72); however, in contrast, we did not
observe STAT1 phosphorylation upon p7 expression in
Huh?7 cells, indicating that unlike STAT3, STAT1 may not
be required for p7-induced SOCS3.

In addition to STAT3 induction of SOCS3, MAPK
signaling is also known to regulate SOCS3 expression

HCV-p7 INDUCES SOCS3 VIA STAT3 AND ERK

(52, 54, 65, 78). Furthermore, HCV infection has been
documented to modify MAPK signaling, including
HCV core and E2 induction of p38 and ERK phos-
phorylation (79-82). HCV infection also promotes ERK
phosphorylation and downstream AP-1 activity (83),
whereas blocking ERK signaling reduces intracellular
and extracellular HCV RNA copy numbers in human
hepatoma cells (84). Our data indicated that ERK
phosphorylation was enhanced following p7 expres-
sion in Huh7 cells. HCV E2 (85) and core (79) proteins
have also been shown to enhance ERK phosphoryla-
tion, possibly revealing a conserved immunomodula-
tory mechanism mediated by several HCV proteins.
Furthermore, we observed that MEK inhibition pre-
vented p7-induced SOCS3 expression. These results
are consistent with published data showing that in-
hibition of MEK and ERK with PD98059 prevents
SOCS3 induction (86). Taken together, our results in-
dicate that p7 up-regulates phosphorylated ERK and
that ERK signaling is also required for p7’s induction
of SOCS3.

Interestingly, Wetherill et al. (87) found that the human
papillomavirus oncoprotein E5 (which, like p7, is also
believed to be a virally encoded ion channel) induced ERK
phosphorylation, which was blocked by the viroporin in-
hibitors rimantadine and MV006, suggesting that viral ion
channel activity is required for this activation of ERK. We
similarly saw that the p7 inhibitor, NNDNJ, reduced
SOCS3 induction, linking its ion channel activity to the up-
regulation of SOCS3.

Several studies have demonstrated that HCV infection
interferes with TNF-a signaling via its viral proteins, in-
cluding NS3, NS5B, and core (88-91). Here, we found that
expression of p7 inhibited TNF-a—mediated IkB-a degra-
dation and TNF-a—mediated NF-kB promoter activity. We
also found that overexpression of p7 prevented both
TRAF2- and TRAF6-mediated NF-«kB activation, sug-
gesting a possible mechanism of TNNF-a inhibition. In
agreement with this, previous work has shown that
SOCS3 interacts with TRAF2 (19, 26), and Zhou et al. (24)
showed that SOCS3 could degrade TRAF6 by poly-
ubiquitination. Furthermore, SOCS3 can inhibit IL-1 sig-
naling by targeting the TRAF6-transforming growth factor
B-activated kinase 1 (TAK1) complex (25). p7’s inhibition
of TNF-o—mediated NF-xB activity sheds further light
on HCV’s strategies that modulate TNF-« signaling and
may represent another mechanism to suppress proin-
flammatory signaling. Furthermore, published data show
that the viral ion channel from HIV, Viral protein U (Vpu),
also inhibits TNF-a—induced IkB-o degradation in both
T cells and HeLa cells (92, 93). These findings reveal that
viral ion channel activity may control proinflammatory
signaling pathways and that this may indeed be a novel
and conserved immune evasion mechanism.

In summary, our findings suggest a mechanism
whereby the HCV-encoded ion channel, p7, induces the
negative regulator SOCS3 via STAT3 and ERK activation.
Indeed, these discoveries may reveal a molecular mecha-
nism whereby HCV regulates key inflammatory responses
to TNF-a, possibly explaining the mild clinical symptoms
often experienced during acute HCV infection.
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