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ABSTRACT: Bovine colostrum is a rich source of bioactive components which are important in the development of the
intestine, in stimulating gut structure and function and in preparing the gut surface for subsequent colonization of microbes.
What is not clear, however, is how colostrum may affect the repertoire of receptors and membrane proteins of the intestinal
surface and the post-translational modifications associated with them. In the present work, we aimed to characterize the surface
receptor and glycan profile of human HT-29 intestinal cells after exposure to a bovine colostrum fraction (BCF) by means of
proteomic and glycomic analyses. Integration of label-free quantitative proteomic analysis and lectin array profiles confirmed
that BCF exposure results in changes in the levels of glycoproteins present at the cell surface and also changes to their
glycosylation pattern. This study contributes to our understanding of how milk components may regulate intestinal cells and
prime them for bacterial interaction.
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H INTRODUCTION levels of MUC2 and defensin-6 expression, while also
enhancing MUC3, TLR2, and TLRS expression.12

A number of studies have indicated that, as the first diet
introduced to mammals, milk may have an important influence
on the intestinal cell surface.">'* Colostrum, the first milk, may
be expected to have the most profound influence on the
intestinal epithelium. It acts as the very first line of defense in
the gut of the newborn. At this stage the intestinal epithelium
is not yet fully developed and has to acquire both innate and
adaptive immune defense. Colostrum contains a wide variety
of antimicrobial peptides, oligosaccharides, growth factors, and
immune-regulating components with anti-inflammatory and
immuno-modulatory properties.'> Indeed, a shift in the
glycosylation of intestinal proteins is witnessed from birth to
weaning in animal models with increased terminal fucosylation
and decreased sialylation,lé’17 indicating the importance of
milk in modulating intestinal surface properties. Angeloni et
al.'® demonstrated that Caco-2 cells alter their cell surface
glycan profile upon exposure to 3'-sialyllactose (3'SL), one of
the major oligosaccharides in milk. The expression of the
sialyltransferases ST3Gall, 2, and 4 were reduced by 2.5-, 2-,
and S-fold, respectively while ST3Gal3, 5, and 6 were

The mammalian intestine holds a community of trillions of
microbes, collectively known as the gut microbiome, which
have coevolved with the host in a mutually beneficial manner."
It is the epithelial surface that determines the type of microbes
that are able to colonize. The critical step in microbial
colonization of the intestinal epithelium is the adherence of
bacterial surface lectins to intestinal glycan structures.”
Understanding the influence of nutrition on the intestinal
cell surface and glycan landscape is still in its infancy
(reviewed®). Studies have revealed, however, that certain
dietary factors can influence the intestinal landscape. High-
protein diets, for instance, have been shown to up-regulate
mucin expression while concurrently increasing pro- and anti-
inflammatory cytokines in the colonic mucosa of supplemented
piglets.”> High protein diets can also influence brush border
glycosylation and the enzymes associated with it including
sucrase, lactase, glucosidase, and galactosidases.6 High-fat diets
induce an increase in the sialo/sulfomucins ratio of colonic
mucins in mice.” In other studies, both fat and protein levels in
the human diet have been shown to modulate intestinal
glycosylation.”” Restriction of dietary threonine significantly
inhibits synthesis of intestinal mucins'’ while vitamin A
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unaffected by 3’SL. The subsequent reduction in a-2,3- and a-
2,6-linked sialic acid coincided with a reduction in the
adhesion of enteropathogenic Escherichia coli (EPEC) to the
cells.'® It should be noted, however, that models such as Caco-
2 and HT-29 cells have limitations in that that they do not
mimic the composition of the normal intestinal monolayer,
which contains more than one cell type, and these cells also
lack a fully formed mucus layer to separate the epithelial cell
layer from the luminal content.'” However, such in vitro
models are still attractive due to their reproducibility and
simplicity. Furthermore, tracking the effect of a food bioactive
in a cell line model allows for studies on molecular mechanisms
which may be more difficult to address in vivo.

Recently, our group investigated the ability of a bovine
colostrum fraction (BCF) to modulate the intestinal cell
surface and, in turn, the attachment of several selected
commensal organisms.”’ Exposure of HT-29 cells to the
BCF resulted in an increase in the adherence (up to 52-fold) of
a range of commensal bacteria, comprising mainly bifidobac-
teria. Importantly, the BCF did not correlate with enhanced
adhesion of the pathogens tested. These cell surface changes
are thought to be linked to the differential expression of several
genes and, in particular, genes associated with glycosylation
(glycosyltransferases and genes involved in the complex
biosynthetic pathways of glycans) suggesting modulation of
the enzymatic addition of sugars to glycoconjugates.”” While
this study indicated certain genes that may be involved in
modulating the phenotypic changes occurring in the HT-29
cells in response to the BCF, genomic expression microarrays
do not always estimate absolute expression levels accu-
rately.”"**

In this study, we aimed to obtain integrated omics data sets
to develop a workflow suitable for simultaneous analysis of cell
surface glycans and proteins/peptides. We used a gel-free
proteomic approach to monitor proteome changes in the HT-
29 cells after exposure to the BCF. Q Exactive Orbitrap MS
was used for a full proteomic scan of the intestinal cells, and for
a large-scale quantitative analysis of protein dynamics during
intestinal cell-BCF exposure. Modulation of the total surface
protein glycome of the HT-29 cells in response to BCF was
evaluated using lectin microarray technology. Proteins with
altered expression levels in response to BCF treatment were
identified using both quantitative and qualitative analysis.
Functional characterization was carried out, revealing gene
ontology (GO) terms represented among the differentially
abundant proteins.

B MATERIALS AND METHODS

Generation of Bovine Colostrum Fraction. Pooled bovine
colostrum (Day 1) was collected from Holstein Friesian cattle on-site
at the Teagasc Food Research Centre, Moorepark (Fermoy, Cork,
Ireland). The colostrum was subsequently defatted and decaseinated
as previously described by Kobata et al”® A fraction rich in
oligosaccharides was isolated and characterized as previously
described.***

Epithelial Cell Line Conditions. The human colon adenocarci-
noma cell line HT-29 was purchased from the American Type Culture
Collection (ATCC, Middlesex, UK). HT-29 cells were cultured in
McCoy’s SA modified medium (Merck). HT-29 cells were routinely
passaged in 75 cm? tissue culture flasks in a 37 °C incubator with a
humidified atmosphere (5% CO,). Flasks of 80% confluency were
passaged. HT-29 cells were seeded into 12 well plates (Corning, NY,
USA) at a concentration of 1 X 10° cells per well and incubated at 37
°C in 5% CO, in a humidified atmosphere. The cells were fed every
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second day with McCoy’s SA modified medium supplemented with
10% (v/v) fetal bovine serum (FBS) until 100% confluency was
reached.

Epithelial Cell Line Conditions: Proteomic Preparation. HT-
29 cells were washed and placed in McCoy’s SA modified medium
supplemented with 2% (v/v) FBS before sample exposure. After 24 h,
the cells were washed with phosphate buffered saline and treated with
(filter-sterilized) 4 mg/mL BCF resuspended in preheated, serum-free
McCoy’s SA (0% FBS) without phenol red. Nonsupplemented serum-
free McCoy’s SA medium (without phenol red) was used as a control
(NT). Biological replicates of BCF treated and control cells were
prepared (n = 3 per condition). The plates were then incubated at 37
°C for 24 h in a humidified atmosphere (5% CO,). After 24 h, cell
supernatants were collected and filtered through a 0.22 ym filter to
remove detached cells. The original BCF sample (4 mg/mL) was
added to the nontreated cell supernatant after harvesting to ensure the
control and treated supernatants contained the same background
protein profile for label-free quantitative comparison and all samples
were frozen in liquid nitrogen. Cells from matching wells were washed
three times with PBS to remove any residue and the cells were
harvested and immediately frozen in liquid nitrogen and stored at —70
°C for proteomic analysis.

Protein Mass Spectrometry. Protein Extraction. BCF-treated
and control HT-29 cells were suspended in lysis buffer (100 mM Tris-
HC], 50 mM NaCl, 20 mM EDTA, 10% (v/v) glycerol, 1 mM PMSF,
1 ug/uL pepstatin A, pH 7.5) and briefly sonicated using an MS72
probe (3 X 10 s, 20% power) to release proteins for label-free
quantitative (LFQ) comparative proteomics.”® Cell lysates were
incubated in ice for 1 h and then clarified using centrifugation. For
culture supernatants, proteins were concentrated using Amicon Ultra
centrifugal filters (3 kDa molecular weight cutoff, MWCO). Protein
precipitation from cell lysates and culture supernatants was carried out
using trichloroacetic acid (TCA; final 15% (w/v)) and samples were
stored at 4 °C for 20 min. Precipitated proteins were pelleted by
centrifugation at 12,000 RCF for 10 min at 4 °C and pellets were
washed twice with ice-cold acetone. Protein pellets were resolubilized
in UT buffer (8 M urea, 2 M thiourea, 0.1 M Tris-HCL (pH 8)) and a
Bradford assay was employed to determine the protein concentration
of each sample prior to digestion.

Protein Digestion. Protein samples were diluted 6-fold with 50
mM ammonium bicarbonate, reduced and alkylated, with dithio-
threitol (DTT; 5 mM final) and iodoacetamide (IAA; 15 mM final),
respectively. Sequencing grade trypsin (1 ug per 25 ug sample
protein) and ProteaseMax surfactant (0.01% (w/v) final) were added
to each sample and incubated overnight at 37 °C. A cleanup of
digested samples to remove salt was performed prior to analysis using
Zip Tips with C18 resin (Millipore). Desalted peptide mixtures were
then analyzed using a Thermo Fisher Q-Exactive mass spectrometer
coupled to a Dionex RSLC nano with an EasySpray PepMap C18
column (S0 cm X 75 pum, 2 um particles). Liquid chromatography
gradients were run from 14% to 35% B (A: 0.1% (v/v) formic acid, B:
80% (v/v) acetonitrile, 0.1% (v/v) formic acid) over 2 h, and data was
collected using a Top 15 method for MS/MS scans.>®

Data Analysis. Label-free quantitative proteomic analysis was
performed using MaxQuant (version 1.5.3.30), with MaxLFQ
algorithm included for protein ratio characterization.”” Protein
identification was performed by searching against a protein database
consisting of the Homo sapiens proteome (UniProtKB, downloaded
June 2017). This was appended with a Bos taurus proteome database
for culture supernatant analysis to account for the presence of BCF-
derived proteins (UniProtKB, downloaded June 2017). The false
discovery rate (FDR) was set to 1% at both the peptide and the
protein level, with a reverse database search used. Proteins were
filtered to exclude single peptide identifications and proteins matching
a reverse or a contaminants database. Proteins were retained for
analysis only if detected in at least 2 biological replicates from either
the control or treated group. Perseus (v 1.5.4.0) was used for
statistical analysis, with quantitative results composed of proteins with
a significant change in abundance (p < 0.05 (Student’s ¢ test), fold
change >1.5). Qualitative results were based on unique protein
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detection in at least 2 biological replicates in either the control or the
treated samples, with absence of detection in all replicates of the
alternate condition. Proteins exclusively matching the B. taurus
database, or detected in qualitative analysis of the BCF treatment,
were identified and excluded from functional analysis of the HT-29
secretome. Functional enrichment analysis of proteins was performed
using the application DAVID (https://david.ncifcrf.gov/) and
UniProtKB (https://www.uniprot.org/), whereby the data set was
searched under Gene Ontology (GO).” Quantitative and qualitative
results were combined prior to functional characterization.

Epithelial Cell Line Preparation, Surface Protein Extraction,
and Fluorescent Labeling. Prior to sample exposure, the cells were
washed and placed in 2% FBS McCoy’s media. After 24 h, the cells
were washed with phosphate buffered saline and treated with (filter
sterilized) 4 mg/mL BCF resuspended in preheated serum-free
McCoy’s SA (0% FBS). Nonsupplemented serum-free McCoy’s SA
medium was used as a control (NT). The plates were then incubated
at 37 °C for 24 h in a humidified atmosphere (5% CO,). Cells were
harvested by scraping. Surface proteins were extracted directly from
the pellet of HT-29 cells using a hydrophobic protein isolation kit
(Mem-PER, ThermoFisher Scientific, Dublin, Ireland). Proteins were
labeled with DyLight S50 N-hydroxysuccinimide (NHS) ester
following the manufacturer’s suggested protocol. Excess dye was
removed by repeated buffer exchange with a 3 kDa MWCO filtration
unit (Amicon Ultra, Merck-Millipore, Cork, Ireland).

Construction of Lectin Microarrays and HT-29 Profiling.
Microarrays were constructed as previously described and consisted of
S0 lectins with reported carbohydrate binding specificities (Table
§1).>”%° Each feature was printed on Nexterion Slide H microarray
slides in replicates of six and eight replicate subarrays were printed per
slide. After printing, lectin performance was tested by incubation with
fluorescently labeled glycoprotein standards.”” The lectin microarrays
were stored with desiccant at 4 °C until use. Lectin microarrays were
allowed to equilibrate to room temperature (RT) prior to use.
Fluorescently labeled surface proteins were interrogated in the dark
using an eight well gasket slide and incubation cassette system
(Agilent Technologies, Cork, Ireland) as previously described.””*°
Two labeled protein samples of the control (nontreated) and protein
from cells treated with 4 mg/mL BCF were titrated (1-10 ug/mL in
Tris-buffered saline (TBS; 20 mM Tris-HCI, 100 mM NaCl, 1 mM
CaCl,, 1 mM MgCl,, pH 7.2) with 0.05% Tween 20 (TBS-T)) on the
lectin microarrays for optimal signal-to-noise ratio. A concentration of
1 pg/mL in TBS-T was selected for all fluorescently labeled samples.
Bovine asialofetuin (Sigma-Aldrich) labeled with Alexa Fluor 555
NHS ester was included in one subarray on each microarray slide (0.5
pug/mL in TBS-T) to verify the presence and retained function of the
printed lectins during each experiment. Microarrays were dried by
centrifugation (450 RCF, S min, 10 °C) and scanned immediately in
an Agilent G2505B microarray scanner using the Cy3 channel (532
nm excitation, 80% PMT, S um resolution).

Data Extraction, Hierarchical Clustering, and Statistical
Analysis of Lectin Microarrays. Data extraction and graphical
representation was performed as previously described.””*® Data were
normalized to the mean total intensity value of three replicate
microarray slides and binding data were presented in bar charts of
relative average intensity values with one standard deviation of
experimental replicates (n = 3; 18 total data points per probe). Heat
mapping (color gradation set from O to 50,000 RFU) and
unsupervised hierarchical clustering of normalized data (lectins
only, complete linkage, Euclidean distance) were performed in
Morpheus (Broad Institute, https://software.broadinstitute.org/
morpheus/). Significant differences between individual lectin
responses for each triplicate sample type were determined by paired,
two-tailed Student’s ¢ test in Excel (Microsoft, v 2013). Differential
lectin responses which demonstrated p < 0.0S and also qualified with
a minimum intensity of 1000 RFU (approximately SX local
background, GSL-I-A4 (p = 0.0229), DSA (p = 0.0403), RCA-I (p
=0.0129), AMA (p = 0.0098), and MPA (p = 0.0152)) were retained
for principal component analysis. Principal components were
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calculated in Minitab (v 17) and the first two components plotted
for all replicates.

B RESULTS AND DISCUSSION

The extracellular membrane proteins of the epithelial cell
surface are densely covered with diverse glycan chains. In order
to produce the range of glycan structures found on proteins,
individual cells must synthesize the glycans with the required
sequence. The metabolic pathways that are responsible for this
process include the production of a series of precursors from
monosaccharides, the nucleotide sugars; sugar transporters that
make sure that the necessary intermediates are available in the
cell to produce the precursors; glycosyltransferases, which
transfer the sugars to the acceptor protein to make the relevant
glycan structure; plus a number of other proteins which
participate in the formation of the final glycoIprotein structure
designed for a particular biological function.’” The absence or
presence of any of these factors will define the nature of the
glycans that can be synthesized by a cell. The glycans which are
attached to epithelial proteins are highly heterogeneous due to
the diversity of glycotransferases and glycosidases being
expressed and are subject to changes by the external
environment. Thus, alterations in the external environment
such as diet may affect the expression at gene or protein level
and will affect these oligosaccharide chains and, ultimately, the
overall glycosylation pattern.”” Such changes in glycosylation
may be very important, as terminal glycan epitopes are
suggested as being responsible for the selection of our
commensal microbiota, resulting in distinct communities.*>

The HT-29 colon cell line is extensively utilized as a model
of the gastrointestinal tract and is commonly used as an in vitro
intestinal model of bacterial colonization.””** It should be
noted that HT-29 cells are derived from a colic tumor, and it
has been shown that carcinogenesis affects glycosylation.*
Nevertheless, HT-29 cells do display classical characteristics
that model small intestinal absorptive epithelial cells upon
reaching confluence’” and are a useful indicator of the
structural landscape of the intestinal epithelium. Recent studies
have demonstrated that HT-29 membrane glycosylation is a
sensitive sensor of the cell’s extracellular environment and this
cell line can be used to monitor glycan changes induced by
microbial and dietary compounds.” Previously, we demon-
strated that a bovine colostrum fraction (BCF) modulated the
HT-29 colonic epithelial cell surface leading to significant
increases in the colonization of several health-promoting
strains.”’ Transcriptomic studies revealed that a number of
genes associated with glycosylation were differentially regu-
lated in response to BCF. However, transcriptomic studies
only reveal the initial draft of the final landscape of proteins
actually produced. The proteome varies widely from the
genetic transcript, due to dynamics of protein synthesis and
degradation,®® as well as RNA splicing and post-translational
modifications creating proteins of different functionalities from
those of its original gene transcript. Therefore, to determine
how the BCF was influencing the HT-29 cells, proteomic and
lectin array analyses were performed on the cells after BCF
treatment.

Quantitative Intracellular Proteome Analysis of HT-
29 cells after BCF Treatment. From LC-MS/MS analysis, a
total of 3370 intracellular proteins were identified between the
control (nontreated) and BCF-treated HT-29 cells across the
three sets of biological replicates (Figure la). A 1.5-fold
increase or decrease in the level of protein abundance was used
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Figure 1. Volcano plots displaying quantitative and qualitative
changes in (A) intracellular and (B) extracellular proteins following
BCF treatment. Proteins with a significant quantitative or qualitative
change in abundance are shown in red (increased abundance) and
green (decreased abundance). For qualitative changes the predicted
minimum fold change was calculated for each protein relative to the
detection limit cutoff (—log;,(p-value) = 0, red/green). The detection
limit cutoff was set as the mean +2 standard deviations of the lowest
detectable intensity value from the full data set of each replicate in
MaxQuant analysis.”” The horizontal line represents a p-value of 0.05
and the vertical lines indicate the fold change (fc) cutoff of 1.5.

as a benchmark for potential physiologically significant changes
(p < 0.05) which resulted in 96 differentially abundant proteins
being defined, with 40 proteins increasing and 56 decreasing in
abundance following the BCF treatment. Qualitative analysis
revealed a further 59 proteins uniquely detected after BCF
treatment of the HT-29 cells, while 32 proteins were no longer
detected after treatment (Table S2). Functional annotation
and GO analysis of the differentially abundant proteins was
carried out using DAVID, a high throughput bioinformatic
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analysis tool, to investigate functional enrichment in the altered
proteome.”” The upregulated and uniquely detected proteins
were grouped and, according to the GO analysis of DAVID,
were mainly involved in 21 biological processes (BP), 12
cellular components (CC), and 2 molecular functions (MF).
Considering the BP category, 12 of the 21 were significantly
enriched (p < 0.05) and included GO annotations such as
negative regulation of cytokine production, glycosylation,
single-organism carbohydrate metabolic process, and glyco-
protein metabolic process (Figure 2a). Seven cellular
components were significantly enriched, including the integral
component of membrane, mitochondrial part, mitochondrial
membrane, and organelle inner membrane. Only calcium-
dependent phospholipid binding from the MF category was
deemed significant (p < 0.05). The down-regulated and
proteins not detected after treatment with BCF were also
grouped and analyzed for biological function, cellular location,
and molecular function. Considering the BP category, 39 were
identified of which 16 were significant: cytoskeleton organ-
ization, negative regulation of cellular component organization,
cell projection assembly, and regulation of epidermal cell
differentiation (Figure 2b). The cytoskeleton, actin filament
bundle, actomyosin, and cytoskeletal part were the only CC
terms identified of significance from the 8 listed. No MFs were
identified for the down-regulated/undetected group.
Quantitative Extracellular Proteome Analysis of HT-
29 Cell Supernatants after BCF Treatment. A total of 524
extracellular proteins were identified in the culture supernatant
of HT-29 cells between both the control (nontreated) and the
BCF-treated HT-29 cells from the three sets of biological
replicates (Figure 1b). After removing bovine proteins from
the results, quantitative analysis revealed S1 extracellular
proteins which had significantly increased levels after exposure
to the BCF and 13 which were significantly decreased in
abundance (fold change >1.5-fold, p < 0.05). Six proteins were
no longer detectable extracellularly after BCF treatment while
37 proteins were uniquely identified in the BCF-treated culture
supernatants. The differentially produced proteins were again
analyzed using DAVID software to identify enriched GO
annotations (Table S3). The proteins with increased
abundance that were uniquely detected following BCF
treatment were grouped and analyzed under the three
functional classifications above (BP, CC, and MF). In the
BP category, 24 processes were revealed, of which 12 were
significantly enriched including nucleic acid metabolic process,
nucleobase-containing compound metabolic process, negative
regulation of nucleobase-containing compound metabolic
process, and negative regulation of organelle organization
(Figure 3a). In the CC category, S of 13 detected were found
to be significant and involved in a spliceosomal complex, cell—
cell adherent junction, nucleus, and nuclear lumen. In the MF
category, 3 of 5 functions detected were significant and were
associated with RNA binding, cadherin binding and protein
binding involved in cell—cell adhesion. For the proteins with
lower abundance or that were undetectable following BCF
treatment, 10 BPs, 10 CCs, and 3 MF were significantly
enriched. The BPs significantly detected were the sulfur
compound catabolic process, macromolecule catabolic process,
chondroitin sulfate proteoglycan metabolic process, and
protein metabolic process (Figure 3b). The CC locations
detected were associated with vacuolar lumen, intracellular
organelle lumen, vacuole, and cytoplasmic vesicle while the
three significant MFs detected were involved in hydrolase
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Figure 2. (Based on Table S2) Pie chart demonstrating distribution of the intracellular proteins after LC-MS/MS analysis of HT-29 cells after
exposure to the bovine colostrum fraction (BCF). The proteins were distributed according to their biological process using DAVID bioinformatics
resources. The proteins were classified by their corresponding gene names: (A) upregulated and uniquely detected proteins, and (B)
downregulated and undetected proteins. Enriched biological processes with p < 0.05 (Student’s ¢ test) are shown.

activity, protein heterodimerization activity, serine-type
peptidase activity, and hydrolyzing O-glycosyl compounds.
The latter is of interest given that alteration of glycan chains
through the action of glycosidases such as O-glycosidases may
have an important role in the overall cell surface glycosylation
pattern.31

Glycoprotein Analysis of HT-29 Cells after BCF
Treatment. The abundance of 51 proteins with putative
glycosylation sites were altered in the BCF-treated HT-29 cells
(Table 1). Those involved in carbohydrate metabolism
included N-acetylglucosamine-6-sulfatase (GNS) which is
required for the lysosomal degradation of the glycosaminogly-
cans* heparan sulfate and keratan sulfate. This enzyme, which
was no longer detectable in the extracellular fractions following
BCF treatment, removes sulfate from the GAGs when the
sugar N-acetylglucosamine-6-sulfate is located at the end. This
may imply that after BCF treatment, more terminal moieties of
intact N-acetylglucosamine-6-sulfate are present on the cell
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surface. Hexosaminidase subunits alpha and beta (HexA and
HexB) have essential roles in the hydrolysis of GlcNAc and
GalNAc residues from glycosphingolipids such as ganglioside
GM2. Levels of HexA and HexB were reduced in the
extracellular fraction of the BCF-treated cells by 1.7-fold and
3.5-fold, respectively, which may suggest reduced hydrolysis of
GlcNAc and GalNAc after BCF treatment. Many bacteria are
known to interact with GM2 (https://sugarbind.expasy.org/),
and commensals such as Bfidobacterium bifidum EB102 have
been shown to bind to gangliotriaosylceramide (asialo-
GM2).*" Iduronidase, alpha-L (IDUA) hydrolyses the
glycosidic bond between the terminal L-iduronic acid (IdoA)
and the second sugar of N-acetylgalactosamine (GalNAc)-4-
sulfate/N-sulfo-D-glucosamine (GIcNS)-6-sulfate, which are
the major constituents of dermatan/heparan sulfate.*”
Iduronidase, alpha-L (IDUA), is essential for the breakdown
of glycosaminoglycans (GAGs). Again, while this enzyme was
found in the control, it was not detected in the extracellular
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Figure 3. (Based on Table S3) A pie chart demonstrating distribution of the extracellular proteins after LC-MS/MS analysis of HT-29 cells after
exposure to the bovine colostrum fraction (BCF). The proteins were distributed according to their biological process using DAVID bioinformatics
resources. The proteins were classified by their corresponding gene names: (A) upregulated and uniquely detected proteins, and (B)
downregulated and undetected proteins. Enriched biological processes with p < 0.05 (Student’s ¢ test) are shown.

fraction of the BCF-treated cells suggesting an increased
abundance of intact heparan sulfate on the cell surface.
Heparan sulfate (HS) proteoglycans are known receptor
targets of both Gram-negative and Gram-positive bacteria®
and consist of repeating disaccharide units of GIcNAc and
hexuronic acid residues.

The extracellular matrix (ECM) provides a network of
proteins surrounding cells and is found in all mammalian
tissues. The ECM is composed of two main classes of
macromolecules: proteoglycans (PGs), such as heparan sulfate,
and fibrous proteins such as are laminins, fibronectins elastins,
and collagens.** These proteins may provide numerous
binding sites for bacterial adhesion. Procollagen-lysine,2-
oxoglutarate S-dioxygenase 1 (PLOD1) is an ECM protein
that catalyzes the hydroxylation of lysine residues in collagen
alpha chains and is essential for normal assembly and cross-

1907

linking of collagen fibrils. PLOD1 was reduced in the
extracellular fraction of the BCF-treated cells by 2.0-fold
suggesting a change in collagen assembly. Most pathogens
associated with the gastrointestinal tract have the capacity to
bind and degrade collagen(s) to facilitate their adherence to
and invade host tissues.* Interestingly, bioinformatic analysis
of the B. bifidum S17 genome revealed proteins that contain
collagen triple helix repeat domains, suggesting that bifidobac-
teria may be able to interact with collagen but this has yet to be
confirmed.*® Lactobacillus fermentum 3872 was also shown to
competitively reduce Campylobacter jejuni binding to type I
collagen using ELISA plates. The phosphatidylinositol glycan
anchor biosynthesis class O (PIGO) gene provides information
for producing one part of an enzyme called GPI ethanolamine
phosphate transfer 3 (GPI-ET3). The GPI-ET3 enzyme is
involved in a number of steps that produce a molecule called a
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Table 1. continued
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treated
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gion/Membrane

ture SN
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sites

association

Function

Transport-Related Proteins

-2.1

No

Yes

Yes

SLC39A10 belongs to a subfamily of proteins that show structural characteristics of zinc transporters.

solute carrier family 39 member

Zinc is involved in protein, nucleic acid, carbohydrate, and lipid metabolism, as well as in the control

of gene transcription, growth, development, and differentiation.

10 (SLC39A10)

-2.0

No

Yes

No

Transport protein in the serum and cerebrospinal fluid that carries the thyroid hormone thyroxine (T,)

and retinol-binding protein bound to retinol.

Transthyretin

Uniquely

Yes

Yes

Transmembrane protein that functions in copper transport across membranes. This protein is localized

ATPase copper transporting

Detected

to the trans Golgi network, where it is predicted to supply copper to copper-dependent enzymes in

the secretory pathway. It relocalizes to the plasma membrane under conditions of elevated

extracellular copper, and functions in the efflux of copper from cells.

alpha (ATP7A)
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glycosylphosphosphatidylinositol (GPI) anchor."” GPI-anch-
ored proteins play a wide variety of physiological roles, as
enzymes, cell surface antigens, signaling receptors, cell
adhesion, and migration molecules.”® Bacteria are also
known to interact with the GPI anchor, but to date, this
interaction has been specific to bacterial toxins.”>”" Interest-
ingly, PIGO was uniquely detected in the intracellular fraction
of the BCF-treated cells.

Changes in the expression of membrane antigens and
receptors were also evident in the BCF-treated cells. CDS9 is a
GPI-anchored protein with regulatory properties in activating
cascades of the complement system and is well recognized for
its very efficient role in defense against pathogens such as
bacteria, viruses, and parasites.52 CDS59 levels were increased
(2.2-fold) in the extracellular fraction of BCF treated cells.
Syndecan 4 (SDC4) was up-regulated in extracellular fraction
(4.2-fold) of BCF-treated cells. SDC4 is a transmembrane
heparan sulfate proteoglycan. As mentioned, HS moieties are
involved in the adherence of a number microorganisms. This
ranges from the normal human microbiota including
Lactobacillus,*® to various pathogenic bacteria, viruses, and
parasite.”* The extracellular domain of syndecan-4 can be shed
from the cell surface®” and increased levels in the supernatant
after BCF treatment may indicate shedding.

Receptor-type protein tyrosine phosphatases (RPTPs) are a
family of integral cell surface proteins that have intracellular
protein tyrosine phosphatase activity, and extracellular
domains with sequence homology to cell adhesion molecules.
The R2A subfamily members of RPTPs are characterized by
the presence of immunoglobulin and fibronectin type III
domains in their extracellular domains, and tandem protein
tyrosine phosphatases domains in their intracellular domain.>®
Subfamily members include leukocyte common antigen-related
(LAR) protein (encoded by Ptprf)>” which was up-regulated in
both the intracellular (1.9-fold) and extracellular (1.9-fold)
fraction. Gram positive pathogens and commensal bacteria can
interact with fibronectin.’® Binding to fibronectin seems to be
facilitated by sugar-binding domains of the pili since enzymatic
deglycosylation of fibronectin significantly reduced adhesion of
recombinant L. lactis strains expressing the pil2 and pil3 gene
clusters of B. bifidum PRL2010.>” Proteins involved in
immunity were also altered in the BCF-treated HT-29 cells.
Lipocalin 2 (LCN2), a siderophore-binding antimicrobial
glycoprotein, in order to prevent bacterial uptake of iron,
binds to siderophores, which is critical for the control of
infection.” Singh et al.’' reported that Len2 expression is
regulated by microbiota-induced MyD88 signaling, which
permits fast robust induction of this protein under a range of
challenges which in turn aids in keeping microbiota in check.
Manipulation of Lcn2 levels (levels in the intracellular and
extracellular fraction of the HT-29 cells increased by 3.1 and
1.9 respectively) by BCF may similarly provide a strategy for
management of the gut microbiota.

Cathepsins (CTS) are among the most investigated class of
proteases”” and undergo post-translational modification with
the mature protein being glycosylated.> They operate in many
cell functions such as pathogen killing, protein processing,
apoptosis, antigen presentation, and tissue remodelling.”*
Several studies have shown the ability of cathepsin B to
degrade ECM either intracellularly, extracellularly, or both.®>*®
Interestingly, of CTSA (—2.1-fold), CTSB —1.8-fold) and
CTSC (—1.7-fold) were evident in the extracellular fraction of
the BCF treated HT-29 cells. Considering protease inhibitors,
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Figure 4. Lectin microarray profiles for HT-29 cell surface glycoproteins. Bar chart (A) of mean lectin microarray responses (n = 3) for HT-29
proteins without (NT) and after exposure to BCF. Responses ranked by intensity and error bars represent + 1 standard deviation. Heat map (B) of
replicate profiles (NT_1-3; BCF_1-3) with the lectin responses arranged by unsupervised hierarchical clustering. Score plot (C) generated for the
first two components based on principal component analysis of responses from five lectins with p < 0.05 (GSL-I-A4, p = 0.0229; DSA, p = 0.0403;
RCA-L, p = 0.0129; AMA, p = 0.0098; and MPA, p = 0.0152).
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almost all known serpins are glycosylated and are expressed at
the mucosal surface and have been associated with the
inhibition of HIV binding, replication, and reduction of
inflammation of vulnerable cells.”” Maspin, encoded by
SERPINBS, was uniquely detected in the extracellular fraction
of BCE-treated cells even though it is an intracellular protein.”®
Secreted Maspin is thought to bind to extracellular matrix
components, such as collagen, and therefore influence the
susceptibility of the matrix to proteolytic degradation in
particular cathepsin D mediated degradation.””

Hepatocyte growth factor activator inhibitor type 1 (HAI-1)
is a membrane-bound serine protease inhibitor expressed in
epithelial tissues and is encoded by the serine protease
inhibitor Kunitz type 1 (SPINTI) gene. Kawaguchi et al.”®
demonstrated an essential role for HAI-1/SPINT1 in
maintaining the integrity of colonic epithelium, and
dysfunction of this inhibitor possibly enhances vulnerability
to mucosal injury. HAI-1/SPINT1 regulates a number of
membrane-associated cell surface serine proteases, with
matriptase being the most associated target. Matriptase
degrades extracellular matrix protein such as laminin and
activates other cell surface proteases.”' The intestinal epithelial
cells also express HAI-2/SPINT2, another membrane-bound
Kunitz-type serine protease inhibitor, which has a comparable
molecular structure to HAI-1/SPINT1. The HAI proteins are
glycosylated’”” and higher levels of HAI-1/SPINT1 (1.7-fold)
and HAI-2/SPINT2 (1.5) were evident in the extracellular
fraction of BCF-treated cells suggesting degradation of certain
extracellular matrix proteins may be reduced.

In eukaryotes, before glycosylation reactions can occur, the
activated sugar must be transported into the Golgi or ER
lumen where it can be availed of as a substrate by
glycosyltransferases, a task undertaken by a familg of transport
proteins known as nucleotide sugar transporters.”” Membrane
transporters, however, are not only the gatekeepers that
regulate the influx and efflux of sugars but also other nutrients
such as amino acids, trace minerals, vitamins, and electrolytes.
Many of these transporters can themselves be glycosylated and
BCF-treated cells had altered levels of several glycosylated
solute carrier (SLC) transporters. CD98 (encoded by
SLC3A2) is a type II transmembrane protein that covalently
links to one of many L-type amino acid transporters (light
chains) to form functional heterodimeric large neutral amino
acid transport systems.”””> This glycoprotein was up-regulated
(1.5-fold) in the intracellular fraction. The SLC2A family of
transporter proteins are crucial for the handling of hexoses and
a variety of other substrates,’® and here SLC2A1 was up-
regulated (1.5-fold) in the presence of BCF. CTL2 (encoded
by SLC44A2) is functionally expressed as a choline trans-
porter’” and was uniquely detected in the intracellular fraction
of the BCF-treated cells. Choline is also a known receptor
target of both pathogenic’® and commensal bacteria.”” Another
SLC (SLC39A10), with encodes the Zn transporter, ZIP10 was
also differentially regulated with lower levels (—2.1-fold) found
in the extracellular fraction of the BCF-treated cells.

The biosynthesis of N-glycans comprises the buildup of a
conserved N-glycan structure linked to the lipid carrier: the
lipid linked oligosaccharide (LLO) precursor and the ensuing
transfer of this core structure to the designated sequons on
newly synthetized glycoproteins as they are translocated into
the endoplasmic reticulum (ER).* In this study, BCF
treatment lead to an increase in the levels of two
glycosyltransferases involved in each phase of N-glycan
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synthesis (Table 1). GDP-Man:Man3GlcNAc2-PP-dolichol-
alpha-1,2-mannosyltransferase, encoded by ALG11, was up-
regulated (by 2.1-fold) and is important in the assembly of
Dol-PP-oligosaccharides.””** Moving to Golgi-resident en-
zymes, a percentage of mammalian N-glycans can carry three
GIcNAc branches, thereby yielding triantennary glycans.*
These third branches are initiated by alpha-1,3-mannosyl-
glycoprotein 4-beta-N-acetylglucosaminyltransferase B
(MGAT4B) which was only uniquely detected after BCF
treatment. This indicates that small alterations to the terminal
glycan chains of cell surface membrane and proteins may result
after BCF treatment of the intestinal cells.

Lectin Microarray Profiling BCF Treated HT-29 Cell
Surface Proteins. To further investigate differences in cell
surface glycosylation after exposure to BCF, HT-29 cell surface
proteins were subjected to lectin microarray profiling. Labeled
preparations of the BCF-treated and the control cell (NT)
proteins were first titrated onto microarray slides containing 50
immobilized lectins, each with well-characterized binding
specificities. Through titration, a sample concentration was
chosen to provide the best dynamic range and minimize
nonspecific background interference. Following this, the
fluorescently labeled samples underwent glycan profiling in
triplicate. The data was used to investigate whether
carbohydrate moieties had altered in quantity or presentation
on the cell surface in response to the BCF in comparison to the
NT samples. Profiles generated for the NT and BCF-treated
HT-29 surface proteins exhibited substantial interaction with
approximately two-thirds of the printed lectins (Figure 4a and
b). Lectins which bound to the fluorescently labeled HT-29
proteins suggested a range of potential glycans were present
which incorporated galactose (Gal), N-acetylgalactosamine
(GalNAc), N-acetylglucosamine (GlcNAc), Gal-f-(1,4)-
GlcNAc (Type II LacNAc), S-N-acetylneuraminic acid
(NeuSAc), mannose (Man), fucose, and complex, extended
structures. No major pattern changes were observed for BCF-
treated samples compared to the NT cells, but subtle,
significant changes were observed at lectins GSL-I-A4, DSA,
RCA-I, AMA, and MPA. For all replicates, mean binding
intensity data from these five lectins was subjected to principal
component analysis which verified the contributions of these
responses to distinguish the profiles of nontreated (NT) and
BCF treated HT-29 surface glycoproteins (Figure 4c).

The binding intensity at WGA increased in the BCF-treated
cells compared to the control cells. WGA has reported affinity
for both NeuAc and GIcNAc and has a preferred affinity for a-
2,3-linked sialic acid over a-2,6-linked sialic acids.** MAA is
known to be specific for @-2,3-linked sialic acids®> and BCF
exposure did not produce an intensity change at this lectin,
suggesting the changes observed with WGA were the result of
alterations in GIcNAc presentation or quantity and not due to
sialic acid. Only low-level binding occurred with the lectin
SNA-I, which is specific for a-2,6-linked sialic acids. Although
they are necessary for the assembly of oligosaccharides,
expression of glycosyl transporters and transferases is not
always correlated to specific glycosylation changes. The
regulatory mechanisms of oligosaccharide alteration are
complex and may also be driven by metabolic changes to
pathways involved in sugar interconversion and processing. For
this reason, lectin microarrays were employed to further
ascertain if the glycosyltransferase expression observed in
response to the BCF translated to the actual terminal glycans
present on the HT-29 cells. The lectin microarray profiles
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generated for NT and BCF-treated cells showed only subtle
differences between experimental conditions which suggested
that any impact of the differential glyco-enzyme expression did
not radically change the surface presentation of the cells in
vitro. However, it is important to note that, in vivo, cell polarity
may contribute to the concentrated positioning of glycosylated
proteins on surfaces facing into the intestinal lumen or toward
adjacent cells. In the in vitro environment, such polarization
behavior could potentially be suppressed relative to the natural
environment. Thus, the severity of global alterations in the
HT-29 surface glycome may have been less sharply defined
than they might be on apical surfaces in vivo owing to a variety
of factors. Another possibility is that substantial changes could
have been associated with fully secreted glycoproteins
including some mucins, which would not have been profiled
in the hydrophobic fraction representing the HT-29 surface
glycoproteome.

Overall, it can be concluded that the changes induced in
HT-29 cells due to treatment with BCF could be associated
with only a modest overall change in the glycosylation pattern
of the intestinal cells. While the overall changes to
glycosylation upon BCF exposure were small, slight alterations
could result in profound effects on the phenotype of these
cells. The up-regulation and production of specific glyco-
proteins are contributing to an altered membrane cascade and,
ultimately, a more preferable landscape for commensal bacteria
to colonize as previously demonstrated.”® This study may also
indicate the exact epitopes that commensal bacteria may
exploit to colonize which, to date, has remained largely
unknown. The glycan moieties which are present after
treatment to the BCF and their overall pattern require further
investigation as this is critical in understanding commensal
preference for specific glycan moieties. The next step in this
process is to chemically validate these lectins as the changes
hypothesized may be through abundance and/or configuration
and this can only be confirmed through chemical validation of
the components.

As mentioned previously, there are limitations when using in
vitro models such as the HT-29 cell line. The results obtained
may not entirely reflect the in vivo situation and further
progress must be made to determine whether intestinal
glycosylation can be shaped by colostral components in animal
models. Only a limited number of studies have been performed
in animals where glycosylation patterns have been investigated
and these are mainly focused on rodent or pig models
(reviewed?). For instance, sow-fed piglets had higher amounts
of fucose (48%) and glucosamine (22%) in their colonic
mucins when compared with artificially fed piglets.*®
Malnutrition imposed upon rat pups through restricted access
to suckling consequently resulted in an increase in sialic acid
content and a reduced incorporation of 14C-Mannose, 14C-
GlcNAc, and 3H-Fucose into membranes compared with
controls.”” Duncan et al.*® investigated the effects of milk
oligosaccharides on the sialic acid utilization and synthesis
pathways in neonatal rats. Interestingly, the level of colonic
gene expression in the sialic acid synthesis pathway linked
clearly with the levels of sialic acid present in the milk. The
effects of premature and postponed weaning have been studied
by Biol et al., who found that early weaning caused a decrease
in the activity of sialyltransferase and an increase in
fucosyltransferase activity. Yang et al.*’ demonstrated that
proteins involved in protein amino acid glycosylation,
including mucin 13B, mucin-2, and glucosidase 2 subunit
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beta precursor, were down-regulated in weaning piglets, which
indicated that weaning damaged the protective coating on the
surface of intestine demonstrating the importance of milk in
regulating the epithelial surface. It should be noted that while
similar patterns exist in the animal gastrointestinal tract, there
are also significant differences when compared with humans.
For instance, in contrast to humans, fewer Core3 and Core4
glycans are found in the ileum and colon glycans of mice.”””"

The effect of diet on the intestinal surface and ultimately the
microbes which can colonize the surface is now more widely
understood at both the genetic and the proteomic level due to
advances in technology allowing the complex molecular
mechanisms to be characterized. The results of this study
indicate that changes in the levels of glycoproteins and the
glycosylation pattern of the intestinal cells are occurring in
response to bovine colostrum. BCF exposure may result in less
degradation of GAGS such as HS and glycosphingolipids such
as GM2 along with increases in their abundance on the HT-29
cell surface. Other ECM proteins which contain domains
which may interact with bacteria (e.g, fibronectin type III) are
also increased in response to BCF. Certain glycosyltransferases
involved in N-glycan synthesis were also increased in the
presence of BCF. This correlates with the results of the lectin
array where slight increases in the signals at GalNAc- and
GlcNAc-specific lectins were observed.

We hypothesize that this alteration in glycosylation leads to
an advantageous cell surface for the colonization of commensal
microbes. Whether other biological processes may also be
contributing is yet to be determined. Our research provides
new insights into the theory that diet may alter the intestinal
surface through initiating changes in post-translational
modifications. The exact component(s) of the BCF which
may be responsible for the modification of the HT-29 cells still
remains to be elucidated. Although further research is required
to understand the complete mechanism of the BCF interaction
with the intestinal cells, this study provides new insight into
the modulatory activity of dietary components in the human
GIT.
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