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Numerical simulation of the paraxial propagation of pulses modulated by lenses is demonstrated using
the Laguerre–Gaussian (LG) series expansion method. This technique allows for relatively swift evalu-
ation of the structures of several individual monochromatic fields transformed by arbitrary amplitude
and phase modulating pupil functions, which can be superimposed via the inverse Fourier transform to
determine the structure of a modulated pulse. The transformation of ultrashort pulses by spherical, dif-
fractive, and conical lenses is simulated using this method, which is particularly effective with the use of
vector and matrix techniques available in many popular numerical software packages. A description of
the convergence of the LG series to the results of the conventional integral techniques is presented for a
conical lens under illumination by a continuous wave from which a simple but robust criterion for axial
accuracy in problems of circular symmetry is suggested. © 2014 Optical Society of America
OCIS codes: (320.5550) Pulses; (050.1965) Diffractive lenses; (070.7345) Wave propagation.
http://dx.doi.org/10.1364/AO.53.005701

1. Introduction

Analytical expressions for fundamental optical
beams can be derived inmany cases, but the propaga-
tion of waves modulated by apertures or elements
with irregular structures can require numerical
techniques for accurate description. In the paraxial
regime, simulation of wave propagation within opti-
cally large regions relies heavily on the use of the
Fresnel diffraction integral (FDI) [1]. Computational
solution of the FDI in its basic form is inherently a
relatively intensive calculation and, despite the avail-
ability of cheap and fast computing power, prediction
of 2D field structures may require several hours or
longer. Often, as with the derivation of analytical
expressions, application of the FDI is restricted to
the calculation of fields on the optical axis only.

Approximation of the FDI using asymptotic series
expansions has been explored and offers a useful
method of simulating the propagation of paraxial
waves. One example, initially applied in acoustics,
is Wen and Breazeale’s method that allows for effi-
cient description of paraxial diffraction effects using
series with as few as 10 terms [2]. However, a draw-
back in the original description of this technique is
that the calculation of the series coefficients for
the Gaussian beam basis terms relies on search algo-
rithms, thereby prohibiting a fast and impromptu
analysis of arbitrary apertures. Ding and Zhang de-
scribed a more efficient procedure for calculating the
expansion coefficients in that method, but their algo-
rithm is noted to remain stable only for a series with
less than approximately 50 expansion terms [3].
Zamboni-Rached and co-workers have recently for-
mulated the propagation of a diffracted field as
an expansion in Bessel–Gauss beams [4,5], illustrat-
ing the potential efficiency of the series expansion
techniques with high-resolution 2D field structures
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calculable in seconds. Although such expansion
methods will always exhibit a reduced accuracy from
that of the FDI through the exclusion of higher-order
series terms and the related spatial frequencies, the
loss of information can be negligible. These methods
merit application through their ability to utilize vec-
tor and matrix arithmetic techniques found in many
numerical software packages, such as MATLAB/Oc-
tave, Python/Numpy, etc., allowing for the manipula-
tion of transverse field structures on a plane-by-
plane basis [6,7] rather than the more time consum-
ing point-by-point scheme required for solution of
the FDI in its fundamental form. The conventional
concept of an optical pulse as an integration of mono-
chromatic fields weighted according to the Fourier
transform of the modulating signal can require
the calculation of dozens or hundreds of field calcu-
lations, each related to an individual spectral compo-
nent. The efficiency of the series expansion
techniques in calculating monochromatic fields can
significantly reduce the time required for simulation
of pulses from that of the FDI.

Here, extending the work of [6,7], we describe the
application of the Laguerre–Gaussian (LG) expan-
sion [8–15] in simplifying the calculation of pulses
transformed by phase modulating elements. Within
this discussion the convergence of the LG calcula-
tions to those of the FDI is illustrated for a conical
lens, with the suggestion of a simple but effective
estimate for the minimum number of series terms
required for accurate field calculations on the optical
axis.

A. Laguerre–Gaussian Series Expansion

The LG beams are eigenmode solutions of the para-
xial wave equation and are described in cylindrically
symmetric r − z space as [7,10]
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where Lm is the Laguerre polynomial with integer
index m.

The variation of the beam width parameter is
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with w0 � w�0�, which is an important parameter in
this work. The radius of phase curvature of the wave-
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with angular frequency, ω, wavelength, λ, and speed
of light, c. The effective radii of the LG beam modes
are [16]
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2m� 1

p
: (2)

The paraxial propagation of a continuous wave
(CW) transformed by a phase modulating aperture
or lens with a frequency dependent pupil function,
E0�ω; r0�, can be approximated as a truncated series
of M � 1 LG beam modes ψm from

ECW�ω; r; z� �
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where a is the radius of the aperture and r0 is the
radial coordinate at the plane of the aperture, which
is assumed here to lie at z � 0. Equation (4) can also
be applied as an overlap integral using the complex
conjugate of the LG beams in Eq. (1) with the R�z�
term adapted to account for the phase curvature of
a field [14]. Here, to generalize the procedure, we will
discuss the expansion method with application of the
fundamental LG functions, as in Eq. (4), in reference
to its potential use without prior knowledge of the
optical parameters of a beam or lens.

From the recurrence relations of the Laguerre
polynomials, basic expressions can be derived for cal-
culation of the expansion coefficients, Am, of a circu-
lar aperture illuminated by a plane wave [8,11] or
higher order LG beams [12]. With these relations,
the expansion of zone plates can be simplified
through their representation as a superposition of
positive and negative circ functions of appropriate
radii [13], an approach which could potentially be
extended to the modeling of diffractive Fresnel
lenses. However, the application of such recurrence
relations may be limited to very specific and ideal
beams/apertures only and, as with solution of the
FDI, it is perhaps not efficient to attempt to derive
analytical expressions for every aperture/beam
profile that may be suspected to be tractable. It is
suggested that the most significant benefit of the
Gaussian expansion methods is in their application
as numerical tools.

For anM � 1 term expansion of a circular aperture
the optimum value of w0 is given by [8]
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w0 � a�����
M

p ; (5)

which is applied throughout this work. We represent
the median integer index of a series as m � μ and
with the application of an odd value ofM in this work
μ � �M − 1�∕2, corresponding to a radius at the aper-
ture plane of ρμ�0� � a.

The expansion of a propagating field in terms of
LG or Hermite–Gaussian (HG) beam modes can
allow for efficient asymptotic calculation of fields
within the paraxial regime, which, for the simulation
of multispectral pulses, can considerably reduce com-
putation times without a significant loss of accuracy
[6,7]. For a pulsed wave, EPW�r; z; t�, the field struc-
tures are predicted through an inverse Fourier trans-
form representing an integration of monochromatic
waves at varying frequencies, i.e.,
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where S�ω� is the Fourier transform of the time-
varying amplitude modulation of the pulsed field,
s�t�. Expanding each spectral field, ECW�ω; r; z�, as
in Eq. (3), the propagation of a pulsed wave is then
determined from [7]
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With no phase modulation across an aperture, the
values ofAm are independent of angular frequency,ω,
and the sum and integral in Eq. (7) can be
rearranged, allowing a pulse to be conceptualized,
as in Ref. [7], as a superposition of individual LG
“pulselets.” Within such a description, the behavior
of the individual pulselets can be related to the
physical features of pulse diffraction at an aperture;
in particular, the propagation of the boundary waves
generated at the edge of the aperture [17,18]. How-
ever, the description in Ref. [7] was based on the
numerical simulation of the pulselets; therefore,
not enabling the potential efficiency of the expansion
technique that could be obtained with closed expres-
sions for the individual pulsed modes. Analytical for-
mulation of the propagation of the LG pulselets will
require the derivation of expressions for each unique
spectral variation, S�ω�, but Martínez-Matos et al.
have recently augmented the potential of the LG ex-
pansion in pulse modeling with the derivation of a
formula for the propagation of the LG pulselets with
Gaussian spectra [19]. In contrast to [7] and [19], the
LG expansion method is discussed here through the
conventional model of a pulse as an integration of
monochromatic fields [6], as in Eq. (7), illustrating
the technique as an efficient alternative to the
FDI. For pulses transformed by lenses, the concept
of an ultrashort field propagating as a superposition

of individual LG pulselets [7,19] would remain valid,
with each individual pulselet subject to modulation.
However, the spectral dependence of the mode coef-
ficients, Am�ω�, in Eq. (7) is suggested to add signifi-
cant complexity to the potential derivation of closed
expressions for the LG pulselets influenced by
dispersion and phase modulation.

The following section briefly illustrates the appli-
cation of the LG expansion in simulating pulses
modulated by diffractive forms of the spherical and
Fresnel lenses. In Section 3, details of the expansion
of a conical lens are given that will also relate to the
general application of the method for spherical
lenses and apertures.

2. Simulation of Diffractive Lenses Using the
Laguerre–Gaussian Expansion Method

Diffractive Fresnel lenses, e.g., [20–23], are primarily
suited as a method of concentrating energy, but can
also be used for image formation [24]. The focusing
effect of any lens on a wave is dependent on the
frequency of the field, which can create complex
propagation features in pulses [25–27], thus, requir-
ing numerical methods for accurate descriptions. The
illustration here of the LG expansion as an alterna-
tive procedure for simulating lens-modulated pulses
is a relevant topic, with recent technological develop-
ments enabling high resolution measurements
[28,29] or “snapshots in flight” [30] of ultrashort
fields using interferometric methods. Alongside the
progress of such experimental work, the intuitive
boundary wave theory of pulse diffraction has been
applied and augmented in the analysis of optical
elements [17,18,31–34], allowing in some cases for
the derivation of concise and accurate analytical
expressions of pulse structures [34].

Examples of calculations using the LG expansion
will be given in this section for the propagation of
pulses modulated by quantized forms of spherical
and Fresnel lenses, with the ideal lens surfaces re-
duced to P discrete levels. A diffractive form of the
spherical lens, the “staircase” kinoform, is con-
structed by quantizing the height of a thin spherical
lens to a constant value within each Fresnel zone
such that P � NF, where NF is the Fresnel number
of the lens [20]. Also, to illustrate the variability of
the expansion method for analyses of unorthodox
lens profiles, we simulate the propagation of a pulse
modulated by a simple modification of a thin lens
with the spherical profile approximated as a finite
number of linear segments, with such an element re-
ferred to here as a linear surface lens. The profiles of
these lenses are illustrated in Fig. 1, with the radial
variation of the lens thickness, h�r�, shown relative
to the maximum thickness, h0, of the ideal lens
forms. Due to dispersion, the focal length and Fresnel
number of a lens will vary with frequency; therefore,
the lenses are described in relation to pulses through
the Fresnel number, N0 � a2∕�λ0f 0�, with the wave-
length, λ0, and focal length, f 0, at the pulse’s carrier
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frequency. In this work, the carrier frequency
corresponds with the design frequency of the lenses.

The pulses are taken to be modulated in time, t, by
a conventional Gaussian signal,

s�t� � exp
�
− ln 2

t2

τ20

�
exp�−iω0t�; (8)

with a full width at half-maximum (FWHM) of 2τ0
and a carrier angular frequency of ω0. The Fourier
spectrum of the signal in Eq. (8) is
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�
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with a fractional bandwidth γ � Δω∕ω0, where Δω �
4 ln 2∕τ0 is the FWHM of the spectrum.

The phasemodulation of a thin lens with refractive
index n�ω� is represented as [1]

ϕ�ω; r0� � i
ω

c
�n�ω� − 1�h�r0� � i

ω

c
h0; (10)

and the mode coefficients, Am�ω�, are calculated from
Eq. (4), with E0�ω; r0� � exp�iϕ�ω; r0��, assuming
here that the lenses are illuminated uniformly by
a plane wave. Figure 2 illustrates the variation of
the mode coefficients at each angular frequency for
the described lenses. The coefficients are illustrated
as RefAm�ω�∕�−1�mg∕w0�2π�1∕2 [7] and are modu-
lated by the normalized variation of the Gaussian
spectrum, S�ω�∕S�ω0�. The images shown in Fig. 2
represent the fundamental data required for the
pulse simulations to be illustrated in this work.

Calculated using an LG expansion with M � 499,
Figs. 3 and 4 illustrate the propagation of pulses
modulated by the described lenses. The SiO2

microlenses simulated here have a focal length of
f 0 � 8 mm at the design wavelength λ0 � 800 nm,
and with a Fresnel number of N0 � 12 have a diam-
eter of 0.55 mm. A large pulse bandwidth of γ � 0.3 is
applied to enhance propagation features, and the
temporal (vertical) axes are related to the time delay
z∕c� h0∕vg where vg is the group velocity within the
lens medium. With a low Fresnel number, the fields
in Figs. 3 and 4 are not subject to a significant level of
material dispersion by the lens, which is illustrated
by the temporal consistency of the focal spot radii of
the pulses modulated by the spherical lens and its
derivatives shown in Figs. 3(e), 3(j) and 4(e). In
Fig. 4(j) the considerable effects of a spatial
dispersion induced by the Fresnel form of lens can
be seen with the focal length of each spectral compo-
nent altered according to f �ω� � ωf �ω0�∕ω0, and the
spot radius at the focal plane is observed to decrease
in time. This is in contrast to pulses subject to large
group velocity dispersion effects by spherical lenses
for which the spot radius at the focal plane often in-
creases in time [25,26].

3. Laguerre–Gaussian Expansion of Pseudo-Bessel
Beams Generated by Axicons

The conical lens, or axicon, has become a more famil-
iar element in optical studies in the last decade or so
[35–39]. The axicon projects all perpendicularly
incident rays at an equal angle toward the optical
axis, forming a focal line that maintains a consistent
spot size over a significant distance, L, often
referred to as the diffraction free range, see Fig. 5.
The refraction of a CW plane wave by a conical lens
generates a physical approximation of the Bessel
beam, J0�αr� exp�iβz − iωt�, where α2 � β2 � k2 with
wavenumber, k � ω∕c [40]. Under pulsed illumina-
tion these lenses create a practical form of the fields

Fig. 1. Structure of the types of lenses simulated in this paper
with a Fresnel number of N0 � 6. (a) Quantized P � 6 kinoform
(solid lines) with a linear surface lens (gray) approximating a thin
spherical lens (dashed curve), and (b) diffractive Fresnel lens with
P � 3 (solid lines) and the ideal Fresnel lens (dashed curves).

Fig. 2. Normalized LG mode coefficients, RefAm�ω�∕�−1�mg, cal-
culated from Eq. (4) for a γ � 0.3 plane wave pulse modulated by
various lenses with N0 � 12, using M � 299. (a) Spherical lens,
(b) staircase kinoform, (c) linear surface lens, and (d) P � 3 diffrac-
tive Fresnel lens. The data aremodulated vertically by the normal-
ized structure of the pulse spectrum, S�ω�.
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Fig. 3. Propagation of a γ � 0.3 pulsemodulated by a (left) thin spherical lens and (right) a staircase kinoform lens withP � N0 � 12. The
fields are calculated at z = (a) and (f) 0, (b) and (g) f 0∕4, (c) and (h) f 0∕2, (d) and (i) 3f 0∕4, (e) and (j) f 0. “BW” in (b) distinguishes the
boundary wave from the primary geometric wave [17].

Fig. 4. γ � 0.3 pulse transformed by a (left) linear surface lens and (right) a diffractive Fresnel lens with P � 3, both with N0 � 12. The
fields are calculated at z = (a) and (f) 0, (b) and (g) f 0∕4, (c) and (h) f 0∕2, (d) and (i) 3f 0∕4, (e) and (j) f 0.
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known as X waves [30,41–43]. A previous description
of the LG expansion for conical lenses is given in
Ref. [36], which is extended upon here.

The thickness of a conical lens is h�r0� � h0−

r0 tan θb, with amaximum of h0 � a tan θb for an ax-
icon base angle of θb, and the phase modulation can
be represented as in Eq. (10). For a CW the Fresnel
number of a conical lens has a similar form to that of
the conventional thin lens, given as [37]

NF � a2

λL
; (11)

where L is the geometric range of the focal line
generated,

L � aβ∕α: (12)

α and β are the radial and longitudinal components of
the wavenumber, k, calculated as

α � k sin θa; (13a)

β � k cos θa; (13b)

and θa is the angle of refraction with respect to the
optical axis, predicted geometrically from Snell’s law
as

θa � sin−1�n sin θb� − θb ≈ �n − 1�θb: (14)

In the simulation of pulses these beam parameters
will vary for different frequencies due to dispersion
of the lens medium with n�ω�.

The radial intensity profile of a plane wave focused
by an axicon is proportional to J0�αr�2 near the axis,
while the axial (r � 0) irradiance increases linearly
with propagation distance. In the geometric regime
the on-axis intensity can be represented as [39]

I�z� � 4π2zNF rect
�
z
L
−

1
2

�
∕L; (15)

where rect�x� � 1 for jxj < 1∕2 and 0 for all other val-
ues. With relatively low Fresnel numbers applied in
this work, diffraction effects will greatly effect the
validity of Eq. (15), but it serves as a useful summary
of the axial properties of an axicon beam.

A. LG Synthesis of the Conical Lens

In describing the LG expansion of a conical lens for
CWs, as a comparison we recall that Fourier trans-
formation of the phase representation of a thin
spherical lens with a focal length, f , exp�−ikr2∕2f �,
shows a wide spectral range of radial frequencies,
kr, dominant within kr ≈ �ka∕f and inclusive of
the axial ray with kr � 0. Similarly, in a LG expan-
sion of the thin lens function, the coefficients of lower
order modes with m → 0 maintain importance, cou-
pling with the low frequency components, kr → 0 of
the lens toward the optical axis. However,
in the LG decomposition of a thin axicon’s phase
function, with constant radial frequency, kr ≈ α, it
is observed that the values of Am for modes of lower
indices can be significantly reduced. In such cases,
appreciable coefficients are maintained only by the
higher-indexed LG functions with radial frequency
spectra inclusive of the axicon beam’s radial fre-
quency, α. The extent of the Fourier–Bessel spectrum
of an LG mode, corresponding to its radial frequency
at r → 0, can be approximated as [7]

κm�z� �
2

w�z�
�����������������
2m� 1

p
: (16)

With w�0� from Eq. (5), an estimate for the mini-
mum index of the modes with Fourier–Bessel spectra
inclusive of the radial frequency of the axicon beam,
i.e., κm�0� ≥ α, is

Δm �
�
α2a2

8M
−

1
2

�
; (17)

which can be seen in the following Fig. 6 to relate to a
shift of the axicon’s spectrum of LG coefficients,
akin to an offset of its Fourier spectrum. In Fig. 6(a)
the predicted modal shift is Δm � 6 and in
(b) Δm � 40. For expansion of the corresponding
spherical lenses, a stretching of the LG spectra is ob-
served with a reduction of the coefficient values pre-
serving the constant sum of jAmj2 over m for each
aperture function. In the simulation of modulated
pulses, these features will be emphasized for higher
field frequencies.

Equation (5) is an optimum value for expansion of
the circular aperture because it creates a balance be-
tween the number of LG functions that are signifi-
cantly obstructed at r0 � a�ρm > a�, and those that
are not (ρm ≤ a), thus placing equal emphasis on
the synthesis of both the gross structure and the
discontinuity at r0 � a [7,8]. With the radial trunca-
tion of the modes with indices m > μ (ρm > a), the
corresponding coefficient values are significantly
reduced, see Fig. 6 with μ � 149. However, for the

Fig. 5. Generation of a pseudo-Bessel beam or focal line on the
optical axis between z � 0 and z � L by the self-interference of
a plane wave refracted by an axicon.
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altered spectra of conical or spherical lenses, many
coefficients withm > μ are seen to retain appreciable
values despite the radial truncation of the modes.
This is possible due to the maintenance of a correla-
tion between the structures of the respective LG
functions and the oscillatory lens functions at
r0 → a. Determination of the modes that preserve
such correspondence cannot, to the authors’ knowl-
edge, be achieved in a direct manner, as the local
frequencies of the LG functions are not formally iden-
tifiable, for example, as κm�r�. However, for thin coni-
cal and spherical lenses, using α ≈ ka∕f for the latter,
Δm from Eq. (17) is observed as a valid estimate for
the extension of the modal spectra beyond m � μ.

Despite the deviations of the LG spectra of lenses
shown in Fig. 6 from that of the circular aperture, it
is important to note that the width parameter de-
fined by Eq. (5) is valid for optimal expansions of
the specific lens functions described here, and will
remain so when a sufficiently large value of M is
employed. This is shown in Fig. 7, with a comparison
of the normalized mean squared error ΔE0 between
lens/aperture functions and their respective syn-
theses using the LG expansion [8,10,15].

In Fig. 7, the value of w0 predicted with Eq. (5) is
seen to remain valid for optimal synthesis of the
axicon, lens, and circular aperture, minimizing the

reconstruction error, ΔE0, in each case. Although
ΔE0 increases with values of w0 greater than that
suggested by Eq. (5), maximal errors are not attained
in the data shown for expansion of the spherical lens
or basic aperture function, which, with low frequency
features, can be partially reconstructed using larger
values of w0. A clear deviation occurs in the error cal-
culations of the axicon’s expansion, with the range of
values of w0 that permit acceptable synthesis becom-
ing significantly reduced. In this case, a critical value
of the width parameter occurs at w0 � 0.32a, corre-
sponding to the value above which the highest radial
frequency within the LG mode set, κM�0� from
Eq. (16), becomes less than the radial frequency, α,
of the axicon beam, therefore disallowing any appro-
priate synthesis. For an expansion of the axicon lens
with smaller values ofM, this critical value ofw0 will
decrease toward that given by Eq. (5) with the latter
subsequently losing its validity as an optimal param-
eter and the LG expansion becoming incapable of
providing an appropriate synthesis. A similar fea-
ture will occur in expansion of the spherical lens.

Suggesting a general rule of thumb, the LG expan-
sion using Eq. (5) is observed to remain suitable for
synthesis of lens functions when the shifted or
stretched LG spectra, see Fig. 6, are insignificantly
truncated at m � M, i.e., μ� Δm < M. This can be
approximated with Eq. (17) for an axicon as

M >
αa
2

; (18a)

or for a thin spherical lens as

M >
ka2

2f
: (18b)

Simplified asM > πNF, these conditions suggest the
absolute minimum number of modes needed to

Fig. 6. LG coefficients from Eq. (4), with M � 299, for a circular
aperture and conical and spherical lenses with a Fresnel number,
NF = (a) 20, and (b) 50.

Fig. 7. Errors of the LG syntheses with varying width parameter,
w0, for a (a) circular aperture [8], (b) thin spherical lens, and
(c) conical lens with Fresnel numbers NF � 20, using M � 199.
The optimal value of w0 determined by Eq. (5) is 0.071a.
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simulate the basic geometric propagation features of
a lens-modulated beam using the fundamental LG
expansion as described in Eq. (4).

The relatively informal derivation of such rules of
thumb is undesirable, but, in comparison with the
more familiar and well-developed Fourier concepts
of optics, the LG and related expansions lack accu-
rate analytical descriptions for the varying spatial
frequencies of their basis functions. In Siegman’s der-
ivation of a sampling theorem for the HG expansion
of a field, which may potentially be modified for the
LG technique, the HG functions are discussed as
having a single frequency; an average value derived
from the number of irregular oscillations across the
estimated width of the functions [10]. Although
enabling useful applications, such an approximation
is suggestive of the somewhat imprecise nature of
analysis involving the higher-order Gaussian
functions.

B. Optimization of Axial Field Calculations

The optimization of aperture synthesis is a primary
topic of interest in discussions of series expansion
methods [8,10,15]. However, we are not interested
in the synthesis of an aperture/lens structure per
se, but more so its total diffractive influence on a

propagating wave. Thus, any optimization of a series
expansion for field calculations beyond an aperture
must consider the important effects that are inde-
pendent of the aperture’s pupil function, i.e., the
formation of boundary waves at its outer edge
[17,18,31]. In Ref. [7] the convergence of the LG ex-
pansion to the FDI calculation was illustrated in the
time domain for pulsed fields, but without indication
of the number of modes required for suitable accu-
racy. Here, we can present a reliable prediction of
the minimum value of M needed for acceptable con-
vergence of the LG expansion for on-axis fields, a pre-
vious statement of which is not known to the authors.
This is given within a general discussion of the tech-
nique for CWs, but will have relevance in the simu-
lation of pulses and, although illustrated for a conical
lens, the described effects are generally relatable to
all circularly symmetric apertures and lenses.

The high-frequency fluctuations of intensity typi-
cally observed in the on-axis structure of CW fields
diffracted at an aperture are generated by the inter-
ference of the boundary waves originating at the
edge of the aperture with the geometric wave that
maintains the fundamental directional features of
the (modulated) incident field [17,18,31,38], see
Fig. 3(b). With a comparison to the FDI calculation,

Fig. 8. Axial irradiance of a CW plane wave modulated by a NF � 20 conical lens, calculated using (a) the FDI, and (b)–(d) the LG
expansions of various sizes. The dashed vertical lines represent the confocal plane, zc, of the constituent modes, and the intensity values
are normalized to the maximum value of Eq. (15).
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Fig. 8 depicts how the predicted axial irradiance of a
CW plane wave modulated by an axicon is influenced
by the truncation of a LG series to a finite number of
beam modes.

Figure 8 illustrates clearly the effects of truncating
a series expansion, with a loss of the highly oscilla-
tory intensity structure in the near field. This is an
inherent feature of such methods [2–5], see e.g.
Fig. (4) of Ref. [4], and is due to the reduced ability
of a truncated series calculation to represent the
propagation features of the boundary waves at
planes closer to the aperture. Assuming paraxial con-
ditions, with the diffraction of a wave at an aperture
at z � 0 the highest radial frequency on the axis at
any plane z > 0 is that associated with the parabolic
boundary wave that has a radial frequency at r � 0
of [7,17,18]

ka�z� � ka∕z: (19)

Subsequently, for the axial characteristics of a boun-
dary wave to be suitably represented by the LG ex-
pansion, the radial frequencies at the axis present
within the finite set of propagating LG modes must
replicate ka�z�. To first state the condition under
which such representation will occur, it is found that,
with application of Eq. (5), the on-axis radial fre-
quency of the mode with the highest index, M,
κM�z� from Eq. (16), exceeds that of the boundary
wave at planes beyond the confocal range, zc, with
the LG series converging toward the complete axial
prediction of the FDI in that region only. Represent-
ing the confocal range usingw0 from Eq. (5), the basic
criterion for axial convergence of the LG series
expansion at any plane, z, is therefore

M >
ka2

2z
; i:e: z > zc. (20)

There is, however, a slight approximation in the
simple derivation of the stated condition. With an
adherence to Eq. (5), Eq. (20) is actually determined
from the observation that the on-axis radial fre-
quency of a fictitious LG mode with m � M − 1∕2
equates exactly with that of the boundary wave at
z � zc, i.e., from Eq. (16) with w�zc� � 21∕2w0,

κM−1∕2�zc� �
2���
2

p
w0

�����������������������������������
2�M − 1∕2� � 1

p
� 2

M
a

� ka�zc�

(21)

with κM−1∕2�z� > ka�z� at planes beyond zc. Equiva-
lent relations will hold for κM, with an adaptation
of Eq. (5) tow0 � a∕�M � 1∕2�1∕2, but the approxima-
tion M ≈ M − 1∕2 has negligible effect in practical
applications.

Equation (20) is proposed to be a useful and
important parameter in the application of the LG ex-
pansion. For calculation of pulses with Gaussian
spectra, assuming a constant value of M for all

frequency components, a suitable adaptation of
Eq. (20) is M > π�1� γ�N0, with N0 � a2∕�λ0z�,
which accounts for the higher field frequencies
within a spectrum. This value can be seen to conform
to the error analysis of the method’s application for
pulses shown in Fig. 11 of Ref. [7]. It is to be noted
that the evolution of the expansion results toward
complete convergence in z > zc is not an abrupt tran-
sition, as shown in Fig. 8, particularly with lower
values of M.

C. Pulsed Axicon Beams

Figure 9 illustrates the propagation of a pseudo X
wave [30,41–43] generated by axicon modulation of
an ultrashort pulse using the LG expansion, with
L0 � L�ω0�. The propagation of such fields generated
using spatial light modulators has recently been
described in Ref. [44].

Due to the separation of the geometric and boun-
dary waves, see Fig. 9(a) or Fig. 3(b), a diffracted
pulse’s intensity will exhibit a less oscillatory varia-
tion than that of a CW in the same system [18,45].
Figure 10 illustrates the effect of this phenomena
on the maximum instantaneous axial intensity,
jEj2, of a pulsed axicon beam at each plane. For γ �
0.1 the intensity distribution shows a more oscilla-
tory structure, due to the longer durations of the
boundary and geometric pulses, which causes over-
lap and interference between the two features over

Fig. 9. Propagation of a γ � 0.3 pulse modulated by a N0 � 12
conical lens, using a LG expansion with M � 299. The fields
are simulated at z = (a) L0∕4, (b) L0∕2, (c) L0, (d) 2L0. “BW” in
(a) highlights the boundary wave.
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a greater distance than in the case of the much
shorter pulse with γ � 0.5. The limitations of the
LG series method illustrated in Fig. 8 do not interfere
in the specific calculations of maximum instantane-
ous intensity shown in Fig. 10. In this case, the most
intense feature of the field is the geometric wave that
can be suitably reconstructed at all planes. However,
complete calculation of the corresponding time-
averaged intensity will require appropriate repre-
sentation of the boundary wave and, for that
scenario, the series expansions may exhibit limita-
tions related to those shown in Fig. 8.

Without knowledge of appropriate analytical
expressions, the application of an efficient and adapt-
able numerical technique is particularly beneficial in
calculating the significant amount of data required
for the generation of Fig. 10.

4. Conclusion

The LG expansion has been described as an efficient
complement to the existing techniques for simulation
of pulses modulated by refractive and diffractive
lenses. The �1� 1�D field images shown here were
calculated with a maximum of 1001 × 1001 points,
using 201 samples of a discrete Fourier integral
in Eq. (7). With basic custom code, this required

approximately 90 min on a standard portable com-
puter when using a value ofM � 499. However, such
resolution is obviously not always essential and can
be significantly reduced to enable the procedure’s ap-
plication as an efficient research tool, allowing for
impromptu examination of the propagation features
of pulses modulated by nonstandard lenses and
gratings. The inherent efficiency of the method’s for-
mulation as a sum, augmented with vector and
matrix programming methods, may be considered
as a trade-off with the loss of complete convergence
toward the FDI results, as described in Section 3.B,
but the importance of those inevitable limitations
can be dependent on the specific application.
Although directly related to axial calculations, the
criterion for convergence given by Eq. (20) can also
be applied as a helpful rule in the simulation of
�1� 1�D pulse structures in the near field. However,
at distances further from the aperture the radial
frequencies at the optical axis decrease and become
comparable in magnitude to those at off-axis points,
which will require the application of larger mode sets
than suggested by Eq. (20).

The LG expansion was applied here with exclusive
reference to the symmetric cylindrical regime, but
the technique can be adapted for nonsymmetric or
obliquely propagating fields using the rotationally
variant associated LG beam modes, allowing for
analysis of lens aberrations [14]. The HG beam
modes can be applied for a 2D Cartesian description
of an aperture in a similar manner, allowing for
greater variation in the asymmetry of fields that
can be represented [46].
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