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Abstract. The Standardized Precipitation Index (SPI) is a
widely accepted drought index. Its calculation algorithm nor-
malizes the index via a distribution function. Which distribu-
tion function to use is still disputed within the literature. This
study illuminates that long-standing dispute and proposes a
solution that ensures the normality of the index for all com-
mon accumulation periods in observations and simulations.

We compare the normality of SPI time series derived with
the gamma, Weibull, generalized gamma, and the exponenti-
ated Weibull distribution. Our normality comparison is based
on a complementary evaluation. Actual compared to theo-
retical occurrence probabilities of SPI categories evaluate
the absolute performance of candidate distribution functions.
Complementary, the Akaike information criterion evaluates
candidate distribution functions relative to each other while
analytically punishing complexity. SPI time series, span-
ning 1983–2013, are calculated from the Global Precipitation
Climatology Project’s monthly precipitation dataset, and sea-
sonal precipitation hindcasts are from the Max Planck Insti-
tute Earth System Model. We evaluate these SPI time series
over the global land area and for each continent individually
during winter and summer. While focusing on regional per-
formance disparities between observations and simulations
that manifest in an accumulation period of 3 months, we ad-
ditionally test the drawn conclusions for other common ac-
cumulation periods (1, 6, 9, and 12 months).

Our results suggest that calculating SPI with the com-
monly used gamma distribution leads to deficiencies in the
evaluation of ensemble simulations. Replacing it with the
exponentiated Weibull distribution reduces the area of those
regions where the index does not have any skill for precip-
itation obtained from ensemble simulations by more than

one magnitude. The exponentiated Weibull distribution max-
imizes also the normality of SPI obtained from observational
data and a single ensemble simulation. We demonstrate that
calculating SPI with the exponentiated Weibull distribution
delivers better results for each continent and every investi-
gated accumulation period, irrespective of the heritage of the
precipitation data. Therefore, we advocate the employment
of the exponentiated Weibull distribution as the basis for SPI.

1 Introduction

Drought intensity, onset, and duration are commonly as-
sessed with the Standardized Precipitation Index (SPI). SPI
was first introduced by McKee et al. (1993) as a tempo-
rally and spatially invariant probability-based drought index.
In 2011, the World Meteorological Organization (WMO) en-
dorsed the index and recommended its use to all meteoro-
logical and hydrological services for classifying droughts
(Hayes et al., 2011). Advantages of SPI are its standard-
ization (Sienz et al., 2012); its simplicity; and its variable
timescale which allows its application to assess meteorolog-
ical, agricultural, and hydrological drought (Lloyd-Hughes
and Saunders, 2002). In contrast, the index’s main disad-
vantage is the mean by which its standardization is real-
ized and concerns the identification of a suitable theoretical
distribution function to describe and normalize highly non-
normal precipitation distributions (Lloyd-Hughes and Saun-
ders, 2002). The choice of that suitable theoretical distribu-
tion function is a key decision in the index’s algorithm (Blain
et al., 2018; Stagge et al., 2015; Sienz et al., 2012). This study
illuminates reasons for a missing consensus on this choice
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and attempts to establish such a consensus for both simula-
tions and observations.

SPI quantifies the standardized deficit (or surplus) of pre-
cipitation over any period of interest – also called the ac-
cumulation period. This is achieved by fitting a probability
density function (PDF) to the frequency distribution of pre-
cipitation totals of the accumulation period – which typically
spans either 1, 3, 6, or 12 months. SPI is then generated by
applying a Z transformation to the probabilities and is stan-
dard normally distributed.

The choice of the PDF fitted to the frequency distribu-
tion of precipitation is essential because only a proper fit ap-
propriately standardizes the index. While the standardization
simplifies further analysis of SPI, the missing physical under-
standing of the distribution of precipitation leads to a ques-
tionable basis for the fit. Therefore, the choice of the PDF is
to some extent arbitrary and depicts the Achilles heel of the
index.

Originally, McKee et al. (1993) proposed a simple gamma
distribution – while Guttman (1999) identified the Pearson
type III distribution – to best describe observed precipita-
tion. Both of these distributions are nowadays mostly used
in SPI’s calculation algorithms. As a result, many studies
that use SPI directly fit the gamma (Mo and Lyon, 2015; Ma
et al., 2015; Yuan and Wood, 2013; Quan et al., 2012; Yoon
et al., 2012) or the Pearson type III distribution (Ribeiro and
Pires, 2016) without assessing the normality of SPI’s result-
ing distribution with goodness-of-fit tests or other statistical
analyses beforehand. The selected PDF, however, is of criti-
cal importance because the choice of this PDF is the key de-
cision involved in the calculation of SPI, and indeed many
authors have urged investigating the adequacy of distribu-
tion functions for new datasets and regions before applying
them (Blain et al., 2018; Stagge et al., 2015; Touma et al.,
2015; Sienz et al., 2012). Neglecting such an investigation
has potentially far-reaching consequences in terms of a bi-
ased drought description (Guenang et al., 2019; Sienz et al.,
2012). A biased drought description would result from an in-
adequacy of the fitted distribution function to describe pre-
cipitation. Such an inadequacy has been identified for the
gamma (Lloyd-Hughes and Saunders, 2002; Naresh Kumar
et al., 2009; Sienz et al., 2012; Blain and Meschiatti, 2015;
Stagge et al., 2015; Touma et al., 2015; Blain et al., 2018;
Guenang et al., 2019) as well as the Pearson type III dis-
tribution (Blain and Meschiatti, 2015; Blain et al., 2018;
Stagge et al., 2015) in many parts of the world. This led
to the request for further investigations of candidate distri-
bution functions (Blain and Meschiatti, 2015; Blain et al.,
2018; Stagge et al., 2015; Touma et al., 2015; Sienz et al.,
2012; Lloyd-Hughes and Saunders, 2002; Guttman, 1999).

Several studies have investigated the adequacy of PDFs
fitted onto observed precipitation while focusing on differ-
ent candidate distribution functions (Blain and Meschiatti,
2015), different parameter estimation methods in the fit-
ting procedure (Blain et al., 2018), different SPI timescales

(Guenang et al., 2019), general drought climatology (Lloyd-
Hughes and Saunders, 2002), and even the most appropriate
methodology to test different candidate distribution functions
(Stagge et al., 2015). As each of these investigations analyzed
different regions and different PDFs or focused on different
perspectives of this highly multi-dimensional problem, they
recommend different candidate PDFs.

Nevertheless, some common conclusions can be drawn.
Most investigations only analyzed two-parameter distribu-
tion functions (Guenang et al., 2019; Blain et al., 2018;
Stagge et al., 2015; Lloyd-Hughes and Saunders, 2002).
Among those, they agreed depending on the accumulation
period and/or the location either on the Weibull or the
gamma distribution to be best suited in most cases. However,
Blain and Meschiatti (2015) also investigated three-, four-
and five-parameter distribution functions and concluded that
three-parameter PDFs seem to be best suited to compute
SPI in Pelotas, Brazil. Consequently, they advocated for a
re-evaluation of the widespread use of the two-parameter
gamma distribution (see also Wu et al., 2007). Moreover,
a single candidate distribution function was neither suited
in each location nor for each accumulation period to prop-
erly calculate SPI time series (Guenang et al., 2019; Blain
et al., 2018; Stagge et al., 2015; Lloyd-Hughes and Saunders,
2002). Further, at the accumulation period of 3 months, a crit-
ical phase transition in precipitation totals seems to manifest,
which complicates the overall ranking of candidate PDFs
(Guenang et al., 2019; Blain et al., 2018; Stagge et al., 2015).
Findings point at the Weibull distribution to be best suited
for short accumulation periods (smaller than 3 months) and
the gamma distribution for long accumulation periods (larger
than 3 months) (Stagge et al., 2015).

Two additional studies analyzed the adequacy of differ-
ent candidate PDFs fitted onto simulated precipitation while
focusing on drought occurrence probabilities in climate pro-
jections (Touma et al., 2015; Sienz et al., 2012). Touma et al.
(2015) is the only study that tested candidate PDFs glob-
ally. However, they solely provide highly aggregated results
that are globally averaged for accumulation periods between
3 and 12 months and conclude that the gamma distribution is
overall best suited to calculate SPI. In contrast, Sienz et al.
(2012) is up to now the only study that tested candidate PDFs
in simulations as well as in observations and identified no-
table differences in their performance in both realizations.
They focused on an accumulation period of 1 month, and
their results also show that the Weibull distribution is well
suited for SPI calculations at short accumulation periods in
observations but also in simulations. Moreover, their results
also hint at the phase transition mentioned above: for accu-
mulation periods longer than 3 months their results indicate
that the gamma distribution outperforms the Weibull distribu-
tion in observations as well as in simulations. More interest-
ingly, the results of Sienz et al. (2012) indicate that two three-
parameter distributions (the generalized gamma and the ex-
ponentiated Weibull distribution) perform for short accumu-
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lation periods as well as the Weibull distribution and for long
accumulation periods similar to the gamma distribution, in
observations and simulations. Surprisingly, neither the expo-
nentiated Weibull nor the generalized gamma distribution has
been thoroughly tested since.

Testing the performance of three-parameter distributions
introduces the risk of overfitting (Stagge et al., 2015; Sienz
et al., 2012), which could explain the focus on two-parameter
distributions in recent studies. As a consequence of this
one-sided focus in combination with the inability of two-
parameter PDFs to perform sufficiently well in different lo-
cations and for different accumulation periods concurrently,
many studies have proposed a multi-distribution approach
(Guenang et al., 2019; Blain and Meschiatti, 2015; Touma
et al., 2015; Sienz et al., 2012; Lloyd-Hughes and Saun-
ders, 2002). Such an approach recommends the use of a
set of PDFs. The best-suited PDF of this set is then em-
ployed. Thus, the employed PDF might differ depending
on the accumulation period, the location, or the dataset. In
opposition, other studies have strongly emphasized concern
about this approach because it adds complexity while re-
ducing or even obliterating comparability across space and
time (Stagge et al., 2015; Guttman, 1999). The comparability
across space and time is a main advantage of SPI. Guttman
(1999) even warns of using SPI widely until a single PDF is
commonly accepted and established as the norm.

Most studies test candidate distribution functions with
goodness-of-fit tests (Guenang et al., 2019; Blain and
Meschiatti, 2015; Blain et al., 2018; Stagge et al., 2015;
Touma et al., 2015; Lloyd-Hughes and Saunders, 2002). In
this process, some studies heavily rely on the Kolmogorov–
Smirnov test (Guenang et al., 2019; Touma et al., 2015).
However, the Kolmogorov–Smirnov test has an unacceptably
high likelihood of erroneously accepting a non-normal dis-
tribution if the parameters of the candidate PDF have been
estimated from the same data on which the tested distri-
bution is based (which because of scarce precipitation data
availability is usually always the case) (Blain and Meschi-
atti, 2015; Blain et al., 2018; Stagge et al., 2015). There-
fore, other studies tested the goodness of fit either with an
adaptation of the Kolmogorov–Smirnov test, the Lilliefors
test (Blain and Meschiatti, 2015; Blain et al., 2018; Stagge
et al., 2015; Lloyd-Hughes and Saunders, 2002); with the
Anderson–Darling test (Blain et al., 2018; Stagge et al.,
2015); or with the Shapiro–Wilk test (Blain and Meschi-
atti, 2015; Blain et al., 2018; Stagge et al., 2015). Neverthe-
less, the Lilliefors and Anderson–Darling tests are inferior
to the Shapiro–Wilk test (Blain et al., 2018; Stagge et al.,
2015), which in turn is unreliable to evaluate SPI normality
(Naresh Kumar et al., 2009).

The abovementioned goodness-of-fit tests equally evalu-
ate each value of SPI’s distribution. Such an evaluation fo-
cuses on the center of the distribution because the center of
any distribution contains per definition more samples than
the tails. In contrast, SPI usually analyzes (and thus depends

on a proper depiction of) the distribution’s tails. Therefore, a
blurred focus manifests in these goodness-of-fit tests. More-
over, the convention to binarily interpret the abovementioned
goodness-of-fit tests aggravates this blurred focus. Because
of this convention, these goodness-of-fit tests are unable to
produce any relative ranking of the performance of distribu-
tion functions for a specific location (and accumulation pe-
riod). This inability prevents any reasonable aggregation of
limitations that surface despite the blurred focus. Thus, they
are ill suited to discriminate the best-performing PDF out of
a set of PDFs (Blain et al., 2018). For SPI distributions the
question is not whether they are (or ought to be) normally
distributed (for which goodness-of-fit tests are well suited
to provide the answer). The crucial question is rather which
PDF maximizes the normality of the resulting SPI distribu-
tion. Because of the ill-fitting focus and the ill-suited conven-
tion of these goodness-of-fit tests, they are inept to identify
SPI’s best-performing candidate distribution function out of
a set of PDFs.

In agreement with this insight, those studies that rigor-
ously analyzed candidate distribution functions or investigate
an appropriate test methodology for evaluating SPI candi-
date PDFs consequently advocate the use of relative assess-
ments: mean absolute errors (Blain et al., 2018), the Akaike
information criterion (AIC) (Stagge et al., 2015; Sienz et al.,
2012), or deviations from expected SPI categories (Sienz
et al., 2012). These studies also emphasize the importance
of quantifying the differences between theoretical and calcu-
lated SPI values for different drought categories (Blain et al.,
2018; Sienz et al., 2012). Stagge et al. (2015), who investi-
gated appropriate methodologies to test different candidate
PDFs, even use AIC to discriminate the performance of dif-
ferent goodness-of-fit tests.

SPI calculation procedures were developed for observed
precipitation data. Since models do not exactly reproduce
the observed precipitation distribution, these procedures need
to be tested and eventually adapted before being applied to
modeled data. Here, we aspire to identify an SPI calculation
algorithm that coherently describes modeled and observed
precipitation (i.e., describes both modeled and observed pre-
cipitation distributions individually and concurrently). While
testing SPI’s calculation algorithm on modeled precipitation
data is usually neglected, such a test demands nowadays a
similarly prominent role as the one for observations because
of the increasing importance of drought predictions and their
evaluation. Despite this importance, the adequacy of differ-
ent candidate distribution functions has to the authors’ best
knowledge never been tested in the output of a seasonal pre-
diction system – although seasonal predictions constitute our
most powerful tool to predict individual droughts. To close
that gap, this study evaluates the performance of candidate
distribution functions in an output of 10 ensemble members
of initialized seasonal hindcast simulations.

In this study, we test the adequacy of the gamma, Weibull,
generalized gamma, and exponentiated Weibull distribution
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in SPI’s calculation algorithm. The evaluation of their perfor-
mance depends on the normality of the resulting SPI time se-
ries. In this evaluation, we focus on an SPI accumulation pe-
riod of 3 months (SPI3M) during winter (DJF; seasons abbre-
viated throughout by the first letter of each month) and sum-
mer (JJA) and test the drawn conclusions for other common
accumulation periods (1, 6, 9, and 12 months). Our analysis
conducts two complementary evaluations of their normality:
(i) evaluating their normality in absolute terms by comparing
actual occurrence probabilities of SPI categories (as defined
by WMO’s SPI User Guide; Svoboda et al., 2012) against
well-known theoretically expected occurrence probabilities
from the standard normal distribution (N0,1) and (ii) evalu-
ating their normality relative to each other with the Akaike
information criterion (AIC), which analytically assesses of
the optimal trade-off between information gain against the
complexity of the PDF to adhere to the risk of overfitting.
During this analysis, we investigate observations and simula-
tions. Observed and simulated precipitation is obtained from
the monthly precipitation dataset of the Global Precipitation
Climatology Project (GPCP) and the abovementioned initial-
ized seasonal hindcast simulations, respectively. We conduct
our analysis for the period 1982 to 2013 with a global focus
which also highlights regional disparities on every inhabited
continent (Africa, Asia, Australia, Europe, North America,
and South America).

2 Methods

2.1 Model and data

We employ a seasonal prediction system (Baehr et al., 2015;
Bunzel et al., 2018) which is based on the Max Planck Insti-
tute Earth System Model (MPI-ESM). MPI-ESM, also used
in the Coupled Model Intercomparison Project 5 (CMIP5),
consists of an atmospheric (ECHAM6; ECMWF Hamburg
Model) (Stevens et al., 2013) and an oceanic (MPIOM;
Max Planck Institute Ocean Model) (Jungclaus et al.,
2013) component. For this study the model is initialized
in May and November and runs with 10 ensemble mem-
bers in the low-resolution version – MPI-ESM-LR: T63 (ap-
prox. 1.875◦× 1.875◦) with 47 different vertical layers in
the atmosphere between the surface and 0.01 hPa and GR15
(maximum 1.5◦× 1.5◦) with 40 different vertical layers in
the ocean. Except for an extension of the simulation period
by 3 years (extended to cover the period 1982–2013), the
investigated simulations are identical to the 10-member en-
semble simulations analyzed by Bunzel et al. (2018). Here,
we analyze the sum of convective and large-scale precipita-
tion from these simulations (Pieper et al., 2020).

We obtain observed precipitation from the Global Precip-
itation Climatology Project (GPCP), which combines obser-
vations and satellite precipitation data into a monthly precip-
itation dataset on a 2.5◦× 2.5◦ global grid spanning 1979 to

present (Adler et al., 2003). To compare these observations
against our hindcasts, the precipitation output of the model is
interpolated to the same grid as GPCP’s precipitation dataset,
from which we only use the simulated time period (1982–
2013).

Depending on the accumulation period (1, 3, 6, 9, or
12 months), we calculate the frequency distribution of mod-
eled and observed precipitation totals over two different sea-
sons (August and February – 1, JJA and DJF – 3, MAMJJA
and SONDJF – 6, and so on). Because our results do not indi-
cate major season-dependent differences in the performance
of candidate PDFs for SPI3M, we aggregate our results for
the other accumulation periods over both seasons.

Our precipitation hindcasts are neither bias- nor drift-
corrected and are also not recalibrated. Such corrections usu-
ally adjust the frequency distribution of modeled precipita-
tion in each grid point to agree better with the observed fre-
quency distribution. Here, we investigate the adequacy of dif-
ferent PDFs in describing the frequency distribution of mod-
eled precipitation totals over each accumulation period with-
out any correction. As a consequence, we require that SPI’s
calculation algorithm deals with such differing frequency
distributions on its own. That requirement enables us to iden-
tify the worst possible mismatches.

2.2 Standardized Precipitation Index

We calculate SPI (McKee et al., 1993) for our observed and
modeled time period by fitting a PDF onto sorted 3-month
precipitation totals in each grid point during both seasons of
interest and for each accumulation period. Zero-precipitation
events are excluded from the precipitation time series before
fitting the PDF and are dealt with later specifically. We es-
timate the parameters of our candidate PDFs in SPI’s calcu-
lation algorithm with the maximum-likelihood method (No-
cedal and Wright, 1999), which is also the basis for the AIC
computation.

Our parameter estimation method first identifies starting
values for the n parameters of the candidate PDFs by roughly
scanning the n-dimensional phase space spanned by these
parameters. The starting values identified from that scan
are optimized with the simulated annealing method (SANN)
(Bélisle, 1992). Subsequently, these SANN-optimized start-
ing values are again further optimized by a limited-
memory modification of the Broyden–Fletcher–Goldfarb–
Shanno (also known as BFGS) quasi-Newton method (Byrd
et al., 1995). If the BFGS quasi-Newton method leads to
a convergence of the parameters of our candidate PDF, we
achieve our goal and end the optimization here. If the BFGS
quasi-Newton method does not lead to a convergence of the
parameters of our candidate PDF, then we circle back to the
starting values optimized by SANN and optimize them again
further but this time with the Nelder–Mead method (Nelder
and Mead, 1965). After identifying converging parameters,
the probabilities of encountering the given precipitation to-
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tals are computed and transformed into cumulative probabil-
ities (G(x)).

If neither the BFGS quasi-Newton nor the Nelder–Mead
method leads to any convergence of the most suitable param-
eters of our candidate PDFs, then we omit these grid points
where convergence is not achieved. For the gamma, Weibull,
and exponentiated Weibull distribution, non-converging pa-
rameters are rare exceptions and only occur in a few neg-
ligible grid points. For the generalized gamma distribution,
however, non-convergence appears to be a more common is-
sue and occurs in observations as well as in simulations in
roughly every fifth grid point of the global land area. This
shortcoming of the generalized gamma distribution needs to
be kept in mind when concluding its potential adequacy in
SPI’s calculation algorithm.

Since PDFs that describe the frequency distribution of pre-
cipitation totals are required to be only defined for the posi-
tive real axis, the cumulative probability (G(x)) is undefined
for x = 0. Nevertheless, the time series of precipitation totals
may contain events in which zero precipitation has occurred
over the entire accumulation period. Therefore the cumula-
tive probability is adjusted:

H(x)= q + (1− q)G(x), (1)

where q is the occurrence probability of zero-precipitation
events in the time series of precipitation totals. q is estimated
by the fraction of the omitted zero-precipitation events in
our time series. Next, we calculate from the new cumula-
tive probability (H(x)) the likelihood of encountering each
precipitation event of our time series for every grid point in
each season of interest and each accumulation period. In the
final step, analog to McKee et al. (1993), a Z transformation
of that likelihood to the standard normal (mean of 0 and vari-
ance of 1) variable Z takes place which constitutes the time
series of SPI.

In very arid regions or those with a distinct dry season,
SPI time series are characterized by a lower bound (Pietzsch
and Bissolli, 2011; Wu et al., 2007). That lower bound results
from H(x) dependence on q and correctly ensures that short
periods without rain do not necessarily constitute a drought
in these regions. Nevertheless, that lower bound also leads
to non-normal distributions of SPI time series. The shorter
the accumulation period is, the more likely it is for zero-
precipitation events to occur – and the more likely it becomes
for SPI time series to be non-normally distributed. Stagge
et al. (2015) proposed to use the center of mass instead of
the fraction of zero-precipitation events to estimate q. Such
an adaptation leads to a lower q than the fraction approach
and distinctly increases the normality of SPI time series and
their statistical interpretability if that fraction becomes larger
than approximately one-third. As explained before, we want
to investigate the worst possible case and, therefore, con-
servatively estimate q. As a consequence, SPI time series
are calculated exclusively for grid points exhibiting zero-
precipitation events in less than 34 % of the times in our time

Table 1. Abbreviations used for candidate distribution functions.

Distribution function Parameter Abbreviation
count

Gamma distribution 2 GD2
Weibull distribution 2 WD2
Generalized gamma distribution 3 GGD3
Exponentiated Weibull distribution 3 EWD3

period. This limitation restricts the SPI calculation in sim-
ulations over the Sahara and the Arabian Peninsula for ac-
cumulation periods of 1 and 3 months, only exceptionally
occurs for an accumulation period of 6 months, and does
not restrict accumulation periods longer than 6 months. Cur-
rent complex climate models parameterize convection and
cloud microphysics to simulate precipitation, which leads to
spurious precipitation amounts. Those spurious precipitation
amounts prevent us from directly identifying the probability
of zero-precipitation events in modeled precipitation time se-
ries. Analog to Sienz et al. (2012), we prescribe a threshold
of 0.035 mm per month to differentiate between months with
and without precipitation in the hindcasts.

To further optimize the fit of the PDF onto modeled precip-
itation, all hindcast ensemble members are fitted at once. We
checked and ascertained the underlying assumption of this
procedure – that all ensemble members show in each grid
point identical frequency distributions of precipitation. It is,
therefore, reasonable to presume that a better fit is achievable
for simulated rather than for observed precipitation.

2.3 Candidate distribution functions

Cumulative precipitation sums are described by skewed dis-
tribution functions which are only defined for the positive
real axis. We test four different distribution functions and
evaluate their performance based on the normality of their re-
sulting SPI frequency distributions. The four candidate PDFs
either consist of a single shape (σ ) and scale (γ ) parameter or
include (in the case of the two three-parameter distributions)
a second shape parameter (α). Figure 1 displays examples
of those four candidate PDFs and their 95 % quantiles for
3-month precipitation totals idealized to be distributed ac-
cording to the respective distribution function with σ = γ =
(α)= 2. Table 1 lists the abbreviations used for these four
candidate distribution functions.

Instead of investigating the Pearson type III distribution,
which is already widely used, we analyze the simple gamma
distribution. They differ by an additional location parame-
ter which does not change the here presented results (Sienz
et al., 2012). Moreover, other studies have demonstrated that
the Pearson type III distribution delivers results that are virtu-
ally identical to the two-parameter gamma distribution (Pear-
son’s r = 0.999) (Giddings et al., 2005) and argued that the
inclusion of a location parameter unnecessarily complicates
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Figure 1. Candidate distribution functions whose performance
is investigated in this study: the two-parameter gamma distribu-
tion (GD2), the two-parameter Weibull distribution (WD2), the
three-parameter generalized gamma distribution (GGD3), and the
three-parameter exponentiated Weibull distribution (EWD3). Dis-
played are examples of those PDFs for σ = γ (= α)= 2 and their
corresponding 95 % quantiles.

the SPI algorithm (Stagge et al., 2015). Therefore, our three-
parameter candidate PDFs comprise a second shape param-
eter instead of a location parameter. The optimization of
this second shape parameter also requires the re-optimization
of the first two parameters. The fitting procedure of three-
parameter PDFs needs therefore considerably more compu-
tational resources than the fitting procedure of two-parameter
distribution functions.

1. Gamma distribution:

f (x)=
1

σ0(γ )

( x
σ

)γ−1
exp

(
−
x

σ

)
. (2)

The gamma distribution (0 being the gamma function)
is typically used for SPI calculations directly or in its lo-
cation parameter extended version: the Pearson type III
distribution (Guttman, 1999). The results of the gamma
distribution also serve as proxy for the performance of
the Pearson type III distribution.

2. Weibull distribution:

f (x)=
γ

σ

( x
σ

)γ−1
exp

(
−

( x
σ

)γ )
. (3)

The Weibull distribution is usually used to characterize
wind speed. Several studies identified the Weibull distri-
bution, however, to perform well in SPI’s calculation al-
gorithm for short accumulation periods (Guenang et al.,
2019; Blain et al., 2018; Stagge et al., 2015; Sienz et al.,
2012).

3. Generalized gamma distribution:

f (x)=
α

σ0(γ )

( x
σ

)αγ−1
exp

(
−

( x
σ

)α)
. (4)

The generalized gamma distribution extends the gamma
distribution by another shape parameter (α). In the spe-
cial case of α = 1, the generalized gamma distribu-
tion becomes the gamma distribution, and for the other
special case of γ = 1, the generalized gamma distri-
bution becomes the Weibull distribution. Sienz et al.
(2012) identified the generalized gamma distribution as
a promising candidate distribution function for SPI’s
calculation algorithm.

4. Exponentiated Weibull distribution:

f (x)=
αγ

σ

( x
σ

)γ−1[
1− exp(−

( x
σ

)γ
)
]α−1

. (5)

The exponentiated Weibull distribution extends the
Weibull distribution by a second shape parameter (α).
For α = 1 the exponentiated Weibull distribution be-
comes the Weibull distribution. Sienz et al. (2012) re-
vealed that the exponentiated Weibull distribution per-
forms well in SPI’s calculation algorithm.

2.4 Deviations from the standard normal distribution

SPI time series are supposed to be standard normally dis-
tributed (µ= 0 and σ = 1). Thus, we evaluate the perfor-
mance of each candidate distribution function (in describing
precipitation totals) based on the normality of their result-
ing SPI frequency distributions. In this analysis, we calculate
actual occurrence probabilities for certain ranges of events
in our SPI frequency distributions and compare those actual
against well-known theoretical occurrence probabilities for
the same range of events. We then evaluate the performance
of each candidate distribution function and their resulting
SPI time series based on the magnitude of deviations from
the standard normal distribution (N0,1). These deviations are
henceforth referred to as deviations from N0,1.

According to WMO’s SPI User Guide (Svoboda et al.,
2012), SPI distinguishes between seven different SPI cate-
gories (see Table 2). These seven different categories with
their predefined SPI intervals serve as analyzed ranges of
possible events in our analysis. It is noteworthy here that
these seven SPI categories differ in their occurrence proba-
bilities. The occurrence of normal conditions (N0) is more
than twice as likely than all other six conditions put together.
Therefore, any strict normality analysis of SPI time series
would weigh each classes’ identified deviation from N0,1
with the occurrence probability of the respective class. How-
ever, when analyzing droughts with SPI, one is usually in-
terested in extreme precipitation events. Thus, it seems less
important for the center of SPI’s distribution to be normally
distributed. Instead, it is intuitively particularly important for
the tails (especially the left-hand tail) of the distribution to
adhere to the normal distribution. The better the tails of our
candidate PDF’s SPI distributions agree with N0,1, the better
our candidate PDF’s theoretical description of extreme pre-
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Table 2. Standardized Precipitation Index (SPI) classes with their
corresponding SPI intervals and theoretical occurrence probabilities
(according to WMO’s SPI User Guide; Svoboda et al., 2012).

SPI interval SPI class Probability
[%]

SPI≥ 2 W3: extremely wet 2.3
2>SPI≥ 1.5 W2: severely wet 4.4
1.5>SPI≥ 1 W1: moderately wet 9.2
1>SPI>−1 N0: normal 68.2
−1≥SPI>−1.5 D1: moderately dry 9.2
−1.5≥SPI>−2 D2: severely dry 4.4
SPI≤−2 D3: extremely dry 2.3

cipitation events is. For this reason, we treat all seven SPI cat-
egories equally, irrespective of their theoretical occurrence
probability.

The three-parameter candidate distribution functions con-
tain the two-parameter candidate distribution functions for
special cases. Given those special cases, the three-parameter
candidate distribution functions will in theory never be in-
ferior to the two-parameter candidate distribution functions
they contain when analyzing deviations from N0,1 – assum-
ing a sufficient quantity of input data which would lead to
a sufficient quality of our fit. Thus, the question is rather
whether deviations from N0,1 reduce enough to justify the
three-parameter candidate distribution functions’ require-
ment of an additional parameter. An additional parameter
that needs to be fitted increases the risk of overfitting (Stagge
et al., 2015; Sienz et al., 2012). On the one hand, the final
decision on this trade-off might be subjective and influenced
by computational resources available or by the length of the
time series which is to be analyzed because fitting more pa-
rameters requires more information. Moreover, it might well
be wiser to employ scarce computational resources in opti-
mizing the fit rather than increasing the complexity of the
PDF. On the other hand, assuming computational resources
and data availability to be of minor concern, there exists an
analytical way to tackle this trade-off: the Akaike informa-
tion criterion (Akaike, 1974).

2.5 Akaike information criterion

Our aim is twofold. First, we want to maximize the normality
of our SPI time series by choosing an appropriate distribu-
tion function. Second, we simultaneously aspire to minimize
the parameter count of the distribution function to avoid un-
necessary complexity. Avoiding unnecessary complexity de-
creases the risk of overfitting. The objective is to identify
the necessary (minimal) complexity of the PDF which pre-
vents the PDF from being too simple and losing explana-
tory power. Or in other words: we are interested in the so-
called optimal trade-off between bias (PDF is too simple)
and variance (PDF is too complex). The Akaike information

criterion (AIC) performs this trade-off analytically (Akaike,
1974). AIC estimates the value of information gain (acquir-
ing an improved fit) and penalizes complexity (the parameter
count) directly by estimating the Kullback–Leibler informa-
tion (Kullback and Leibler, 1951):

AIC=−2lnL(θ̂ |y)+ 2k. (6)

L(θ̂ |y) describes the likelihood of specific model-
parameters (θ̂ ) with given data from which these parameters
were estimated (y). k describes the degrees of freedom
of the candidate PDF (the parameter count which equates
dependently on the candidate PDF either to 2 or 3). Analog
to Burnham and Anderson (2002), we modified the last term
from 2k to 2k+ (2k(k+ 1))/(n− k− 1) in order to improve
the AIC calculation for small sample sizes (n/k < 40),
whereas in our case n corresponds to the sample size of
the examined period (31 for observations and 310 for
simulations). The modified version approaches the standard
version for large n.

In our case, AIC’s first term evaluates the performance
of candidate PDFs in describing the given frequency dis-
tributions of precipitation totals. The second term penalizes
candidate PDFs based on their parameter count. The best-
performing distribution function attains the smallest AIC
value because the first term is negative and the second one
is positive.

Further, the absolute AIC value is often of little infor-
mation – especially in contrast to relative differences be-
tween AIC values derived from different distribution func-
tions. Thus, we use values of relative AIC difference (AIC-
D) in our analysis. We calculate these AIC-D values for each
PDF by computing the difference between its AIC value to
the lowest AIC value of all four distribution functions. AIC-
D values inform us about superiority in the optimal trade-off
between bias and variance and are calculated as follows:

AIC-Di = AICi −AICmin. (7)

The index i indicates different distribution functions. AICmin
denotes the AIC value of the best-performing distribution
function.

For our analysis, AIC-D values are well suited to compare
and rank different candidate PDFs based on their trade-off
between bias and variance. The best-performing distribution
function is characterized by a minimum AIC value (AICmin)
which translates to an AIC-D value of 0. It seems noteworthy
here that any evaluation of (or even any discrimination be-
tween) candidate distribution functions, which exhibit suffi-
ciently similar AIC-D values, is unfeasible as a consequence
of our rather small sample size (particularly in observations
but also in simulations). AIC-D values below 2 ought to be in
general interpreted as an indicator of substantial confidence
in the performance of the model (here, the PDF). In contrast,
AIC-D values between 4 and 7 indicate considerably less
confidence, and values beyond 10 indicate essentially none
(Burnham and Anderson, 2002).
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Figure 2. Flow chart of methods to aggregate deviations from N0,1 (left) and AIC-D frequencies (right) over domains.

The analysis of deviations from N0,1 assesses the per-
formance of candidate PDFs in absolute terms irrespective
of the candidate PDF’s complexity. In contrast, the AIC-D
analysis evaluates the performance of candidate PDFs rela-
tive to each other while analytically punishing complexity.
Consequently, the AIC-D analysis cannot evaluate whether
the best-performing candidate distribution function also per-
forms adequately in absolute terms. In opposition, deviations
from N0,1 encounter difficulties when evaluating whether an
increased complexity from one PDF to another justifies any
given improvement. Both analyses together, however, aug-
ment each other complementarily. This enables us to con-
clusively investigate (i) which candidate PDF performs best
while (ii) ensuring adequate absolute performance and while
(iii) constraining the risk of overfitting.

2.6 Aggregation of results over domains

For each candidate distribution function, accumulation pe-
riod, and domain and during both seasons, we compute de-
viations from N0,1 separately for observations and simula-
tions as schematically depicted on the left-hand side in Fig. 2.
First, we count the events of each SPI category in every land
grid point globally. For each category, we then sum the cat-
egory counts over all grid points that belong to the domain
of interest. Next, we calculate actual occurrence probabili-
ties through dividing that sum by the sum over the counts
of all seven SPI categories (per grid point there are 31 to-
tal events in observations and 310 in simulations). In a fi-
nal step, we compute the difference to theoretical occurrence
probabilities of N0,1 (provided in Table 2) for each SPI cate-
gory and normalize that difference – expressing the deviation
from N0,1 as a percentage of the theoretically expected oc-
currence probability.

Again for each candidate distribution function, accumu-
lation period, and domain and during both seasons, we ag-
gregate AIC-D over several grid points into a single graph
separately for observations and simulations as depicted on

the right-hand side of the flow chart in Fig. 2. For each do-
main, we compute the fraction of total grid points of that
domain for which each candidate PDF displays an AIC-D
value equal to or below a specific AIC-Dmax value. That cal-
culation is iteratively repeated for infinitesimally increasing
AIC-Dmax values. In this representation, the probabilities of
all PDFs, at the specific AIC-Dmax value of 0, sum up to
100 % because only one candidate PDF can perform best
in each grid point. Thus, we arrive at a summarized AIC-D
presentation in which those candidate distribution functions
which approach 100 % the fastest (preferably before the spe-
cific AIC-Dmax value of 4; ideally even before the AIC-Dmax
value of 2) are better suited than the others.

2.7 Regions

We investigate the normality of SPI time series derived
from each candidate PDF first for the entire global land
area and analyze subsequently region-specific disparities.
For this analysis we focus on the land area over six re-
gions scattered over all six inhabited continents: Africa
(0–30◦ S, 10–40◦ E), Asia (63–31◦ N, 86–141◦ E), Australia
(16–38◦ S, 111–153◦ E), Europe (72–36◦ N, 10◦W–50◦ E),
North America (50–30◦ N, 130–70◦W), and South America
(10◦ N–30◦ S, 80◦W–35◦ E) (Fig. 3).

Examining frequency distributions of precipitation totals
over domains smaller than the entire globe reduces the risk
of encountering opposite deviations from N0,1 for the same
category that balance each other in different grid points with
unrelated climatic characteristics. This statement is based on
either one of the following two assumptions. First, the sum
over fewer grid points is less likely to produce deviations
which balance each other. Second, the frequency distribution
of precipitation totals is likely to be more uniform for grid
points that belong to the same region (and therefore exhibit
similar climatic conditions) than when they are accumulated
over the entire globe. One could continue along this line of
reasoning because the smaller the area of the analyzed re-
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Figure 3. Borders of regions examined in this study.

gions is, the more impactful both of these assumptions are.
However, comparing actual against theoretically expected
occurrence probabilities with a scarce database (31 events in
observations) will inevitably produce deviations. In observa-
tions, we would expect that 0.7 extremely wet and extremely
dry as well as 1.4 severely wet and severely dry events occur
over 31 years in each grid point. Thus, deviations in differ-
ent grid points need to balance each other to some extent to
statistically evaluate and properly compare candidate PDFs.
The crucial performance requirement demands that they bal-
ance each other also when averaged over sufficiently small
domains with similar climatic conditions.

For a first overview, it is beneficial to cluster as many sim-
ilar results as possible together to minimize the level of com-
plexity of the regional dimension. The choice of sufficiently
large or small domains is still rather subjective. Which size
of regions is most appropriate? This subjective nature be-
comes apparent in studies that identify differing borders for
regions that are supposed to exhibit rather uniform climatic
conditions (Giorgi and Francisco, 2000; Field et al., 2012).
Instead of using Giorgi regions (Giorgi and Francisco, 2000)
or SREX regions (Special Report on Managing the Risks of
Extreme Events and Disasters to Advance Climate Change
Adaptation; Field et al., 2012), we opt here for a broader and
more continental picture.

3 Results

3.1 SPI accumulation period of 3 months

3.1.1 Global

In agreement with prior studies (Blain et al., 2018; Lloyd-
Hughes and Saunders, 2002; McKee et al., 1993), the two-
parameter gamma distribution (GD2) describes on the global
average the observed frequency distribution of SPI3M rather
well during the boreal winter (DJF) and summer (JJA)
(Fig. 4a). Contrary to Sienz et al. (2012), who investi-
gated SPI1M time series, the two-parameter Weibull distribu-
tion (WD2) delivers a poor frequency distribution of SPI3M

during both seasons (Fig. 4b). Aside from GD2, GGD3 and
EWD3 also perform adequately in absolute terms for obser-
vations. Discriminating their deviations from N0,1 is diffi-
cult. On the one hand, GD2 represents the especially impor-
tant left-hand tail of SPI3M time series’ frequency distribu-
tion (D3) in JJA worse than our three-parameter candidate
PDFs (compare Fig. 4a against c and d). On the other hand,
GD2 displays smaller deviations from N0,1 than our three-
parameter candidate PDFs in the center of the SPI’s distribu-
tion. Despite these minor differences, and in agreement with
Sienz et al. (2012), GGD3 and EWD3 perform overall simi-
lar to GD2 (compare Fig. 4a against c and d).

In theory, since the three-parameter generalized gamma
distribution (GGD3) encompasses GD2 as a special case,
GGD3 should not be inferior to GD2. In reality, however,
the applied optimization methods appear to be too coarse for
GGD3 to always lead to an identical or better optimum than
the one identified for GD2 with the given length of the time
series. When optimizing three parameters, it is more likely
to miss a specific constellation of parameters which would
further optimize the fit, especially when limited computa-
tional resources impede the identification of the actual opti-
mal fitting parameters. Additionally, a limited database (our
database spans 31 years) obscures the frequency distribution
of precipitation totals which poses another obstacle to the
fitting methods. This results in missed optimization oppor-
tunities that impact GGD3 more strongly than GD2 because
of GGD3’s increased complexity, which leads to GGD3 re-
quiring more data than GD2. Therefore, the weighted sum
(weighted by the theoretical occurrence probability of the re-
spective SPI class; Table 2) over the absolute values of devi-
ations from N0,1 along all SPI categories is lowest for GD2
in both analyzed seasons (see legend in Fig. 4a–d).

In agreement with Sienz et al. (2012), who identified no-
table differences in the performance of candidate PDFs be-
tween observations and simulations, this general ranking
changes when we consider modeled instead of observed
SPI3M time series (Fig. 4e–h). While GD2, GGD3, and
EWD3 display similar deviations from N0,1 in observations
(Fig. 4a, c, and d), a noticeable difference emerges in ensem-
ble simulations (Fig. 4e, g, and h). GD2 performs distinctly
worse than our three-parameter PDFs in ensemble simula-
tions.

In simulations, the fit onto 3-month precipitation totals is
performed on all 10 ensemble members at once. This in-
creases 10-fold the sample size in simulations relative to ob-
servations. Presuming an imperfect fit for the 31 samples in
observations, deviations from N0,1 are expected to reduce
along our four candidate distribution functions as a result of
increasing 10-fold the sample size of their fit. Yet, GD2 does
not benefit from increasing 10-fold the sample size. GD2
performs similarly in observations and simulations (Fig. 4a
and e). In contrast, our three-parameter PDFs display con-
siderably smaller deviations from N0,1 in ensemble simula-
tions than in observations (compare Fig. 4c and d against g
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Figure 4. Deviations from N0,1 over the entire globe for observed (a–d) and modeled (e–h) SPI time series. SPI time series are derived
by using the simple two-parameter gamma distribution (GD2; a, e), the simple two-parameter Weibull distribution (WD2; b, f), the three-
parameter generalized gamma distribution (GGD3; c, g), and the three-parameter exponentiated Weibull distribution (EWD3; d, h). The
legends depict weighted (by their respective theoretical occurrence probability) sums (WSs) of deviations from N0,1 over all SPI categories.
Irrespective of the candidate PDF, deviations from N0,1 are smallest for the center of SPI’s distribution (N0) and largest for its tails.
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and h). Consequently, both three-parameter candidate PDFs
excel during both seasons in ensemble simulations (Fig. 4g
and h), while any distinction between both three-parameter
candidate distribution functions is still difficult. On the one
hand, different frequency distributions between observed and
modeled precipitation totals might be one reason for this dif-
ference. On the other hand, the fit of three parameters also
requires more data than the fit of two. It is therefore sensible
to expect that three-parameter PDFs benefit more strongly
than two-parameter PDFs from an increase in sample size.
Are our three-parameter candidate PDFs better suited than
our two-parameter PDFs to describe modeled precipitation
distributions? Or do our three-parameter PDFs just benefit
more strongly than two-parameter PDFs from an increasing
sample size?

We attempt to disentangle both effects (analyzing mod-
eled, instead of observed, precipitation distributions and in-
creasing the sample size) for our two-parameter candidate
PDFs next. If the two-parameter PDFs are suited to be ap-
plied to modeled precipitation data, they should benefit at
least to some extent from this multiplication of sample size.
Despite expecting irregularities in the magnitude of these re-
ductions, they ought to be notable for candidate distribution
functions that are adequately suited to describe modeled 3-
month precipitation totals – assuming an imperfect fit for the
31 events spanning our observational time series. Therefore,
we weigh each class’ deviation from N0,1 by the theoretical
occurrence probability (see Table 2) of the respective class
and analyze weighted deviations from N0,1.

For the two-parameter PDFs, the weighted deviations
from N0,1 (shown in the legend of Fig. 4) either stay con-
stant (for GD2 in DJF) or increase in simulations relative
to observations (compare the legends in the left against the
one in the right column of Fig. 4). Relative to observations,
GD2’s weighted deviations increase in simulations by more
than 120 % in JJA, while WD2’s increase by more than 25 %
in JJA and 80 % in DJF. The most plausible explanation for
these weighted deviations to increase, when increasing 10-
fold the database, are different frequency distributions be-
tween observed and modeled 3-month precipitation totals.
Our two-parameter candidate PDFs are better suited to de-
scribe observed than modeled 3-month precipitation totals. In
contrast, for our three-parameter candidate distribution func-
tions, weighted deviations from N0,1 are substantially larger
in observations than in simulations. GGD3’s (EWD3’s) are
larger by 210 % (500 %) and 58 % (200 %) during DJF and
JJA, respectively. The three-parameter candidate distribution
functions benefit strongly from the artificial increase of our
time series and seem better suited than our two-parameter
candidate PDFs to describe precipitation distributions ob-
tained from ensemble simulations.

In this section, we have analyzed global deviations
from N0,1 thus far and identified the following:

– GD2, GGD3, and EWD3 describe similarly well the
overall frequency distribution of observed 3-month pre-
cipitation totals.

– WD2 performs overall poorly and is in every regard in-
ferior to any other candidate distribution function.

– GGD3 and EWD3 describe the frequency distribution
of modeled 3-month precipitation totals distinctly better
than any two-parameter candidate distribution.

– GD2 describes the frequency distribution of modeled 3-
month precipitation totals sufficiently well on the global
average.

– Both two-parameter candidate distribution functions are
unable to benefit from the increased length of the
database in simulations relative to observations, while
both three-parameter PDFs strongly benefit from that
increase.

It is noteworthy that investigating deviations from N0,1 over
the entire globe contains the risk of encountering deviations
that balance each other in different grid points with unrelated
climatic characteristics. Until dealing with this risk, our anal-
ysis of deviations from N0,1 only indicates that three candi-
date PDFs (GD2, GGD3, and EWD3) display an adequate
absolute performance. On the one hand, we can reduce that
risk by analyzing deviations from N0,1 only over specific re-
gions. This analysis safeguards our investigation by ensur-
ing (rather than just indicating) an adequate absolute perfor-
mance around the globe and is performed later. On the other
hand, we first completely eliminate this risk by examining
AIC-D frequencies: aggregating AIC-D values over the en-
tire globe evaluates the performance of PDFs in each grid
point and normalizes these evaluations by (rather than adding
them over) the total number of grid points of the entire globe.
We investigate AIC-D frequencies first to evaluate whether
GGD3 and/or EWD3 perform sufficiently better than GD2 to
justify their increased complexities.

In general, each candidate distribution function performs
similarly well in winter and summer in their depiction of
the frequency distribution of observed 3-month precipita-
tion totals (compare Fig. 5a against b). In agreement with
our previous results and prior studies (Blain et al., 2018;
Lloyd-Hughes and Saunders, 2002; McKee et al., 1993),
GD2 ideally describes observed 3-month precipitation to-
tals during both seasons in many grid points of the global
land area (Fig. 5a and b). GD2 displays AIC-D values of
less than 2 in approximately 84.5 % (83.5 %) of the global
land area in DJF (JJA). That ought to be interpreted as
substantial confidence in GD2’s performance in these grid
points. However, beyond an AIC-Dmax value of 2, EWD3
(and GGD3) approach 100 % coverage considerably faster
than GD2. EWD3 quickly compensates for AIC’s complex-
ity punishment (which is 2.46 units larger for EWD3 than
for GD2 – indicated by the vertical black line in Fig. 5).

https://doi.org/10.5194/hess-24-4541-2020 Hydrol. Earth Syst. Sci., 24, 4541–4565, 2020



4552 P. Pieper et al.: Universal SPI candidate distribution function

Figure 5. AIC-D frequencies: percentages of global land grid points in which each distribution function yields AIC-D values that are smaller
than or equal to a given AIC-Dmax value. The vertical black line indicates the different complexity penalties between three- and two-
parameter PDFs. AIC-D frequencies are displayed for each candidate PDF for observations (a, b) and simulations (c, d) during DJF (a, c)
and JJA (b, d).

Beyond this vertical black line, EWD3 conclusively outper-
forms GD2 (the only intersection of the yellowish and the
bluish lines coincide with the intersection of that vertical
black line in Fig. 5a and b). EWD3 performs well (AIC-
Dmax < 4) in virtually every global land grid point. Dur-
ing DJF (JJA), EWD3 globally displays (in all land grid
points) AIC-D values of less than 5.03 (7.03). In contrast,
GD2 performs erroneously (apparent by AIC-Dmax values in
excess of 4) in approximately 7 % (6 %) of the global land
grid points during DJF (JJA). Further, GD2 performs during
both seasons insufficiently (AIC-Dmax values beyond 7) in
2 % and without skill (AIC-Dmax values beyond 10) in 1 %
of the global land area. While EWD3 strictly outperforms
GGD3, GGD3 still performs similarly to EWD3 in obser-
vations. Thus, our focus on EWD3 becomes only plausible
during the investigation of AIC-D frequencies in ensemble
simulations.

In ensemble simulations, our results are again rather sta-
ble for all investigated distribution functions between sum-
mer and winter (compare Fig. 5c against d). All distribution
functions display in both seasons the same distinct ranking
of their performance for AIC-Dmax values of 2 and beyond.
EWD3 outperforms GGD3 which is better than GD2, while
WD2 performs especially poor. The confidence in GD2 dras-
tically diminishes further when we analyze the performance
of our four candidate PDFs in ensemble simulations. EWD3
is superior to any other distribution function in JJA and DJF
for each AIC-Dmax value beyond 1.52 in DJF and 0.73 in JJA
(see intersect between yellowish and blueish lines in Fig. 5c
and d). Assuming those AIC-Dmax values to be sufficiently
small (AIC-D values of less than 2 are practically indistin-
guishable from each other in their performance), EWD3 per-
forms best among all candidate PDFs in general. We inter-
pret EWD3’s performance in ensemble simulations as ideal
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Table 3. Percent of grid points that are classified into specific AIC-D categories (according to Burnham and Anderson, 2002) for each
candidate PDF over both seasons. Percentages of grid points indicate the confidence in candidate PDFs to overall performance according
to the respective AIC-D category. We consider percentages that exceed (subceed in case of AIC-D values beyond 10) 95 % (5 %) as a sign
of substantial confidence in the candidate PDF (green) to overall performance according to the respective AIC-D category. In contrast, we
consider those candidate PDFs that exceed (subceed) in 85 % (15 %) of the grid points as a sign of average confidence in the candidate PDF
(yellow) to overall performance according to the respective AIC-D category. Percentages that fall short of 85 % (or that show no skill in more
than 15 %) are considered as an overall sign of insufficient confidence in the candidate PDF (red).

in approximately 85 % (86 %) of the global land area during
DJF (JJA). For AIC-Dmax values beyond 2, EWD3 quickly
approaches 100 % coverage, again, and performs erroneously
or insufficiently only in 1 % of the global land area during
both seasons. In contrast, GD2 performs erroneously in 23 %
(30 %) and insufficient in 14 % (21 %) of the global land grid
points during DJF (JJA). Yet, most telling might be the frac-
tion of grid points in which the candidate PDFs display AIC-
D values of 10 and beyond and thus show no skill in ensem-
ble simulations. GD2 fails during DJF (JJA) in 10 % (15 %)
of the global land area. In opposition, EWD3 only fails in
0.45 % (0.87 %) during DJF (JJA). Ergo, employing EWD3,
instead of GD2, reduces the count of grid points without
any skillful performance by over one magnitude (by a factor
of roughly 20). EWD3 also universally outperforms GGD3.
Given their equal parameter count, it seems rational to rather
employ EWD3 than GGD3.

Analyzing AIC-D frequencies for both seasons (DJF and
JJA) discloses no distinct season-dependent differences, sim-
ilar to before in the investigation of deviations from N0,1.
Therefore, we average identified land area coverages over
both seasons in the summary of AIC-D frequencies. Table 3
summarizes our findings from the investigation of AIC-D
values over the entire global land area during both seasons.
EWD3 performs well (AIC-D≤ 4) with substantial confi-
dence (at least 95 % of land grid points conform perfor-
mance) around the globe in both realizations. Additionally,
EWD3 also performs best in each of these analyses (each
row of Table 3 in which we consider its performance with
substantial confidence). The other analyzed candidate PDFs
perform substantially worse than EWD3 in ensemble simu-
lations and slightly worse in observations.

It seems worth elaborating on the insufficient (only av-
erage) confidence in EWD3 to perform ideally in observa-
tions (ensemble simulations) around the globe. The complex-
ity penalty of AIC correctly punishes EWD3 more strongly
than GD2 because AIC evaluates whether EWD3’s increased
complexity (relative to GD2) is necessary. However, the re-
sults justify the necessity for this increased complexity –
GD2 performs erroneously in 26 % (6 %), insufficiently in
18 % (2 %), and without any skill in 12 % (1 %) of the global
land area in ensemble simulations (observations). The risk of
underfitting by using two-parameter PDFs seems larger than
the risk of overfitting by using three-parameter PDFs. Once
the need for three-parameter candidate PDFs is established,
their remaining punishment relative to two-parameter PDFs
biases the analysis, particularly for the ideal AIC-D cate-
gory. EWD3’s increased complexity penalty relative to two-
parameter candidate PDFs depends on the sample size and
amounts to 2.46 in observations and 2.04 in ensemble simu-
lations (see black vertical lines in Fig. 5a–d). The AIC-Dmax
value beyond which EWD3 reaches coverages close to 100 %
approximately amounts to EWD3’s increased penalty (see
Fig. 5a–d). Correcting EWD3’s coverages for this bias would
affect our evaluation of EWD3’s performance only for the
ideal AIC-D category. To illustrate this effect, we only con-
sider AIC’s estimated likelihood (without its penalty). Such
a consideration corrects this complexity bias in EWD3’s per-
formance. While we analytically analyzed this consideration,
a first-order approximation suffices for the scope of this pub-
lication. In that first-order approximation of this considera-
tion, we simply shift the curve of EWD3 by 2.46 units left-
wards in observations (Fig. 5a and b) and by 2.04 units left-
wards in ensemble simulations (Fig. 5c and d). After this
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shift, EWD3 would also perform ideally with substantial
confidence.

The AIC-D frequencies of Table 3 are robust in all inves-
tigated regions except Australia (not shown). In Australia,
GD2’s performance slightly improves relative to the global
results during DJF in observations. In contrast, GD2 per-
forms worse than any other investigated candidate PDFs
(even worse than WD2) during JJA in observations and dur-
ing DJF in simulations. Since these are the only minor re-
gional particularities evident in regional AIC-D frequencies,
we will during the regional focus in the remaining analysis of
SPI3M solely display, explain, and concentrate on deviations
from N0,1.

Among our candidate PDFs, EWD3 is obviously the best-
suited PDF for SPI. Yet, we still need to confirm whether also
EWD3’s absolute performance is adequate. While the global
analysis indicated EWD3’s adequateness, the ultimate vali-
dation of this claim is incumbent upon the regional analysis.

3.1.2 Regional deviations from N0,1

We investigated thus far deviations from N0,1 for the entire
global land area. In this process, our results indicate an ad-
equate absolute performance of GD2, GGD2, and EWD3.
However, that investigation might be blurred by deviations
which balance each other over totally different regions with
unrelated climatic characteristics. Thus, we will reduce the
area analyzed in this subsection and perform a further aggre-
gated investigation that focuses on each continental region
individually. That further aggregation of results dismisses the
dimension of different SPI categories because their analy-
sis revealed a rather uniform relation over each region: ex-
treme SPI categories show the largest deviations, while nor-
mal conditions exhibit the smallest. As a consequence, we
display from now on only unweighted sums over the abso-
lute values of these deviations across all SPI categories. To
provide a more intuitive number for these unweighted sums,
we normalize them by our SPI category count (seven). Con-
sequently, our analysis will investigate the mean deviations
per SPI category, henceforth.

In observations (Fig. 6a and b), WD2 performs in all an-
alyzed regions again worst of all candidate PDFs in deliv-
ering a proper frequency distribution of SPI3M during both
investigated seasons. Over all analyzed regions and seasons,
EWD3 displays the smallest deviations from N0,1, while
GD2 and GGD3 perform only slightly worse. Some minor
region-dependent differences emerge; e.g., in Africa, a dis-
tinct ranking of the performance of all four candidate distri-
bution functions emerges during JJA – EWD3 outperforms
GGD3, which performs better than GD2. Aside, all candi-
date PDFs display almost identical deviations from N0,1 over
Australia during DJF in observations.

In simulations (Fig. 6c and d), the ranking of the perfor-
mance of different PDFs becomes more distinct than it is in
observations during both analyzed seasons and investigated

domains, except Australia. This easier distinction compared
to observations over almost every region of the globe re-
sults from increased mean deviations for GD2, while they
stay comparably low for GGD3 and EWD3, relative to the
global analysis. As shown before, two-parameter PDFs in-
eptly describe precipitation totals obtained from ensemble
simulations. Consequently, during both seasons, GGD3 and
EWD3 perform in each region exceptionally well, while GD2
performs overall average at best, whereas WD2 still performs
poor in general. The performances of GD2 and WD2 are only
in Africa during DJF equally poor, which impedes any clear
ranking. Similarly difficult is any distinction of their perfor-
mance in North America during JJA as a consequence of
one of WD2’s best performances (as also identified by Sienz
et al., 2012, for SPI1M). Furthermore Australia poses an ex-
ception to the identified ranking pattern of candidate PDFs
for simulations. During the austral summer (DJF), WD2 dis-
tinctly outperforms GD2, which exhibits the largest mean
deviations. Interestingly, analog to the performance of can-
didate PDFs over Australia in observations during DJF, we
identify over Australia also in simulations a season when
the performance of all four candidate distribution functions
is rather similar. However, this occurs in simulations dur-
ing JJA.

These insights about candidate PDF performance in ob-
servations and simulations are even more obvious at first
glance when displayed in an image plot (Fig. 7a and b). The
poor performance of WD2 in observations and simulations
is obvious over all domains and in both investigated sea-
sons. Also, the exception to this pattern for Australia dur-
ing the austral summer (Fig. 7a) in simulations is distinctly
visible. Evident are further the overall similar performances
of GD2, GGD3, and EWD3 in observations over all domains
and both analyzed seasons. Further, the generally improved
performance of three-parameter candidate distribution func-
tions (GGD3 and EWD3) relative to two-parameter candi-
date PDFs in simulations is distinctly palpable. Aside, even
the better performance of EWD3 relative to GGD3 in Africa
generally or in observations over Europe is easily discernible.

For observations, the regional analysis confirms the in-
sights from the global analysis in each region: EWD3 is
(same as GD2 and GGD3) an adequate PDF in SPI’s cal-
culation algorithm. For ensemble simulations, the regional
analysis additionally corroborates the finding of the AIC-D
analysis that EWD3 performs noticeably better than GD2.
The corroboration of this finding substantiates support for
EWD3.

The analysis of AIC-D frequencies proves that EWD3 is
SPI’s best distribution function among our candidate PDFs.
Additionally, the regional investigation confirms the global
analysis: the absolute performance of EWD3 is at minimum
adequate in observations and ensemble simulations.
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Figure 6. Mean deviations from N0,1 per SPI category for the entire global land area and each investigated region. Results are depicted for
observations (a, b) and simulations (c, d) during DJF (a, c) and JJA (b, d).

3.1.3 Improvement relative to a multi-PDF approach
and a baseline

In the following, we investigate deviations from N0,1 for
a multi-PDF SPI calculation algorithm which uses in each
grid point that distribution function which yields for this re-
spective grid point the minimum AIC value (whose AIC-D
value equates to 0). An analog SPI calculation algorithm has
been repeatedly proposed in the literature (Guenang et al.,
2019; Blain and Meschiatti, 2015; Touma et al., 2015; Sienz
et al., 2012; Lloyd-Hughes and Saunders, 2002). We ana-
lyze the impact of such an SPI calculation algorithm and
compare those results against a baseline comparison and
against the most suitable calculation algorithm identified in
this study which uses EWD3 as a PDF. The results obtained
from the SPI calculation algorithm that uses a multi-PDF
approach are labeled AICmin-analysis. As a baseline com-
parison, we choose the calculation algorithm and optimiza-

tion method of the frequently used R package from Beguería
and Vicente-Serrano (2017) and refer to these results as a
baseline. To maximize the comparability of SPI time series
calculated with this baseline, we employ the simple two-
parameter gamma distribution as a calculation algorithm and
estimate the parameters of the PDF again with the maximum-
likelihood method. It seems noteworthy that our parameter
estimation method takes about 60 times longer to find opti-
mal parameters of GD2 than the baseline. The comparison
between the performance of our baseline against GD2’s per-
formance (compare Fig. 8 against Fig. 7) thus also indicates
the impact of the meticulousness applied to the optimization
of the same parameter estimation method.

The AICmin-analysis performs generally almost identi-
cally to EWD3 over each domain and in both realizations
(observations and simulations). Further, deviations are not
necessarily minimal when computing SPI with the AICmin-
analysis (Fig. 8a and b). This results from the dependence of

https://doi.org/10.5194/hess-24-4541-2020 Hydrol. Earth Syst. Sci., 24, 4541–4565, 2020



4556 P. Pieper et al.: Universal SPI candidate distribution function

Figure 7. Mean deviations from N0,1 per SPI category during
DJF (a) and JJA (b). Mean deviations are displayed for each inves-
tigated domain and each analyzed PDF for observations and simu-
lations.

AIC’s punishment on the parameter count of the distribution
function. It is simply not sufficient for EWD3 to perform best
by a small margin in order to yield a lower AIC value than
GD2 or WD2. EWD3 needs to perform sufficiently better
to overcompensate its punishment imposed by AIC . Or in
other words, EWD3 is expected to perform distinctly better
than GD2 or WD2 because of its increased complexity. As
a consequence, EWD3 is only selected by AIC as the best-
performing distribution function if it fulfills that expectation.

In contrast to previous results in this and other studies
(Stagge et al., 2015) which showed no seasonal differences
in the performance of candidate PDFs, the baseline per-
forms overall better in JJA than in DJF (compare Fig. 8a
against b). Relative to our findings in the previous subsec-
tion (Fig. 7), the baseline performs similar to GD2 in JJA but

Figure 8. As in Fig. 7 but for the three-parameter exponentiated
Weibull distribution (EWD3) – the best-performing candidate dis-
tribution function in this study –, a baseline which uses the two-
parameter gamma distribution (BL2), and a frequently proposed
multi-PDF SPI calculation algorithm that uses in each grid point
and season that distribution function that yields in the respective
grid point and during the respective season the minimum AIC value
(AICmin-analysis which is denoted as AICmin in this figure). In
contrast to GD2 in our previous analysis, BL2 employs a simpler
optimization procedure of the same parameter estimation method
(maximum-likelihood estimation).

worse than WD2 in DJF (compare Fig. 7 against Fig. 8). This
reveals a substantial impact of the optimization procedure, at
least for DJF precipitation totals. Further, the baseline per-
forms especially poor in describing the frequency distribu-
tion of SPI3M in simulations during the austral summer. It
is important to note that the baseline overestimates modeled
extreme droughts during DJF over Australia by more than
240 % (not shown). That is by a huge margin the largest de-
viation we encountered during our analysis and highly un-
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Table 4. Percent of grid points that are classified into specific AIC-D categories (according to Burnham and Anderson, 2002) for each
candidate PDF over both seasons. Percentages of grid points indicate the confidence in candidate PDFs to overall performance according
to the respective AIC-D category. We consider percentages that exceed (subceed in case of AIC-D values beyond 10) 95 % (5 %) as a sign
of substantial confidence in the candidate PDF (green) to overall performance according to the respective AIC-D category. In contrast, we
consider those candidate PDFs that exceed (subceed) in 85 % (15 %) of the grid points as a sign of average confidence in the candidate PDF
(yellow) to overall performance according to the respective AIC-D category. Percentages that fall short of 85 % (or that show no skill in more
than 15 %) are considered as an overall sign of insufficient confidence in the candidate PDF (red). In contrast to Table 3, the evaluation of
simulations is based on a single ensemble member. Observations are identical to Table 3.

desirable when analyzing droughts. Contrary to Blain et al.
(2018), who investigated the influence of different parameter
estimation methods on SPI’s normality and identified only
barely visible effects, the massive difference between the
baseline and GD2 in DJF is severely concerning, especially
given that the parameter estimation methods used here are
identical and that the only difference is the meticulousness of
the optimization procedure. Since GD2 and the baseline both
use the maximum-likelihood method to estimate the PDF’s
parameters, main differences do not only emerge when us-
ing different estimation methods but rather manifest already
in the applied procedures by which these methods are opti-
mized.

Unsurprisingly the same deficit as identified before for
both two-parameter candidate PDFs also emerges in the
baseline’s performance: the sum weighted by each classes’
likelihood of occurrence over the absolute values of devia-
tions from N0,1 increases as a result of increasing 10-fold
our database (not shown). Although the baseline already
performs especially poorly when analyzing weighted devi-
ations during DJF in observations, it performs even worse
in simulations, although the performance deteriorates only
marginally. Such an increase of weighted deviations is a
strong indicator of the baseline’s difficulties to sufficiently
describe the frequency distribution of modeled SPI3M. In the
baseline, these weighted deviations increase globally by 2 %
in DJF and 40 % in JJA (as a reminder: the weighted devi-
ations stay constant for GD2 in DJF and increase by more
than 120 % in JJA). In contrast, these weighted deviations de-
crease for the AICmin-analysis by 70 % in DJF and by 60 %
in JJA around the entire globe (not shown).

Moreover, identifying the maximum deviation from N0,1
for 196 different analyses which range across each SPI cate-
gory (seven), domain (seven), and both seasons (two), as well
as differentiating between observation and simulation (two)
(not shown), the baseline performs worst in 79 out of those
196 analyses, while WD2 performs worst in 103 of these
analyses. It is noteworthy that out of those 79 analyses in
which the baseline performs worst, 63 analyses occur during
DJF. As a side note, GD2 performs worst six times with our
optimization, while GGD3 and EWD3 each perform worst
four times overall.

3.1.4 Sensitivity to ensemble size

So far, we used all ensemble members at once to fit our can-
didate PDFs onto simulated precipitation. That improves the
quality of the fit. In this section, we first analyze a single en-
semble member and investigate subsequently the sensitivity
of our candidate PDFs’ performance on the ensemble size.
In doing so, we properly disentangle the difference between
observations and simulations from the impact of the sample
size.

As before, three-parameter candidate distribution func-
tions also perform for a single ensemble simulation better
than two-parameter PDFs (Table 4). For a single ensemble
member, the difference by which three-parameter PDFs out-
perform two-parameter PDFs reduces considerably relative
to the entire ensemble simulations (compare Table 4 against
Table 3), though. In contrast to Table 3, all of our candidate
distribution functions perform similarly between a single en-
semble simulation and observations. In contrast to our pre-
vious results (e.g., when analyzing weighted sums of devi-
ations from N0,1), modeled and observed precipitation dis-
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tributions now seem sufficiently similar. Reducing the sam-
ple size for the fit by a factor of 10 leads to more homoge-
neous performances of all candidate PDFs in simulations. As
a reminder, AIC-D frequencies as depicted in Table 4 mea-
sure only relative performance differences. Consequently,
our two-parameter candidate PDFs do not actually perform
better with fewer data. Instead, limiting the input data to a
single ensemble member impairs our three-parameter candi-
date PDFs more strongly than our two-parameter candidate
PDFs. Optimizing three parameters needs more information
than the optimization of two parameters. Irrespective of the
realization, GD2 performs erroneously for 31 samples (ap-
parent in grid points which display AIC-D values beyond 4).
Despite the need for more information, 31 samples suffice
EWD3 to fix GD2’s erroneous performances in both ana-
lyzed realizations.

In the next step, we isolate and investigate the improve-
ment of the fit by an increasing sample or ensemble size. As
a consequence of limited observed global precipitation data,
we neglect observations and their differences to simulations
in this remaining section. During this investigation, we rean-
alyze Table 4 while iteratively increasing the ensemble (sam-
ple) size for the fit (and the AIC-D calculation). Irrespective
of the ensemble size, EWD3 performs proficiently (Table 5).
Further, the fraction of grid points in which EWD3 performs
ideal increases constantly. This is a consequence of EWD3’s
better performance relative to our two-parameter candidate
PDFs. Unfortunately, AIC-Ds can only compare models that
are based on an equal sample size without adhering to ad-
ditional undesired assumptions. Thus, any direct analysis of
each candidate PDF’s improvement relative to its own per-
formance for a single ensemble member is with AIC-D fre-
quencies not feasible. Despite this caveat, Table 5 still indi-
cates strongly that EWD3 benefits more strongly from the
increased sample size than any of our two-parameter candi-
date distribution functions. The larger the sample size is, the
larger the margin by which EWD3 outperforms GD2 is.

Despite requiring more data, our three-parameter can-
didate PDFs perform already better for 31 samples. For
31 samples, we identify this better performance of three-
parameter candidate PDFs in observations and simulations.
Further, since our three-parameter candidate PDFs require
more data to estimate optimal parameters, they benefit in
simulations more strongly from additional samples than our
two-parameter candidate PDFs. That benefit becomes appar-
ent in a distinctly improved relative performance after multi-
plying the sample size through the use of additional ensemble
members.

3.2 Other SPI accumulation periods

A similar pattern as identified for SPI3M also emerges in the
evaluation of AIC-D-based performances of our candidate
PDFs for accumulation periods of 1, 6, 9, and 12 months
(Table 6). No candidate PDF performs ideally (AIC-D val-

ues below 2) with substantial confidence around the globe.
The reasons for this shortcoming are distribution-dependent.
GD2 performs too poorly in too many grid points (e.g., ap-
parent by too low percentages for covering AIC-D values
even below 4), and EWD3 excels only for AIC-D values
beyond 2 because it first needs to overcompensate its AIC-
imposed complexity penalty (as explained before). Equally
apparent is the striking inability of the two-parameter candi-
date PDFs to adequately perform in ensemble simulations for
all analyzed accumulation periods, which we have also seen
for SPI3M before.

In agreement with prior studies (Stagge et al., 2015; Sienz
et al., 2012), we also identify the apparent performance shift
between short (less than 3 months) and long (more than
3 month) accumulation periods for the two-parameter can-
didate PDFs. While WD2 performs well for short accumu-
lation periods (only in observations though), GD2 performs
better than WD2 for longer accumulation periods. Neverthe-
less, neither three-parameter candidate PDF displays such a
shift in its performance. Both three-parameter PDFs perform
for accumulation periods shorter and longer than 3 months
similarly well.

Most interesting, EWD3 performs well almost everywhere
around the entire globe for each accumulation period and in
both realizations. EWD3 shows the highest percentages of
all candidate PDFs for each analysis (each row of Table 6)
beyond AIC-D values of 2, except for an accumulation pe-
riod of 12 months in simulations. While there is not even a
single candidate PDF that seems well suited for an accumu-
lation period of 12 months in simulations, GD2 and EWD3
both perform equally adequate, despite EWD3’s higher AIC
penalty compared to GD2. As a reminder, AIC punishes
EWD3 more strongly than GD2. Despite this complexity
punishment, it is obvious by now that our two-parameter
PDFs are inept to universally deliver normally distributed
SPI time series, particularly if one considers all depicted di-
mensions of the task at hand. As it turns out, this punish-
ment is the sole reason for both performance limitations that
EWD3 displays in Table 6: (i) the ideal AIC-D category and
(ii) EWD3’s tied performance with GD2 for an accumulation
period of 12 months in ensemble simulations. As shown be-
fore, AIC’s punishment is particularly noticeable in the ideal
category. Further, this punishment also affects the tied perfor-
mance ranking for the accumulation period of 12 months. To
illustrate this effect, we again consider AIC’s estimated like-
lihood (without its penalty) to correct EWD3’s performance
for the complexity punishment. While we again analytically
analyzed this consideration, for the scope of this publication
a first-order approximation suffices also here. In that first-
order approximation of this consideration, EWD3’s cover-
ages of Table 6 shift again by 2.46 (2.04) AIC units in ob-
servations (ensemble simulations). Since neighboring AIC-D
categories differ by 2–3 AIC units, this approximation shifts
EWD3’s coverages of Table 6 by roughly one category. Such
a shift would solve EWD3’s limitation in the ideal AIC-D
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Table 5. Percent of grid points that are classified into specific AIC-D categories (according to Burnham and Anderson, 2002) for each
candidate PDF over both seasons. Percentages of grid points indicate the confidence in candidate PDFs to overall performance according
to the respective AIC-D category. We consider percentages that exceed (subceed in case of AIC-D values beyond 10) 95 % (5 %) as a sign
of substantial confidence in the candidate PDF (green) to overall performance according to the respective AIC-D category. In contrast, we
consider those candidate PDFs that exceed (subceed) in 85 % (15 %) of the grid points as a sign of average confidence in the candidate PDF
(yellow) to overall performance according to the respective AIC-D category. Percentages that fall short of 85 % (or that show no skill in more
than 15 %) are considered as an overall sign of insufficient confidence in the candidate PDF (red). In contrast to Table 3, the evaluation of
simulations is based on different ensemble sizes.
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Table 6. Percent of grid points that are classified into specific AIC-D categories (according to Burnham and Anderson, 2002) for each
candidate PDF over both seasons. Percentages of grid points indicate the confidence in candidate PDFs to overall performance according
to the respective AIC-D category. We consider percentages that exceed (subceed in case of AIC-D values beyond 10) 95 % (5 %) as a sign
of substantial confidence in the candidate PDF (green) to overall performance according to the respective AIC-D category. In contrast, we
consider those candidate PDFs that exceed (subceed) in 85 % (15 %) of the grid points as a sign of average confidence in the candidate PDF
(yellow) to overall performance according to the respective AIC-D category. Percentages that fall short of 85 % (or that show no skill in more
than 15 %) are considered as an overall sign of insufficient confidence in the candidate PDF (red). In contrast to Table 3, this table evaluates
different accumulations periods of SPI.
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category. Further, EWD3 would also perform best across all
AIC-D categories in ensemble simulations, including the ac-
cumulation period of 12 months.

Despite the inclusion of the complexity penalty, EWD3
still performs best in 32 out of all 40 analyses (all rows of
Tables 3 and 6), and in 30 of those 32 analyses, we con-
sider EWD3’s performance to display at least average con-
fidence (indicated by a yellow or green background color
in the respective table). In contrast, GD2 only performs best
seven (two) times (while also performing with at least aver-
age confidence); WD2 performs best once, and GGD3 never
does.

4 Discussion

Previous studies have emphasized the importance of using a
single PDF to calculate SPI for each accumulation period and
location (Stagge et al., 2015; Guttman, 1999) to ensure com-
parability across space and time, which is one of the index’s
main advantages (Lloyd-Hughes and Saunders, 2002). How-
ever, any two-parameter distribution function seems in ob-
servations already ill suited to deliver adequately normally
distributed SPI time series. Single two-parameter candidate
PDFs are suited for neither all locations nor both short (less
than 3 months) and long (more than 3 months) accumulation
periods (Stagge et al., 2015; Sienz et al., 2012). Introducing
ensemble simulations as another level of complexity exacer-
bates the problem additionally. Yet, the importance of accept-
ing and solving this problem becomes increasingly pressing
as a result of a growing interest in dynamical drought pre-
dictions and their evaluation against observations. To prop-
erly evaluate drought predictability of precipitation hind-
casts against observations, the distribution function used in
SPI’s calculation algorithm needs to capture sufficiently well
both frequency distributions mutually: those of observed and
modeled precipitation totals.

The outlined problem is additionally aggravated by the fact
that it cannot be circumnavigated. Our results demonstrate
that any inept description of precipitation by SPI’s candi-
date distribution function manifests most severely in the tails
of SPI’s distribution. Since SPI is usually employed to ana-
lyze the left-hand tail of its distribution (droughts), biased de-
scriptions of this tail are highly undesirable. To establish the
robustness of this valuable tool and to fully capitalize on its
advantages, SPI’s problem of requiring a single, universally
applicable candidate PDF needs to be solved. In this study,
we show that the three-parameter exponentiated Weibull dis-
tribution (EWD3) is very promising in solving this problem
virtually everywhere around the globe in both realizations
(observations and simulations) for all common accumulation
periods (1, 3, 6, 9, and 12 months).

Other studies have dismissed the possibility of such a so-
lution to this problem and proposed instead a multi-PDF ap-
proach (Guenang et al., 2019; Blain and Meschiatti, 2015;

Touma et al., 2015; Sienz et al., 2012; Lloyd-Hughes and
Saunders, 2002) which selects different PDFs depending on
the location and accumulation period of interest. The emer-
gence of this proposal stems from a focus on two-parameter
PDFs that exhibit a shift in their performance which depends
on the scrutinized accumulation period. While WD2 per-
forms better for an accumulation period of 1 month, GD2 is
better suited for longer accumulation periods. However, any
multi-PDF approach would partly sacrifice the aforemen-
tioned index’s pivotal advantage of comparability across
space and time. Our results suggest that such a multi-PDF ap-
proach does not improve the normality of calculated SPI time
series relative to a calculation algorithm that uses EWD3
as a PDF everywhere. Furthermore, the use of an empirical
cumulative distribution function has been proposed (Sienz
et al., 2012). We checked this approach which proved to be
too coarse because of its discretized nature (not shown). As
a result of its discretized nature, the analyzed sample size
prescribes the magnitude of deviations from N0,1. Conse-
quently, these deviations are spatially invariant and aggregate
with each additional grid point. Thus, deviations from N0,1
will not spatially balance each other.

Yet, in agreement with those other studies (Guenang et al.,
2019; Blain and Meschiatti, 2015; Touma et al., 2015; Sienz
et al., 2012; Lloyd-Hughes and Saunders, 2002), our results
also suggest that two-parameter PDFs are inept for all ac-
cumulation periods, locations, and realizations. Despite this
inability of two-parameter PDFs, EWD3 competed against
two-parameter PDFs in our analysis. This competition un-
necessarily (given the inadequacy of two-parameter PDFs,
the risk of underfitting seems to outweigh the risk of overfit-
ting) exacerbates EWD3’s performance assessed with AIC-
D because AIC punishes complexity (irrespective of that risk
consideration). As a consequence of EWD3’s increased com-
plexity, AIC imposes a larger penalty on EWD3 than on the
two-parameter candidate PDFs (which are anyhow ill suited
to solve the outlined problem because they are most likely
too simple). Still, EWD3 conclusively outperforms any other
candidate PDF. Yet, EWD3 does not perform ideally with
substantial confidence in ensemble simulations. However,
leveling the playing field for candidate distribution functions
with different parameter counts in our AIC-D analysis leads
to an ideal performance of EWD3 universally.

We also repeated our AIC-D analysis with the Bayesian in-
formation criterion (Schwarz, 1978), which delivered similar
results. Irrespective of the employed information criterion,
the findings sketched above stay valid on every continent in
both realizations with a few exceptions. It seems noteworthy
that Australia’s observed DJF and modeled JJA precipitation
totals are generally poorly described by any of our candidate
distribution functions. Since the performances of all investi-
gated distribution functions deteriorate to a similar level, it
is difficult, however, to discern any new ranking. Even more
troublesome is the proper description of simulated 12-month
precipitation totals. Here, our candidate PDFs perform only
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sufficiently. Yet, despite its increased AIC penalty, EWD3
still performs best along with the two-parameter gamma dis-
tribution.

Overall our three-parameter candidate PDFs perform bet-
ter than investigated two-parameter candidate PDFs. De-
spite requiring more data, a sample size of 31 years suffices
our three-parameter candidate PDFs to outperform our two-
parameter candidate PDFs in simulations and observations.
Further, our three-parameter candidate PDFs greatly benefit
from an increase in the sample size in simulations. In sim-
ulations, such a sample size sensitivity analysis is feasible
by using different ensemble sizes. Whether three-parameter
PDFs would benefit similarly from an increased sample size
in observations is likely but ultimately remains speculative
because trustworthy global observations of precipitation are
temporally too constrained for such a sensitivity analysis.

In contrast to Blain et al. (2018), who investigated the
influence of different parameter estimation methods on the
normality of the resulting SPI time series and only found
minuscule effects, our results show a substantial impact of
the meticulousness applied to optimize the same parameter
estimation method. Despite using the same parameter esti-
mation methods and the same candidate PDF, the baseline
investigated here enlarges deviations from N0,1 by roughly
half a magnitude compared to GD2 in DJF. This result is
concerning because it indicates that main differences do
not only emerge when using different parameter estimation
methods but rather manifest already in the applied proce-
dures by which these methods are optimized. In our analy-
sis, not different PDFs but different optimization procedures
of the same parameter estimation method impact normality
most profoundly.

Other consequences of this finding are apparent major
season-dependent differences in the performance of the in-
vestigated baseline. This finding contradicts the results of
Stagge et al. (2015) (and the results we obtained from the
analysis of our candidate PDFs). These results suggest that
the performances of candidate PDFs are independent of the
season. In contrast, the baseline performs similar to GD2 dur-
ing JJA, but the performance of the baseline severely deteri-
orates during DJF in our analysis. While this deterioration
is overall more apparent in observations than in simulations,
its most obvious instance occurs in simulations. The inves-
tigated baseline overestimates modeled extreme droughts in
Australia during DJF by more than 240 %; that depicts the
largest deviation from N0,1 we encountered in this study.
Therefore, we urge exercising substantial caution while an-
alyzing SPIDJF time series with the investigated baseline’s
R package irrespective of the heritage of input data. While
the largest deviations from N0,1 occur during DJF in Aus-
tralia, the baseline performs particularly poorly during DJF
in general. During DJF, the examined baseline displays larger
deviations from N0,1 than any other of the six SPI calcu-
lations (GD2, WD2, GGD3, EWD3, baseline, and AICmin-
analysis) analyzed here in 63 out of 98 different analyses,

which range across all seven SPI categories, all seven re-
gions, and both realizations. Aside from the investigated
baseline and in general agreement with Stagge et al. (2015),
we find only in Australia minor seasonal differences in the
performance of our candidate PDFs.

To aggregate our AIC-D analysis over the globe and vi-
sualize this aggregation in tables, we need to evaluate the
aggregated performance of candidate PDFs for certain AIC-
D categories (Burnham and Anderson, 2002). Their aggre-
gation over all land grid points of the globe demands the
introduction of another performance criterion that requires
interpretation. That criterion informs whether the candidate
PDFs conform to the respective AIC-D categories in suffi-
cient grid points globally and, therefore, needs to interpret
which fraction of the global land grid points can be consid-
ered sufficient. For this fraction of global land grid points,
we select 85 % and 95 % as thresholds. Consequently, we
categorize our candidate PDFs for each AIC-D category into
three different classes of possible performances. We consider
the confirmation of the respective AIC-D category in at least
95 % of grid points globally as an indicator of substantial
confidence in the candidate PDF performance according to
the respective AIC-D category globally. Confirmation of the
respective AIC-D category in less than 85 % of grid points
globally is considered as an indicator of insufficient confi-
dence in the candidate PDF. Lastly, we consider it to be an
indicator of average confidence in candidate PDFs when they
conform to the respective AIC-D category in between 85 %
and 95 % of grid points globally. One might criticize the fact
that these thresholds lack a scientific foundation or that they
are to some extent arbitrary. However, they seem adequately
reasonable and agree with analog evaluations of such frac-
tions derived by rejection frequencies from goodness-of-fit
tests in previous studies (Blain and Meschiatti, 2015; Blain
et al., 2018; Stagge et al., 2015; Lloyd-Hughes and Saunders,
2002). Moreover, these thresholds show a robust statistical
basis in terms of being equally represented over all 320 an-
alyzed evaluations in this study (all entries of Tables 3–6).
Across all 80 analyses (all rows of Tables 3–6), the four can-
didate PDFs perform insufficiently 132 times, while they per-
form with substantial (average) confidence 130 (58) times.

There is scope to further test the robustness of our derived
conclusions in different models with different time horizons
and foci on accumulation periods other than 3 months (e.g.,
12 months). Of additional interest would be insights about
the distribution of precipitation. Such insights would enable
SPI’s calculation algorithm to physically base its key deci-
sion. A recent study suggests that a four-parameter extended
generalized Pareto distribution excels in describing the fre-
quency distribution of precipitation (Tencaliec et al., 2020).
Anyhow, the inclusion of yet another distribution parame-
ter additionally complicates the optimization of the parame-
ter estimation method. We already exemplified the impact of
the meticulousness of the applied optimization in this study.
Establishing a standard for the optimization process seems
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currently more urgent than attempts to improve SPI through
four-parameter PDFs.

The results presented here further imply that the eval-
uated predictive skill of drought predictions assessed with
SPI should be treated with caution because it is likely bi-
ased by SPI’s current calculation algorithms. This common
bias in SPI’s calculation algorithms obscures the evalua-
tion of predictive skill of ensemble simulations by inducing
a blurred representation of their precipitation distributions.
That blurred representation emerges in the simulated drought
index, which impedes the evaluation process. Drought pre-
dictions often try to correctly predict the drought intensity.
The evaluation process usually considers this to be success-
fully achieved if the same SPI category as the observed one
is predicted. This evaluation is quite sensitive to the thresh-
olds used when classifying SPI categories. The bias iden-
tified here blurs these categories in ensemble simulations
more strongly than in observations against which the model’s
predictability is customarily evaluated. As a consequence of
these sensitive thresholds, such a one-sided bias potentially
undermines current evaluation processes.

5 Summary and conclusions

Current SPI calculation algorithms are tailored to describe
observed precipitation distributions. Consequently, current
SPI calculation algorithms are ineptly suited to describe pre-
cipitation distributions obtained from ensemble simulations.
Also in observations, erroneous performances are apparent
and well-known but less conspicuous than in ensemble sim-
ulations. We propose a solution that rectifies these issues and
improves the description of modeled and observed precipi-
tation distributions individually as well as concurrently. The
performance of two-parameter candidate distribution func-
tions is inadequate for this task. By increasing the parame-
ter count of the candidate distribution function (and thereby
also its complexity), a distinctly better description of precip-
itation distributions can be achieved. In simulations and ob-
servations, the best-performing candidate distribution func-
tion identified here – the exponentiated Weibull distribu-
tion (EWD3) – performs proficiently for every common ac-
cumulation period (1, 3, 6, 9, and 12 months) virtually every-
where around the globe. Additionally, EWD3 excels when
analyzing ensemble simulations. Its increased complexity
(relative to GD2) leads to an outstanding performance of
EWD3 when an available ensemble multiplies the sample
size.

We investigate different candidate distribution functions
(gamma – GD2, Weibull – WD2, generalized gamma –
GGD3, and exponentiated Weibull distribution – EWD3) in
SPI’s calculation algorithm and evaluate their adequacy in
meeting SPI’s normality requirement. We conduct this in-
vestigation for observations and simulations during sum-
mer (JJA) and winter (DJF). Our analysis evaluates glob-

ally and over each continent individually the resulting SPI3M
time series based on their normality. This analysis focuses
on an accumulation period of 3 months and tests the con-
clusions drawn from that focus for the most common other
accumulation periods (1, 6, 9, and 12 months). The normal-
ity of SPI is assessed by two complementary analyses. The
first analysis checks the absolute performance of candidate
PDFs by comparing actual occurrence probabilities of SPI
categories (as defined by WMO’s SPI User Guide; Svoboda
et al., 2012) against well-known theoretical occurrence prob-
abilities of N0,1. The second analysis evaluates candidate
PDFs relative to each other while penalizing unnecessary
complexity with the Akaike information criterion (AIC).

Irrespective of the accumulation period or the dataset,
GD2 seems sufficiently suited to be employed in SPI’s cal-
culation algorithm in many grid points of the globe. Yet,
GD2 also performs erroneously in a non-negligible frac-
tion of grid points. These erroneous performances are ap-
parent in observations and simulations for each accumula-
tion period. More severely, GD2’s erroneous performances
deteriorate further in ensemble simulations. Here, GD2 per-
forms in a non-negligible fraction of grid points also insuf-
ficiently or even without any skill. In contrast, EWD3 per-
forms for all accumulation periods without any defects, ir-
respective of the dataset. Despite requiring more data than
two-parameter PDFs, we identify EWD3’s proficient perfor-
mance for a sample size of 31 years in observations as well as
in simulations. Further, ensemble simulations allow us to ar-
tificially increase the sample size for the fitting procedure by
including additional ensemble members. Exploiting this pos-
sibility has a major impact on the performance of candidate
PDFs. The margin by which EWD3 outperforms GD2 further
increases with additional ensemble members. Furthermore,
EWD3 demonstrates proficiency also for every analyzed ac-
cumulation period around the globe. The accumulation pe-
riod of 12 months poses in simulations the only exception.
Here, EWD3 and GD2 both perform similarly well around
the globe. Still, we find that three-parameter PDFs are gen-
erally better suited in SPI’s calculation algorithm than two-
parameter PDFs.

Given all the dimensions (locations, realizations, and accu-
mulation periods) of the task, our results suggest that the risk
of underfitting by using two-parameter PDFs is larger than
the risk of overfitting by employing three-parameter PDFs.
We strongly advocate adapting the calculation algorithm of
SPI and the use therein of two-parameter distribution func-
tions in favor of three-parameter PDFs. Such an adaptation
is particularly important for the proper evaluation and in-
terpretation of drought predictions derived from ensemble
simulations. For this adaptation, we propose the employ-
ment of EWD3 as a new standard PDF for SPI’s calcula-
tion algorithm, irrespective of the heritage of input data or
the length of scrutinized accumulation periods. Despite the
issues discussed here, SPI remains a valuable tool for ana-
lyzing droughts. This study might contribute to the value of
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this tool by illuminating and resolving the discussed long-
standing issue concerning the proper calculation of the index.

Data availability. The model simulations are available at the
World Data Center for Climate (WDCC) at http://cera-www.dkrz.
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