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Abstract 
This presentation is concerned with the development of phase 
gratings for use at Terahertz frequencies (sub-" 
wavelengths). Design, fabrication and testing of two grating 
t p e s  ( D v  and Fourier) m discussed. Modelling using 
quasi-optical techniques is outlined and the implementation of 
a suitable algorithm (Gerchberg-Saxton) to find solutions for 
the phase-retrieval problem discussed. 

1. Introduction 
Only in recent yeam has terahertz or T-Ray technology 
become a practical area as electronics research reduces the 
size and cost of T-Ray sources and detectors. With possible 
future imaging applications in m a s  such as security, non- 
destructive materials testing and pharmaceuticals quality 
control, a drive is on to develop single- and multi-pixel 
imaging systems. Any imaging system requires optical 
components (lenses, mirrors, etc.) to focus and redirect beams. 
A common requirement of an imaging system is the ability to 
split and shape a beam. The phase grating provides an elegant, 
more efficient alternative to the traditional beam splitter. In a 
heterodyne array receiver system, for example a phase grating 
can be used to match the signal beam of a single local 
oscillator source to an array of detector devices. Used in this 
way a phase grating can be referred to as a multiplexing 
device. Operated in reverse the phase grating can be used to 
combine several coherent beams into a single powerful 
beam"). Presented here are the results of numerical modelling 
of two types of phase gratings: Dammann and Fourier, 
followed by measurements of the output patterns generated by 
gratings manufactured for use at frequencies of 0.1THz. 

Unlike components daigned for use at optical wavelengths, 
where the size of the components is much greater than the 
wavelengths used, in the terahem region the size of 
components is comparable to that of the wavelength and 
therefore diffiction becomes an important consideration. 
Because of the significance of diffractive effects such 
components are referred to as diffractive optical elements. 
Since geometrical optics techniques are insufficient to 
describe effects due to diffiction, quasi-optical techniques 
such as Fresnel and Fraunhofer diffiction must be used. The 
phase gratings examined in this paper were modelled using 
these methods. 

2. Basic Theory of Phase Grat ings 
Whereas the diffraction grating modulates both amplihlde and 
phase, the phase grating modulates phase only and therefore 
has higher throughput of power - an important consideration 
at long wavelength optics. 

According to the Array Theorem['] the output generated by a 
diffraction grating E(u,v) is the combination of the 
interference due to a linear array of cells and the dimadion 
pattem generated by a single cell 

where - indicates multiplication. The two terms on the right 
can be treated independently: the interference term A(u,v) 
determines the separation of the dimaction orders; the 
dimaction tenn vu,") controls the ratio of power in each 

E(u,v) = I nu,") I .IA(U,") I 

difiaction order. By suitable manipulation of the diffraction 
term, one can direct the incident power into a specific set of 
diffraction orders. 

The dimaction term is determined by the transmission 
function r&y) which is simply a mathematical function 
describing the phase profile imposed on the incident beam by 
the cell. The general form of the transmission function for a 
single cell is 

where &(xy) describes the phase profile of the cell. If the 
grating is illuminated with a quasi-Gaussian beam that has a 
flat phasefront then the only phase structure in the plane of 
the grating is that due to the phase modulation of the grating 
itself Therefore the problem of fmding a phase grating that is 
able to produce a given output E(u,v) is reduced to finding 
k&A. 

&&,,v) = exp(i i kdxu)) 

Broadly speaking phase gratings can be divided into two 
classes: discrete-level phase gratings and Fourier (continuous 
phase) gratings. These are discussed next. 

3. Discrete-level phase gratings 
In discrete-level gratings the continuous phase profile required 
to produce a certain output is approximated with a finite 
number of discrete phase levels (with values in the range 0 to 
Zn). The points at which the phase jumps between allowed 
phase levels are called transition points. f i e  task of finding a 
solution is thus reduced to tinding a suitable set of transition 
points using a set number of phase levels that will generate the 
required output diffraction pattem. The simplest, if not the 
most elegant way of finding a solution set of transition points 
is to use a brute force method whereby all values for transition 
points along the length of the unit cell are tested, and the set 
resulting in the highest efficiency chosen. A useful tool in 
grating design is the incorporation of symmetries (reflection 
or translational or both) into the grating pattern, which can 
reduce significantly the design complexity' I. Within this class 
of grating, individual gratings can be characterized by 
propnties they possess: the number of phase levels, different 
symmetries imposed upon the grating pattem, etc. 

One imponant type of discrete-level grating design is the 
D a m a n n  grating (DG), so-called in reco ition of the early 
work done by D m m  on this subject141. 'I. This IS a binary 
level grating, i.e. possessing only two phase levels (usually 
chosen to be 0 and n). The number of degrees of freedom for a 
DG is then simply equal to the number of transition points per 
unit cell. The main simplification in Dammann's method is 
the restriction of the two-dimensional transmission function to 
only those separable into hvo dimensions, i.e. rcell(xy) = f&) 
I&). thereby reducing the complexity by changing it to a one- 
dimensional problem. Obviously this reduces the applicability 
of this solution since output patterns inseparable into two 
dimensions can never be achieved with a DG. 

4. Fourier  Grating 
Phase gratings with a continuous phase profile are often 
referred to as Fourier gratings and can generate patterns with 
very high efficiencies. The problem of finding solutions for 

y . .  . 
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Fourier gratings requires a different approach than the one 
discussed above. One method, based on the Phase-Retrieval 
problem is the Gerchberg-Saxton An iterative 
algorithm its goal is to determine the phase required at the 
grating to produce the desired far-field amplitude distribution, 
Edu,v), given the amplitude distribution at the grating plane, 
E&#). The advantage of this method over Dammann's is that 
transmission functions that are inseparable into two 
dimensions can be found. 

5. Fabrication 
For transmission gratings, the phase profile is produced by 
making use of the phase delay imposed upon an incident field 
by changes in refractive index of the material through which it 
propagates. A simple method used to achieve this is to make 
the grating from a transparent material of uniform refractive 
index into which grooves of different depths can be milled. It 
is the difference in refractive indices, An, between the grating 
material and the surrounding medium (usually air), combined 
with the depth of material through which the incident field 
must pass that determines the phase delay. For reflection 
gratings, a phase delay is achieved by the fact that at each 
point on a groove the incident wave will be delayed at a deep 
part because the wave will have further to travel than at a 
shallow part. Whereas the maximum groove depth 
(corresponding to a phase delay of rr) for a transmission 
grating is equal to I, in reflection this becomes N2. The phase 
grating, consisting of a regular array of slots or grooves, can 
be milled into a material of suitable refractive index 
(transmission grating) or reflective material (reflection 
grating). 

While transmsission gratings have high throughput, losses can 
be incurred due to the presence of standing waves. On the 
other hand while reflection gratings do not suffer fcom 
standing waves, they must be designed with either off-axis 
input or output or both. For discrete-phase level gratings, a 
transmission design is favourable, since a reflective design 
would result in severe shadowing effects (truncation) in the 
sharp concave corners of the grating profile. Since no such 
sharp comers would be present in a Fourier grating profile, 
this type of grating should be designed in reflection to tAe  
advantage not only of the absence of standing waves, but also 
of the relative ease of milling the profile into a reflective 
block of aluminium rather than a plastic material (such as 
HDPE with a refractive index of 1.52 that could be used in 
transmission). 

It was decided to manufacture and test two gratings: a 
transmission DG and a reflection Fourier grating.The gratings 
were machined on a CNC milling machine. The cutting tools 
used have a minimum radius of curvature which restricts the 
accuracy with which features can be milled, such as the 
concave comers present in a DG. The mini" radius of 
curvature available for machining the gratings easily in the 
department workshop is Imm. The effect of this machining 
limit has been modelled for each of the gratings to test how 
adversely it affects the performance of each grating. 

6. Numerical and Experimental  Results 
Examples of two of the above grating m e s  were modelled, 
machined and tested. 

A DG to create an on-axis array of 3x3 beams was machined 
as a transmission grating from a piece of HDPE (Fig.1). By 
using D a m n ' s  technique, a one-dimensional transmission 

function 1,(+) to create 3 beams in the x dimension was 
calculated. The dimaction efficiency 7 for this grating is law 
at -44% (66.4% in each dimension), which is due to the 
unsuccessful suppression of 2" order difiactian beams. 

Fig.1: DG profie (left) and 3Goutput (right) 

The other gating made was a reflection Fourier grating, 
machined from a sheet of free-cutting aluminium and 
designed to create an off-axis array of 3x1 beams with a 38- 
angle of throw. Fig.2 shows expected and actual outputs from 
the grating (the central beam is at 38' to gratings normal). An 
advantage of the reflection grating is that it allows for use of a 
much more compact imaging system than the one required for 
a transmission grating which requires an in-line 4-f imaging 
system 

Fig.2: Fourier gnting output: 
expected (MI) and erperimentd (right) 

7. Conclusion 
Initial tests of both gratings in the laboratory indicate that the 
two grating types discussed here provide suitable methods of 
beam multiplexing at sub-mm wavelengths. Future work will 
concentrate on the use afother phase-retrieval methods, other 
than the GS one used here for the design, manufacture and 
testing of more sophisticated gratings. 
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