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Abstract— This paper proposes a rigorous stability criterion for the 2nd order digital phase locked loop (DPLL), 

with a charge pump phase frequency detector (CP-PFD) component. The Stability boundary is determined using 
piecewise linear methods to model the non-linear nature of the CP-PFD component block. It calculates the control 
voltage, after a predetermined number of input reference signal sampling periods, to a small initial voltage offset. 
Using this piecewise linear model an exact closed form stability criterion is proposed for the second order system. The 
2nd order stability boundaries, as defined by the proposed technique, are compared to that of existing linear theory 
stability boundaries, and display a significant improvement.  
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I   INTRODUCTION 
The Digital Phase Locked Loop (DPLL) is a 
versatile component block widely used in electronics 
for operations such as frequency synthesis and clock 
data recovery. The DPLL system considered in this 
paper consists of a bang bang phase frequency 
detector (PFD), a charge pump (CP), and a voltage 
controlled oscillator (VCO), all of which are vital to 
the operation of the DPLL.  The DPLL may also 
include a low pass loop filter (LF) or a frequency 
divider, with a structure as shown in figure 1.  
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Figure 1.  DPLL Loop Block Diagram 

The DPLL loop generates a robust signal at the 
output of the VCO from a local oscillator reference 
signal, with a VCO output frequency FV, that is some 
multiple of the reference frequency, FR. The phase of 
the reference and feedback signals are compared by 
the PFD and any difference is represented as a 
current on the charge pump output, IP. This error 
drives the VCO output signal towards that of the 
reference, and thus drives the loop towards lock.  
This paper aims to determine an alternative, more 
accurate, stability boundary for the 2nd order system. 
To achieve this, the nonlinearity of the DPLL loop 
needs to be considered. The nonlinearities exist in 
the CP-PFD and the VCO component blocks. The 
VCO can be assumed to be linear if the DPLL 
system operates away from the saturation regions of 

the VCO. The non-linearity in the PFD is due to 
quantization-like effects at the output of the PFD. 
This non-linearity is inherent to the operation of the 
loop and cannot be ignored if an accurate model is 
required.  
Nonlinear systems are often linearised so as to ease 
analysis. In the case of the DPLL this can be justified 
if the time-varying nature of the PFD is overlooked. 
This is a reasonable approximation when considering 
the PLL to be close to lock. In this situation it’s key 
state variable, the VCO control voltage, changes by 
only a small amount on each cycle of the reference 
signal. This is known as the continuous time 
approximation and is valid when the loop bandwidth 
is small relative to the reference frequency, or more 
specifically no greater than 1/10th of the reference 
frequency [1]. This assumes that the detailed 
behaviour of the loop within each cycle is not 
important and only the average behaviour over many 
cycles is important. By applying an averaged 
analysis, the time-varying operation can be bypassed 
and linear analysis can be applied. The DPLL system 
of figure 1 is approximated by the linear system 
block diagram as shown in figure 2.  
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Figure 2.  Linear PLL (LPLL) system 

The feedback frequency divider is used in frequency 
synthesis to produce an output signal frequency that 
is some multiple of the reference signal, N times FR 



in figure 1. The inclusion of a feedback divider 
scales FV by N. In our analysis the divider introduces 
a scaling factor, however in this paper the feedback 
divide ratio is chosen to be equal to 1 for clarity. The 
transfer function of the LPLL system of figure 2 is 
then given by:  
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where IP is the charge pump current gain and is 
equivalent to KP/2π, KV is the VCO gain and F(s) is 
the loop filter transfer function. Using (1), Gardner 
identifies the stability boundary for the 2nd order PLL 
system to be: 
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A plot of the stability boundary from equation (2) for 
a defined filter time constant τ2, and a range of 
reference frequencies (ωR radians/2nd) is shown in 
figure 3.  
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Figure 3.  2nd order Gardner Stability Boundary 

Unlike Gardner [1] other linear stability criteria such 
as [2-4], do not provide a global prediction of the 
DPLL stability boundary. Instead they offer specific 
system parameter values from a chosen loop 
performance, such as the settling time [2], the phase 
margin [3], or the un-damped natural frequency and 
damping factor [4]. These linear methods ignore the 
nonlinearities inherent in the CP-PFD, however they 
do provide a starting point from which empirical 
design methods are used to choose optimum 
component values and to insure that the DPLL will 
operate as expected. Alternative nonlinear stability 
methods are unwieldy and further complicate the 
design of an already complex system. For this reason 
non-linear methods have only rarely been applied to 
the design of PLL systems [5-8]. 
The methodology proposed in this paper does not 
linearise the CP-PFD and thus determines a more 
accurate prediction of the DPLL stability boundary, 
allowing for more aggressive design. It uses 
piecewise linear methods to accurately model the 
inherent non-linear nature of the CP-PFD, this 
piecewise linear method is considered in the next 
section. In section III a closed form solution of the 
stability criterion is determined. In section IV this 

stability criterion is used to plot the stability 
boundary of the DPLL. This boundary is compared 
to that of the linear model defined boundary of 
Gardner [1]. In section V the conclusions are 
presented. 

II   SECOND ORDER PIECEWISE 
LINEAR MODEL 

In this section a piecewise linear model is proposed. 
The proposed methodology considers the non-
linearity of the CP-PFD, by using a state transition 
diagram to model the changing states of the CP-PFD. 
It assumes a small initial VCO control voltage offset 
V0 and determines the system stability from the state 
space response to this offset. V0 is chosen to be small 
for two reasons. First the error introduced by the 
model is directly proportional to V0, and 2nd a small 
V0 ensures that the maximum phase offset remains 
within the +/- π region, avoiding cycle slip events. 
Cycle slips occur when the feedback signal falling 
edge, to which the reference signal falling edge is 
being compared to in the PFD, changes incurring a 
2π shift in the phase error. These phenomena occur 
when the system is substantially out of lock and in 
acquisition mode. Cycle slip events can be explained 
by this analysis but are beyond the scope of this 
paper. 
In figure 4 a plot of the state space system trajectory 
is shown, where the two state variables are the phase 
error φe and the control voltage VC. For a stable 
system with a reference frequency equal to the VCO 
free running frequency FFR, and an initial control 
voltage offset of V0, the system will settle to the 
equilibrium of the origin, shown as the dashed line in 
figure 4.  
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Figure 4.  State Space Plot of Stable System 

The continuous curve in figure 4 is a piecewise linear 
curve where the dots correspond to samples of the 
VCO control voltage. In the case of the 2nd order 
DPLL, the system is linear between these sample 
points, allowing the piecewise linear method to give 
an exact calculation of this state space curve. The 
continuous line of figure 4 is one half cycle of the 
state space curve. If the value of Vm, which is the 
first zero crossing of φe(t), can be calculated, then the 
system stability can be determined as follows: if |Vm| 
> V0 then the system trajectory is diverging and is 



therefore unstable; If |Vm| < V0 then the trajectory is 
converging and is stable. The calculation of φe(t) and 
VC(t) depends on the filter’s charge approximated 
difference equations. For the 2nd order system φe(t) 
and VC(t) are determined using the set of difference 
equations (3) and (4).  
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where FFR is the VCO free running frequency, and 
KV is the VCO gain, T is the reference signal time 
period, and TB is defined here as the boost time of the 
CP-PFD or the length of time during each period T 
where the CP-PFD pumps a non zero current into the 
loop filter. To further clarify consider one time 
period, T, of the loop. In this time period the DPLL 
operates in the coast state, where no current is output 
from the CP-PFD, for a period of time defined here 
as TC, and in boost state for a period of TB, as in 
figure 5. TB is calculated as in equation (5). 
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Figure 5.  One Period of VC  for 2nd Order DPLL 
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where φe(tn) is the phase error at time tn. The coast 
time period is calculated as TC = TB - T. Once the 
time periods are calculated, VC can be determined 
using (3). To solve equation (4) an estimate of the 
integral of VC is required. For the 2nd order DPLL, 
the loop filter is first order, and therefore the 
integration corresponds to a linear ramp and can be 
expressed as: 
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Using this piecewise linear methodology it is 
possible to determine the stability boundaries for any 
DPLL system by solving the system equations, for a 
small initial VC offset and an initial φe(tn) equal to 
zero, by looking at the system trajectory over a short 
period of time as shown in figure 4. Extending this it 
is possible to determine a closed form stability 
criterion for the 2nd order system by extending. This 
is considered in the next section. 

III   CLOSED FORM SECOND ORDER 
STABILITY CRITERION 

In this section a more detailed consideration of the 
2nd piecewise linear model is given. This approach 
determines the 2nd order DPLL control voltage after 
m periods of the reference signal, Vm, as defined in 
figure 4. The solution of Vm is used to define a closed 
form solution of the DPLL stability boundary for the 
2nd order system. 
To determine Vm two things need to be considered: 
first, when all parameters are known, the nth sample 
of the control voltage Vn needs to be calculated in 
closed form; and 2nd the number of samples m needs 
to be calculated where Vm is the control voltage at the 
first zero crossing of the phase error as shown in 
figure 4. These two requirements are considered in 
the following two subsections. 

a) Calculation of Vn 

The 2nd order system, described by equations (3), and 
(4) can be reduced to the pair of summations given in 
(7) and (8), where V0 is an initial positive VC offset, 
the initial φe offset is zero, and φe is always negative 
as in figure 4. 
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Equations (7) and (8) may be combined to give:  
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where Vn is equivalent to VC(n) and is an exact 
calculation of the control voltage after n samples. 
The double summation in equation (9) can be solved 
by either numerical iteration, or by solving a closed 
form simplification. This closed form solution is 
considered later in subsection 3.   
The control voltage at the zero crossing, Vm will not 
correspond exactly with Vn, as the last sample n will 
not fall exactly on the phase error zero crossing, but 
will cross that line by some value d, as shown in 
figure 6.  If samples n-1 and n are both known then it 
is possible to calculate the value of Vm by using a 
linear interpolation (10). 
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Figure 6.  State Space Samples 
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where (Vx, φx) and (Vy, φy)  are the co-ordinates of the 
samples n and n-1 respectively in figure 6. However 
(10) is not used in this model as the error introduced 
in the calculation of Vm is minimal and reduces as the 
reference frequency is increased.  

b) Calculation of number of samples m 

To calculate the number of samples m it is necessary 
to return to the linear approximation model and use 
the linear error transfer function:  
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Using linear theory to determine m does not reduce 
the accuracy of this technique, as we only require an 
approximate value of m and then round it up to the 
next integer. To determine the phase error zero 
crossings the frequency step response of (11) is 
calculated and the inverse Laplace taken as shown in 
(12) and equated to zero. 
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where ∆F is the frequency step size. Solving (12) 
gives an equation of the form A(t)Sin(X(t))=0, which 
is zero when X(t)=0,π,2π,3π,… The first zero 
crossing after t = 0 occurs when X(t)=π. Solving this 
gives equation (13), the time of the first zero 
crossing.   
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The number of samples in one half cycle of the state 
space trajectory, (the solid arc of the system 
trajectory in figure 4) is estimated as: 
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c) Closed Form Solution of Vm 

The value of Vm, the control voltage at the first zero 
crossing of the phase error, can be found using 
equations (9) and (14) and numerical iteration. 
However it is also possible to solve equation (9) in 
closed form, as shown below. 
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Where A= -KVIP/(FR

2C2) and Λ1 up to Λ⎡m/2⎤ are a set 
of parameters defined as equations (A1-A5) from 
appendix A. Since parameter |A| is always << 1, a 
further simplification can be made. As FR

2 is a large 
number, |A| becomes less significant as the power of 
A is increased. In fact it is found that terms with 
powers of A greater than 4 are insignificant and have 
negligible influence on the final value of Vm. So (15) 
can be simplified to: 
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Now that the phase error at the zero crossing can be 
determined, it is possible to determine the stability 
boundary of the 2nd order DPLL using the calculation 
of the system parameter Vm in equation (16) and an 
estimate of m in (14).  
An important system performance criterion is the 
pull-in rate. Using the system trajectory, as in figure 
4 and Vm, the system pull-in rate can be determined 
for an initial VCO control voltage offset V0. 

0

0

100 %m
in

V VP
V
+

=  (17) 

If the pull-in percentage is negative, the system is 
unstable otherwise the system is stable. Combining 
(16) and (17) the stability criterion can be simplified 
to:  
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This is independent of the initial VCO control 
voltage offset V0. As would be expected, the initial 
condition does not have any effect on the stability 
boundary. Equating (18) to zero gives the stability 
boundary of the system and can be compared to the 
traditional stability boundary of [1].  

IV   RESULTS 
In figure 7 the stability boundary of the proposed 2nd 
order technique is determined using (18) and is 
shown along with Gardner’s boundary [1] and a 
stability boundary defined by a circuit level 
simulation. The accuracy of the circuit level model 
has been verified using other published behavioural 
and event driven DPLL models [9-11].  
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Figure 7.  Stability boundaries of 1GHz 2nd order PLL 

according to Gardner and the proposed method. 

It is clear from figure 7 that the circuit level model of 
the DPLL system suggests that Gardner’s prediction 
is insufficiently conservative and does not guarantee 
stability. In fact there is a significant stable region 
defined by Gardner, where the circuit level model 
predicts instability. To emphasise this consider two 
DPLL systems with a reference frequency of 1GHz, 
a charge pump gain of IP = 1x10-5, and a filter 
resistor of R2 = 10kΩ. The first DPLL system has 
Kτ2 and ωRτ2 of 0.25 and 10 respectively. From 
figure 7, this system is expected to be stable as it lies 
well within the stable region as defined by both 
models. The output response of this system is 
determined using a circuit level simulation and is 
plotted in figure 8.  
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Figure 8.  Response of First DPLL System 

Ignoring the high frequency jitter, which is inherent 
to a second order DPLL, this system is stable and 
settles to an equilibrium after a short period of time.  
The second system, has Kτ2 and ωRτ2 of 0.25 and 2 
respectively. Using figure 7, this system is expected 
to be stable according to Gardner but unstable 
according to the piecewise linear boundary. The 
output response of this system is again determined 
using a circuit level simulation and is plotted in 
figure 9.  
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Figure 9.  Response of System B 

In this case system B is found to be unstable, yet this 
is counter to Gardner’s prediction of stability. This 
illustrates the inaccuracies of applying the linear 
model to the DPLL system, as described earlier.  
It is clear from figure 7 and the above example that 
the 2nd order piecewise linear technique provides a 
much better prediction of the stability boundary than 
linear methods. While comparing the proposed 
technique to additional stability methods such as [2-
4] is desirable, it is not possible due to the specific 
nature of these methods, and the difficulty in plotting 
any global stability boundary with such methods.  
 

V   CONCLUSION 
Traditional CP-PLL design techniques use linear 
theory and empirical methods to identify and design 
stable systems. It is shown in this paper that stability 
boundaries defined using traditional linear methods 
are less accurate. The proposed technique uses 
piecewise linear methods to significantly increase the 
accuracy of the model relative to existing linear 
methods, and thus identify more accurate estimates 
of the stability boundary.  This approach considers 
the exact nonlinear nature of the PFD, rather than 
simply approximating it to an adder component as in 
the linear case.  
The paper concentrates on the 2nd order loop, 
defining a closed form solution of the stability 
boundary using linear integration. Though this 
solution is expansive, it is mathematically tractable 
and is found to better define the stable region of the 
DPLL. This technique can be extended to higher 
orders, however this is beyond the scope of this 
paper. The resulting model is a significant 
improvement over existing linear techniques, 
defining the system stability boundary more 
accurately for the 2nd order of the DPLL.  



VI   APPENDIX 

Appendix A – Closed Form Solution of Vm 

This Section defines the parameters of Λ as used in 
equations (15), (16) and (18). 
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where b = 1-(KVR2IP/FR)).  
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If we consider Λ3 to be equal to the function Γk given 
in equation (A3) at the bottom of the page, where k = 
6, then Λ4 can be calculated using equation (A4). 
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It is possible to calculate all Λ up to ⎡m/2⎤ by using 
the same process between equations (A2) and (A4), 
i.e. define Γ′k as in equation (A5). Then Λ5 can be 
calculated as in (A6), and so on up to Λ⎡m/2⎤. 
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