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Molecular biology provides an inspiring proof-of-principle that 
chemical systems can store and process information to direct 
molecular activities such as the fabrication of complex structures 
from molecular components. To develop information-based 
chemistry as a technology for programming matter to function in 
ways not seen in biological systems, it is necessary to understand 
how molecular interactions can encode and execute algorithms. 
The self-assembly of relatively simple units into complex products1 
is particularly well suited for such investigations. Theory that 
combines mathematical tiling and statistical–mechanical models of 
molecular crystallization has shown that algorithmic behaviour can 
be embedded within molecular self-assembly processes2,3, and this 
has been experimentally demonstrated using DNA nanotechnology4 
with up to 22 tile types5–11. However, many information technologies 
exhibit a complexity threshold—such as the minimum transistor 
count needed for a general-purpose computer—beyond which the 
power of a reprogrammable system increases qualitatively, and 
it has been unclear whether the biophysics of DNA self-assembly 
allows that threshold to be exceeded. Here we report the design 
and experimental validation of a DNA tile set that contains 355 
single-stranded tiles and can, through simple tile selection, be 
reprogrammed to implement a wide variety of 6-bit algorithms. 
We use this set to construct 21 circuits that execute algorithms 
including copying, sorting, recognizing palindromes and multiples 
of 3, random walking, obtaining an unbiased choice from a biased 
random source, electing a leader, simulating cellular automata, 
generating deterministic and randomized patterns, and counting 
to 63, with an overall per-tile error rate of less than 1 in 3,000. These 
findings suggest that molecular self-assembly could be a reliable 
algorithmic component within programmable chemical systems. 
The development of molecular machines that are reprogrammable—
at a high level of abstraction and thus without requiring knowledge 
of the underlying physics—will establish a creative space in which 
molecular programmers can flourish.

In DNA nanotechnology, an essential building block for program-
mable self-assembly is the so-called DNA tile. Structural motif variants 
include the double-crossover tile12, the triple-crossover tile5, and the 
single-stranded tile (SST)13. DNA tiles bind through Watson–Crick 
complementary domains to several neighbours arranged on a one-, 
two-, or three-dimensional lattice. A small number of DNA tile types—
each using the same motif, but with different sequences dictating their 
neighbourhood relationships—is sufficient to program the self-assem-
bly of large (micrometre-scale) crystalline structures in which each tile 
type appears periodically12,13. DNA origami14 has also inspired designs 
composed of hundreds to tens of thousands of distinct tile types that 
self-assemble into finite-sized ‘uniquely addressed’ structures, in which 
each tile type appears in exactly one location and has a fixed set of 
neighbouring tiles15–17.

Beyond periodic and uniquely addressed structures, the combina-
torial arrangement of distinct molecular units can store information 
that can be processed by algorithmically driven choices inherent in the 

self-assembly itself2. Such algorithmic self-assembly can generate arbi-
trarily complex patterns and structures from information encoded in a 
seed structure18,19, similar in spirit to genomic DNA encoding a genetic 
program for the development of an organism. Although unmistakably 
algorithmic growth—including Sierpinski triangles and binary counter  
patterns—has been demonstrated experimentally with double- 
crossover and triple-crossover tiles5–11, tile sets have so far been small and  
hard-coded for a specific assembly algorithm. Our goal was to unlock a 
new level of sophistication by creating a reprogrammable self-assembly 
system, which requires the scaling up of algorithmic self-assembly to 
hundreds of tile types, for which SSTs are a natural choice. However, 
algorithmic self-assembly puts more stringent constraints on system 
design, sequence design, and biophysical properties of the tiles than 
does periodic and uniquely addressed self-assembly.

System design begins with an abstract model of computation—the 
Iterated Boolean Circuit (IBC) model—that is naturally suited to a 
robust molecular implementation as the growth of SSTs into nano-
tubes (see Fig. 1a and Supplementary Information section S1). The 
model considers a locally connected array of Boolean gates that are 
executed repeatedly, with an n-bit l-layer IBC having (n − 1)l gates, 
each with two input and two output wires, and 2l boundary gates, each 
with one input and one output. The logic function computed by each 
of the (n + 1)l gates is specified by the user. The system computes 
by repeatedly iterating the circuit layers, eventually reaching a fixed 
point or a cycle. This is a powerful and general model that can simulate 
many other models of computation20, such as Turing machines, general 
Boolean circuits, cellular automata21,22, and bounded-width branching 
programs (Supplementary Information section S1.3). For molecular 
implementation, we choose n = 6 and l = 1, which corresponds to 244 
possible distinct circuits.

We followed a hierarchy of abstractions (Fig. 1a–e) to arrive at a 
molecular implementation of the 6-bit 1-layer IBC model, which itself 
sits at the first level. The second abstraction level is the abstract Tile 
Assembly Model (aTAM), which describes square monomer tiles whose 
self-assembly is guided by information-bearing ‘glues’ on each side2 
(Fig. 1b and Supplementary Information section S2). The aTAM con-
siders the ‘cooperative’ assembly regime, whereby a tile may attach to a 
growing assembly only if at least two glues match. The model assumes 
an excess of each monomer type in solution, so they are never exhausted. 
Each two-input/two-output gate of the IBC is implemented by four 
abstract tiles, one for each possible pair of input bits. Glues encode both 
bit values and vertical gate position within the circuit. An important 
benefit of the unique addressing of the vertical gate position is that, 
as suggested by previous theoretical and experimental studies of self- 
assembled DNA ribbons and tubes, it can result in substantial kinetic 
barriers to spontaneous nucleation7,8,13,23,24. Thus, the model assumes 
that self-assembly proceeds exclusively from an initial seed assembly 
representing the input to the circuit, growing a pattern that represents 
the execution of the circuit and in principle continuing forever. The seed 
is cylindrical, so that growth forms a tube and each tile attaches by the 
same number of glues (two) with uniform local geometry.
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At the third abstraction level, each abstract tile is converted into four 
‘proofreading’ tiles (Fig. 1b inset and Supplementary Information sec-
tion S2.3) that, according to a more biophysically realistic self-assembly 
theory that is supported by experimental studies, should have a sub-
stantially lower error rate during assembly than a direct implementa-
tion of abstract tiles without proofreading2,6,8,11,24,25. This results in a 
set of 355 tile types that we call the complete 6-bit IBC tile set, because 
it contains all tiles needed to implement any 6-bit 1-layer IBC; for a 
particular choice of circuit, only the tiles corresponding to the chosen 
Boolean gates are used.

The fourth abstraction level defines an SST binding-domain schematic 
that includes key geometric considerations but excludes DNA sequence 
and biophysical details (Fig. 1c and Supplementary Information section S3). 
Each proofreading tile is represented by one SST that is logically partitioned 
into four domains, one corresponding to each glue. To be compatible with 
implementing the seed structure as a barrel-shaped DNA origami8,14,26, we 
include input–adapter strands that encode the circuit’s input bits and are 
uniquely addressed to the appropriate position on the seed.

Although the intended behaviour is straightforward to describe 
in terms of SST binding-domain interactions, there are substantial 

Fig. 1 | Abstraction hierarchy for design and implementation of the 
complete 6-bit IBC tile set. a, Programming a deterministic 6-bit 1-layer 
circuit. Top, each gate position (1–7) admits either one of four possible 
one-input/one-output gates, or one of 256 possible two-input/two-output 
gates. Wires carry input and output signals between (w1–w6) and within 
(w1′–w6′) layers. To program a randomized circuit, two or more gates are 
selected for at least one gate position. Bottom, the circuit computes via 
iteration: we start with the six input bits and append copies of the circuit 
layer one after another. Below the circuit is an example execution, where 
a yellow circle denotes a wire value of 1 and its absence denotes 0. b, Each 
two-input gate is compiled to four abstract square tiles, with one tile for 
each line of the gate’s truth table. Each tile glue encodes a bit and a wire. 
The lattice of abstract tiles grows from a seed and wraps around into a 
tube via a square seam tile. A green tick and black arrow indicate where 
a tile may attach correctly, whereas a red cross and grey arrow indicate 
where tiles would not correctly match, given the logic encoded in the 
glues. Inset, for error suppression, each abstract tile is converted into 
four ‘proofreading’ tiles. c, Each proofreading tile is implemented by one 

DNA SST. Thus, 16 SSTs implement each circuit gate. Yellow and brown 
domain labels encode bit value (0 or 1), wire position (w1–w6, w1′–w6′), 
proofreading index (a or b), and Watson–Crick complementarity (∗); 
blue domain labels are unique to the proofreading block and position 
within the block. For a tile to attach stably, two domains must match. The 
thickness of grey arrows indicates the relative rates of tile attachment  
and detachment events. d, The tile set design software automatically 
generates labels for unique domains within each proofreading block 
(for example, pw2:01→10 and pw3:01→10) while DNA sequence design 
software assigns a 10- or 11-nucleotide sequence to each distinct domain 
label. e, Experimentally, a deterministic 6-bit circuit is programmed by 
choosing seven gates, corresponding to selecting 100 DNA tiles from 
the library of 355. Additional DNA strands encode the 6-bit input and a 
seed. Algorithmic self-assembly directs the growth of a DNA nanotube 
according to circuit logic; the input (red) is encoded by DNA strands 
extending from one end of the seed structure (grey), and the attachment  
of DNA strands implements the execution of circuit gates.
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biophysical challenges at the fifth abstraction level—that of DNA 
sequences (Fig. 1d and Supplementary Information section S4). Here 
we require strands that are capable of desired interactions and not 
unduly prone to undesired interactions. Two primary concerns are 
spurious nucleation (the spontaneous formation of nanotubes that are 
not seeded by origami) and tile-attachment errors (the attachment of 
tiles despite mismatching domains). Although both concerns informed 
our design of the abstract tile set, the effectiveness of both the spurious 
nucleation barrier and the proofreading depends on the uniformity 
and specificity of glue-directed tile-attachment energies24,27, which 
sets up a dual set of challenges for sequence design. Because the SSTs 
are floppy before being incorporated into the nanotube, ensuring uni-
formity of energies for tile-binding events requires more than mere 
domain-binding energy uniformity: domains on the same strand could 
bind to each other and neighbouring exposed domains on the growth 
front of a nanotube could bind to each other, both of which must be 
undone during tile-attachment events; in addition, strands could bind 
together in solution, resulting in lowered and unequal concentrations 
of free monomers. Furthermore, enhancing specificity by minimizing 
the mismatch energies of tiles binding with one correct domain and 
one incorrect domain entails similar considerations. All of these factors 
are explicitly accounted for in our sequence-design pipeline. Because 
existing software for predicting nucleic secondary structure from ther-
modynamic measurements28,29 cannot account for the idiosyncratic 
geometric contexts of SST tube growth, we developed an ad hoc model, 
building on NUPACK and ViennaRNA, to incorporate the relevant 
effects. The resulting multi-objective optimization problem was tackled 
using a stochastic local search algorithm.

In order to establish the experimental conditions suitable for seeded 
growth, we performed a systematic evaluation of spontaneous nucle-
ation for SST nanotubes of circumference 8–16 helices in the absence 
of a seed (Fig. 2a and Supplementary Information section S5.1). SST 
strands were quickly cooled (at a rate of 1 °C per minute, in Tris acetate 
EDTA (TAE) buffer with 12.5 mM Mg2+) from 90 °C to a target growth 
temperature, where they were held for constant-temperature growth for 
at least a day. Similarly, preformed nanotubes were quickly heated to a 
target temperature and held there for at least a day. Using fluorescence 
microscopy, we identified a tile concentration and temperature range, 

just below the nanotube’s melting temperature, at which spontaneous 
nucleation can be avoided for more than 24 hours—sufficient time 
to allow algorithmic growth triggered by a seed. We chose 16-helix 
nanotubes for further study as they provide the most space for storing 
information.

To investigate additional requirements for algorithmic self-assembly 
with SSTs, we designed a tile set that copies 4 bits from layer to layer 
(similar to the Copy circuit described later, but hard-coded for this func-
tion; see Supplementary Information section S5.2), with input specified 
by a DNA origami seed. Because of the small size of the SST lattice unit 
cell (3 nm × 7 nm), we used atomic force microscopy (AFM) to visualize 
information propagating through individual nanotubes; this necessi-
tated several modifications to the design. To open up nanotubes so they 
could lie flat on the mica imaging surface, with their insides facing up, 
we used ‘unzipping’ strands that remove the seam strands by strand 
displacement30. We then used ‘guard’ strands9 to shut down the assem-
bly process by inactivating any remaining tiles in solution, and added 
streptavidin to bind to the tile strands that represent the bit 1, which we 
had modified to contain an upward-facing biotin molecule (which binds 
strongly to streptavidin); this resulted in a clear topographic marker 
for AFM. Initial experiments suggested that the biotin modification 
weakened the binding energy of domains in which they appeared, and 
thus rendered the ideal growth temperature dependent on the particu-
lar bit sequence being copied. Because algorithmic self-assembly may 
involve different bit sequences over the course of a computation and thus 
requires a single ideal growth temperature for all sequences, we modified 
the sequence-design pipeline by subtracting 1.1 kcal per mol from the 
predicted binding strength of biotin-modified domains. This resulted 
in the selection of sequences that, without the biotin, would bind more 
strongly than those of non-biotin-modified domains. The redesigned 
4-bit copy sequences resulted in excellent growth for sequences with a 
variety of bit patterns. In a final test, we investigated whether algorith-
mic tile sets could be rendered more efficient by reusing the same tile 
type on different rows where permitted logically, but our lack of success 
underlined the importance of the unique addressing of the vertical gate 
position. These preliminary investigations, and the resulting design deci-
sions for the complete 6-bit IBC tile set, are detailed in Supplementary 
Information sections S5.3–S5.6.

Fig. 2 | Experimental protocol and implementation of the Sorting 
circuit. a, The blue and red curves conceptually illustrate unseeded 
experiments that were used to determine the optimal seeded growth 
temperature range highlighted in green (see Supplementary Information 
section S5.1 for data) for a concentration of 100 nM per tile type. 
b, One-pot experiment with seed strands, input–adapters, and tiles 
that implement the Sorting circuit shown in panel g. The sample, 
which contains seed at 1 nM and each tile type at 100 nM, is cooled from 
90 °C and held at 50.8 °C. c, DNA origami seed forms. d, Algorithmic 
self-assembly occurs. e, Samples are prepared for imaging. f, Example of a 
multiplexed AFM image chosen to highlight various properties of the data. 

Green arrows indicate barcoded 001 and 013 nanotubes with the intended 
correct growth. The red arrow indicates a single algorithmic error on an 
otherwise correct 011 nanotube; an erroneous 1 bit attaches and is sorted, 
adding a third row of 1 bits. Blue arrows show two 013 incompletely 
unzipped nanotubes. White arrows point to two seed barcodes (013, 011) 
with little or no growth from seed. g, The Sorting circuit layer.  
h–j, Simulation (top) and AFM images (bottom) of the Sorting circuit on 
three different 6-bit inputs. Input bits are illustrated in black (0) and white 
(1). Two streptavidin labelling errors are highlighted using white triangles 
in h. Scale bars, 100 nm.
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Tests of the complete 6-bit IBC tile set again indicated a narrow 
temperature range that permits robust algorithmic self-assembly with 
minimal spurious nucleation for all bit patterns. In a typical experiment 
(see Fig. 2 and Supplementary Information section S6), origami seed 
strands, input–adapters and SSTs (all unpurified except for the M13 ori-
gami scaffold and biotin-labelled tile strands) for any given circuit were 
cooled from 90 °C at a rate of 1 °C per minute and held at 50.7 °C or 
50.8 °C for at least a day, followed by the addition of unzipping strands 
and then guard strands. Multiple samples (each with a unique origami 
barcode) were mixed and deposited on mica. Finally, excess strands 
were washed away and streptavidin added for final read-out by AFM 
(Supplementary Information section S5.5.2). Although streptavidin 
labelling was seldom complete, most algorithmic patterns have the 

fortunate property that missing labels can be readily distinguished from 
erroneous assembly on the basis of consistency with subsequent steps, 
allowing systematic AFM image analysis (Supplementary Information 
section S7).

The Sorting circuit, which implements an ‘odd–even transposition’ 
sort, is especially suitable for analysis because its computation is easy to 
understand, yet nontrivial (Fig. 2f–j). Each two-input gate in the circuit 
layer flips pairs of bits that are out of order; the state stabilizes with all 1s 
at the top after they have passed through three layers (that is, six gates). 
Figure 2h–j shows three nanotubes, grown from three distinct origami 
seeds, that correctly sort three respective inputs. As shown in Fig. 2f, 
some origami seeds failed to grow nanotubes (white arrows; 63.3% of 
1,299 analysed); some nanotubes failed to unzip and could not be read 

Fig. 3 | Reprogramming IBCs. a, Parity circuit, which decides whether 
the 6-bit input contains an odd number of 1 bits. Input bits 0 and 1 are 
shown as black and white circles, respectively. The circuit’s gates compute 
an exclusive OR (XOR) of their 2-bit inputs, sending the result towards 
one of the centre wires; if a single 1 bit survives, it is copied along that 
wire, outputting 000100 forever (making a horizontal stripe, which is 
interpreted as ‘yes’). Otherwise, 000000 is copied forever (‘no’). b, The 
MultipleOf3 circuit creates one of two repeating patterns depending 
on whether the input is the binary expansion of a multiple of 3. Seeds 230 
and 231 represent inputs 0000112 = 3 and 0101012 = 21, both multiples 
of 3, unlike seeds 232 (0100002 = 16) and 233 (1101012 = 53). c, The 
Rule110 circuit simulates three-cell instances of the cellular automaton 

‘rule 110’. The Venn diagram positions problems solved by IBCs in the 
computational complexity hierarchy20 of problems solved by polynomial 
time Turing machines (P), logarithmic space Turing machines (L), or 
constant depth circuits (AC0). d, The randomized circuit FairCoin has 
a choice of two heads/tails gates that encode a biased coin (red dashed 
rectangle), and its output is an unbiased ‘yes’/‘no’ outcome, encoded 
respectively as stripe/no stripe. Plots show the analysis of 643 nanotubes, 
as compared with theory, for five coin biases. In the inset probability plot, 
the shown value is the sample mean, and error bars are standard errors of 
the mean; in the inset distance plot, the centre value is the sample mean, 
and error bars are the standard deviation for an individual trial. Scale bar, 
100 nm.

0

0

0

0

0

PARITYa

Yes

No

Yes

No

Yes

No

Tile-attachment error rate 0.03%±0.001

Is the number of 1s odd?

Number of tiles attached 1,318,163

32 x yes
32 x no

26 = 64 inputs

0

RULE110c

Tile-attachment error rate 0.03%±0.009

Simulation of a cellular automaton

Number of tiles attached 48,789

Complex

Simple

Rule 110 
prediction

Parity

P

AC0

L

Landscape  
of circuit 
decision 
problems

MULTIPLEOF3b

Yes

Yes

No

No

Tile-attachment error rate 0.03%±0.002

Is the input binary number a multiple of 3?

Number of tiles attached 354,355

0

FAIRCOINd

No

P
 =

0.
5

Yes

No

P
 =

0.
9

Yes

No
P

 =
0.

1

Yes

Tile-attachment error rate 0.01%±0.001

Unbiasing a biased coin

Number of tiles attached 545,785

P 1–P

0.1
132

0.3
134

0.5
130

0.7
133

0.9
131

Bias P and barcode

300
200
100

0 nm

Distance to yes/no result (nm)

Theory
Experiment

0.1
132

0.3
134

0.5
130

0.7
133

0.9
131

Bias P and barcode

1.0

0.5

0.0

Probability(result = yes)
Theory
Experiment

2 1  M A R C H  2 0 1 9  |  V O L  5 6 7  |  N A T U RE   |  3 6 9



LetterRESEARCH

(blue arrows); and some nanotubes had logical errors that flipped bits 
and thus were propagated into subsequent layers (red arrow). By iden-
tifying logical errors and measuring the lengths of opened nanotubes, 
we estimated the tile-attachment error rate for the Sorting circuit to 
be 0.03% (77 errors out of an estimated 269,028 tile attachments).

Using our abstraction hierarchy, the specification of a deterministic 
circuit can be compiled into a subset of 100 strands from the 355 in  
the complete 6-bit IBC tile set (Fig. 1e). By programming differ-
ent IBCs and compiling them into DNA strands, we specified and 
grew DNA nanotubes that performed different computations 
(see Supplementary Information sections S8.1–S8.21 for details about 
each implemented circuit). The Parity circuit (Fig. 3a) moves 1 bits 
to the centre and has them cancel each other out if they meet. The 

circuit stabilizes with a single 1 in the centre for all inputs that have 
an odd number of 1s, and stabilizes with all 0s for inputs that have 
an even number of 1s. We tested the Parity circuit on all 64 possible 
6-bit inputs, and all computed correctly, with a tile-attachment error 
rate of 0.03% per tile. The MultipleOf3 circuit was tested on four 
inputs and computed with similar accuracy (Fig. 3b). We simulated 
the ‘rule 110’ elementary cellular automaton with the circuit Rule110 
(Fig. 3c). Although only three cells were simulated here, when gener-
alized to allow more cells Rule110 becomes efficiently computation-
ally universal, meaning that it can simulate any algorithm21 with only 
polynomial-time overhead22.

Beyond deterministic computation, the IBC model and its molecular  
implementation can perform randomized computation. By mixing 

Fig. 4 | Testing of the complete 6-bit IBC tile set. a–p, A further 16 
circuits that span a range of deterministic and randomized algorithmic 
behaviours. The circuits in a–e and i–k are deterministic; the remainder 
are randomized. For the randomized circuits in f and g, different seed 
barcodes indicate different gate probabilities, rather than different input 

bits. The simulations for the randomized circuits intentionally do not 
match the experimental images to emphasize the possibility of different 
random choices during execution. See Supplementary Information 
sections S8.1–S8.21 for details, including AFM images of additional seeds. 
Scale bar, 100 nm.
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different tile types that have identical input glues (resulting in more 
than 100 tile types in total), we can implement randomized gates 
whose output probabilities depend on the relative concentrations of 
tile types. The FairCoin circuit has a randomized gate implementing 
a biased coin (Fig. 3d). Following previous algorithmic tile assembly 
constructions31, the circuit implements von Neumann’s procedure 
for using a biased coin to simulate a fair coin with exact 50/50 odds, 
reporting the fair coin result as the presence or absence of a stripe. 
This is accomplished by flipping the biased coin twice, repeating  
the procedure if the tosses agree, and reporting the second result  
if they differ. The circuit was tested over a 100-fold range of tile- 
concentration ratios, with the expected result of near 50% outcome 
probabilities (that is, about half of the ribbons had a stripe), but with 
decision times that (as expected) increase for an increasingly biased 
source of randomness.

To more comprehensively exhibit the computational capabilities of 
the complete 6-bit IBC tile set, we devised an additional 16 circuits 
spanning a range of deterministic and randomized algorithmic behav-
iours (Fig. 4). We further tested for correctness: all 355 tiles were used 
at some point, and 15 of the 21 circuits were tested on enough inputs 
that all of the circuit’s tiles were used. No tiles had to be redesigned 
and no tuning of experimental conditions was required for any of the 
21 circuits; every circuit worked on the first try. Tile-attachment error 
rates varied between 0.01% and 0.07% per circuit, comparable with the 
best error rates reported previously (0.017% ± 0.013)9. Averaged over 
all 21 circuits, 61.1% of origami seeds grew nanotubes and the overall 
tile-attachment error rate was 0.03% ± 0.0008 (1,419 observed errors 
out of an estimated 4,600,351 tile attachments).

Given that every circuit performed as expected, we conclude that 
every tile performed as designed and that there were no systematic 
design flaws. Although the seeding fraction merits improvement, 
the tile-attachment error rates are consistent, within a factor of two, 
with theoretical estimates from physical principles24 (Supplementary 
Information section S7.6), suggesting that they are near optimal for 
our setup. This was achieved even though—in contrast with previous 
demonstrations of algorithmic self-assembly—we used cheap unpuri-
fied DNA molecules wherever possible, introducing additional sources 
of error owing to incompletely synthesized tiles. We attribute our suc-
cess to three key principles: effective sequence design; use of an abstrac-
tion hierarchy to manage design and experiment complexities; and the 
reprogrammability of the tile set.

In contrast with our emphasis on sequence design, previous SST 
work successfully used random or lightly designed DNA sequences15,17. 
Coarse-grained models have even suggested that this is preferable for 
uniquely addressed self-assembly, predicting better performance from 
random sequences where stronger-binding tiles assemble first to act as 
incidental seeds that allow growth nearer to equilibrium32. But with an 
explicit seed added, as required for algorithmic self-assembly, simula-
tion and theory predict that sequences designed to bind with uniform  
energies and high specificity will assemble with fewer errors24,33 
(Supplementary Information section S4.1). The resultant sequence- 
design constraints limit the scalability of algorithmic self-assembly, in a 
manner that depends on the choice of tile motif. For example, previous 
algorithmic self-assembly5–11 used double-crossover or triple-crossover 
tiles with a rigid core (for example, 64 base pairs in two parallel helices 
for double-crossover tiles) that can be obtained with many different 
sequences, and assembled via four short (for example, 5-nucleotide) 
binding domains for which it may be difficult to design more than 100 
distinct high-quality binding sequences27. Although strand floppiness 
complicates SST sequence design, the longer binding-domain length 
permits a greater number of domain sequences (412 here, which we do 
not believe to be the limit).

Our automated compiler was essential for designing an algorithmic 
tile set with several hundred tile types. The compiler follows a well- 
defined abstraction hierarchy from circuit to sequences, facilitating 
automated verification of each compilation step, seamless incorpo-
ration of proofreading for assembly-error correction, and systematic  

generation of experimental protocols. This separates the concerns of 
the programmer, who may focus attention at the circuit level, from 
those of the experimenter, who may focus attention on executing  
efficient and parallel protocols—helpful even when both are the same 
person but at different times.

The reprogrammability of our tile set was essential for demonstrating 
a diverse range of circuits. We knew of only three interesting circuits 
when ordering strands for the complete 6-bit IBC tile set, with the other 
18 designed or discovered later on in instances of ‘programming while 
at the bench’. Although requiring further scale-up, a more advanced 
conception of reprogrammability is theoretically possible in which a 
fixed tile set is ‘universal’ for both computation2 and construction in 
the sense that information in a seed18,19 can specify an algorithm that 
directs the assembly of an arbitrary structure—with precise control of 
patterns, shapes and growth pathways.

Algorithmic self-assembly should also be possible using other 
types of molecules1, including RNA and proteins. With a sufficiently 
accurate biophysical model for such polymers, a compiler that uses 
a hierarchical stack of abstractions should be able to systematically 
design sets of molecules that process information during self-assem-
bly. Beyond the engineering potential, such concrete implementations 
and illustrations of molecular self-assembly algorithms should provide 
new insight into the design space that biological systems explore. First 
consider an alternative perspective on our work: uniquely addressed 
SST structures15,17 have been described as a structural ‘molecular can-
vas’, in that a single multipurpose tile set can be ‘carved’ by the artist 
to create almost any shape simply by leaving out the tiles that are not 
needed for that shape, because each tile is used in a unique position. 
Generalizing this notion, our multipurpose tile set can be seen as an 
‘algorithmic molecular canvas’, in the sense that growth using all 355 
tiles corresponds to the execution of an IBC in which every gate posi-
tion is fully randomized, and by leaving out tiles an algorithm can 
be ‘carved’ by the programmer to yield more and more deterministic 
behaviour towards some desired function. Thus, there is a continuous 
space of probabilistic self-assembly algorithms that can be tuned—in 
fact programmed—by adjusting tile concentrations without changing 
the tiles themselves. Considering, by analogy, a finite set of protein 
monomers with fixed self-assembly interactions, we can now see 
that by simply tuning their level of genetic expression, evolution can 
smoothly explore a sophisticated space of self-assembly behaviours. 
Going back further, self-assembly could have provided a simple source 
of algorithmic potential during the origin and early evolution of life9,34. 
By establishing that an algorithmic molecular canvas can be as easy to 
manipulate as a structural molecular canvas, whether by design or by 
nature, our work suggests that molecular engineering and molecular 
science are entering the algorithmic era.

Data availability
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