
Letter
https://doi.org/10.1038/s41586-019-1014-9

Diverse and robust molecular algorithms using
reprogrammable DNA self-assembly
Damien Woods1,2,8,9*, David Doty1,3,9*, Cameron Myhrvold4,5, Joy Hui1,6, Felix Zhou1,7, Peng Yin4,5 & Erik Winfree1*

Molecular biology provides an inspiring proof-of-principle that
chemical systems can store and process information to direct
molecular activities such as the fabrication of complex structures
from molecular components. To develop information-based
chemistry as a technology for programming matter to function in
ways not seen in biological systems, it is necessary to understand
how molecular interactions can encode and execute algorithms.
The self-assembly of relatively simple units into complex products1
is particularly well suited for such investigations. Theory that
combines mathematical tiling and statistical–mechanical models of
molecular crystallization has shown that algorithmic behaviour can
be embedded within molecular self-assembly processes2,3, and this
has been experimentally demonstrated using DNA nanotechnology4
with up to 22 tile types5–11. However, many information technologies
exhibit a complexity threshold—such as the minimum transistor
count needed for a general-purpose computer—beyond which the
power of a reprogrammable system increases qualitatively, and
it has been unclear whether the biophysics of DNA self-assembly
allows that threshold to be exceeded. Here we report the design
and experimental validation of a DNA tile set that contains 355
single-stranded tiles and can, through simple tile selection, be
reprogrammed to implement a wide variety of 6-bit algorithms.
We use this set to construct 21 circuits that execute algorithms
including copying, sorting, recognizing palindromes and multiples
of 3, random walking, obtaining an unbiased choice from a biased
random source, electing a leader, simulating cellular automata,
generating deterministic and randomized patterns, and counting
to 63, with an overall per-tile error rate of less than 1 in 3,000. These
findings suggest that molecular self-assembly could be a reliable
algorithmic component within programmable chemical systems.
The development of molecular machines that are reprogrammable—
at a high level of abstraction and thus without requiring knowledge
of the underlying physics—will establish a creative space in which
molecular programmers can flourish.

In DNA nanotechnology, an essential building block for program-
mable self-assembly is the so-called DNA tile. Structural motif variants
include the double-crossover tile12, the triple-crossover tile5, and the
single-stranded tile (SST)13. DNA tiles bind through Watson–Crick
complementary domains to several neighbours arranged on a one-,
two-, or three-dimensional lattice. A small number of DNA tile types—
each using the same motif, but with different sequences dictating their
neighbourhood relationships—is sufficient to program the self-assem-
bly of large (micrometre-scale) crystalline structures in which each tile
type appears periodically12,13. DNA origami14 has also inspired designs
composed of hundreds to tens of thousands of distinct tile types that
self-assemble into finite-sized ‘uniquely addressed’ structures, in which
each tile type appears in exactly one location and has a fixed set of
neighbouring tiles15–17.

Beyond periodic and uniquely addressed structures, the combina-
torial arrangement of distinct molecular units can store information
that can be processed by algorithmically driven choices inherent in the

self-assembly itself2. Such algorithmic self-assembly can generate arbi-
trarily complex patterns and structures from information encoded in a
seed structure18,19, similar in spirit to genomic DNA encoding a genetic
program for the development of an organism. Although unmistakably
algorithmic growth—including Sierpinski triangles and binary counter
patterns—has been demonstrated experimentally with double-
crossover and triple-crossover tiles5–11, tile sets have so far been small and
hard-coded for a specific assembly algorithm. Our goal was to unlock a
new level of sophistication by creating a reprogrammable self-assembly
system, which requires the scaling up of algorithmic self-assembly to
hundreds of tile types, for which SSTs are a natural choice. However,
algorithmic self-assembly puts more stringent constraints on system
design, sequence design, and biophysical properties of the tiles than
does periodic and uniquely addressed self-assembly.

System design begins with an abstract model of computation—the
Iterated Boolean Circuit (IBC) model—that is naturally suited to a
robust molecular implementation as the growth of SSTs into nano-
tubes (see Fig. 1a and Supplementary Information section S1). The
model considers a locally connected array of Boolean gates that are
executed repeatedly, with an n-bit l-layer IBC having (n − 1)l gates,
each with two input and two output wires, and 2l boundary gates, each
with one input and one output. The logic function computed by each
of the (n + 1)l gates is specified by the user. The system computes
by repeatedly iterating the circuit layers, eventually reaching a fixed
point or a cycle. This is a powerful and general model that can simulate
many other models of computation20, such as Turing machines, general
Boolean circuits, cellular automata21,22, and bounded-width branching
programs (Supplementary Information section S1.3). For molecular
implementation, we choose n = 6 and l = 1, which corresponds to 244
possible distinct circuits.

We followed a hierarchy of abstractions (Fig. 1a–e) to arrive at a
molecular implementation of the 6-bit 1-layer IBC model, which itself
sits at the first level. The second abstraction level is the abstract Tile
Assembly Model (aTAM), which describes square monomer tiles whose
self-assembly is guided by information-bearing ‘glues’ on each side2
(Fig. 1b and Supplementary Information section S2). The aTAM con-
siders the ‘cooperative’ assembly regime, whereby a tile may attach to a
growing assembly only if at least two glues match. The model assumes
an excess of each monomer type in solution, so they are never exhausted.
Each two-input/two-output gate of the IBC is implemented by four
abstract tiles, one for each possible pair of input bits. Glues encode both
bit values and vertical gate position within the circuit. An important
benefit of the unique addressing of the vertical gate position is that,
as suggested by previous theoretical and experimental studies of self-
assembled DNA ribbons and tubes, it can result in substantial kinetic
barriers to spontaneous nucleation7,8,13,23,24. Thus, the model assumes
that self-assembly proceeds exclusively from an initial seed assembly
representing the input to the circuit, growing a pattern that represents
the execution of the circuit and in principle continuing forever. The seed
is cylindrical, so that growth forms a tube and each tile attaches by the
same number of glues (two) with uniform local geometry.

1California Institute of Technology, Pasadena, CA, USA. 2Inria, Paris, France. 3University of California, Davis, CA, USA. 4Wyss Institute for Biologically Inspired Engineering, Harvard University,
Boston, MA, USA. 5Department of Systems Biology, Harvard University, Boston, MA, USA. 6Harvard University, Cambridge, MA, USA. 7University of Oxford, Oxford, UK. 8Present address: Maynooth
University, Maynooth, Ireland. 9These authors contributed equally: Damien Woods, David Doty. *e-mail: damien.woods@mu.ie; doty@ucdavis.edu; winfree@caltech.edu

Corrected: Author Correction

3 6 6 | N A T U RE | V O L 5 6 7 | 2 1 M A R C H 2 0 1 9

https://doi.org/10.1038/s41586-019-1014-9
mailto:damien.woods@mu.ie
mailto:doty@ucdavis.edu
mailto:winfree@caltech.edu
https://doi.org/10.1038/s41586-019-1378-x

Letter RESEARCH

At the third abstraction level, each abstract tile is converted into four
‘proofreading’ tiles (Fig. 1b inset and Supplementary Information sec-
tion S2.3) that, according to a more biophysically realistic self-assembly
theory that is supported by experimental studies, should have a sub-
stantially lower error rate during assembly than a direct implementa-
tion of abstract tiles without proofreading2,6,8,11,24,25. This results in a
set of 355 tile types that we call the complete 6-bit IBC tile set, because
it contains all tiles needed to implement any 6-bit 1-layer IBC; for a
particular choice of circuit, only the tiles corresponding to the chosen
Boolean gates are used.

The fourth abstraction level defines an SST binding-domain schematic
that includes key geometric considerations but excludes DNA sequence
and biophysical details (Fig. 1c and Supplementary Information section S3).
Each proofreading tile is represented by one SST that is logically partitioned
into four domains, one corresponding to each glue. To be compatible with
implementing the seed structure as a barrel-shaped DNA origami8,14,26, we
include input–adapter strands that encode the circuit’s input bits and are
uniquely addressed to the appropriate position on the seed.

Although the intended behaviour is straightforward to describe
in terms of SST binding-domain interactions, there are substantial

Fig. 1 | Abstraction hierarchy for design and implementation of the
complete 6-bit IBC tile set. a, Programming a deterministic 6-bit 1-layer
circuit. Top, each gate position (1–7) admits either one of four possible
one-input/one-output gates, or one of 256 possible two-input/two-output
gates. Wires carry input and output signals between (w1–w6) and within
(w1′–w6′) layers. To program a randomized circuit, two or more gates are
selected for at least one gate position. Bottom, the circuit computes via
iteration: we start with the six input bits and append copies of the circuit
layer one after another. Below the circuit is an example execution, where
a yellow circle denotes a wire value of 1 and its absence denotes 0. b, Each
two-input gate is compiled to four abstract square tiles, with one tile for
each line of the gate’s truth table. Each tile glue encodes a bit and a wire.
The lattice of abstract tiles grows from a seed and wraps around into a
tube via a square seam tile. A green tick and black arrow indicate where
a tile may attach correctly, whereas a red cross and grey arrow indicate
where tiles would not correctly match, given the logic encoded in the
glues. Inset, for error suppression, each abstract tile is converted into
four ‘proofreading’ tiles. c, Each proofreading tile is implemented by one

DNA SST. Thus, 16 SSTs implement each circuit gate. Yellow and brown
domain labels encode bit value (0 or 1), wire position (w1–w6, w1′–w6′),
proofreading index (a or b), and Watson–Crick complementarity (∗);
blue domain labels are unique to the proofreading block and position
within the block. For a tile to attach stably, two domains must match. The
thickness of grey arrows indicates the relative rates of tile attachment
and detachment events. d, The tile set design software automatically
generates labels for unique domains within each proofreading block
(for example, pw2:01→10 and pw3:01→10) while DNA sequence design
software assigns a 10- or 11-nucleotide sequence to each distinct domain
label. e, Experimentally, a deterministic 6-bit circuit is programmed by
choosing seven gates, corresponding to selecting 100 DNA tiles from
the library of 355. Additional DNA strands encode the 6-bit input and a
seed. Algorithmic self-assembly directs the growth of a DNA nanotube
according to circuit logic; the input (red) is encoded by DNA strands
extending from one end of the seed structure (grey), and the attachment
of DNA strands implements the execution of circuit gates.

2

One gate compiled into four abstract tilesGate 2 truth table

2

0w1′

0w2
1w2′

1w1
w1′ w2′ w1 w2
0 0 0 1
0 1 1 0
1 0 1 0
1 1 0 0

Gate 2
w1′

w2′

w1

w2

2

One proofreading tile compiled into one SST
Layer for MULTIPLEOF3:

an example IBC

One abstract tile
compiled into four
proofreading tiles

2

0w1a′

1w2a′

0w1b′ 1w1a
*

1w1b*

0w2b
*

1w2b′ 0w2a
*

1
2

3

4

5

6

7

Growing square tile lattice6-bit input

Abstract tile self-assemblyIterated circuit computation

x5

x3

x1
x2

x6

x4

1

0

0
0

1

0

1

2

3

4

5

6

7

Seam

Seam

1

2

3

4

5

6

7

Seam

Seam

1

2

3

4

5

6

7

Seam

Seam

3

3

3

3

0
0

0
0

1
1Input: 000011 = 310

Output:100001 = yes

MULTIPLEOF3

SST self-assembly

Growing SST lattice

Seam

0

0

0

1

0

1

6-bit input–adapters

1w2a

0w3a

0w4a

0w5a

2

Computed

Inp
ut

Out
putInput

Output

Iterated Boolean circuits Abstract tiles Domain-level single-stranded tilesa b c

d DNA sequence design

Designed 42-base
DNA sequences

SSTs with four distinct
binding domains

Input
0 1

Algorithmic self-assembly
executes circuit computation

6-bit
input

DNA origami
seedLibrary of 355 DNA tiles

e Experimental implementation

Input
000011

Self-assembly
experiment

MULTIPLEOF3

SORTING

PARITY

Select roughly 100
tiles per circuit

Seed

Single pot mix

Tiles

implementing
MULTIPLEOF3

0w2a

1w3a

pw2:01 10

pw3:01 10

TTA

AA

A A

C

CC C C

GG

G G

T
T

T T C T

A
A

AAT TT

T
AA CC CT T TAA CC A

In
fo

rm
at

io
n-

b
ea

rin
g

se
ed

In
fo

rm
at

io
n-

b
ea

rin
g

se
ed

2 1 M A R C H 2 0 1 9 | V O L 5 6 7 | N A T U RE | 3 6 7

LetterRESEARCH

biophysical challenges at the fifth abstraction level—that of DNA
sequences (Fig. 1d and Supplementary Information section S4). Here
we require strands that are capable of desired interactions and not
unduly prone to undesired interactions. Two primary concerns are
spurious nucleation (the spontaneous formation of nanotubes that are
not seeded by origami) and tile-attachment errors (the attachment of
tiles despite mismatching domains). Although both concerns informed
our design of the abstract tile set, the effectiveness of both the spurious
nucleation barrier and the proofreading depends on the uniformity
and specificity of glue-directed tile-attachment energies24,27, which
sets up a dual set of challenges for sequence design. Because the SSTs
are floppy before being incorporated into the nanotube, ensuring uni-
formity of energies for tile-binding events requires more than mere
domain-binding energy uniformity: domains on the same strand could
bind to each other and neighbouring exposed domains on the growth
front of a nanotube could bind to each other, both of which must be
undone during tile-attachment events; in addition, strands could bind
together in solution, resulting in lowered and unequal concentrations
of free monomers. Furthermore, enhancing specificity by minimizing
the mismatch energies of tiles binding with one correct domain and
one incorrect domain entails similar considerations. All of these factors
are explicitly accounted for in our sequence-design pipeline. Because
existing software for predicting nucleic secondary structure from ther-
modynamic measurements28,29 cannot account for the idiosyncratic
geometric contexts of SST tube growth, we developed an ad hoc model,
building on NUPACK and ViennaRNA, to incorporate the relevant
effects. The resulting multi-objective optimization problem was tackled
using a stochastic local search algorithm.

In order to establish the experimental conditions suitable for seeded
growth, we performed a systematic evaluation of spontaneous nucle-
ation for SST nanotubes of circumference 8–16 helices in the absence
of a seed (Fig. 2a and Supplementary Information section S5.1). SST
strands were quickly cooled (at a rate of 1 °C per minute, in Tris acetate
EDTA (TAE) buffer with 12.5 mM Mg2+) from 90 °C to a target growth
temperature, where they were held for constant-temperature growth for
at least a day. Similarly, preformed nanotubes were quickly heated to a
target temperature and held there for at least a day. Using fluorescence
microscopy, we identified a tile concentration and temperature range,

just below the nanotube’s melting temperature, at which spontaneous
nucleation can be avoided for more than 24 hours—sufficient time
to allow algorithmic growth triggered by a seed. We chose 16-helix
nanotubes for further study as they provide the most space for storing
information.

To investigate additional requirements for algorithmic self-assembly
with SSTs, we designed a tile set that copies 4 bits from layer to layer
(similar to the Copy circuit described later, but hard-coded for this func-
tion; see Supplementary Information section S5.2), with input specified
by a DNA origami seed. Because of the small size of the SST lattice unit
cell (3 nm × 7 nm), we used atomic force microscopy (AFM) to visualize
information propagating through individual nanotubes; this necessi-
tated several modifications to the design. To open up nanotubes so they
could lie flat on the mica imaging surface, with their insides facing up,
we used ‘unzipping’ strands that remove the seam strands by strand
displacement30. We then used ‘guard’ strands9 to shut down the assem-
bly process by inactivating any remaining tiles in solution, and added
streptavidin to bind to the tile strands that represent the bit 1, which we
had modified to contain an upward-facing biotin molecule (which binds
strongly to streptavidin); this resulted in a clear topographic marker
for AFM. Initial experiments suggested that the biotin modification
weakened the binding energy of domains in which they appeared, and
thus rendered the ideal growth temperature dependent on the particu-
lar bit sequence being copied. Because algorithmic self-assembly may
involve different bit sequences over the course of a computation and thus
requires a single ideal growth temperature for all sequences, we modified
the sequence-design pipeline by subtracting 1.1 kcal per mol from the
predicted binding strength of biotin-modified domains. This resulted
in the selection of sequences that, without the biotin, would bind more
strongly than those of non-biotin-modified domains. The redesigned
4-bit copy sequences resulted in excellent growth for sequences with a
variety of bit patterns. In a final test, we investigated whether algorith-
mic tile sets could be rendered more efficient by reusing the same tile
type on different rows where permitted logically, but our lack of success
underlined the importance of the unique addressing of the vertical gate
position. These preliminary investigations, and the resulting design deci-
sions for the complete 6-bit IBC tile set, are detailed in Supplementary
Information sections S5.3–S5.6.

Fig. 2 | Experimental protocol and implementation of the Sorting
circuit. a, The blue and red curves conceptually illustrate unseeded
experiments that were used to determine the optimal seeded growth
temperature range highlighted in green (see Supplementary Information
section S5.1 for data) for a concentration of 100 nM per tile type.
b, One-pot experiment with seed strands, input–adapters, and tiles
that implement the Sorting circuit shown in panel g. The sample,
which contains seed at 1 nM and each tile type at 100 nM, is cooled from
90 °C and held at 50.8 °C. c, DNA origami seed forms. d, Algorithmic
self-assembly occurs. e, Samples are prepared for imaging. f, Example of a
multiplexed AFM image chosen to highlight various properties of the data.

Green arrows indicate barcoded 001 and 013 nanotubes with the intended
correct growth. The red arrow indicates a single algorithmic error on an
otherwise correct 011 nanotube; an erroneous 1 bit attaches and is sorted,
adding a third row of 1 bits. Blue arrows show two 013 incompletely
unzipped nanotubes. White arrows point to two seed barcodes (013, 011)
with little or no growth from seed. g, The Sorting circuit layer.
h–j, Simulation (top) and AFM images (bottom) of the Sorting circuit on
three different 6-bit inputs. Input bits are illustrated in black (0) and white
(1). Two streptavidin labelling errors are highlighted using white triangles
in h. Scale bars, 100 nm.

fa

40 60
Temperature (°C)

N
um

b
er

 o
f n

an
ot

ub
es

e

Unzip, guards,
deposit on mica,
add streptavidin

1 day

b

SORTING

Seeded
tubes

Input: 000001, Output: 100000 Input: 000111, Output: 111000jih
g

Input: 000101, Output: 110000

SORTING

circuit layer

No
growth

Unseeded
tubes

Uncontrolled
growth

Cooling
(no seeds)

Heating
(no seeds)

1–2 days

Algorithmic
self-assembly

50

Form of growth

1 hour

Seed
forms

tiles and seed

c d

3 6 8 | N A T U RE | V O L 5 6 7 | 2 1 M A R C H 2 0 1 9

Letter RESEARCH

Tests of the complete 6-bit IBC tile set again indicated a narrow
temperature range that permits robust algorithmic self-assembly with
minimal spurious nucleation for all bit patterns. In a typical experiment
(see Fig. 2 and Supplementary Information section S6), origami seed
strands, input–adapters and SSTs (all unpurified except for the M13 ori-
gami scaffold and biotin-labelled tile strands) for any given circuit were
cooled from 90 °C at a rate of 1 °C per minute and held at 50.7 °C or
50.8 °C for at least a day, followed by the addition of unzipping strands
and then guard strands. Multiple samples (each with a unique origami
barcode) were mixed and deposited on mica. Finally, excess strands
were washed away and streptavidin added for final read-out by AFM
(Supplementary Information section S5.5.2). Although streptavidin
labelling was seldom complete, most algorithmic patterns have the

fortunate property that missing labels can be readily distinguished from
erroneous assembly on the basis of consistency with subsequent steps,
allowing systematic AFM image analysis (Supplementary Information
section S7).

The Sorting circuit, which implements an ‘odd–even transposition’
sort, is especially suitable for analysis because its computation is easy to
understand, yet nontrivial (Fig. 2f–j). Each two-input gate in the circuit
layer flips pairs of bits that are out of order; the state stabilizes with all 1s
at the top after they have passed through three layers (that is, six gates).
Figure 2h–j shows three nanotubes, grown from three distinct origami
seeds, that correctly sort three respective inputs. As shown in Fig. 2f,
some origami seeds failed to grow nanotubes (white arrows; 63.3% of
1,299 analysed); some nanotubes failed to unzip and could not be read

Fig. 3 | Reprogramming IBCs. a, Parity circuit, which decides whether
the 6-bit input contains an odd number of 1 bits. Input bits 0 and 1 are
shown as black and white circles, respectively. The circuit’s gates compute
an exclusive OR (XOR) of their 2-bit inputs, sending the result towards
one of the centre wires; if a single 1 bit survives, it is copied along that
wire, outputting 000100 forever (making a horizontal stripe, which is
interpreted as ‘yes’). Otherwise, 000000 is copied forever (‘no’). b, The
MultipleOf3 circuit creates one of two repeating patterns depending
on whether the input is the binary expansion of a multiple of 3. Seeds 230
and 231 represent inputs 0000112 = 3 and 0101012 = 21, both multiples
of 3, unlike seeds 232 (0100002 = 16) and 233 (1101012 = 53). c, The
Rule110 circuit simulates three-cell instances of the cellular automaton

‘rule 110’. The Venn diagram positions problems solved by IBCs in the
computational complexity hierarchy20 of problems solved by polynomial
time Turing machines (P), logarithmic space Turing machines (L), or
constant depth circuits (AC0). d, The randomized circuit FairCoin has
a choice of two heads/tails gates that encode a biased coin (red dashed
rectangle), and its output is an unbiased ‘yes’/‘no’ outcome, encoded
respectively as stripe/no stripe. Plots show the analysis of 643 nanotubes,
as compared with theory, for five coin biases. In the inset probability plot,
the shown value is the sample mean, and error bars are standard errors of
the mean; in the inset distance plot, the centre value is the sample mean,
and error bars are the standard deviation for an individual trial. Scale bar,
100 nm.

0

0

0

0

0

PARITYa

Yes

No

Yes

No

Yes

No

Tile-attachment error rate 0.03%±0.001

Is the number of 1s odd?

Number of tiles attached 1,318,163

32 x yes
32 x no

26 = 64 inputs

0

RULE110c

Tile-attachment error rate 0.03%±0.009

Simulation of a cellular automaton

Number of tiles attached 48,789

Complex

Simple

Rule 110
prediction

Parity

P

AC0

L

Landscape
of circuit
decision
problems

MULTIPLEOF3b

Yes

Yes

No

No

Tile-attachment error rate 0.03%±0.002

Is the input binary number a multiple of 3?

Number of tiles attached 354,355

0

FAIRCOINd

No

P
 =

0.
5

Yes

No

P
 =

0.
9

Yes

No
P

 =
0.

1

Yes

Tile-attachment error rate 0.01%±0.001

Unbiasing a biased coin

Number of tiles attached 545,785

P 1–P

0.1
132

0.3
134

0.5
130

0.7
133

0.9
131

Bias P and barcode

300
200
100

0 nm

Distance to yes/no result (nm)

Theory
Experiment

0.1
132

0.3
134

0.5
130

0.7
133

0.9
131

Bias P and barcode

1.0

0.5

0.0

Probability(result = yes)
Theory
Experiment

2 1 M A R C H 2 0 1 9 | V O L 5 6 7 | N A T U RE | 3 6 9

LetterRESEARCH

(blue arrows); and some nanotubes had logical errors that flipped bits
and thus were propagated into subsequent layers (red arrow). By iden-
tifying logical errors and measuring the lengths of opened nanotubes,
we estimated the tile-attachment error rate for the Sorting circuit to
be 0.03% (77 errors out of an estimated 269,028 tile attachments).

Using our abstraction hierarchy, the specification of a deterministic
circuit can be compiled into a subset of 100 strands from the 355 in
the complete 6-bit IBC tile set (Fig. 1e). By programming differ-
ent IBCs and compiling them into DNA strands, we specified and
grew DNA nanotubes that performed different computations
(see Supplementary Information sections S8.1–S8.21 for details about
each implemented circuit). The Parity circuit (Fig. 3a) moves 1 bits
to the centre and has them cancel each other out if they meet. The

circuit stabilizes with a single 1 in the centre for all inputs that have
an odd number of 1s, and stabilizes with all 0s for inputs that have
an even number of 1s. We tested the Parity circuit on all 64 possible
6-bit inputs, and all computed correctly, with a tile-attachment error
rate of 0.03% per tile. The MultipleOf3 circuit was tested on four
inputs and computed with similar accuracy (Fig. 3b). We simulated
the ‘rule 110’ elementary cellular automaton with the circuit Rule110
(Fig. 3c). Although only three cells were simulated here, when gener-
alized to allow more cells Rule110 becomes efficiently computation-
ally universal, meaning that it can simulate any algorithm21 with only
polynomial-time overhead22.

Beyond deterministic computation, the IBC model and its molecular
implementation can perform randomized computation. By mixing

Fig. 4 | Testing of the complete 6-bit IBC tile set. a–p, A further 16
circuits that span a range of deterministic and randomized algorithmic
behaviours. The circuits in a–e and i–k are deterministic; the remainder
are randomized. For the randomized circuits in f and g, different seed
barcodes indicate different gate probabilities, rather than different input

bits. The simulations for the randomized circuits intentionally do not
match the experimental images to emphasize the possibility of different
random choices during execution. See Supplementary Information
sections S8.1–S8.21 for details, including AFM images of additional seeds.
Scale bar, 100 nm.

ZIG-ZAGa

Tile-attachment error rate 0.07%±0.003

Tile-attachment error rate 0.02%±0.002

Tile-attachment error rate 0.01%±0.001

Tile-attachment error rate 0.03%±0.009

Tile-attachment error rate 0.01%±0.004

Repeating pattern

PALINDROMEb
Yes

Yes

No

No

Is the input a palindrome?

RECOGNISE21c
Yes

No

No

Does the binary input equal 21?

COPYd Copy input bits to the right

CYCLE63e

Pattern that repeats every 63 layers

0
0

DIAMONDSAREFOREVERf Create diamonds at random intervals

0

0

WAVESg Create and crash waves at random intervals

0

RULE110RANDOMh Rule 110, with random bits on bottom row

i RULE30

j DRUMLINS

k 2EGGS

LAZYSORTINGl Sort 1s to the top

0

0

0

0

0

LAZYPARITYm
Yes

No

Yes

No

Is the number of 1s odd?

RANDOMWALKINGBITn 1s randomly walking forever

0

0

ABSORBINGRANDOMWALKINGBITo Random walker absorbs to top/bottom

LEADERELECTIONp Elect a single leader

Tile-attachment error rate 0.03%±0.005

Tile-attachment error rate 0.01%±0.004

Tile-attachment error rate 0.03%±0.005

Tile-attachment error rate 0.04%±0.004

Tile-attachment error rate 0.01%±0.003

3 7 0 | N A T U RE | V O L 5 6 7 | 2 1 M A R C H 2 0 1 9

Letter RESEARCH

different tile types that have identical input glues (resulting in more
than 100 tile types in total), we can implement randomized gates
whose output probabilities depend on the relative concentrations of
tile types. The FairCoin circuit has a randomized gate implementing
a biased coin (Fig. 3d). Following previous algorithmic tile assembly
constructions31, the circuit implements von Neumann’s procedure
for using a biased coin to simulate a fair coin with exact 50/50 odds,
reporting the fair coin result as the presence or absence of a stripe.
This is accomplished by flipping the biased coin twice, repeating
the procedure if the tosses agree, and reporting the second result
if they differ. The circuit was tested over a 100-fold range of tile-
concentration ratios, with the expected result of near 50% outcome
probabilities (that is, about half of the ribbons had a stripe), but with
decision times that (as expected) increase for an increasingly biased
source of randomness.

To more comprehensively exhibit the computational capabilities of
the complete 6-bit IBC tile set, we devised an additional 16 circuits
spanning a range of deterministic and randomized algorithmic behav-
iours (Fig. 4). We further tested for correctness: all 355 tiles were used
at some point, and 15 of the 21 circuits were tested on enough inputs
that all of the circuit’s tiles were used. No tiles had to be redesigned
and no tuning of experimental conditions was required for any of the
21 circuits; every circuit worked on the first try. Tile-attachment error
rates varied between 0.01% and 0.07% per circuit, comparable with the
best error rates reported previously (0.017% ± 0.013)9. Averaged over
all 21 circuits, 61.1% of origami seeds grew nanotubes and the overall
tile-attachment error rate was 0.03% ± 0.0008 (1,419 observed errors
out of an estimated 4,600,351 tile attachments).

Given that every circuit performed as expected, we conclude that
every tile performed as designed and that there were no systematic
design flaws. Although the seeding fraction merits improvement,
the tile-attachment error rates are consistent, within a factor of two,
with theoretical estimates from physical principles24 (Supplementary
Information section S7.6), suggesting that they are near optimal for
our setup. This was achieved even though—in contrast with previous
demonstrations of algorithmic self-assembly—we used cheap unpuri-
fied DNA molecules wherever possible, introducing additional sources
of error owing to incompletely synthesized tiles. We attribute our suc-
cess to three key principles: effective sequence design; use of an abstrac-
tion hierarchy to manage design and experiment complexities; and the
reprogrammability of the tile set.

In contrast with our emphasis on sequence design, previous SST
work successfully used random or lightly designed DNA sequences15,17.
Coarse-grained models have even suggested that this is preferable for
uniquely addressed self-assembly, predicting better performance from
random sequences where stronger-binding tiles assemble first to act as
incidental seeds that allow growth nearer to equilibrium32. But with an
explicit seed added, as required for algorithmic self-assembly, simula-
tion and theory predict that sequences designed to bind with uniform
energies and high specificity will assemble with fewer errors24,33
(Supplementary Information section S4.1). The resultant sequence-
design constraints limit the scalability of algorithmic self-assembly, in a
manner that depends on the choice of tile motif. For example, previous
algorithmic self-assembly5–11 used double-crossover or triple-crossover
tiles with a rigid core (for example, 64 base pairs in two parallel helices
for double-crossover tiles) that can be obtained with many different
sequences, and assembled via four short (for example, 5-nucleotide)
binding domains for which it may be difficult to design more than 100
distinct high-quality binding sequences27. Although strand floppiness
complicates SST sequence design, the longer binding-domain length
permits a greater number of domain sequences (412 here, which we do
not believe to be the limit).

Our automated compiler was essential for designing an algorithmic
tile set with several hundred tile types. The compiler follows a well-
defined abstraction hierarchy from circuit to sequences, facilitating
automated verification of each compilation step, seamless incorpo-
ration of proofreading for assembly-error correction, and systematic

generation of experimental protocols. This separates the concerns of
the programmer, who may focus attention at the circuit level, from
those of the experimenter, who may focus attention on executing
efficient and parallel protocols—helpful even when both are the same
person but at different times.

The reprogrammability of our tile set was essential for demonstrating
a diverse range of circuits. We knew of only three interesting circuits
when ordering strands for the complete 6-bit IBC tile set, with the other
18 designed or discovered later on in instances of ‘programming while
at the bench’. Although requiring further scale-up, a more advanced
conception of reprogrammability is theoretically possible in which a
fixed tile set is ‘universal’ for both computation2 and construction in
the sense that information in a seed18,19 can specify an algorithm that
directs the assembly of an arbitrary structure—with precise control of
patterns, shapes and growth pathways.

Algorithmic self-assembly should also be possible using other
types of molecules1, including RNA and proteins. With a sufficiently
accurate biophysical model for such polymers, a compiler that uses
a hierarchical stack of abstractions should be able to systematically
design sets of molecules that process information during self-assem-
bly. Beyond the engineering potential, such concrete implementations
and illustrations of molecular self-assembly algorithms should provide
new insight into the design space that biological systems explore. First
consider an alternative perspective on our work: uniquely addressed
SST structures15,17 have been described as a structural ‘molecular can-
vas’, in that a single multipurpose tile set can be ‘carved’ by the artist
to create almost any shape simply by leaving out the tiles that are not
needed for that shape, because each tile is used in a unique position.
Generalizing this notion, our multipurpose tile set can be seen as an
‘algorithmic molecular canvas’, in the sense that growth using all 355
tiles corresponds to the execution of an IBC in which every gate posi-
tion is fully randomized, and by leaving out tiles an algorithm can
be ‘carved’ by the programmer to yield more and more deterministic
behaviour towards some desired function. Thus, there is a continuous
space of probabilistic self-assembly algorithms that can be tuned—in
fact programmed—by adjusting tile concentrations without changing
the tiles themselves. Considering, by analogy, a finite set of protein
monomers with fixed self-assembly interactions, we can now see
that by simply tuning their level of genetic expression, evolution can
smoothly explore a sophisticated space of self-assembly behaviours.
Going back further, self-assembly could have provided a simple source
of algorithmic potential during the origin and early evolution of life9,34.
By establishing that an algorithmic molecular canvas can be as easy to
manipulate as a structural molecular canvas, whether by design or by
nature, our work suggests that molecular engineering and molecular
science are entering the algorithmic era.

Data availability
The AFM data generated and analysed here are available from the authors’ website
(http://www.dna.caltech.edu/SupplementaryMaterial/Algorithmic_SST/), as is the
Python code for data analysis and DNA sequence design.

Online content
Any methods, additional references, Nature Research reporting summaries, source
data, statements of data availability and associated accession codes are available at
https://doi.org/10.1038/s41586-019-1014-9.

Received: 22 May 2018; Accepted: 7 January 2019;
Published online 20 March 2019.

	1.	 Whitesides, G. M. & Grzybowski, B. Self-assembly at all scales. Science 295,
2418–2421 (2002).

	2.	 Winfree, E. Simulations of Computing by Self-Assembly. Technical Report
CaltechCSTR:1998.22 (California Institute of Technology, 1998).

	3.	 Doty, D. Theory of algorithmic self-assembly. Commun. ACM 55, 78–88 (2012).
	4.	 Seeman, N. C. & Sleiman, H. F. DNA nanotechnology. Nat. Rev. Mater. 3, 17068

(2017).
	5.	 Mao, C., LaBean, T. H., Reif, J. H. & Seeman, N. C. Logical computation using

algorithmic self-assembly of DNA triple-crossover molecules. Nature 407,
493–496 (2000); erratum 408, 750 (2000).

2 1 M A R C H 2 0 1 9 | V O L 5 6 7 | N A T U RE | 3 7 1

http://www.dna.caltech.edu/SupplementaryMaterial/Algorithmic_SST/
https://doi.org/10.1038/s41586-019-1014-9

LetterRESEARCH

	6.	 Rothemund, P. W. K., Papadakis, N. & Winfree, E. Algorithmic self-assembly of
DNA Sierpinski triangles. PLoS Biol. 2, e424 (2004).

	7.	 Schulman, R. & Winfree, E. Synthesis of crystals with a programmable
kinetic barrier to nucleation. Proc. Natl Acad. Sci. USA 104, 15236–15241
(2007).

	8.	 Barish, R. D., Schulman, R., Rothemund, P. W. K. & Winfree, E. An information-
bearing seed for nucleating algorithmic self-assembly. Proc. Natl Acad. Sci. USA
106, 6054–6059 (2009).

	9.	 Schulman, R., Yurke, B. & Winfree, E. Robust self-replication of combinatorial
information via crystal growth and scission. Proc. Natl Acad. Sci. USA 109,
6405–6410 (2012).

	10.	 Evans, C. G. Crystals that Count! Physical Principles and Experimental
Investigations of DNA Tile Self-Assembly. PhD thesis, Caltech (2014).

	11.	 Schulman, R., Wright, C. & Winfree, E. Increasing redundancy exponentially
reduces error rates during algorithmic self-assembly. ACS Nano 9, 5760–5771
(2015).

	12.	 Winfree, E., Liu, F., Wenzler, L. A. & Seeman, N. C. Design and self-assembly of
two-dimensional DNA crystals. Nature 394, 539–544 (1998).

	13.	 Yin, P. et al. Programming DNA tube circumferences. Science 321, 824–826
(2008).

	14.	 Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns.
Nature 440, 297–302 (2006).

	15.	 Wei, B., Dai, M. & Yin, P. Complex shapes self-assembled from single-stranded
DNA tiles. Nature 485, 623–626 (2012).

	16.	 Wang, W. et al. Self-assembly of fully addressable DNA nanostructures from
double crossover tiles. Nucleic Acids Res. 44, 7989–7996 (2016).

	17.	 Ong, L. L. et al. Programmable self-assembly of three-dimensional
nanostructures from 10,000 unique components. Nature 552, 72–77 (2017).

	18.	 Rothemund, P. W. K. & Winfree, E. The program-size complexity of self-
assembled squares. In STOC: Proceedings of the 32nd Annual ACM Symposium
on Theory of Computing (eds Yao, F. & Luks, E.) 459–468 (Association for
Computing Machinery, 2000).

	19.	 Soloveichik, D. & Winfree, E. Complexity of self-assembled shapes. SIAM J.
Comput. 36, 1544–1569 (2007).

	20.	 Moore, C. & Mertens, S. The Nature of Computation (Oxford Univ. Press, Oxford,
2011).

	21.	 Cook, M. Universality in elementary cellular automata. Complex Syst. 15, 1–40
(2004).

	22.	 Neary, T. & Woods, D. P-completeness of cellular automaton Rule 110. In ICALP
2006: International Colloquium on Automata, Languages, and Programming (eds
Bugliesi, M., Preneel, B., Sassone, V. & Wegener, I.) 132–143 (Springer, 2006).

	23.	 Schulman, R. & Winfree, E. Programmable control of nucleation for algorithmic
self-assembly. SIAM J. Comput. 39, 1581–1616 (2009).

	24.	 Evans, C. G. & Winfree, E. Physical principles for DNA tile self-assembly. Chem.
Soc. Rev. 46, 3808–3829 (2017).

	25.	 Winfree, E. & Bekbolatov, R. Proofreading tile sets: error correction for algorithmic
self-assembly. In DNA9: Proceedings of the 9th International Conference on DNA
Computing (eds Chen, J. & Reif, J.) 126–144 (Springer, 2004).

	26.	 Mohammed, A. M. & Schulman, R. Directing self-assembly of DNA nanotubes
using programmable seeds. Nano Lett. 13, 4006–4013 (2013).

	27.	 Evans, C. G. & Winfree, E. DNA sticky end design and assignment for robust
algorithmic self-assembly. In DNA19: Proceedings of the 19th International
Conference on DNA Computing and Molecular Programming (Eds Soloveichik, D.
& Yurke, B.) 61–75 (Springer, 2013).

	28.	 Zadeh, J. N. et al. NUPACK: analysis and design of nucleic acid systems.
J. Comput. Chem. 32, 170–173 (2011).

	29.	 Lorenz, R. et al. ViennaRNA Package 2.0. Algorithms Mol. Biol. 6, 26 (2011).
	30.	 Wei, B., Luvena, L. L., Ong, J., Jaffe, A. S. & Yin, P. Complex reconfiguration of

DNA nanostructures. Angew. Chem. Int. Ed. 126, 7605–7609 (2014).
	31.	 Chalk, C., Fu, B., Martinez, E., Schweller, R. & Wylie, T. Concentration

independent random number generation in tile self-assembly. Theor. Comput.
Sci. 667, 1–15 (2017).

	32.	 Jacobs, W. M., Reinhardt, A. & Frenkel, D. Rational design of self-assembly
pathways for complex multicomponent structures. Proc. Natl Acad. Sci. USA
112, 6313–6318 (2015).

	33.	 Hedges, L. O., Mannige, R. V. & Whitelam, S. Growth of equilibrium structures
built from a large number of distinct component types. Soft Matter 10,
6404–6416 (2014).

	34.	 Cairns-Smith, A. G. Genetic Takeover and the Mineral Origins of Life (Cambridge
Univ. Press, Cambridge, 1982).

Acknowledgements We thank C. Evans, A. Gopinath, B. Wei, C. Geary,
R. Schulman, S. Woo, P. Rothemund and Y. Rondelez for experimental advice;
R. Barish and R. Hariadi for contributing to preliminary designs for algorithmic
self-assembly by SST; C. Moore, T. Stérin, C. Thachuk, P.-É. Meunier and
C. Geary for discussions on theory; and L. Qian, G. Tikhomirov and P. Petersen
for AFM usage. This work was supported by National Science Foundation
(NSF) grants CCF-1162589 (to E.W., D.D. and D.W.), CCF-1162459 (to P.Y.),
CCF-1219274 (to D.W. and D.D.), CCF-1619343 (to D.D.), CCF-0832824
and CCF-1317694 (Expeditions in Computing, to E.W.) and CCF-1317291
(Expeditions in Computing, to P.Y.), and by NASA grant NNX13AJ56G
(to D.W.). C.M. was funded by the Fannie and John Hertz Foundation. F.Z. and
J.H. received support from the Caltech Summer Undergraduate Research
Fellowship program.

Author contributions D.W., D.D., E.W. and P.Y. conceived the study. D.W.,
D.D. and E.W. designed the circuits and wrote the manuscript. D.W. and D.D.
carried out all data analysis and experiments reported except for the nanotube
nucleation/melt experiments (which were performed by J.H. and D.W.) and the
unzipping and other early experimental protocols (performed by F.Z., C.M. and
D.D.).

Competing interests D.W., D.D., J.H., F.Z. and E.W. declare that they have no
competing interests. P.Y. and C.M. declare competing interests: they are both
listed as inventors on pending and issued patents on single-stranded tiles; and
P.Y. is a co-founder of Ultivue Inc. and NuProbe Global.

Additional information
Supplementary information is available for this paper at https://doi.org/
10.1038/s41586-019-1014-9.
Reprints and permissions information is available at http://www.nature.com/
reprints.
Correspondence and requests for materials should be addressed to D.W., D.D.
or E.W.
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2019

3 7 2 | N A T U RE | V O L 5 6 7 | 2 1 M A R C H 2 0 1 9

https://doi.org/10.1038/s41586-019-1014-9
https://doi.org/10.1038/s41586-019-1014-9
http://www.nature.com/reprints
http://www.nature.com/reprints

	Diverse and robust molecular algorithms using reprogrammable DNA self-assembly

	Online content

	Acknowledgements
	Fig. 1 Abstraction hierarchy for design and implementation of the complete 6-bit IBC tile set.
	Fig. 2 Experimental protocol and implementation of the Sorting circuit.
	Fig. 3 Reprogramming IBCs.
	Fig. 4 Testing of the complete 6-bit IBC tile set.

