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Abstract
There are large amounts of information that can be represented in terms of graphs. This includes social networks and internet.
We can represent people and their interactions by means of graphs. Similarly, we can represent web pages (and sites) as well
as links between pages by means of graphs. In order to study the properties of graphs, several indices have been defined. They
include degree centrality, betweenness, and closeness. In this paper, we propose the use of Choquet and Sugeno integrals
with respect to non-additive measures for network analysis. This is a natural extension of the use of game theory for network
analysis. Recall that monotonic games in game theory are non-additive measures. We discuss the expected force, a centrality
measure, in the light of non-additive integral network analysis. We also show that some results by Godo et al. can be used to
compute network indices when the information associated with a graph is qualitative.

Keywords Non-additive measures and integrals · Graphs · Aggregation · Network analysis

1 Introduction

Graphs are used to represent information that highlights the
relationships between objects. They are the standard rep-
resentation of social networks and internet. In the former
case, we typically represent individuals as nodes and the rela-
tionship between individuals in terms of edges between the
nodes. Similarly, whenwe represent (a subset of) internet as a
graph, nodes correspond to web pages and edges correspond
to links that relate web pages.

In order to study graphs, a few measures have been pro-
posed. They are used to characterize and distinguish nodes
(and edges) on the basis of the network structure. For exam-
ple, there are measures used to determine which are the most
influential nodes in a graph. As influential depends on the
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application and use, new indices are defined to cope with
new aspects.

Centralitymeasures, betweenness, and closeness are some
of these measures. In recent years, new measures have been
defined. They are defined to quantify the “spreading power”.
This is the case of the expected force, an index introduced
in Lawyer (2015). Indices defined with a similar objective
include the dynamic influence (Klemm et al. 2012) and the
impact (Bauer and Lizier 2012). Other indices exist to eval-
uate particular properties related to nodes in the network as,
e.g., trust (Wu et al. 2015, 2017).

Recent research on indices includes work on what is
known as game-theoretic network centrality (Grofman and
Owen 1982; Gómez et al. 2003; Michalak et al. 2013). Sev-
eral papers and software systems have been written with the
goal of using and developing the game-theoretic apparatus
to evaluate the centrality of nodes in social networks. Game
theory starts assuming the existence of a game on a reference
set. A game is a set function on the reference set. In our set-
ting, the reference set is the set of nodes and thus games are
defined to evaluate sets of nodes.We can use for this purpose,
e.g., group centrality (Everett and Borgatti 1999).

In game theory, we have indices (as, e.g., the Shapley
value) that summarize the influence of a game. For example,
the Shapley value for a node can be seen as an evaluation of
the centrality of the node. While node centrality takes into
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account only the neighborhood of the node, the Shapley value
would take into account the game for all subsets, that is, it
will take into account the whole graph.

Although the idea is simple, there are difficulties on the
actual computation of the indices because of the number of
nodes and edges of some real graphs. Computationally effi-
cient methods have been defined for this purpose. See, e.g.,
Michalak et al. (2013). Some of them are based on assuming
that games have a particular structure (i.e., not any game is
possible but they should be of a particular family).

In this work, we introduce another type of apparatus to
the problem of network analysis. In short, we introduce the
use of non-additive measures and integrals. This is a natural
extension of the use of game theory.

First, note that the monotonic set functions currently used
in the game-theoretic network centrality approach are exam-
ples of non-additive measures. Second, Choquet and Sugeno
integrals permit to integrate information with respect to the
non-additive measures. These integrals (also known as fuzzy
integrals) generalize, e.g., the expected value. In this way, we
can use the integrals to define indices in a compact way.

Then, we will introduce an index based on the expected
force (Lawyer 2015). Our definition will be based on the
Choquet integral. We will establish the relationship between
our index and the expected force. We will discuss the use
of other fuzzy integrals and the case that the information
associated with a graph is not numerical but ordinal. We will
link this research to some results by Godo and Torra (2000,
2001) and Godo and Zapico (2001, 2005).

The structure of the paper is as follows. In Sect. 2 we
will review the main concepts on non-additive measures and
Choquet and Sugeno integrals. In Sect. 3 we will review
some concepts and indices for graph analysis. In Sect. 4 we
will describe our approach for non-additive integral-based
network analysis. The paper finishes with some conclusions.

2 Non-additive measures and integrals

Non-additive measures generalize additive measures, as, for
example, probabilities. Formally, they are defined replacing
the axiom of additivity by a monotonicity condition. That is,
given two sets A ⊆ B the only condition is that the measure
of B is at least as great as the measure of A. We give their
definition below following Torra and Narukawa (2007). See
also Beliakov et al. (2008) and Grabisch et al. (2009).

Definition 1 Let X be a reference set. Then, a set function
μ : ℘(X) → [0, 1] satisfying the two axioms below is a
fuzzy measure (capacity or non-additive measure) μ on X .

(i) μ(∅) = 0, μ(X) = 1 (boundary conditions)
(ii) A ⊆ B implies μ(A) ≤ μ(B) (monotonicity)

Non-additive measures are also known as fuzzymeasures,
capacities, and monotonic games.

Given a function f : X → R
+, we can integrate the

function f with respect to a non-additive measure by means
of an integral. These integrals are known as fuzzy integrals.
The Choquet and Sugeno integrals are two examples of these
integrals.Wegivebelow thedefinitionof theChoquet integral
as it is the one that is applicable in our context.

A Choquet integral generalizes the Lebesgue integral.
From the point of view of data aggregation, the most relevant
property is that when the measure is additive, the Choquet
integral of a function results in the weighted mean of the val-
ues of the function, i.e., the expected value when the measure
is understood as a probability.

In other words, the Choquet integral can be seen as a gen-
eralization of the weighted mean where interactions between
elements of X can be represented by means of the measure.
The standard expectation corresponds to the case that there
are no interactions between the elements of X .

The Choquet integral is defined as follows. The original
definition was given in Choquet (1953/54). See, e.g., Torra
and Narukawa (2007), Beliakov et al. (2008) and Grabisch
et al. (2009) for properties of the Choquet integral.

Definition 2 Let X be a reference set, and let μ be a non-
additive measure on X ; then, the Choquet integral of a
function f : X → R

+ with respect to the non-additive mea-
sure μ is defined by

(C)

∫
f dμ =

N∑
i=1

[ f (xs(i)) − f (xs(i−1))]μ(As(i)), (1)

where f (xs(i)) indicates that the indices have been permuted
so that 0 ≤ f (xs(1)) ≤ · · · ≤ f (xs(N )) ≤ 1, and where
f (xs(0)) = 0 and As(i) = {xs(i), . . . , xs(N )}.
The Sugeno integral is an alternative fuzzy integral pro-

posed by Sugeno (1974). Its definition follows.

Definition 3 Letμ be a non-additive measure on X; then, the
Sugeno integral of a function f : X → [0, 1] with respect
to μ is defined by

(S)

∫
f dμ = max

i=1,N
min( f (xs(i)), μ(As(i))), (2)

where f (xs(i)) indicates that the indices have been permuted
so that 0 ≤ f (xs(1)) ≤ ... ≤ f (xs(N )) ≤ 1 and As(i) =
{xs(i), ..., xs(N )}.

The Choquet integral integrates a function horizontally
(as the Lebesgue integral) considering the measure of the
support of each value. The Sugeno integral is all the larger
as there exists an important set of criteria all of which are
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satisfied. Choquet and Sugeno integrals of the same function
with respect to the same measure provide different and com-
plementary summaries. The Choquet integral can be seen
as a kind of mean, while the Sugeno integral is a kind of
median. Recall that the number of citations and the h-index
of an author are just Choquet and Sugeno integrals of the
same function with respect to the same measure (see Torra
and Narukawa 2008 for details). This type of complementar-
ity can be of interest in network analysis. Observe that in a
scale-free network, the mean and the median degree can be
quite different.

3 Graph analysis: centrality measures

Given a set of nodes V , a graph G is defined as the pair G =
(V , E) where E ⊆ V × V . When edges have no orientation
and the edge (n1, n2) is identical to the edge (n2, n1), we
say that the graph is undirected. Otherwise, a graph is said
to be directed. Unless stated otherwise, we consider directed
graphs in this paper.

There are several centrality measures in the literature to
evaluate the influence or importance of nodes. Degree cen-
trality, closeness, and betweenness are the most well-known
ones.Recently, Lawyer (2015) introduced the expected force.
The relevance of a node is measured in terms of its capability
of infecting other nodes. Its definition is to take into account
how infections are spread in a network. A formal definition
follows. We begin with the concept of infection path.

Definition 4 Let G = (V , E) be a graph. For any node
n ∈ V , we define an infection path from n recursively on
its length.

– The infection path of length 0 for node n is just the node
n. We denote this by p0 = {(0, n, n)}.

– ps+1 is an infection path of length s + 1 for node n if
there is an infected path of length s from node n denoted
by ps , and if ps+1 is ps union the tuple (s + 1, n0, n1)
where n0 is a node in ps (i.e., n0 ∈ V (ps)), n1 is not a
node in ps (i.e., n1 /∈ V (ps)), (n0, n1) is an edge of the
graph (i.e., (n0, n1) ∈ E), and (n0, n1) is not already in
ps (i.e., (n0, n1) /∈ E(ps)). We denote this by ps+1 =
ps ∪ {(s + 1, n0, n1)}.

Observe that we use V (p) and E(p) to denote, respec-
tively, the nodes and edges of the infection path p. Naturally,
V (p) = ∪(r ,n,n′)∈p{n, n′}, and E(p) = ∪(r ,n,n′)∈p,n 	=n′
{(n, n′)}.

The definition of infection paths includes an index for each
edge as the order in which the edges are added is relevant.
We give an example belowwith Fig. 1 and 2 that shows paths
whose only difference is the order in which edges are added
to the path.

Fig. 1 Graph with 4 nodes to
illustrate the computation of
Js(i)

i

The expected force for a node i is based on considering all
possible infection paths p for a given number of steps s. The
measure also considers the connection degree of the path.
This connection degree is defined in terms of the neighbors
of the nodes in the path as follows.

Definition 5 Let G = (V , E) be a graph, and let Ne(n)

denote the neighbors of node n ∈ V . Then, the connection
degree of a set A is defined as follows:

od(A) = |∪n∈ANe(n)\A| .

The connection degree of a path p is defined as follows

od(p) = od(V (p)),

where V (p) are the nodes in the path p.

Using the previous definitions, we can introduce now the
expected force.

Definition 6 (Lawyer 2015) Let G = (V , E) be a graph,
let Js(i) represent all infection paths from the i th node that
infect s nodes, and let od(p) denote the connection degree
of path p. Then, the expected force of node i is defined by

ExF(i) = −
∑

p∈Js (i)

d̄(p) log d̄(p).

where

d̄(p) = od(p)∑
p′∈Js (i) od(p′)

.

Note that using d̄(p) instead of od(p) is to ensure that
we are dealing with a probability distribution and, thus, that
the entropy is an appropriate measure. Lawyer (2015) uses
Shannon entropy in the definition, but other types of entropy
may also be used.

To illustrate the computation of the infection paths and the
expected force, we give a small graph of only 4 nodes and 4
edges in Fig. 2. We assume that the graph is undirected. Note
that the infection paths depend on the node considered. We
have marked in the figure the node i that is considered for
computing the paths.
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Fig. 2 Infection paths for the
graph with 4 nodes in Fig. 1.
This corresponds to J2(i) for the
node in Fig. 1
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Then, in Fig. 2 we illustrate the infection paths for the
node i when the number of infections is 2 [as used in Lawyer
(2015)]. As we have two infections, we have always two
nodes in addition to the node i .

The computation of the infection paths for two infections
(i.e., s = 2) needs to consider all nodes at distance 1 and all
nodes at distance 2. Then, for each pair of nodes n1 and n′

1
at distance 1, we have two infection paths if there is no edge
between n1 and n′

1, and four infection paths when there is an
edge between them. This is illustrated in Fig. 2. The figure
shows all the infection paths defined for nodes at distance
one from i according to the graph in Fig. 1. The numbers
in each figure represent the order in which infection took
place. In addition, for each node n2 at distance 2 we have
one infection path. There is no node at a minimum distance
of 2 in the graph of Fig. 1.

Then, note that for each of the eight paths in Fig. 2 its
connection degree is 1 (because there is only one node left
in the graph and it is accessible from any infection path).
Because of that, od(p) = 1/8 for all p and ExF(i) =
−∑

p(1/8) log(1/8) = 3.

4 Network analysis using non-additive
integrals

Given a graph G = (V , E), we can consider measur-
able properties on the nodes and on the edges. However,
we may also consider properties on sets of nodes and on
sets of vertices. In particular, we can consider non-additive
properties.

In this paper, we focus on the set of nodes, as we evaluate
the importance of nodes. Because of that, we consider set
functions that apply to any subset of the original nodes. So,
let A ⊆ V , then μ(A) will measure some characteristic of
the set A. Naturally, μ will depend on the context. Our only
constraint is thatμ is monotonic with respect to set inclusion.
We discuss two examples in the next section to illustrate the
relevance of the concept.

4.1 Non-additive measures on sets of nodes

Our first example is based on betweenness centrality. It is
known that betweenness evaluates the centrality of a node
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Fig. 3 A graph and two subsets of nodes A and B from the set of
vertices

with respect to the number of shortest paths in the graph that
go through a node. We can extend this concept to any set
of nodes A. Let us define μ(A) as the number of shortest
paths that go through any of the nodes in A. Naturally, this
measure ismonotonic, themore nodeswe have in A, themore
shortest paths that go through A; and satisfies μ(∅) = 0. We
can normalize this measure to have μ(V ) = 1 dividing it by
the total number of shortest paths.

Our second example is based on the connection degree
(i.e., Definition 5). Note that when several nodes in A are
connected to the same node n, this node n only contributes
in 1 to od. Because of this, od(A) is not additive. In general,
for any disjoint sets A and B, od(A∪ B) ≤ od(A)+ od(B).
This is illustrated in Fig. 3. Two disjoint sets A and B are
defined. A is connected to nodes {c, g, d}, and B is connected
to nodes {d, g, h, e}. Therefore, od(A) = 3 and od(B) = 4.
Moreover, A ∪ B is connected to nodes {c, g, d, h, e} there-
fore od(A ∪ B) = 5.

However, the function od does not satisfy the monotonic-
ity condition. For example, if A = V \{n} for a connected
graph with at least two nodes n and n1, od(A) = 1 while
od(V = A ∪ {n}) = 0.

In order to have a monotonic measure, we consider
d(A) = |A| + od(A). The measure is still non-additive as
the following example shows.

d(A ∪ B) = 6 + 5 	= d(A) + d(B) = 3 + 3 + 3 + 4.

As we expect the measure to be normalized, we divide the
expression by the number of nodes. Accordingly, we have
for A ⊆ V the following:

μ(A) = d(A)

|V | = |A| + od(A)

|V | (3)

Recall that the monotonic measure |A| + od(A) was used
in Suri and Narahari (2008). Here we normalize it to be in
[0, 1].

These measures are based on properties of the nodes: their
degree. A different approach in the same line iswhenwe have
a possibility distribution on the nodes, and this distribution
is used to build the measure for any set of nodes. We can use
in this context results from Godo and Zapico (2001, 2005).
Similarly, we can also consider definingmonotonicmeasures
based on the density of sets (i.e., |EA|/(|A|(|A| − 1)) where
EA are the edges (n, n′) ∈ E where both n, n′ ∈ A). In
Narukawa and Torra (2005) and Torra and Narukawa (2012),
we proposed the definition of measures based on values
assigned to edges (i.e., a function ν : E → [0, 1]). Then,
given a pseudo-addition ⊕ (i.e., a commutative, monotonic,
associative, continuous, and with 0⊕a = a⊕ = a operator)
a measure for any set of nodes is defined by

μ(A) := sup{⊕(x,y)∈I ν((x, y))|I ⊂ A, I ∈ TE }
μ(N )

(4)

where TE is the set of all fuzzy trees of the graph (i.e., a
subgraph that does not contain a cycle). Then, we define
μ′(A) := μ(A)/μ(V ) to have a normalized measure.

Following Suri and Narahari (2008) and Michalak et al.
(2013), we may consider indices for set functions. For exam-
ple, we can consider the Shapley and the Banzhaf power
indices for μ. This will assign an importance to each node
in the graph taking into account the set function. This can
be understood as a measure of how a node contributes to the
overall connectivity of other nodes. These indices could be
applied to the two measures in this section.

4.2 Non-additive integrals network analysis

We go now one step further extending the game-theoretic
approach by means of non-additive measures and integrals.
The main idea is that in addition to the measure on the set
of nodes V , we have a function (or functions) that evaluates
each node V .

Then, if we have the non-additive measure on the set of
nodes V , and a function f , we can compute the Choquet
integral of f with respect to the measure. This defines an
overall measure (an aggregation of f ).

To be more explicit, if the function is global, we compute
a global measure. On the contrary, if we have a collection of
measures { fv}v∈V : V → R

+ (i.e., a function fV for each
node v ∈ V ), then, we will have an index for each node
to be used for node analysis. This is formalized in the next
definitions.

Definition 7 Let G = (V , E) be a graph. Let μ be a non-
additive measure on V . Let f be a function on V into R

+.
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Then, we define a global index of the graph as follows
GI (v) = (C)

∫
f dμ.

Definition 8 Let G = (V , E) be a graph. Let μ be a non-
additive measure on V . Let { fv}v∈V be a collection of
functions on V into R

+. Then, we can define an index for
nodes v ∈ V as follows:

I (v) = (C)

∫
fvdμ.

It is important to stress that in Definition 8, we consider a
function fv for each node v ∈ V , and that each function fv
is of the form fv : V → R

+. Compare this with Definition 7
where we have a global index as there is a single function f
for thewhole graph (e.g., importance of the graph, population
of a town if the graph represents a map).

Let us illustrate this with an example. The example evalu-
ates the importance of a node on the basis of its connections
(out-degree).

Example 1 LetG = (V , E) be a graph. Letμ be the measure
described in Eq. (3). Let the set of functions fv for v ∈ V
be defined as follows: fv(n) = 1 if n is a neighbor of v,
and fv(n) = 0 otherwise. Then, we define the relevance of a
node by

R(v) = (C)

∫
fvμ.

Using the properties of the Choquet integral, we have that
for any node n, if Ne(n) is the set of neighbors of n, then
R(v) corresponds to

R(v) = μ(Ne(v)) = d(Ne(v))

|V |
= |Ne(v)| + od(Ne(v))

|V | = |{u|l(u, v) ≤ 2}|
|V | .

where l(u, v) is the length of the shortest path between nodes
u and v.

Example 2 Let G and μ as in Example 1. Let the set of func-
tions fv for v ∈ V be defined as fv(n) = 1 if and only if the
shortest path between v and u is less than or equal than 2.
Then,

R(v) = μ({u|l(u, v) ≤ 2}) = |{u|l(u, v) ≤ 3}|
|V | .

Let us illustrate the definition abovewith another example.
Example 1 uses functions fv defined as 1 for the neighbors
of the node v and zero; otherwise, Example 2 uses functions
fv defined as 1 if the shortest path to v is less than 2. In the
next example, we have that the value of the function fv(n)

decays with the distance (shortest path from a node n to v).

1

2

3

4

5

6

7

8

9

10

11

Fig. 4 Graph with 10 nodes with degree 3 and one with degree 2

Example 3 LetG = (V , E) be a graph. Letμ be the measure
described in Eq. (3). Let l(v, n) be the length of the short-
est path from v to n. Then, for any node v ∈ V we define
fv(n) = 1/2l(v,n). Using these expressions, we define the
rumor spreading capability (RI for rumor increbrescit) of a
node by

RI(v) = (C)

∫
fvμ.

Let us consider the computation of this measure for a few
graphs of 11 nodes. If the graph is unconnected, then RI =
1/11 for any node. If the graph is regular with all nodes of
degree 2, then RI = 0.4431818 for any node. There is no
graph with degree 3 with 11 nodes. If we leave one node
with degree 2 (see Fig. 4), then it is graphical but different
nodes will have different degrees. In particular, node 1 has
RI = 0.65909094 and node 5 has RI = 0.54545456. If the
graph is complete, then RI = 1.0.

4.3 Properties

The properties of non-additive measures and integrals permit
to infer some properties on the index.

Proposition 1 The following holds:

– If mv = maxv′ fv(v′), then
0 ≤ I (v) = (C)

∫
fvdμ ≤ mv .

– Let G = (V , E) be a subgraph of G ′ = (V ′, E ′) if
V = V ′ and E ⊆ E ′. Then, if μG(A) ≤ μG ′(A) for all
A, IG(v) ≤ IG ′(v) for all v ∈ V .

The first property gives bounds to the indices.
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The second property states that the index is monotonic
with respect to graph inclusion (if the measure also behaves
in a monotonic way). Note that the monotonicity condition
on themeasuremeans that themeasure should account for the
fact that G ′ is more connected than G. If this is the case, the
index increases. That is, if the more connected is the graph,
the larger the measure, then, the larger the index.

4.4 Revisiting and revising the expected force

In this section,we revisit the expression for the expected force
(Definition 6). We first rewrite the expression taking into
account the fact that within Js(i) we find several infection
paths with the same set of nodes. That is, we may have two
different paths with the same set of nodes (i.e., p1 	= p2 but
V (p1) = V (p2)). Assume that there are k different sets of
nodes. Then, Cs(i) = { C1, . . . , Ck} denotes the collection
of sets of nodes in Js(i) that are unique.

Let oci (C) be the number of occurrences of a set C in
Js(i). That is, oci (C) = |{p ∈ Js(i)|V (p) = C}|. For exam-
ple, in Fig. 2 we have three different sets of nodes (i.e., each
row in Fig. 2) so C2(i) = {C1,C2,C3}, and oci (C1), oci (C2),
and oci (C3) are, respectively, 4, 2, and 2.

Let us rewrite the expression of expected force in Defini-
tion 6 using unique sets of infected nodes. We use for this
purpose d̃(C) = d(C)/

∑
C ′∈Cs (i) oci (C

′).

ExF(i) = −
∑

p∈Js (i)

d̄(p) log d̄(p)

= −
∑

C∈Cs (i)
oci (C)d̃(C) log d̃(C)

Let fi (n) be the function that corresponds to the number
of infections of node n from i in s steps using any of the
possible paths in Js(i). That is,

fi (n) = |{p ∈ Js(i) and n ∈ p}| =
∑

C∈Cs (i),n∈C
oci (C). (5)

Note that fi (n) = 0 implies oci (C) = 0. Let us define
wn(C) = oci (C)/ fi (n) when n ∈ C and fi (n) 	= 0, and
wn(C) = 0 otherwise. Then, we can rewrite the expected
force to make explicit the role of nodes as follows.

ExF(i) =
∑
n∈V

fi (n)
∑

n∈C∈Cs (i)
wn(C)

(
−d̃(C) log d̃(C)

)

(6)

This expression shows that the contribution of a node
is larger when there are more infection paths in which the
node appears and that the contribution for each path is
weighted by the proportion of times; this path is the cause

of the infection (i.e., wn(C)). In fact, the inner summa-
tory can be seen as a weighted mean (WM) with weights
w = (wn(C1), . . . , wn(Ck)):

WMw(−d̃(C1) log d̃(C1), . . . ,−d̃(Ck) log d̃(Ck)),

The number of infections is very relevant in this measure.
So, a very connected graph will have maximum measure for
all nodes as −d̃(C) log d̃(C) will be maximum, and fi (n)

also maximum. Instead, a connected graph with degree 2 has
low measure for all nodes as both−d̃(C) log d̃(C) and fi (n)

will be lower.
In the light of this observation, we define another measure

of force for a given node based on Definition 8. We call it
out-degree expected force.

Definition 9 Let G = (V , E) be a graph. Let μ be the mea-
sure in Eq. (3). Let s be a number of steps. Let fi (n) be the
family of functions defined in Eq. (5). Then, the out-degree
expected force of node i is defined by

ODEF(i) = C Iμ( fi ).

Lawyer (2015) discusses the use of entropy in the defi-
nition of the expected force as a way to overcome the fact
that “complex networks have scale-free degree distributions”
and that “the moments of scale-free distributions are diver-
gent”. Comparing ExF(i) with the alternative but similar in
rationale, we obtain the definition

ExFAM(i) = 1

|Js(i)|
∑

p∈Js (i)

d̄(p)

where ExFAM is just an arithmetic mean (AM) of the con-
nection degrees.

Our definition somehow swaps the role of the distribution.
Note that there are two elements that are taken into account.
One is the connection degree. In a way similar to Lawyer
(2015), the connection degree is taken for sets of nodes and
not for individual nodes. Because of that, it is natural to use it
to define a non-additive measure (which is a set function). A
second element wemay consider from ExF is the number of
infections of a node using any possible path. This is naturally
a function of a node. In this way, the Choquet integral inte-
grates this latter function with respect to the measure. This
is the rationale behind Definition 9.

Note also that the non-additive measure is fixed for any
graph and independent on the node we are considering when
computing its force. On the contrary, the function depends
on the node.

Using results from Choquet integrals, we can prove the
following.
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Proposition 2 For any graph G and any node i , given a num-
ber of steps s, ODEF(i) ∈ [0, (|V | − 1)s(s+1)/2].
Proof The upper bound of this proposition takes into account
that we can consider any possible path for infection, and that
the out-degree of a node is at most |V |−1. This upper bound
cannot be reached because not all infection paths are valid
(e.g., infecting a node twice is not allowed). In general, when
the number of edges of nodes is much less than |V | − 1,
ODEF(i) can be much lower than this upper bound. �

The proposition shows that the range of the measure
depends on the number of possible paths. This depends on s
and the topology of the graph.

Proposition 3 Let G0 denote an unconnected graph, let G2

be a connected graph where all nodes have degree two, let
Gx be a complete graph. Then,

ODEFG0(i) ≤ ODEFG2(i) ≤ ODEFGx (i)

for any node i .

Proof The definition implies that

– μ0(A) = |A|/|V |,
– |A|

|V | ≤ μ2(A) ≤ (1/|V |) · min(3|A|, |V |) and
– μx (A) = |V |/|V | = 1

for all A. Then,

C Iμ0( f ) ≤ C Iμ2( f ) ≤ C Iμx ( f )

for any f .
Then, if G is a subgraph of G ′, then fG ≤ fG ′ . This is so

because the number of infections will be smaller (less ways
to reach a node). This is so for any s.

Therefore, f0 ≤ f2 ≤ fx .
From this it follows

C Iμ0( f0) ≤ C Iμ2( f1) ≤ C Iμx ( fx )

and the proof is complete. �
In fact, as when G is a subset of G ′, it follows that

μG(A) ≤ μ′
G(A) for all A, and as we have discussed in the

proof fG ≤ fG ′ , the following more general result follows.

Proposition 4 Let G a subgraph of G ′ then ODEFG(i) ≤
ODEFG ′(i) for any node i in G.

These last results are related to the second property in
Proposition 1. Nevertheless, the function on the nodes in
Proposition 1 is kept constant when replacing G by G ′. This
is not the case here because in the out-degree expected force
the function depends on the graph itself.

All definitions above can be rewritten with a Sugeno inte-
gral. Then, we can easily prove an analogous proposition
to Proposition 3 but using a Sugeno integral. As explained
above, Choquet and Sugeno integral can provide different
and complementary summaries.

While the Choquet integral is to be applied to numeri-
cal data, Sugeno integral can be applied to data in ordinal
scales (i.e., when both measures and functions result in val-
ues in ordinal scales). For ordinal scales, it is also relevant to
the work by Godo and Torra (2000, 2001). They introduced
aggregation operators for ordinal scales that were based on
t-norms and t-conorms and that are ordinal counterparts of
the weighted mean and the Choquet integral. The rationale
behind these definitions is to encompass a “more genuine
notion of average”. Note that the output of the median and
the Sugeno integral is one of the values being integrated or
taken into consideration in the measure. This is not the case
in the weightedmean and the Choquet integral. That is, mean
of 1 and 5 is 3 even 3 is not a value to be aggregated. Godo and
Torra (2001) proposed a qualitative Choquet integral where
some average is allowed (not for consecutive values as the
output is in the original ordinal scale).

In relation to the application of this approach, it is impor-
tant to observe that while we need 2|V | values to properly
define a measure, computing the fuzzy integral only once
requires only the |V | values of the measure actually used
in the computation. Naturally, multiple applications of the
integral may require us to know the whole measure.

5 Conclusion

In this paper,we have introduced the use of non-additivemea-
sures and integrals for network analysis. We have introduced
a definition for the Choquet expected force based on the Cho-
quet integral and a non-additive measure that corresponds to
the connection degree of a set.

We have shown that this approach can also be applied
to networks that solely contain categorical information (in
ordinal scales). Results by Lluís Godo can be used in this
area to compute categorical indices of network centrality.

Future lines of research include the development of
efficient algorithms as well as approximate solutions for
large-scale graphs, and their use to evaluate and compare
graphs. In particular, we are interested in comparing a given
graph with its masked and synthetic version (Torra 2017) to
evaluate the utility of the latter and to assess the performance
of protection mechanisms for data privacy.
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