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Abstract
A new graph database model is introduced that allows for an efficient and straightforward privacy-preserving mechanism. 
A probabilistic graph database model is also proposed, perhaps less suitable for lossless storage, but adapted for the use of 
statistical analysis that preserves the privacy of the individuals behind the data. Parallels are drawn to concepts in combina-
torics such as clique complexes and incidence geometries.
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1  Introduction

In this article, a data set is a collection of properties of 
objects. To the data set, there is attached meta data, or to 
be more precise, the types of the properties (attributes). For 
example, if the objects are the set of books in a library, then 
the data set can be the collection of the titles, the authors, the 
number of pages, the shelf the book can be found on, and so 
on. The types (or the attributes) of the data are then “title”, 
“author”, “number of pages”, “shelf”. The properties are the 
actual titles, authors and so on. We will assume that each 
object can have only one property of each type.

Definition 1  (Data graph) A data graph (V, E) representing 
a data set D with s types is an s-partite graph, such that the 
vertices in the partition Vi represent the properties of type i, 
and the data in D is represented by a set of labeled edges E: 
there is an edge between two vertices if there is some object 
with both properties, and the edge is labeled with the pro-
portion of objects having the pair of properties in question.

If the proportion is always taken with respect to an 
absolute number n of total objects in the data set, then the 
data graph can equivalently be represented as the num-
ber n together with an s-partite graph with multiple edges 
(between vertices) so that each edge between two vertices 
corresponds to an object with both properties.

This data graph is an example of a graph database model. 
Graph databases form part of the NoSQL paradigm, and are 
often suitable for large amounts of data, featuring good scal-
ability and flexibility in front of different use cases.

The demand for data privacy protection is increasing, 
following the explosive development of data collection in 
society. Nothing suggests that data collection will cease, but 
rather will it evolve and transform. Privacy protection can be 
motivated by law or by commercial reasons. Indeed, custom-
ers with protected privacy are happy customers. Although 
many methods exist for data privacy protection, there is 
currently a great need for reliable and scalable methods 
that allow for the general publication of privacy protected 
databases.

The purpose with this article is to suggest modifications 
of the graph database model in Definition 1 that allow to 
represent large quantities of data about individuals in a 
naturally scalable and useful way, while also preserving the 
privacy of the individuals behind the data. First we present 
a deterministic model that preserves the overall features of 
the data, while erasing or modifying individual traces of 
data with trivial (hence fast) operations. The data struc-
ture allows the privacy preserving operations to be precise 
enough to put the information loss where it should be: at the 
private information. The method preserves the big picture 
and returns a useful database reflecting the general features 
of the population. Additionally, it is possible to obtain nice 
theoretical control over the information loss (in the sense of 
understanding what is lost).
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Definition 2  A cover-up privacy-preserving data graph with 
parameter k of the data set D is the graph obtained from 
the data graph of D by modifying the label indicating the 
proportion of objects in the database with a given pair of 
properties from m

n
 to ik

n
 where ik is the result of rounding m 

to the closest integer multiple of k.

The label ik
m

 can be seen as an approximation of the prob-
ability that there is an object with the two properties.

The second model is a probabilistic generalization of the 
first. Instead of labeling edges with simple probabilities, the 
edges are here labeled with discrete random variables and 
probability distributions.

Definition 3  A probabilistic privacy-preserving data 
graph of the data set D is an n-partite complete graph 
KV1,…,Vn

= (V , Ẽ) with the same vertex set as the data graph 
G(D) = (V ,E) and a discrete random variable with a discrete 
probability distribution on each edge.

2 � Related work

2.1 � Database models

2.1.1 � Graph databases

Hierarchical database models were popular from their intro-
duction in the 1960’s until the relational database model 
became popular (Knuth 1968; Long et al. 2000). They are 
still the preferred model in certain applications. A hierar-
chical database structures data in form of a tree, an acyclic 
graph. Every record is a node, and relations between records 
are modeled as edges. Records can have types, and the pos-
sible entries of a record depends of the type. For a more 
recent reference for the use of trees as data structures, see 
(Lima 2014).

The Network Model is more general than the hierarchical 
model, in allowing cycles in the graph. It was first described 
by Bachman in the end of the 1960s (Bachman 1973), and 
was included in CODASYL. The model was developed 
further until the beginning of the 1980s, but did not have 
substantial influence on commercial products. Instead, the 
commercial focus was almost completely on the relational 
database model.

Graph database models became important in the 1990s 
again, when they were used to index web pages. Ten years 
later, several commercial graph databases were available, 
featuring the ACID (Atomicity, Consistency, Isolation and 
Durability) properties. As social networks analysis became 
increasingly popular, graph databases grew increasingly 
important. Today there is a long list of commercial graph 
databases available at the market.

Graph databases belong to the NoSQL paradigm (Rob-
inson et al. 2013; Deka 2017). This simply means that a 
graph database model is different from a relational data-
base model. The two most commonly used graph models 
are the labeled-property graph and the resource descrip-
tion framework (RDF). Both these models feature directed 
graphs. The first model represent data as nodes using edges 
to model relations between data. Both the nodes and the 
edges can store information in form of properties and labels. 
The labeled-property graph model is currently used in many 
popular graph databases, as for example Neo4j. The RDF 
model treats every new data as a new node, allowing this 
node to have a type, if so desired. This model is for example 
used in the Open Graph protocol (2017).

The data graph model that is used in this article is similar 
to other graph database models, however not equal. The lit-
erature contains a vast collection of graph database models, 
indeed it is rather natural to model data in terms of graphs. 
One main difference from the two models just mentioned is 
that our data graph model uses an undirected graph. There 
are of course other models using undirected graphs, in par-
ticular such models are common in social network analysis. 
Also, in our data graph the data attached to an object is 
represented by a clique (a complete subgraph), while most 
graph databases use a tree for this purpose—the attributes of 
an object would not typically be connected, at least not only 
for the sake of being attributes of the same object.

Note that the particular features of the data graph model 
in this article, being rather simplistic and mathematical in 
nature, should not be considered restrictive, and many of the 
results can surely be generalized and modified in many ways 
to fit into different commercial design requirements.

2.1.2 � Data in table form

Because most commercial databases are still based on the 
relational model, and because the graph data model used 
in this article probably differ from other graph data models 
known to the reader, it is of interest to compare the data 
graph model of this article, not only to graph database mod-
els, but also to relational database models.

When a data set is represented in a relational database 
model as a table, typically the rows represent the objects, 
the columns represent the types and the (i, j)th entry is the 
property of type j of the object i. For example, a table storing 
personal data would then typically have one row per person, 
and one column per each attribute (or type), such as “name”, 
“age”, and so on.

A table representation can be constructed from 
our graph data representation, by making one row for 
each maximal clique of the graph. If there is no unique 
identifier, then it could happen that a row was con-
structed that does not correspond to any object with 
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these properties. Imagine for example the data set with 
3 types “name”, “age” and “disease”, 3 individuals 
A = [John, 45,Heartattack]  ,  B = [John, 34,Diabetes] 
and C = [Sarah, 45,Diabetes] . The graph has 2 nodes 
of each of the 3 types, hence a total of 6 nodes. The 
edges are (45, Heartattack), (34, Diabetes), (45, Diabe-
tes) (John, 45), (John, 34), (Sarah, 45), (John, Heartat-
tack), (John, Diabetes),  (Sarah, Diabetes). There is there-
fore a maximal clique consisting of the nodes John, 45, and 
Diabetes, without there being any individual with these 
properties. However, if the data contains a unique identifier 
for each individual, then this situation will not occur. For 
example, if the identifiers A, B, C are given nodes in the 
data graph above, then they will be nodes of a forth type. 
The nodes A, John, 45, Heartattack form a maximal clique, 
as do the nodes B, John, 34, Diabetes, but there is no maxi-
mal clique that contains all the nodes John, 45, Diabetes, 
simultaneously.

Indeed, it is not difficult to see that if the data graph con-
tains a unique identifier for each individual, then every maxi-
mal clique corresponds to a unique individual, and storage 
is lossless. However, since we want to build a privacy pre-
serving database, we are typically not interested in ensuring 
that every individual is readily identifiable in the database. 
Instead, we want to achieve the contrary: we want to make it 
as hard as possible to identify an individual in the database.

2.1.3 � Data in tensor form

A tensor is in computer science often regarded as a gener-
alization of matrices to higher dimensions. When a data set 
is represented as a tensor, the (i1,… , in) th entry represents a 
value for the i1 th to the in th attribute. For example, for n = 3 , 
i1 can be indexed by usernames, i2 by device types, and i3 by 
internet consumption per month. For a very small data set 
containing the internet consumption during 12 months of 3 
users A, B and C, who all have a laptop and a smartphone 
using the internet, the data could be modeled as 12 matri-
ces on top of each other, one for each month, with 3 rows 
labelled A, B and C and 2 columns labelled “Laptop” and 
“Smartphone”, the entries being the internet consumption 
of the corresponding device belonging to the corresponding 
user, during the corresponding month.

Data in the form of a data graph as in Definition 1 can 
be transformed into tensor form by assigning each type one 
dimension. Then if there are is a clique labeled with m in 
the data graph, indicating that there are m objects with these 
properties, it would be represented by an entry of m in the 
tensor. The absence of a clique with certain indices, would 
be represented by a 0. Machine learning with tensor data 
has recently become very popular, and is implemented for 
example in TensorFlow (2019).

2.2 � Data privacy

Data privacy is concerned with hiding sensitive data about 
individuals when publishing useful data about the same 
individuals. There are two main strategies available in the 
literature.

•	 Strategy 1. A protected database is released on which 
third parties can execute any query of their choise.

•	 Strategy 2. The database is kept secret, third parties can 
query the database and the answers that are returned 
are protected.

It has been readily proved that removing identifying data 
as name and social security number is not enough protec-
tion before releasing a database to third parties (this is 
sometimes referred to as naïve anonymization). The lit-
erature comprises a long list of more advanced protection 
methods providing privacy protection according to another 
shorter list of privacy definitions. Below a short summary 
of the concepts that are most relevant to the content of this 
article is provided. The reader is referred to (Torra 2017) 
for a more complete overview.

2.2.1 � Noise addition

A simple protection method, with a long history, is noise 
addition. Following Strategy 1, some appropiate noise 
would be added the database for its subsequent release. 
The first extensive testing of noise addition is from 1983 
(Spruill 1983). For an overview of different noise addition 
methods of this type, see (Brand 2002). If instead Strategy 
2 is followed, then the noise is added to the answer of the 
query. The first methods implementing differential privacy 
followed this procedure, as do some methods preceeding 
the definition of differential privacy (Blum et al. 2005).

2.2.2 � k‑Anonymity

A database (in form of a table) satisfies k-anonymity 
when for each record in the database there are k − 1 other 
records that are indistinguishable  (Samarati and Sweeney 
1998; Samarati 2001; Sweeney 2002). Methods to pro-
duce a k-anonymous database Xp from an original data-
base X include generalization and suppression (Sweeney 
2002) and microaggregation (Domingo-Ferrer et al. 2001; 
Domingo-Ferrer and Mateo-Sanz 2002). For example, 
if we have a database that includes information on the 
age and the postal code of some patients in a hospital, a 
k-anonymized version of this database may use ages in 
ranges and counties instead of towns so that the change in 



	 K. Stokes 

1 3

granularity allow to have at least k patients for any combi-
nation of (age range, county).

The concept of k-anonymity is simple and relatively 
easy to implement, but it also suffers from a series of prob-
lems. The first problem is identification of the quasi-iden-
tifiers. It is simply not reasonable to assume that it can be 
foreseen which combination of attributes will be used by 
an attacker for reidentification. One way to solve this prob-
lem is to assume that any combination of attributes is a 
potential quasi-identifier. However, applying k-anonymity 
using this assumption implies ensuring that every record 
is repeated at least k times, causing a lot of redundancy 
and information loss. A more flexible solution is to assume 
that any combination of at least t attributes is a potential 
quasi-identifier (Stokes 2012).

Another problem is the risk of attribute disclosure. This 
means that an attacker could be able to say that a given 
individual has a certain property of sensitive attribute, 
without necessarily being able to reidentify this individual. 
For example, this can happen if the individual belongs to 
an anonymity set in which every member has the same 
property for this sensitive attribute. The concept of l-diver-
sity was invented to solve this problem, ensuring that at 
least l values of the sensitive attributes appear in each 
anonymity set (Machanavajjhala et al. 2006).

2.2.3 � Differential privacy

In differential privacy (Dwork 2006, 2008), we submit 
queries about the data set, typically modelled as a table, 
and the answers are randomized to ensure privacy. A query 
is modelled as a random function Q from the data set D to 
some codomain S. For a given 𝜖 > 0 , differential privacy 
is then ensured if, for all pairs of subsets D1 and D2 of the 
data set, differing in one record (row), and for all subsets 
S′ ⊆ S , the ratio P(Q(D1)∈S

�)

P(Q(D2)∈S
�)
 is smaller than e� . By taking 

logarithms at both sides, we can rewrite this as

The randomization of the query depends of the method that 
is used. Noise can be added to the data before the function Q 
is evaluated (in the domain), or it can be added to the answer 
(in the codomain). One could imagine that by adding the 
noise to the data, before the query is asked, the data could be 
released as a protected data set. Then, one could think, any 
possible query could be asked on the data set, while still pre-
serving the privacy. Therefore, although differential privacy 
originally was defined for Strategy 2, it can in theory also be 
applied to Strategy 1. One of the more promising areas for 
practical use of differential privacy following Strategy 1 is 
the local model (Dwork and Roth 2014).

log
(
P(Q(D1) ∈ S�)

)
− log

(
P(Q(D2) ∈ S�)

)
< 𝜖.

2.2.4 � Integral privacy

Integral privacy is an alternative to differential privacy, 
designed to work with machine learning rather than with 
statistical methods (Torra and Navarro-Arribas 2016). A 
machine learning model satisfies integral privacy if the 
space of databases that could have generated that model is, 
for some given appropiate measure, large enough.

3 � The cover‑up privacy‑preserving data 
graph model

3.1 � Constructing the data graph

Given a data set D, consider the graph GT (D) defined so 
that there is a vertex for each property held by each object. 
Assuming that every object has n properties, each object 
is represented by a clique with one vertex of each of the n 
types, and this clique is disconnected from the rest of the 
graph. Since the graph consists of disconnected cliques, 
it is not a very interesting graph. However, note that this 
is very similar to representing the data in terms of a table: 
every clique is a record.

A data graph G(D), following Definition 1, can be con-
structed from GT (D) by

•	 Step 1. Identify all vertices that have the same type and 
property.

The modification is in general not lossless. Although all 
edges are preserved, the information that is lost is the 
partition of the edge set that was present in the disjoint 
cliques of GT (D) . In other words, it is in general no longer 
clear to which clique each edge belongs.

A database is often required to point out clearly which 
are the properties of a given object. For example, the doc-
tor expects the database to return the medical history, 
given the social security number of the patient. Therefore 
many graph database models would use directed edges 
from the social security number to the nodes represent-
ing the medical history. Our data graph G(D) can easily 
achieve the same by choosing the type social security num-
ber to be a unique identifier. Then the edges incident with 
a node of type social security number can be considered to 
be directed, in the same way as the edges of an undirected 
tree becomes directed when a root is chosen.

However, the topic of this article is data privacy, so we 
do not want to link information to individuals. Rather the 
goal is to detach the information from the individual.
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3.2 � Naïve anonymization of the data graph

Removing unique identifiers would correspond to naïve 
anonymization. But naïve anonymization has been 
proven to be insufficient as data protection method. More 
advanced methods are needed to protect the data.

Note the effect of naïve anonymization on the data 
graph G(D). By Lemma 2, there may be cliques that are 
not contained in a maximal clique. This can imply that 
naïve anonymization results in a database in which there 
are maximal cliques of data for which there was no object 
in the data set. That would not happen in a table. Note that 
naïve anonymization is the first step in most anonymiza-
tion methods, for example in the methods of this paper.

3.3 � Protecting the data graph

Consider the data graph G(D) again, representing multi-
ple edges between a pair of nodes (a, b) as one labeled 
edge (a, b, m

n
) , where m is the number of edges between 

a and b, and n is the number of objects in the population 
represented in the database. If the label was removed, 
information loss would of course increase. The lost infor-
mation is the number of objects in the data set that have 
a certain set of properties.

Now, data privacy is all about controlling information 
loss. We want to lose the unnecessary and information 
that is sensitive at individual level, while keeping the use-
ful information about the large masses. It therefore seems 
reasonable to keep an approximation about how many 
objects in the data set have a certain set of properties, 
while we indeed would like to lose the information saying 
whether there is actually any individual with a certain set 
of properties or not.

We want to keep the big picture, while avoiding too 
much detail. We modify G(D) in the following way:

•	 Step 2. Pick a k (typically at least 3 ) and for each edge 
of G(D), round off m to the closest integer multiple 
ik of k, and label the edge with ik

n
 . Remove all edges 

labelled with zero.

We call the resulting labelled data graph GP(D) , where P 
means protected. Note that the construction that we fol-
lowed until this point, somehow implements a notion of 
anonymity, while still representing the data set.

The information loss occurring between G(D) and 
GP(D) consists mainly of an uncertainty of the exact num-
ber of objects with a given pair of properties. The privacy 
protection can be regarded as a substantially more com-
plex version of k-anonymity.

3.4 � Reducing information loss: labeling cliques

Some of the information loss occurs already in the construc-
tion of G(D). More precisely, the number of objects with 
property set P may be partially lost when |P| > 2 . It is likely 
that the extent of this information loss highly depends on the 
structure of the data. In case it is desired that the database 
carries more information than G(D) can do, it is possible to 
label not only edges with the frequency of occurrence, but 
also each clique of size, say, at most t. A protected graph can 
be constructed from this labeled clique graph in the same 
way as GP(D) was constructed from G(D). Every frequency 
of occurrence m

n
 is replaced by ik

n
 , where ik is the integer 

multiple of k closest to m.

3.5 � The data graph in its general form

We summarize the discussion of this section with the defini-
tion of the protected data graph:

Definition 4  A cover-up privacy-preserving data graph of 
the data set D is the graph constructed from D in the fol-
lowing steps:

1.	 Represent each object in the data set with a complete 
graph on the node set of pairs (type,property). The result 
is a set of disjoint cliques.

2.	 (a)	� Identify all  nodes with the same pair 
(type,property).

(b)	 Merge all multiple edges into single edges.
	 (c)	� Label every clique of size at most t by m

n
 where m is 

the positive integer number of objects in the data 
set with all the properties in the clique, and n is the 
total possible number of objects with the properties 
in the same clique.

3.	 (a)	 Pick an integer k (typically at least 3).
(b)	 Modify the labels at the cliques from m

n
 to ik

n
 , where 

ik is the closest integer multiple of m.
(c)	 Remove all edges labelled with zero.

The number n can be the total number of objects in the 
data set, but the model is not limited to use this definition of 
n. For example, if the data set is the union of several smaller 
data sets, perhaps the types in these smaller data sets are 
different. Then it would be natural to let n be the number 
of objects in the smaller data sets that contain the relevant 
types.

The protected graph of Sect.  3.3 and Definition 2 is 
obtained from Definition 4 by taking t = 2 . Indeed, a clique 
of size two is simply an edge.
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3.6 � Data graphs and combinatorics

3.6.1 � The data graph as a flag complex

An abstract simplicial complex is a family of finite sets 
(called simplices) that is closed under the operation of taking 
subsets. An empty simplex in an abstract simplicial complex 
C is a set � such that every subset of � consisting of a pair 
of elements are in some simplex of C, but � is not. A flag 
complex is an abstract simplicial complex without empty 
simplices. Any flag complex can be constructed from its 
underlying 1-skeleton, which is a graph, as its clique com-
plex. The clique complex of a graph is the abstract simplicial 
complex consisting of the set of cliques in the graph.

If we forget the labels, the data graph G(D) is a simple 
graph. The clique complex of this graph is a flag complex. 
Because of the way the graph is constructed, there may be 
some clique that does not come from a set of properties of 
any object. A lossless representation of the data set D would 
have preserved that information, allowing the structure to 
have empty simplices. We see that a lossless representation 
of the data similar to our data graph would mean modeling 
the data rather as an abstract simplicial complex with empty 
simplices, and not as the clique complex of the data graph.

We get the following result.

Lemma 1  The data set D is represented with some informa-
tion loss by the flag complex defined as the clique complex 
of data graph G(D). The abstract simplicial complex defined 
by taking the set of properties of each object as maximal 
simplices on the same 1-skeleton G(D) is a lossless repre-
sentation of D.

Using the graph G(D) to represent D is clearly more effi-
cient from a storage point of view compared to using the 
abstract simplicial complex defined by the data. If we also 
store information about the number of objects in the data set 
corresponding to each clique of the graph, then the represen-
tations are similar in storage efficiency. An empty simplex 
would have the label 0.

3.6.2 � The data graph as a pregeometry

In incidence geometry, a pregeometry is a set X, a type func-
tion � ∶ X → I from the set X to a set I of types, and an inci-
dence relation ∼ , such that if two elements from X are inci-
dent, then they have different type. The incidence graph of 
a pregeometry is the |I|-partite graph with X as node set and 
an edge between a, b ∈ X if and only if a and b are incident.

A clique in the incidence graph of a pregeometry is 
called a flag. Since elements of the same type cannot be 
incident, all elements in a flag have different types. A flag 
with one element of each possible type is called a chamber. 

A pregeometry is a geometry if every flag is contained in a 
chamber.

Lemma 2  A data graph for a data set in which each object 
has only one property of each type is a pregeometry, how-
ever not necessarily a geometry. The data corresponding to 
one object is represented by a maximal flag (a chamber).

Proof  It is clear that the underlying graph of the data graph 
is a pregeometry. Indeed, the set X is the set of nodes rep-
resenting properties, the type function is the function that 
assigns to each property a type, and the incidence relation is 
defined by the edges of the graph—two properties are related 
if there is some object that have both.

To prove that it is a geometry, we would have to show that 
every flag is contained in a chamber. But this is not true in 
general. For example, consider the flag John, 45 and Diabe-
tes from the example in Sect. 2.1.2. Add a unique identifier 
to the data set. This corresponds to adding 3 nodes of a forth 
type, each connected to the nodes in the flag with 3 proper-
ties of the corresponding individual. There will therefore be 
no node of type 4 connected to all nodes in the flag John, 45 
and Diabetes, so it will not be contained in a maximal flag.	
� ◻

For someone that likes incidence geometry, this can of 
course be somewhat disappointing. From a computer sci-
ence point of view the observation of Lemma 2 is of similar 
importance as Lemma 1. The data graph model may contain 
information (in form of a flag) which was not present in the 
original data set.

3.7 � Information loss

The major factors giving the information loss of represent-
ing D by the protected data graph GP(D) have already been 
described. To summarize, the information can be decom-
posed into two components:

1.	 Information loss coming from using the data graph 
model. This information loss is due to the fact that the 
data graph (and its clique complex) forgets the original 
partition of the data sets into disjoint cliques. Lemma 
1 and Lemma 2 give further useful descriptions of the 
consequences. Note that if t is the number of types in 
Definition 4, then there is no information loss coming 
from using the data graph model!

2.	 Information loss coming from rounding off the labels. 
This means that the model forgets the exact number of 
objects with a given set of properties. Note that this is 
different from the information loss of most methods giv-
ing k-anonymous tables. Methods that provide k-anon-
ymous tables often use generalization and suppression. 
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Data is first partitioned into similar clusters of size at 
least k. Then attributes are generalized in order to fit all 
members of the cluster. Records with attributes that are 
difficult to cluster can be suppressed, either by remov-
ing the entire record, or just suppressing the particu-
lar attribute (Sweeney 2002). Our protected data graph 
method has a different information loss, because attrib-
utes are not generalized. Attributes can be suppressed 
when rounding to zero, but the rounding can as well 
give a protected database that indicates a higher number 
of objects with a given set of properties than the actual 
number.

3.8 � Disclosure risk

As was described in Sect. 2.2.2, two weaknesses of k-ano-
nymity are (1) the risk of missing out a quasi-identifier and 
(2) the risk of attribute discloure because of low diversity 
within the anonymity sets.

The cover-up data graph model does not use quasi-identi-
fiers, but treats all attributes equal. Therefore the first of the 
risks is not a problem.

Attribute disclosure can occur in a k-anonymous table 
when all records with property set P have the same sensitive 
property pS . In the protected data graph this corresponds to a 
clique C1 with node set P ∪ {pS} such that there is no clique 
C2 with node set P ∪ {qS} , with pS ≠ qS of the same type 
and non-zero proportions on both C1 and C2 . This can clearly 
occur, however the rounding implies that some individuals 
probably have been removed from the database, while some 
fake individuals might have been added. Applying an argu-
ment of uncertainty, attribute disclosure occurs only with a 
given probability of success.

The risk of reidentification in a data graph seems to cor-
respond to the risk that an adversary successfully identifies 
a clique, or a maximal clique, as corresponding to a given 
individual. This is clearly possible. If an individual has some 
publicly known property set P and there is a clique in the 
datagraph with this node set, one could argue that reidenti-
fication has occurred. But all edges in the clique are labeled 
with a positive integer multiple of k, carrying the informa-
tion that there is at least k objects with the given properties. 
Therefore, what the adversary found is not the data of the 
individual, but an anonymity set of the individual. Conse-
quences are therefore limited to possible attribute disclo-
sure, which we have seen above can only have probabilistic 
success.

4 � The probabilistic privacy‑preserving data 
graph model

The privacy-preserving data graph model has a frequency or 
proportion label on each edge. By interpreting this frequency 
as a probability, the model becomes random. The model can 
be generalized further, by allowing edges to be labeled not 
only by probabilities, but by probability distributions. We 
put a probability distribution on each edge of the graph, and 
we do the same for the non-edges, but only between nodes 
of different type.

Definition 5  A probabilistic privacy-preserving data graph 
is an n-partite complete graph KV1,…,Vn

= (V , Ẽ) , with the 
same vertex set as the data graph G(D) = (V ,E) and a dis-
crete random variable with a discrete probability distribution 
on each edge.

For example, consider an edge (a, b) labeled with the 
random variable representing the number of objects in the 
data set with both properties a and b, together with the bino-
mial distribution with parameters n and p. Then this can be 
interpreted so that the probability that k out of the n objects 
that could possibly have both the properties a and b follows 
the binomial distribution with parameters n and p, and there-

fore equals 
(
n

k

)
pk(1 − p)n−k.

For a different example, consider a graph in which an 
edge (a, b) is labeled with the random variable returning 
the adjacency matrix of a bipartite graph with s vertices of 
type a and t vertices of type b and the probability distribu-
tion of this random variable is defined so that it reflects the 
properties of the underlying data set. In such a situation, the 
random variables on the different edges are not likely to be 
independent.

The model allows to represent complicated scenarios, 
using a variety of discrete random variables and probability 
distributions. By using stochastic processes instead of prob-
ability distributions, also changes over time can be taken 
into account.

This privacy-preserving graph database model differs in 
nature from the model from Definition 4. It is not merely a 
graph database with probabilities on the edges, it is a graph 
database with a collection of random variables on the edges. 
The great flexibility and the probabilistic language should 
make this representation of a data set highly suitable as a pri-
vacy-preserving data release method for statistical analysis.
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5 � Summary and future work

A model for representing data in terms of a graph in a pri-
vacy preserving manner was presented. Information loss 
and disclosure risk was discussed, as were relations to some 
mathematical concepts within the area of combinatorics. 
In particular, abstract simplicial complexes and incidence 
geometries were used to express the nature of the informa-
tion loss theoretically. Also a model that represents the data 
in terms of a graph of random variables was suggested.

Future work involves, for example,
•	 the study of the models in practice, in particular with 

respect to information loss, something that would imply 
defining statistical methods adapted to the model,

•	 obtaining a better understanding of the disclosure risk of 
Definition 5,

•	 applying the protection method, not to the clique complex 
of the data graph, but to the abstract simplicial complex 
that represents the data in a lossless manner,

•	 to study the compatibility of probability distributions on 
the edges of the graph of Definition 5.
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