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Optimal Energy Allocation in Multisensor Estimation Over Wireless
Channels Using Energy Harvesting and Sharing

Steffi Knorn , Subhrakanti Dey , Anders Ahlén , and Daniel E. Quevedo

Abstract—We investigate the optimal power control for multisen-
sor estimation of correlated random Gaussian sources. A group
of wireless sensors obtains local measurements and transmits
them to a remote fusion center (FC), which reconstructs the mea-
surements using the minimum mean-square error estimator. All
the sensors are equipped with an energy harvesting module and
a transceiver unit for wireless, directed energy sharing between
neighboring sensors. The sensor batteries are of finite storage ca-
pacity and prone to energy leakage. Our aim is to find optimal power
control strategies, which determine the energies used to transmit
data to the FC and shared between sensors, so as to minimize
the long-term average distortion over an infinite horizon. We as-
sume centralized causal information of the harvested energies and
channel gains, which are generated by independent finite-state sta-
tionary Markov chains. The optimal power control policy is derived
using a stochastic predictive control formulation. We also investi-
gate the structure of the optimal solution, a Q-learning based sub-
optimal power control scheme and two computationally simple and
easy-to-implement heuristic policies. Extensive numerical simula-
tions illustrate the performance of the considered policies.

Index Terms—Energy harvesting, energy sharing, fading, multi-
sensor estimation, networks, power control, Q-learning.

I. INTRODUCTION

Wireless sensors have become more powerful and affordable in re-
cent years and are used in a growing number of areas, [1]–[4]. Often,
several sensors are used to construct a wireless sensor network (WSN).
Each sensor transmits its measurements wirelessly over a network to
a remote fusion center (FC), which further processes the data, e.g.,
by reconstructing or analyzing the measured sources or computing an
actuation signal. When using battery powered sensors, a significant
challenge is to spend the available power in an optimal fashion, i.e.,
“power control” or “power management,” [5]–[8].

Another promising alternative might be to harvest energy from the
sensors’ environment using, e.g., solar panels, windmills, thermoelec-
tric elements, radio frequency harvesters, or vibration harvesters. How-
ever, since harvesting is an often unpredictable and unreliable power
source, and rechargeable batteries have limited capacity, spending the
available energy in an optimal fashion is a challenging task. Several
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optimal power control policies for different system settings with en-
ergy harvesting and optimizing a variety of performance criteria have
been proposed. For example, power control policies were presented by
[9] and [10] to maximize the throughput or minimize the mean delay
or transmission completion time, respectively, and power control algo-
rithms were derived to maximize the mutual information of a wireless
link in [11]. An optimal packet scheduling problem for a single-user
system with infinite battery and energy harvesting was investigated
in [12]. The method to jointly control data queue and battery buffer
to maximize the long-term average sensing rate of a WSN with en-
ergy harvesting was studied in [13]. The problem of designing optimal
sensor transmission power control schemes under energy harvesting
constraints was also investigated in [14].

An energy harvesting sensor that sends its measurements toward
a remote estimator was considered in [15]. Also, a communication
scheduling strategy for the sensor and an estimation strategy for the
estimator, both of which that jointly minimize the expected sum of
communication and distortion costs over a finite time horizon, was
developed in [15]. A setting where sensor measurements are wirelessly
sent over an unsure channel from an energy harvesting sensor to a
remote estimator was investigated in [16]. This was extended to a
closed control loop in [17].

Apart from energy harvesting, wireless energy transfer is another
promising option to overcome the limitations of finite power resources
since it allows harvested energy to be transferred and used in larger sen-
sor networks, where all sensors might not be able to harvest sufficient
amounts of energy at all times. It was experimentally demonstrated in
[18] that energy can be transferred between two resonant objects with
efficiencies more than 50% for distances up to 2 m. Similar energy
transfer techniques were also discussed in [19]. Building on these re-
sults, the benefits of wireless energy transfer in wireless sensor systems
were investigated in [20]–[25].

A significant hurdle while using batteries or capacitors in power
wireless sensors, is the fact that these devices are not perfect. To ad-
dress such issues, capacitor leakage aware algorithms for energy har-
vesting wireless devices were developed in [26]. The approach in [27]
considered a single communication link with a hybrid power source
including a constant energy supply and energy harvesting prone to en-
ergy leakage. A slightly different approach in [28] considered losses
while saving harvested energy in the battery but lossless energy storing
and energy retrieval from the battery.

A different line of research was conducted in [29] and [30], investi-
gating a multisensor estimation problem. Wireless sensors report their
measurements via a star network, over fading channels to a central
FC, which reconstructs the random source observed by the sensors. All
sensors are equipped with individual energy harvesting modules able
to transfer energy via directed wireless links to neighboring sensors.
Considering a finite time horizon, optimal power control policies for
information transmission and energy sharing were derived to minimize
the overall distortion at the FC. These results showed that energy shar-
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ing can be particularly beneficial (and potentially worth investing in) in
case the harvesting and channel gain characteristics differ significantly
between the sensors. However, implementing such finite time solu-
tions is difficult. Optimal policies are time varying and require advance
knowledge of the length of the time horizon of the application. Also,
Knorn et al. [30] assumed perfect batteries and/or super-capacitors,
independent and identically distributed (i.i.d.) channel gains and har-
vested energies and only a single point source. This paper considers
more realistic scenarios by studying the more practically relevant case
of infinite-time horizon power management. This leads to a stationary
power control scheme, which can be implemented without knowing
the run-time of the application a priori. Recalculating or adapting the
policy is, hence, only necessary if the underlying statistics of the ran-
dom processes change, which one assumes to be infrequent. The main
contributions of this paper are as follows.
1) We investigate optimal power control schemes for information

transmission and energy sharing in multisensor estimation of a
spatially correlated random source vector, and minimize a long-
term average distortion cost over an infinite horizon, with cen-
tralized causal information at the fusion center. We also consider
Markovian fading channels and harvested energies and allow the
sensor batteries/energy storage devices to be imperfect and subject
to energy leakage.

2) The optimal stationary power control scheme is obtained by a
stochastic control approach using a Markov decision process
(MDP) formulation, where the optimal energy values for infor-
mation transmission and sharing are found by solving a Bellman
dynamic programming (DP) equation using relative value itera-
tion; see [31]. Furthermore, some important structural properties
of the optimal solution are established.

3) Motivated by practical limitations and on the basis of the structural
properties, we show that the optimal choice of transmission ener-
gies is a simple threshold policy on the sensor battery level, pro-
vided that all other variables are fixed. We also consider a practical
scenario where the exact statistical information of the underlying
random processes may not be available, and present a Q-learning
algorithm that yields a suboptimal solution to the power control
problem at hand.

Section II presents the model, and Section III studies the infinite-
horizon optimal power control problem. Section IV studies the structure
of the optimal solution. Three suboptimal policies are proposed in
Sections V and VI. The performances of the power control policies are
compared using numerical examples presented in Section VII, followed
by conclusion in Section VIII.

II. SYSTEM MODEL

We consider a star-network with M sensors and an FC. Each sen-
sor m individually measures a signal of interest, θm(k), at discrete-
time instants, k ∈ {1, 2, 3, . . . }, subject to measurement noise. The
measurements are spatially correlated between the sensors. The re-
mote sensors transmit their information to the FC, which estimates the
vector θ(k) = (θ1 (k), θ2 (k), . . . , θM (k))T , given the measurements
received. We consider an analog amplify-and-forward uncoded trans-
mission strategy subject to additive noise, [32]. Each sensor is equipped
with a local battery/energy storage device, an energy harvester, and a
unit to transmit and receive energy from other sensors, along with
a transceiver for information transmission and reception, subject to
transmission losses. A simple system is shown in Fig. 1.

A. Source Model and Sensor Measurements

We consider θ(k) to be an i.i.d., band-limited Gaussian process
with zero mean. The measurements of the sensors are spatially cor-

Fig. 1. Simple system with three sensors.

related such that its covariance matrix (possibly nondiagonal) is
Rθ = E

{
θ(k)θT (k)

}
. We assume that Rθ > 0 (positive definite).

The measurements of sensor m, denoted by xm (k), are subject to
measurement noise, nm (k), such that we have the following:

xm (k) = θm (k) + nm (k) (1)

where 1 ≤ m ≤ M and k ≥ 1. The measurement noises, nm (k), are
assumed to be i.i.d. Gaussian, mutually independent, and independent
of θ(k) with zero mean and variances σ2

m .

B. Energy Harvester, Energy Sharing, and Battery Dynamics

Each sensor is equipped with an energy harvester to gather energy
from the environment. The harvested energy at sensor m at time k is
denoted by Hm (k) and is independent of the process, θ(k), and the
measurement noise but may depend on Hn (k) for n �= m. The vector
of harvested energies, H(k) = (H1 (k), . . . , HM (k)), is described as a
first-order homogeneous finite-state irreducible and aperiodic Markov
chain, motivated by empirical measurements reported in [33].1 We
further assume that the Markov chain is unichain, i.e., it has a single
recurrent class and a possibly empty set of transient states; see [31]. We
consider a slotted time model. For simplicity, each time-slot is assumed
to be equal to the sampling period between two discrete sampling
instants. The energy harvested at time slot k is stored in the battery,
and can be used for data transmission to the FC or for energy sharing
in time slot k + 1. The energy used to transmit data from sensor m to
the FC at time k is denoted by Em (k).

Each sensor can transmit energy to neighboring sensors and also
receive energy from neighboring sensors via directed wireless energy
transfer. This can be realized, for example, by energy transfer between
two resonant objects such as discussed in [18] and [19], laser beams,
or beamforming radio waves. The set of neighboring sensors from
which sensor m can receive energy is denoted by NR ,m , and the set of
neighboring sensors to which sensor m can transmit energy is denoted
by NT ,m . The energy transferred from sensor m to sensor n at time k
is denoted by Tm,n (k). The efficiency of the energy transfer link from
sensor m to sensor n, which accounts for losses in the wireless energy
transfer process, is given by ηm,n < 1. In general, the efficiencies ηm,n

can be functions of time, i.e., ηm,n (k). Here, we will assume time-
invariant efficiencies.

Furthermore, we assume that during each time interval, some stored
energy in the battery is lost because of leakage; see [26]. Thus, if no
energy is added or used at time k, at time step k + 1 only a fraction
μ ∈ [0, 1] of the energy stored in the battery at time k is available for

1In case the harvested energies are mutually independent, each individual
Hm (k) would be described by an independent finite-state Markov chain.
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use. Hence, using the notation mentioned above, the following are the
dynamics of the battery level of sensor m at time k + 1:

Bm (k + 1) = min

⎧
⎨

⎩

⎛

⎝Bm (k)+Hm (k)−Em (k)−
∑

n∈NT , m

Tm,n (k)

+
∑

n∈NR , m

ηn,m Tn,m (k)

⎞

⎠ μ; Bm ax
m

⎫
⎬

⎭
(2)

where Bm ax
m denotes the maximal battery capacity of sensor m.

C. Transmission Model

Each sensor has a transmitter using an analog amplify-and-forward
uncoded strategy.2 Hence, at each time-slot k, sensor m trans-
mits its measurement, xm (k), amplified by a factor of

√
αm (k).

The energy needed for transmission is then given by Em (k) =
αm (k)

(
(Rθ )m ,m + σ2

m

)
, where (Rθ )m,n denotes element m, n of

matrix Rθ . The channel power gain of the mth channel between sensor
m and the FC is denoted by gm (k), and the vector of channel gains,
g(k) = (g1 (k), . . . , gM (k)), is assumed to be a first-order stationary
and homogeneous finite-state Markov block-fading process. We as-
sume that the Markov chain is unichain and that the channel gains are
independent of the harvested energies, the process θ(k), and the mea-
surement noises. We further assume that, within each block, the channel
gains remain constant. For simplicity, the duration of each fading block
is assumed to be the same as the duration of each transmission slot. We
consider an orthogonal multiple access scheme between the sensors
and the FC. The received signal at the FC from sensor m at time k is
zm (k) =

√
αm (k)gm (k)xm (k) + ζm (k) where ζm (k) is assumed to

be an i.i.d. additive white Gaussian noise with variance ξ2
m .

D. Distortion Measure at the Fusion Center

At the FC, the minimum mean-square error estimator, [34], pro-

vides the vector of estimates θ̂(k) =
(
θ̂1 (k), . . . , θ̂M (k)

)T
given the

vector of received signals z(k) = (z1 (k), . . . , zM (k))T = Hθ(k) +
v(k) with v =

(√
α1g1n1 + ζ1 , . . . ,

√
αM gM nM + ζM

)T
and H =

diag
(√

α1g1 , . . . ,
√

αM gM

)
. So, the distortion is given by the

following:

D(E(k), g(k)) := trace
(
E

{(
θ(k) − θ̂(k)

) (
θ(k) − θ̂(k)

)T
})

= trace
((

HT R−1
v H + R−1

θ

)−1
)

(3)

whereE(k) = (E1 (k), . . . , EM (k)) is the vector of transmission ener-
gies and Rv = diag (α1g1σ

2
1 + ξ2

1 , . . . , αM gM σ2
M + ξ2

M )T . The dis-
tortion is a random process as θ(k) is a random variable.

E. Information Patterns

We consider a causal information pattern using only information of
current and past channel gains and harvested energies. Furthermore,
we consider centralized information, where the FC has causal infor-
mation of the channel gains, harvested energies, and battery levels of
all sensors. This can be achieved in practice by the FC transmitting

2Optimality of analog transmission for multisensor estimation of a memory-
less Gaussian source over a coherent multiaccess channel was shown in [32].
Furthermore, this scheme is very simple to implement since it does not require
complex coding/decoding and incurs no delay other than propagation delay.

periodic pilot signals to the sensors at the beginning of each transmis-
sion slot, from which the sensors estimate their channels and report
back their channel gains and previously harvested energies or current
battery levels to the FC via orthogonal control channels. We assume
the channels between the sensors and the FC are reciprocal, such as in a
time-division-duplex framework. The FC computes the optimal power
control schemes and informs the sensors at each slot.3

III. INFINITE-TIME HORIZON OPTIMAL ENERGY ALLOCATION

In this section, we formulate an infinite-time horizon predictive
control problem subject to the energy constraints in (2) to minimize
the overall long-term average distortion (3) at the FC. It is consid-
ered that only causal information is available such that the infor-
mation available at time k ≥ 1 is Ik = {g(k),H(k),B(k), Ik−1},
where B(k) = (B1 (k), . . . , BM (k)) is the vector of battery levels, and
I1 = {g(1),H(1),B(1)}. The information Ik is used at each time k
at the FC to decide the amount of the energy used for data transmission
from the sensors to the FC, i.e., Em (k) for all m = 1, . . . , M , and
the amount of energy transferred between sensors, i.e., Tn,m (k) for all
m = 1, . . . , M and n ∈ NT ,m . A power control policy is a set of func-
tions to determine ({Em (k)}, {Tm,n (k)}) : m ∈ {1, 2, . . . , M}, and
n ∈ NT ,m }. A policy is feasible if the following energy constraints:

Em (k) ≥ 0, Tm,n (k) ≥ 0, Em (k) +
∑

n∈NT , m

Tm,n (k) ≤ Bm (k)

(4)
are almost surely (a.s.) satisfied for all 1 ≤ m, n ≤ M and k ≥ 1.
The admissible control set is the set of all the possible power control
policies, which are based only on Ik and do not violate the energy
constraints in (4). For future reference, we define T(k) as the matrix
with entries (T(k))m,n = Tm,n (k) for n ∈ NT ,m and (T(k))m,n = 0
otherwise.

We aim to find the optimal power control scheme that minimizes the
expected average distortion measure over an infinite-time horizon. The
optimization problem is described as the following stochastic control
problem: Find a power control policy, which determines E(k) and
T(k), such that the following cost:

lim sup
K →∞

1
K

K∑

k=1

E {D(E(k), g(k))} (5)

is minimized subject to (4) being satisfied a.s. for 1 ≤ m, n ≤ M and
1 ≤ k ≤ K , and Bm (k) satisfying (2).

The stochastic control problem in (5) with centralized information
Ik can be regarded as an MDP formulation, {S,A,P}, with state
space, S = {B, g,H}, and action space, A = {E,T}. The transition
probability from state S to S′ under action A, i.e., P(S′|S,A), can be
derived from the battery dynamics in (2) while considering the Markov
chains describing the channel gains and harvested energies. See [31]
and [35].

To simplify the notation, denote g = g(k), H = H(k), B = B(k),
E = E(k), and T = T(k), as well as g̃ = g(k + 1), H̃ = H(k + 1),
and B̃ = B(k + 1). Under the given assumptions, the existence of
a stationary optimal power control policy computed offline from a
Bellman DP equation follows.

3The communication overhead between the sensors and the FC for reporting
channel gains and battery levels also consumes energy at the sensors. This is not
explicitly taken into account in this paper. However, if this energy consumption
is constant for each transmission slot, it can be taken into account by subtracting
it from the maximum battery level and defining a modified maximum battery
level for each sensor.
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Theorem 1: Suppose a unichain power control policy4 exists and
consider the average-cost optimality Bellman equation, as follows:

ρ+V (g,H,B)= min
E ,T

{
D(E, g)+E

{
V
(
g̃, H̃, B̃

∣
∣∣ g,H,E,T

)}}

(6)

where E and T satisfy (4), and V is the relative value function. Then,
the infinite-time horizon stochastic control problem in (5) has a unique
solution. Furthermore, if the set of possible policies includes at least one
policy under which energy is used for data transmission or transferred
to neighboring nodes, such that the associated Markov chain of battery
levels is unichain, then the value of the infinite-time horizon stochastic
control problem in (5) is given by ρ, which is the unique solution of
(6). The optimal average cost, ρ, is independent of the initial conditions
g(0), H(0), and B(0).

Proof: Since it is assumed that the Markov chains of the har-
vested energies and the channel gains are unichain and that a stationary
unichain policy exists, it can be shown that (6) has a unique solution
by following similar steps as in [36, Ch. 4.2, Proposition 2.5]. Then,
by [36, Ch. 4.2, Proposition 2.6], the solution of (6) is independent of
the initial state. �

Remark 1: The stationary optimal solution to (5) is given by the
following:

{Eo (g,H,B),To (g,H,B)}

= arg min
E ,T

{
D(E, g) + E

[
V (g̃, H̃, B̃)|g,H,E,T

]}
(7)

such that E and T satisfy the energy constraints in (4) with the battery
dynamics in (2) for all m, and V constitutes the solution to the average
cost Bellman equation in (6).

The Bellman equation in (6) can be solved using the relative value
iteration algorithm; see [31]. In order to facilitate the numerical com-
putation, the state and action spaces are discretized, in particular the
battery levels and the power level space. It is expected that the solu-
tion of the discretized Bellman equation approaches the solution of the
continuous-valued Bellman equation as the number of discretization
levels grows [37].

IV. STRUCTURAL RESULTS OF THE OPTIMAL ENERGY

ALLOCATION POLICY

In this section, we investigate the structure of the optimal energy
allocation solution. Given that V is convex in B (see [29], [34]), it
will be shown that, if all other decision variables such as the shared
energies Tm,n for all m and n and the transmission energies En for
all n �= m have been set, then the optimal transmission energy Em is
nondecreasing in Bm .

Theorem 2: Given g, H, T as well as Bn and En for all n �= m, the
optimal transmission energy allocation policy, Eo

m , is nondecreasing
in Bm .

Proof: First, we define the right-hand side (RHS) of (7) for fixed
g, H, T as well as Bn and En for all n �= m, as follows:

L(Em , Bm ) := arg min
0≤E m ≤B m

{
D(E, g)+E

[
V (g̃, H̃, B̃)|g,H,E,T

]}
.

(8)
Hence, the transmission energy of the single sensor m, i.e., Em, is
only constrained by the local battery level, Bm , and L in (8) is only a
function of Em and Bm .

4A unichain policy is a stationary policy under which the associated Markov
chain has a single recurrent class, i.e., all states are visited an infinite number of
times with probability 1.

To show that Eo
m is nondecreasing in Bm , it is sufficient to

show that (8) is submodular in (Em , Bm ), as defined in [38],
as L(E ′

m , B ′
m ) + L(Em , Bm ) ≤ L(Em , B ′

m ) + L(E ′
m , Bm ) for all

B ′
m ≥ Bm and E ′

m ≥ Em . The first term of the RHS in (8) is inde-
pendent of the battery levels, B, and thus submodular in (Em , Bm ).
Define x = (x1 , x2 , . . . , xM )T with xm = Bm − Em for all
m, χ = (χ1 , χ2 , . . . , χM )T with χm = min{(Bm − Em + Hm −∑

n∈NT , m
Tm,n +

∑
n∈NR , m

ηn,m Tn,m )μ; Bm ax
m } for all m, and de-

note the last term in (8) as Z(xm ) := E
[
V (g̃, H̃, χ|g,H,E,T

]
. Since

V is convex in Bm as shown in [29, Lemma 5.1]; hence, Z(x) is con-
vex; this is equivalent to Z(x + ε) − Z(x) ≤ Z(y + ε) − Z(y) for
all x ≤ y and ε ≥ 0. Setting x = Bm − E ′

m , y = Bm − Em , and
ε = B ′

m − Bm , yields Z(B ′
m − E ′

m ) − Z(Bm − E ′
m ) ≤ Z(B ′

m −
Em ) − Z(Bm − Em ), which shows the submodularity of L in
(Em , Bm ). Submodularity implies that given g, H, T, Bn , and En

for all n �= m, the optimal transmission energy, Em , is, hence, a non-
decreasing function of the battery level, Bm . �

The abovementioned result is particularly useful for practical cases
where the transmission energies, E, at the power amplifier may only
take values from a small finite set. In fact, a wireless sensor is often
only able to transmit at a low power, Elow (or not at all, i.e., Elow = 0),
or a high power, Ehigh > Elow . Then, it can be shown that for such
cases, a threshold policy exists.

Corollary 1: Given g, H, T as well as Bn and En for all n �= m, if
Em is restricted to take values from the finite set Em ∈ {Elow , Ehigh},
there exists a threshold B∗

m > 0, such that the following holds true:

Eo
m (g,H,B) =

{
Elow if B < B∗

m

Ehigh if B ≥ B∗
m

. (9)

Proof: The result follows directly from the fact that Eo
m is nonde-

creasing in Bm ; see Theorem 2. �
It should be noted that the above mentioned result is not only

just limited to Em (k) taking binary values only. Indeed, in the case
when Em (k) takes values from a larger discrete set, e.g., Em (k) ∈
{0, Elow , Ehigh}, two or more thresholds would exist instead of one to
separate the energy levels.

Threshold-based policies for Em (k) taking values from a discrete
set greatly reduce the search space to find the optimal policy. No an-
alytical expression for the optimal thresholds exists, but several grid
search techniques combined with stochastic-optimization based itera-
tive algorithms can be used; see, e.g., [16] and especially the simulta-
neous perturbation stochastic optimization gradient algorithm in [29,
Section V.A, Algorithm 1]. In particular, this algorithm can be applied
to find locally optimal thresholds, B∗

m , with minor adaptations to the
appropriate distortion cost function. Similarly, it can be also shown that
there exists a threshold policy for the transferred energy, Tm,n , if all
other variables are fixed.

V. Q-LEARNING

Solving the Bellman equation in (6) requires full knowledge of the
underlying transition probability matrix, P . In practice, the transition
probabilities of the Markov process generating the channel gains and
the harvested energies may not be perfectly known. In this case, the
optimal power control cannot be determined by solving the Bellman DP
equation presented in the previous section. Hence, finding suboptimal
algorithms, which do not rely on complete knowledge of the underlying
system, is an important task. In the case when state,S, and action space,
A, are discrete or discretized (i.e., the channel gains, the harvested
energies, the battery levels, and the allocated energy usage and energy
transfer values belong to finite-discrete sets) and the fading channels
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and harvested energies are independent finite-state Markov chains, the
average-cost optimality Bellman equation (6) can be simplified to the
Q-Bellman equation [39] as follows:

Q∗(g,H,B,E,T) = D(E, g)

+
∑

g̃ ,H̃ ,B̃

P(g̃|g)P(H̃|H)P(B̃|B,H,E,T)

min
Ẽ ,T̃∈A (B̃ )

Q∗(g̃, H̃, B̃, Ẽ, T̃) (10)

where Ẽ or T̃ are the chosen values for E or T at the next time step,
respectively, and A(B̃) is the set of all feasible choices of Ẽ or T̃ given
B̃. The iterative learning algorithm, which is referred to as Q-learning,
approximates the average cost for a given set of states and actions,
i.e., Q, by adjusting its value according to the recent observed cost,
which is here the distortion denoted by D. The readers are referred
to [39] and [40] for more details on the stochastic approximation Q-
learning algorithm. Assuming that the probabilities P(g̃|g), P(H̃|H),
and P(B̃|B,H,E,T) are unknown, we obtain the following:

Q1 (g,H,B,E,T) = 0 for all g,H,B and E,T ∈ A(B) (11)

and for all k ≥ 1, we have the following:

Qk+1 (g,H,B,E,T) = Qk (g,H,B,E,T)

+ γ(k)
(

D(E, g) + min
Ẽ ,T̃∈A (B̃ )

Qk (g̃, H̃, B̃, Ẽ, T̃)

− Qk (g,H,B,E,T))

where {g̃, H̃, B̃, Ẽ, T̃} is the next state after {g,H,B,E,T} when
E,T ∈ A(B) is selected according to the ε-greedy method as follows:

{E,T} =

{
arg minE ,T∈A (B ) Qk (g,H,B,E,T) with prob. 1 − ε

chosen randomly ∈ A(B) with prob. ε
.

The algorithm converges to the optimal Q values if the step sizes, γ(k),
for all k ≥ 1 satisfy γ(k) > 0,

∑
k γ(k) = ∞, and

∑
k γ2 (k) < ∞,

[39], [40]. Note that convergence is guaranteed for all ε > 0. A small
value of ε is usually preferred as it allows us to better exploit the
knowledge regarding which choices of E and T lead to the minimal
expected cost.

VI. HEURISTIC POLICIES

The proposed solutions to find power control policies by finding the
optimal solution using (6) or solving the iterative learning algorithm
(10), require a considerable computational effort and time. Even if the
FC has sufficient energy resources, it may in practice be beneficial
to find simple, suboptimal policies, which require less computational
effort and time.

A. Heuristic 1: Modified Greedy Policy

A very simple policy is the greedy policy, where each sensor just
uses all the available energy to transmit its data to the FC. Hence,
Em (k) = Bm (k) for all m independent of the channel gain or any
other states. While implementing this policy, there is a considerable
risk of not having any energy available to transmit data from some
sensor m to the FC at some time k if no energy has been harvested in
the previous step. Thus, the greedy policy is slightly modified such that
Em (k) = B m (k )

2 , which ensures that at each time step, some energy is
available to transmit data from every sensor to the FC, if Bm (0) > 0
∀m.

B. Heuristic 2: Ad Hoc Policy

Inspired by our previous contribution [30], assume a simple system
with two sensors, where the agents can share energy and have access to
full causal information: the maximum battery level, mean channel gains
and harvested energies, energy transfer efficiencies, and current channel
gains and battery levels.5 Aiming to minimize the overall distortion at
the FC leads to the problem described in [30], for which necessary
optimality conditions are derived. Those have to be simplified in order
to reduce the computational complexity and to require only causal
information. The simplified necessary conditions for using energy for
data transmission to the FC (E1 (k) ≥ 0), for storing energy in the
battery for future use (F1 (k) ≥ 0) and for transferring energy to sensor
2 (T1 ,2 (k) ≥ 0), are as follows:

E1 (k) ≥ 0 if g1 (k) ≥ ḡ1 and g1 (k) ≥ η1 ,2 ḡ2 (12)

F1 (k) ≥ 0 if ḡ1 ≥ g1 (k) and ḡ1 ≥ η1 ,2 ḡ2 (13)

T1 ,2 (k) ≥ 0 if η1 ,2 ḡ2 ≥ g1 (k) and η1 ,2 ḡ2 ≥ ḡ1 . (14)

In the case of unlimited battery capacity, these simplified necessary
conditions could be used to allocate the energy at time step k. However,
since both batteries have limited capacities, storing all energy at time
k or transferring all energy from sensor 1 to sensor 2 at time k might
be undesirable despite the necessary conditions (13) or (14) being
satisfied, because it could lead to preventable battery overflow. Instead
of determining the power control policy solely based on the necessary
conditions, all three options (data transmission, storage, energy sharing)
are prioritized, and energy is then allocated accordingly with the aim
to minimize battery overflow as follows.

1) Denote the available power that is available at sensor 1 at time k by
B̄1 = B1 (k). Then, prioritize the three possible energy usage alterna-
tives, i.e., data transmission E1 (k), storage F1 (k), and energy sharing
T1 ,2 (k), by sorting g1 (k), ḡ1 , and η1 ,2 ḡ2 from highest to lowest.6 In
the case when g1 (k) = ḡ1 or g1 (k) = η1 ,2 ḡ2 , using energy for data
transmission has higher priority than storing energy or transferring it
to sensor 2, respectively. In the case when ḡ1 = η1 ,2 ḡ2 , storing energy
has higher priority than transferring it to sensor 2. Then, allocate B̄1

accordingly.
2) If transmitting data to the FC is the next highest priority, use

all remaining energy to transmit data to the FC. (Thus, no energy is
allocated to a task with a lower priority.)

3) If storing energy has the next highest priority, energy should
be stored. To avoid battery overflow (i.e., energy waste), one
should never store more energy than necessary to fill the battery
to its maximal capacity minus the mean harvested energy: F1 (k) =
min

{
max

{
Bm ax

1 (k) − H̄1 ; 0
}

; B̄1
}

. In the case there is more en-
ergy available in the battery than should be stored, the remaining energy
should be used according to the next following priority, i.e., following
the instructions in 2) or 4) and setting B̄1 → B̄1 − F1 (k).

4) If transferring energy to sensor 2 has the next highest pri-
ority, transfer as much energy to sensor 2 to have its battery full
for the next time step. To avoid battery overflow, no more energy
should be transferred than the battery capacity minus the mean har-
vested energy of sensor 2. Therefore, T1 ,2 (k) for η1 ,2 > 0 is equal
to min

{
max

{(
Bm ax

2 − B2 (k) + E2 (k) − H̄2
)
/η1 ,2 ; 0

}
; B̄1

}
. If

5Note that in the case of Markovian channel gains or harvested energies, the
mean channel gains, ḡ1 and ḡ2 , and the mean harvested energies, H̄1 and H̄2 ,
are calculated as the dot product of the channel gain levels or harvested energy
levels, respectively, and the corresponding stationary distribution.

6For example, if ḡ1 > g1 (k) > η1 ,2 ḡ2 , storing energy has the highest pri-
ority followed by data transmission to the FC, and transferring energy to the
second sensor has the lowest priority.
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η1 ,2 = 0, then T1 ,2 (k) = 0. In the case there is more energy in the
battery than should be transferred, the remaining energy should be
used according to the next following priority, i.e., following 2) or 3)
and setting B̄1 → B̄1 − T1 ,2 (k).

Remark 2: This heuristic policy favors transmitting data to the FC
if the current channel gain is higher than the mean, because then it
is beneficial to minimize the overall distortion by transmitting data
whenever the channel gain is better than the mean. In contrast, if a lot
of energy is available because of higher mean harvested energy, then
increasing the energy for data transmission further in the case of high
channel gains leads to only a small reduction of the distortion. It would
be better to store energy to be able to transmit data at time steps with
poorer channel gains. This simple policy cannot distinguish between
these two fundamentally different scenarios. It is designed to work well
for scenarios with overall little energy availability but maybe not be as
good for scenarios with higher amounts of energy.

VII. SIMULATION EXAMPLES

Example 1 (Effect of cross correlation): A system with two sen-
sors is simulated with η1 ,2 = η2 ,1 = 0.8, μ = 0 (no leakage), Bm ax

1 =
Bm ax

2 = 4 mWh, and Rθ = (1, ϕ; ϕ, 1), where ϕ is the cross cor-
relation between measurements θ1 and θ2 and is varied between 0
and 0.9. The channel gains and harvested energies are modeled as
3-level discrete Markov chains with the common transition matrix
T = [0.2, 0.3, 0.5; 0.3, 0.4, 0.3; 0.1, 0.2, 0.7]. We consider the “bal-
anced case,” where the state space for g1 and g2 is {0, 0.5, 1} and for
H1 and H2 is {0, 1, 2}, and the “unbalanced case,” where g2 and H1

are four times lower than g1 and H2 , respectively.
To facilitate the implementation of the DP and the Q-learning al-

gorithm, the space for the battery levels and the power levels for data
transmission or energy transfer were quantized uniformly with 16 lev-
els. The discretization of the decision variables leads to numerical
inaccuracies, which can be addressed by averaging the results over a
sufficiently long time span. The Q-learning algorithm was evaluated
by using two different training time horizons, i.e., 104 and 106 , respec-
tively, and with ε = 0.1. After calculating the corresponding Q-values
for both the training horizons, the performance of the algorithms were
evaluated for a given simulation time span by using the Q-values as a
lookup table to determine the best choice of E and T without adapting
Q-values further. Third, the heuristics described in Section VI were
implemented.

The average distortion and the energy usages for a simulation time
span of 104 time steps for the optimal solution (“DP”), the Q-learning
algorithm with the training time horizons 104 and 106 (“Q1” and
“Q2,” respectively), and the heuristics (“h1” and “h2”) are illustrated
in Fig. 2 . Increasing the cross correlation term, ϕ, leads to an overall
reduced distortion. As expected, the average distortion is the smallest
for the optimal algorithm (“DP”). The performance of the Q-learning
algorithm is quite poor if a short training time horizon of 104 time
steps is used (“Q1”) but improves for the training horizon 106 (“Q2”).
Also, the modified greedy policy (“h1”) performs almost as good as the
optimal solution (“DP”) for the balanced case, but the ad hoc heuristic
(“h2”) outperforms the modified greedy policy in the unbalanced case.

Example 2 (Effect of energy transfer efficiency): The system set-
tings from Example 1 were modified as follows: ϕ = 0.2 and η =
η1 ,2 = η2 ,1 varies between 0 and 1. See Fig. 3. In the balanced case,
the average distortion hardly decreases when increasing the energy
transfer efficiency despite the increase in the average energy transferred
between the sensors. In the unbalanced case, the average distortions
obtained for the optimal solution (“DP”) and the Q-learning (“Q2”) de-
crease for higher η. Again, the modified greedy policy (“h1”) is more

Fig. 2. Example 1: Average distortion (left) and average energy usage
(right, (E1 + E2 )/2 in red, (T1 ,2 + T2 ,1 )/2 in blue), versus cross corre-
lation term, ϕ, for the “balanced case” (top) and the “unbalanced case”
(bottom).

Fig. 3. Example 2: Distortion (left) and average energy usage (right,
(E1 + E2 )/2 in red, (T1 ,2 + T2 ,1 )/2 in blue), versus energy transfer
efficiency, η, for the “balanced case” (top) and the “unbalanced case”
(bottom) for low cross correlation.

suitable for the balanced case while the ad hoc heuristic (“h2”) achieves
better results in the unbalanced case.

Example 3 (Effect of battery leakage): The system settings are
similar to the examples mentioned above with ϕ = 0.8 and η = 0.8.
The battery leakage parameter, μ, is varied between 0 (no leakage)
and 0.5. The simulations in Fig. 4 show that a higher battery leakage
parameter, μ, leads to an increase in the average distortion. It is also
evident that energy sharing offers more benefits in the unbalanced case
as compared to those in the balanced scenario. If the energy loss due
to battery leakage increases, then the energy shared among the sensors
approaches the average amount of energy used for data transmission.
As in the examples mentioned above, the modified greedy policy (“h1”)
is outperformed by the ad hoc policy (“h2”) in the case of unbalanced
networks. In the case of balanced networks, the ad hoc heuristic (“h2”)
outperforms the modified greedy policy (“h1”) for sufficiently high
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Fig. 4. Example 3: Distortion (left) and average energy usage (right,
(E1 + E2 )/2 in red, (T1 ,2 + T2 ,1 )/2 in blue), versus battery leakage fac-
tor, μ, for the “balanced case” (top) and the “unbalanced case” (bottom).

battery leakage despite the ad hoc policy being developed for systems
without battery leakage.

Using these simulations, it becomes clear that the optimal predic-
tive power control scheme outperforms all suboptimal power control
algorithms. Also, when considering the energy sharing between neigh-
boring sensors by increasing the energy transfer efficiency, the overall
distortion decreases, which indicates the usefulness of energy sharing.
However, the extent of the reduction in the overall distortion while
implementing the optimal power control solution compared to subop-
timal schemes or while enabling wireless energy transfer, significantly
depends on the system settings. If the system is balanced, little can be
gained from applying the optimal power control or enabling wireless
energy transfer. Implementing the simple modified greedy policy yields
almost the same distortions as those yielded by the optimal solution.
In unbalanced systems, the ad hoc heuristic outperforms the modified
greedy policy.

VIII. CONCLUSION

This paper studied the distortion minimization problem of a multi-
sensor system, where each sensor transmits its measurement to an FC
over a fading channel for remote estimation at the FC. On the basis of
causal information, the FC computes the optimal predictive power con-
trol policy to minimize a long-term average distortion cost, provided
the following.
1) The batteries at the sensors have a limited capacity and are prone

to energy leakage.
2) The sensors can harvest energy from their environment.
3) The sensors are able to wirelessly share energy with their neighbors

subject to losses.
Harvested energies and channel gains are modeled as finite-state

Markov chains.
The optimal solution is obtained using a stochastic predictive control

approach, resulting in a Bellman DP equation. A suboptimal Q-learning
algorithm, which does not require a priori knowledge of system
parameters, is studied; two heuristic power control policies are also
presented. Simulations reveal that the average distortion decreases as
the cross correlation and the energy transfer efficiency increase. In
most scenarios, the optimal solution clearly outperforms the subopti-

mal policies. It can be seen that an increase both in energy transfer
efficiency and cross correlation have a significantly higher impact on
the average distortion if the system is unbalanced, i.e., if one sensor has
a substantially higher average harvested energy and a poorer channel
compared to its neighbor.

The results in this paper reveal important insights into WSNs with
energy harvesting and energy sharing. Even for simplistic network
settings, the optimal energy allocation policy is far from trivial. Indeed,
the findings presented here provide a benchmark for more complicated
network topologies.
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