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An Algorithm for the Removal of Cosmic
Ray Artifacts in Spectral Data Sets

Sinead J. Barton1 and Bryan M. Hennelly1,2

Abstract

Cosmic ray artifacts may be present in all photo-electric readout systems. In spectroscopy, they present as random

unidirectional sharp spikes that distort spectra and may have an affect on post-processing, possibly affecting the results

of multivariate statistical classification. A number of methods have previously been proposed to remove cosmic ray

artifacts from spectra but the goal of removing the artifacts while making no other change to the underlying spectrum

is challenging. One of the most successful and commonly applied methods for the removal of comic ray artifacts involves

the capture of two sequential spectra that are compared in order to identify spikes. The disadvantage of this approach is

that at least two recordings are necessary, which may be problematic for dynamically changing spectra, and which can

reduce the signal-to-noise (S/N) ratio when compared with a single recording of equivalent duration due to the inclusion of

two instances of read noise. In this paper, a cosmic ray artefact removal algorithm is proposed that works in a similar way

to the double acquisition method but requires only a single capture, so long as a data set of similar spectra is available. The

method employs normalized covariance in order to identify a similar spectrum in the data set, from which a direct

comparison reveals the presence of cosmic ray artifacts, which are then replaced with the corresponding values from

the matching spectrum. The advantage of the proposed method over the double acquisition method is investigated in the

context of the S/N ratio and is applied to various data sets of Raman spectra recorded from biological cells.
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Introduction

Cosmic ray artefact (CRA) contamination occurs fre-

quently when recording spectra using any photo-electric

device, such as a charge-coupled device (CCD). These

intermittent events are caused by high-energy particles

interacting with the detector,1 the effect of which is to

release large numbers of electrons that are indistinguishable

from photoelectrons. Cosmic ray artifacts are randomly

distributed in time and intensity and are generally localized

to a small number of adjacent pixels in an array detector,

although they may, in some cases, have a broader width.2

Cosmic ray artifacts can be especially prominent when the

spectral irradiance is weak, such as for the case of Raman

spectra recorded from biological samples, which necessi-

tates a detector that is sensitive to low photon counts and

the utilization of long camera integration times.

The distortion of spectra by the presence of CRAs can

pose problems for various applications that involve the

identification of specific peaks. Cosmic ray artifacts can

also impact on the results of post-processing algorithms

such as principle component analysis (PCA), due to biasing

of the loading vectors towards large outliers, which in turn

leads to the misclassification of spectra.3 The misclassifica-

tion of spectra can be of critical importance, particularly in

the growing area of chemometrics.4,5

A number of methods have previously been proposed

for the detection and replacement of CRA contaminated

pixels. Following from the classification system proposed by

Li et al.,6 these methods fall into four categories. The first

category is based on single capture methods, which can

significantly impact the underlying spectrum if the CRAs

are of a similar width to spectral features.7–13 The second

category provides superior performance in this regard but

requires multiple successive captures from the sample.14–21
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The third category relies on optimized hardware that is

resistant to the detection of CRAs.22 Finally, the fourth

category proposes to remove the CRA noise from

Raman spectral images.3,6,23–25 A more detailed description

of the these four different types of methods is provided in

the Background section.

In this paper, a novel CRA removal algorithm is proposed

that combines aspects from the first two categories and has

the advantages of both; the method requires only a single

capture but works on the same principle as the double

acquisition method and provides comparable results, i.e.,

it removes only cosmic rays and makes no other changes

to the spectrum. The method requires the availability of a

data set of spectra that can be used for comparison, the

most similar of which is identified using normalized covari-

ance. The spectrum of interest is then directly compared

with the matching spectrum and differences exceeding a

specified threshold are identified as cosmic rays. The con-

taminated pixels are replaced with the corresponding spec-

tral value from the matching spectrum. The optimal value of

the threshold is automatically estimated based on the stand-

ard deviation of the noise in the spectrum, which is indica-

tive of the level of noise present in the spectrum. The

algorithm can be applied to an entire data set of recorded

spectra without intervention from the user.

In addition to being a single acquisition method, the

proposed algorithm has a second advantage over the

double acquisition method, in that it may offer a significant

improvement in the signal-to-noise (S/N) ratio of the

denoised spectrum under certain conditions, due to the

reduced instances of camera read noise that are included,

which is discussed in more detail in the Noise in a

Spectrum: Single Versus Double Acquisition section. The

requirement for an available data set of spectra is naturally

met for a large number of applications that involve the

repeated capture of data such as Raman based chemo-

metrics for the detection of bladder cancer,26 cervical neo-

plasia,27 and breast cancer detection.28 Applications such as

these require repeated measurement from cell or tissue

samples and, therefore, a data set of related spectra will

often be readily available.

Background

Li et al. propose four categories for all CRA removal meth-

ods. The first of these comprises single scan methods that

rely on the assumption that CRAs will have an appreciably

narrower width than the expected peaks in the spectrum.

This requires that the spectral resolution of the system is

less than the width of the spectral peaks, which may not

always be the case and depends on the properties of both

the source laser and spectrograph in the recording system as

well as the chemical composition of the sample under inves-

tigation. Methods in this category include the ‘‘missing point

polynomial filter’’,10,11 the wavelet transform method,7,13

filtering based on fuzzy logic,8 weighted moving filters,9

and median and low pass filtering.12 In many cases, the meth-

ods in this category are unsuitable because they are either

insensitive to CRAs that have comparable width to the fea-

tures of the underlying spectrum or they rely on empirically

chosen thresholds that may vary between data sets. As a

result, in some cases the denoised spectra must be subjected

to robust error checking and this can limit the inclusion of

these algorithms in fully automated applications.

The second category of methods for the removal of

CRAs is based on the low probability of CRAs contaminat-

ing the same pixel in sequential spectra. The algorithms in

this category include the upper bound spectrum (UBS)

method and its improved variations,14,15,16,18 based on

whether there are sustained changes in the spectral pro-

file,19–21 and multiple acquisition methods used by manu-

facturers of commercial optical spectroscopy systems such

as Renishaw and Horiba as described in the Noise in a

Spectrum: Single Versus Double Acquisition section.17

Optimization of optical systems in order to avoid detec-

tion of CRAs, such as image curvature correction,22 is a

third option. In this case, CRAs are detected by comparing

spectra recorded along different rows of pixels on the

detector. Aberration caused by the imaging system may

necessitate numerical correction before comparison.

The fourth category is based on a mapping tech-

nique3,23–25 and requires a map of spatially adjacent spectra.

A nearest neighbor comparison (NNC) is performed and

the most closely correlated spectrum is selected. An offset

is selected based on the expected noise and if the intensity

value of a spectral component in the original spectrum dif-

fers from the corresponding value in the offset spectrum by

a value exceeding said offset then the lower value is taken.

The algorithm presented in this paper is similar to this

approach, except that comparison is performed across an

entire data set of spectra rather than over a set of spatially

adjacent neighbors.

Although all these methods have been shown to be

effective CRA removal methods, in some cases they are

computationally intensive or rely on expensive equipment,

which may not be feasible. The double acquisition method17

is arguably the most commonly used approach due to its

simplicity and accuracy. The proposed algorithm aims to

emulate the robust nature of this method while providing

the advantages of single acquisition and improving the

resulting S/N ratio of the denoised spectrum.

Noise in a Spectrum: Single Versus Double
Acquisition

Noise is any unwanted perturbation in the signal of interest;

in the case of Raman spectroscopy, this is considered to be

any extraneous electrons that accumulate in the detector.

In general, there are four main sources of noise: shot noise;

dark current; read noise; and the main focus of this paper,
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CRAs. The first two sources of noise are time-dependent,

while read noise is time-independent. Cosmic rays occur

randomly in both space and time and so this noise source

may also be described as time-dependent. Shot noise is the

result of inconsistent flux incident on the detector pixels.

This discrepancy over time causes jitter in the signal and is

governed by a Poisson distribution meaning that the stand-

ard deviation of the shot noise is related to the square root

of the spectral intensity. The impact of shot noise can be

minimized by gathering large numbers of photons such that

the inconsistencies become insignificant compared to the

collected signal. For weak irradiances, this requires long

exposure times.

Dark current, which comprises thermally generated

electrons within the charge-coupled device (CCD) detec-

tors semi-conductor pixels, is also modelled by a Poisson

distribution. Dark current can be reduced by cooling the

detector and recording for short acquisition times. Read

noise is introduced through the electronics in the detector

that are used to extract the electrons from the pixel wells

and digitize the signal. Read noise is inherent to all signal

acquisitions and is considered to be the ultimate limiting

factor in single photon detection. It is dependent on read-

out rates and the quantization levels of the analogue to

digital converter. While this noise can be minimized by

selecting low readout rates or by using an electron-multi-

plying CCD or modern scientific complementary metal–

oxide–semiconductor (sCMOS) detectors, it cannot be

fully eradicated.

Multiple acquisitions, whereby a number of spectra are

averaged together for the purpose of CRA removal, can

have a negative impact on the S/N ratio of the resulting

denoised spectrum. Shot noise and dark current noise

are both modelled by time-dependent Poisson distribu-

tions. Therefore, if only these two noise sources are con-

sidered, a spectrum collected with a 5 s acquisition time will

have the same S/N ratio to two 2.5 s spectra collected

under the same conditions and averaged together.

However, read noise is time-independent and will be

included in each individual recorded spectrum and, there-

fore, averaging a number of acquisitions together will intro-

duce multiple instances of read noise. The S/N ratio in a

single sample of the spectrum is defined as follows:29

SNR ¼
iqðlÞtpiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½iqðlÞpi þ cpdc�tþ prnr
p ð1Þ

where i represents the spectral irradiance that is incident

on each individual pixel in a column of pi pixels, which

depends on the spatial distribution of the light arriving at

the spectrograph slit; qðlÞ is the quantum efficiency of a

pixel for the incident wavelength k and t is the total camera

integration time; c is the mean rate of dark current pro-

duction in electrons per pixel per second; pdc is the number

of pixels contributing dark current noise and pr is the

number of pixels contributing read noise to the spectral

component. In full vertical bin (FVB) mode, pdc will be the

same as the number of pixels in the full column and pr¼ 1 as

there is only one instance of read noise. Some cameras

support ‘‘crop mode’’, whereby a FVB can be applied

over a reduced number of rows. In this case, it is possible

to match the values of pi and pdc such that dark current is

amassed only from pixels that detect photons. Finally, in

‘‘image mode’’ each pixel is read out independently, each

with its own instance of read noise. In this case, each row

consists of a single spectrum with pi ¼ pdc ¼ pr ¼ 1. A

more detailed discussion on noise contributions for differ-

ent camera modes is given in Barton and Hennelly.30

Using Eq. 1, it is possible to compare the S/N ratio of a

single acquisition of time T to N acquisitions, each of time

T / N duration, which are subsequently averaged. Assuming

the camera mode is consistent, both cases will result in a

spectrum that has the same spectral intensity (i.e., the

numerator in Eq. 1 will be iqðlÞpiT for both cases).

Similarly, the dark current contribution will also be the

same. However, the read noise contribution will differ for

both cases; for the single acquisition pr¼ 1 and for the

multi-acquisition pr ¼ N. Therefore, it can be expected

that the multi-acquisition will have a reduced S/N ratio

when compared with a single acquisition of equivalent dur-

ation. The difference between these two S/N ratios will be

determined by the values of i, c, nr , and N.

Vendors of commercial systems and cameras often pro-

vide their own software such as Horiba SynerJY, Andor

Solis, and Renishaw WiRE. The first two of these favor

sequential scanning methods to remove CRAs and the

third uses a median filtering approach. While these

approaches are robust, all of them require multiple cap-

tures, which may not be possible for some applications.

An approach that combines aspects from sequential scan

and NNC methods would be a useful alternative in appli-

cations that are time-sensitive and where read noise is a

significant contributor to the noise levels.

Proposed Algorithm

The first step in the proposed algorithm is to assign a best

matching pair to each spectrum in a given data set, thereby

removing the need to record multiple spectra. These pairs

of matching spectra are then denoised in a similar manner

to that of the commonly used double acquisition method,

by identifying corresponding samples in the spectrum for

which there exists a difference in intensity that is greater

than a threshold that relates to the expected noise level.

The final step in the algorithm is to apply a smaller thresh-

old to the immediate neighbors of a sample that has been

contaminated with a cosmic ray in order to ensure that

even broad CRAs are effectively removed from the

spectrum.
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Step 1. In order to pair spectra together, an approach

similar to NNC23 is employed, which identifies spectra in a

given data set that share a high normalized covariance. The

normalized covariance is calculated as follows:

Cnm ¼
ðSn � SmÞ

2

ðSn � SnÞðSm � SmÞ
ð2Þ

where Cnm denotes the normalized covariance of spectra n

and m in the data set and ‘‘�’’ represents the dot product.

For each spectrum in the data set, i.e., n ¼ f0,
1, 2 . . .N� 1g, the value of Cnm is calculated for all values

of m ¼ 0, 1, 2 . . .N� 1 where m 6¼ n. For a given spectrum

Sn, the spectrum Sm that corresponds to the maximum

value of Cnm is taken to be the most similar and is

paired with Sn for the next stage of the algorithm. In this

way, each spectrum in the data set, Sn, is given a pair

denoted by Sn0.

Step 2. As previously discussed in the Noise in a

Spectrum: Single Versus Double Acquisition section, a

priori knowledge can be used to calculate the standard

deviation of the noise in a spectrum; CRAs are then identi-

fied as spikes that exceed some threshold that is propor-

tional to this value. A similar approach has been proposed

in the double acquisition method.17 However, this method

requires knowledge of the specifications of the spectrom-

eter as well as the expected irradiance, which may not be

available. For this reason, we propose a method to estimate

the standard deviation of the noise in a given spectrum, n,

without any a priori knowledge of the recording system, as

defined by Eq. 3.

sn ¼
1

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM
k¼1

½SnðkÞ � SnðkÞ�
2

vuut ð3Þ

where k is the kth sample of the spectrum, the value of k

ranges from 1 to M, and SnðkÞ is the Savitzky–Golay

smoothed version of the raw spectrum. If the intensity of

the residuals resulting from SnðkÞ � Sn0 ðkÞ, exceeds the

threshold given by 5sn the pixel is deemed to be corrupted

and is replaced with Sn0 ðkÞ. This process is formally defined

in Eq. 4 and is repeated for all values of k from 1 to M.

SnðkÞ ¼
SnðkÞ if SnðkÞ�Sn0 ðkÞ5 5sn

Sn0 ðkÞ if SnðkÞ�Sn0 ðkÞ4 5sn

�
ð4Þ

The 5sn threshold ensures that >99% of the noise

inherent in the recorded signal, i.e., shot noise, dark cur-

rent, and read noise will fall within this boundary. The like-

lihood of a CRA being detected where there is none is

<1%. We note that the algorithm described above is similar

to the method proposed in Takeuchi and Harada,17

whereby two spectra are recorded in succession and aver-

aged. Corresponding samples that have a disparity greater

than the defined threshold are not averaged and the lesser

sample value is taken.

Step 3. It is possible to further amend the algorithm

described above in order to deal with the case in which a

CRA has a larger width than a single pixel and extends into

neighboring pixels although possibly falling under the spe-

cified threshold. A reduced threshold can be applied to the

pixels immediately around a detected CRA; this process is

formally defined in Eq. 5 and is repeated for each value of k

corresponding to the sample location of a detected CRA in

Step 2.

Snðk� 1Þ ¼
Snðk� 1Þ if Snðk� 1Þ�Sn0 ðk� 1Þ52sn

Sn0 ðk� 1Þ if Snðk� 1Þ�Sn0 ðk� 1Þ42sn

�

ð5Þ

This addition improves the overall sensitivity of the algo-

rithm to include broader CRAs.

In the case of biological spectra, varying baselines and

sample heterogeneity can produce significant inconsistency

across the spectra in the data set, which can reduce the

capability of the proposed method to find an accurate

match within the data set for a given spectrum in Step 1.

In this case, it is recommended to perform a pre-processing

step in the form of a background subtraction algorithm31–33

on the data set in order to reduce variability and ensure a

high correlation between matched spectra. The background

subtraction algorithm used in this paper is described in

Afseth and Kohler31 and is based on first calculating the

mean spectrum for the whole data set, followed by least

squares fitting of an N order polynomial as well as the mean

spectrum to each individual spectrum. This step can easily

be reversed following the CRA removal algorithm by rein-

troducing the subtracted baseline back to each respective

spectrum, if desired.

In systems and applications for which there is an

increased possibility of having CRA contamination at the

same sample point in multiple spectra, it may be required

to apply median filtering in advance of matching pairs of

spectra. Any system where multiple spectra are acquired

simultaneously, e.g., a line illumination system, is prone to a

single CRA contaminating a number of spectra in the same

pixel region. Large data sets that are obtained using long

acquisition times are also susceptible to this as they will

contain a large number of CRAs and, therefore, the likeli-

hood of a CRA appearing at the same sample point across

multiple spectra in the data set increases. Due to the inten-

sity of these spikes, it is likely that Step 1 of the algorithm

will match these spectra together due to their high covari-

ance. In order to avoid this, a median filter can be applied to

the data set and the normalized covariance in Step 1 may be

calculated based on this filtered data set.

A flow chart of the overall algorithm including these pre-

processing steps is illustrated in Fig. 1. In the sections that

follow, the proposed algorithm is applied to data sets of
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Raman spectra and the performance is compared to that of

the double acquisition method.

Materials and Methods

Materials

A polymer reference material, acquired from Ibidi GmbH,34

was chosen as the first sample for investigation due to its

thermal stability, resistance to photo-bleaching, and strong

reliable signal, which reduces the overall experimental vari-

ability. The consistency of this sample and its insignificant

baseline ensures an accurate assessment of the proposed

CRA algorithm in terms of the S/N ratio. The benefits of a

single instance of read noise in terms of S/N ratio will be

more significant for weak spectral irradiances such as for

the case of a Raman spectrum recorded from a biological

sample. Ideally, a biological sample would have been used to

demonstrate the improvement in S/N ratio afforded by the

proposed algorithm when compared with the double acqui-

sition method. However, photo-bleaching and the hetero-

geneity of biological samples may complicate an accurate

measurement of S/N ratio. It was, therefore, decided to use

the polymer sample for the evaluation of the proposed

algorithm in terms of S/N ratio and to reduce the recorded

irradiance to match that of an epithelial cell such that the

acquisition times and S/N ratio values would relate to bio-

medical applications. Following this, the algorithm was

applied to spectra recorded from three different cell

groups: mesenchymal stem cells and their vascular and

osteogenic progeny. For further details on cultivation and

preparation of these cells please refer to Molony et al.35

Recording Spectra

A custom-built confocal Raman micro-spectrometer was

used to record spectra from the polymer material. This

system uses a 150 mW 532 nm laser and a diffraction grat-

ing with 600 lines/mm. More details on the specific system

can be found in Kerr et al.32 A sufficiently defocused, low

numerical aperture microscope objective (Olympus

UMplanFl 4x/0.1) was used in order to produce spectra

from the polymer material that had a S/N ratio equivalent

to that expected from an epithelial cell using a commercial

Raman micro-spectrometer over a 60 s acquisition time.

Maximum cooling of the camera (Andor Newton 920

BVF) was used in order to minimize dark current noise.

The low magnification of the microscope objective provides

for a large depth of field, which prevents any major change

in focus over the course of the experiment, further redu-

cing experimental variability across the acquired data sets.

A single acquisition data set of 100 spectra was acquired

with a 60 s integration time and a double acquisition data

set of 2� 100 spectra was acquired, each with a 30 s inte-

gration time so that a comparison of the proposed algo-

rithm to the double acquisition method could be made in

the context of S/N ratio. For the cell spectra, a commercial

Raman microspectrometer was employed also using a

532 nm laser source. More information on this system is

found in Molony et al.35

Measuring Signal-to-Noise Ratio

Experimentally, the S/N ratio can be estimated by the ratio

of the intensity of the highest peak to the standard devi-

ation of the noise in the spectrum.36 The noise signal is

isolated by performing a least squares fit of a reference

spectrum to the denoised data set and subtracting this ref-

erence from the fitted spectrum. The reference may be the

mean spectrum of a suitably large data set or may be

obtained from a relatively low noise spectrum acquired

over a long acquisition time that provides an accurate rep-

resentation of the true irradiance. For the results pre-

sented in the Results section, the reference is taken to be

the mean spectrum for a given data set. The intensity of the

highest peak is taken from the fitted reference spectrum

rather than the raw spectrum, which may include a signifi-

cant noise component at that point, and would, therefore,

affect the measurement of the S/N ratio. This process is

illustrated in Fig. 2.
Figure 1. A flow chart of the proposed algorithm with add-

itional pre-processing steps to deal with varying baselines.
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Results

Application to Polymer Data

The spectral data sets from the polymer material were

processed using both the proposed algorithm and the

double exposure method. The resulting CRA removed

spectra were examined and compared in terms of S/N

ratio using the approach described in the Measuring

Signal-to-Noise Ratio section. Figure 3 illustrates the raw

data, the removed cosmic rays, and the denoised data set

following processing with both methods. Both algorithms

make negligible changes to the underlying spectrum, aside

from the areas contaminated with CRAs while retaining a

high sensitivity for low intensity and broad CRAs. Figure 4

shows a magnified region (825–975 cm�1) of the spectra to

further illustrate the effectiveness of the method. This

region was chosen in order to illustrate the algorithms

ability to discriminate between spectral features and

CRAs as it contains a number of peaks that vary in width

and height. While both methods perform similarly in terms

of CRA removal, there is, however, a difference in the S/N

ratio of the denoised spectra obtained using the two meth-

ods. It should also be noted that in the denoised data set of

the double acquisition method illustrated in Fig. 3, there are

Figure 3. Illustration of the data sets used to evaluate the performance of the proposed algorithm in terms of S/N ratio. Left: A single

data set of 100 raw spectra is shown with an acquisition time of 60 s. Right: Two data sets of consecutively collected spectral pairs with

an acquisition time of 30 s. In both cases the raw data, removed CRAs, and denoised data set are shown.

Figure 2. An illustration of the S/N ratio calculation.

Figure 4. A magnified region of Fig. 3 comparing the raw data,

clean data set, and the difference spectra to further illustrate the

operation of the proposed algorithm.
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the remnants of two CRAs evident near 1750 cm�1. These

are the remnants of two intense cosmic rays that were

spread over multiple pixels. The outer edges of these

CRAs were small enough to fall under the designated

threshold. In cases such as this, investigating the neighbor-

ing pixels of identified CRAs with a lower threshold is

necessary.

The mean spectrum of all 300 spectra collected in the

experiment was used as the reference spectrum for mea-

suring the S/N ratio as described in the previous section.

Figure 5 illustrates the S/N ratio calculated over the data

set of 100 denoised spectra for both the proposed algo-

rithm and the double acquisition method. Of the data set

that is denoised by the proposed algorithm, the range of

S/N ratio values is 98–117 with the central 50% of S/N ratio

values in the range of 104–111. For the data set that is

denoised by the double acquisition method, the range of

S/N ratio values is 90–104 with the central 50% of S/N ratio

values in the range of 96–99. More than 75% of the

denoised spectra processed using the proposed method

exhibit higher S/N ratio values than those denoised using

the double acquisition method.

Application to Biological Data

In order to evaluate the proposed algorithm’s performance

on biological spectra, three data sets recorded from three

different cell groups were amalgamated into a single data

set to which the algorithm was applied. Three data sets

were recorded from: (1) mesenchymal stem cells (MSC),

(2) the vascular progeny of MSC samples, and (3) the osteo-

genic progeny of MSC samples. It should be noted that the

osteogenic cells contain a noticeable difference to the other

samples, specifically the peak at 960 cm�1 that indicates the

presence of phosphates. Both pre-processing steps were

applied as illustrated in Fig. 1. A mean spectrum taken

from the entire data set was used in the background sub-

traction algorithm and a polynomial of order 5 was also

used to remove varying baselines in the data set. This

fitted data set was then filtered using a median filter of

size 11 before applying Step 1 of the proposed algorithm.

Figure 6 illustrates the data sets at different stages of the

CRA removal algorithm from raw spectra in Fig. 6a to the

final data set without CRAs in Fig. 6d. Figure 6b shows the

raw data following background subtraction. The resulting

data set is then CRA removed using the proposed algo-

rithm to produce the denoised data set shown in Fig. 6c.

Finally, the background components are reintroduced to

each individual spectrum.

Figure 6. An illustration of the CRA removal of the data set.

The raw data are background subtracted, CRA removed, and,

finally, the background is then reintroduced to the data. The y-axis

is fixed to the same values, for all figures.

Figure 5. A boxplot of the resulting S/N ratios of the CRA

removed spectra of both the proposed algorithm and the double

exposure method.
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Conclusion

Cosmic ray artifacts can be removed from spectra using a

number of different methods. These include algorithms that

can be directly applied to a single recorded spectrum using

some form of digital filtering; however, such algorithms have

the advantage of being applicable to dynamically changing

samples, the goal of removing the cosmic ray while making

no other change to the spectrum is challenging. A second

group of algorithms for the removal of cosmic rays involves

the capture of successive spectra from a sample that is not

expected to change between captures. A direct comparison

of subsequent spectra allows for the accurate removal of

cosmic rays while making little or no other alteration to the

underlying spectrum. The proposed algorithm relates to

both of these approaches; the algorithm requires only a

single recorded spectrum so long as a data set of similar

spectra is available, a requirement that is naturally met for a

large number of applications that involve the repeated cap-

ture of data.

In this paper, it has been demonstrated that the proposed

algorithm does not require any a priori knowledge of system

and camera parameters that were used to record the spec-

trum. In terms of effectiveness at CRA removal, this method

performs similarly to the double acquisition method,17

which is widely applied in the field of Raman spectroscopy.

However, the algorithm differs from traditional sequential

scan methods in that it incorporates a comparison across a

data set of similar spectra, which is similar to NNC for point

scanning spectroscopy. This results in an algorithm that

combines aspects of both categories one and two, as

described in the Background section.

For those cases where the amplitude of the shot noise

and camera dark current dominates, this difference in S/N

ratio between a single and a double acquisition may be neg-

ligible; however, in applications where low intensity spectra

are collected or high read-out rate are required, this add-

itional noise may become a significant factor and negatively

affect the S/N ratio. The proposed algorithm has the advan-

tage that it does not require the repeated capture of spectra

and has shown that an overall improvement of S/N ratio of

10% can be expected for the recording conditions asso-

ciated with biological samples. If desired, this may be trans-

lated into a decrease in acquisition time due to the square

root relationship between intensity and the noise.

Disregarding read noise and dark current a 10% improve-

ment in S/N ratio translates to approximately a 20% reduc-

tion in acquisition time to obtain the same S/N ratio.

A second advantage of the proposed algorithm over the

double acquisition method is that databases of previously

recorded spectra can also be processed. It is notable that

the algorithm is able to successfully pair the spectra within

the data set despite the presence of spectra from three

distinct cell groups. It can be expected that this feature

may be extended to data sets containing a large number

of spectra originating from disparate sources.

It must be acknowledged that the proposed algorithm

will fail if a recorded spectrum contains legitimate spectral

peaks that are unique to the data set that is employed for

cosmic ray removal; in such a case, such peaks would be

deemed to be cosmic rays and removed. However, for

many applications of spectroscopy, and for a sufficiently

large data set, the probability of such an occurrence can

be expected to be low.
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