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Abstract

Multi-moded horn antennas are now being proposed for far-IR space imaging systems in which diffraction limited
resolution is not required (e.g. the High-Frequency Instrument (HFI) on the ESA PLANCK Surveyor). In such systems
individual modes in the waveguide filter section feeding the horn can couple independently to an overmoded detector
(such as a bolometer in an integrating cavity). The number of modes is chosen to optimize the coupling efficiency to the
source without compromising any spillover losses. We consider in detail the case of a cylindrically symmetric corrugated
configuration, presenting two alternative techniques for modelling such few-moded systems. The first approach is based
on a mode-matching description of propagation in a non-uniform waveguide structure, while the second approach
makes use of hybrid mode solutions for a waveguide with corrugated walls assuming a uniform but non-isotropic
impedance. We present practical examples comparing the radiation patterns predicted by both models. © 2001

Elsevier Science B.V. All rights reserved.

PACS: 84.40.Ba; 95.85.Bh; 95.85.Gn
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1. Introduction

Few-moded corrugated horn antennas are now
being proposed as feeds for imaging arrays in a num-
ber of far-IR astronomical receiver systems, such
as, for example, the two highest frequency chan-
nels on the European Space Agency PLANCK
Surveyor satellite [1]. In such cases, where dif-
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fraction limited resolution is not required, over-
moded horns offer the possibility of a high level of
coupling efficiency to a broadband source. Fur-
thermore, corrugated horns have a low sidelobe
response pattern, thus minimizing at the telescope
the spillover which can couple in background
noise. In the case of diffraction limited resolution a
single-moded horn can be well matched to the
telescope aperture for maximum on-axis gain.
However, if a lower resolution is set for the sys-
tem, the optimum number of modes is best deter-
mined by maximizing the coupling efficiency to the
source field, given the constraint of an acceptable
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spillover or edge-taper level at the telescope (or at
a pupil stop if one is present in the front-end op-
tics). In effect the design goal in an imaging array is
optimum coupling to a source whose extent is
equal to the degraded resolution of the system. It
is worth noting that only some of the higher-order
modes affect the on-axis gain significantly, while
others have a determining effect on the overall
beamwidth.

For good control of the radiation pattern
we assume the horn is connected to an integrating
cavity containing an incoherent detector via a
waveguide filter which limits the number of modes
that can propagate (see Fig. 1). We also assume a
flared section at the back of the waveguide (i.e. a
back-to-back horn configuration), so that there is
good coupling without an impedance mismatch to
an integrating cavity. A sudden step in impedance
would give rise to reflections reducing the coupling
efficiency to a broadband source and affecting the
beam pattern of the horn antenna. In this con-
figuration the incoherent detector independently
couples to the individual spatially coherent modes
in the flared waveguide section at the cavity end.
Only modes above cut-off (non-evanescent) prop-
agate through the filter, of course, and there will be
scattering of power between modes if the wave-
guide is not of uniform cross-section (as for ex-
ample if the guide is corrugated).

The calculation of the far-field radiation pattern
of a multi-moded horn amounts to summing in
quadrature (i.e. in intensity) the radiation patterns
of all non-evanescent modes at the entrance to
the system (cavity end of the back-to-back horn/
waveguide structure) [2]. We can see this from the
following argument. The radiation pattern of a

Horn +Waveguide
Filter

\

AlMNada
Intfegrating Cavity

Fig. 1. Sketch of the optical system considered in the paper
consisting of a corrugated horn and waveguide filter feeding an
integrating cavity.

multi-moded horn is determined by calculating the
power coupling between a far-field point source of
constant intensity at position (0, ¢) and the ab-
sorbing cavity. Consider all possible waveguide
modes Y, than can exist at the aperture of the
waveguide flare. Each of these y, when propa-
gated through the guide and horn has a far-field
radiation pattern given by P,(0, ¢), which repre-
sents the power coupling of the mode to a point
source in the direction (60, ¢). A particular modal
field y,, is transmitted to the horn aperture with an
efficiency of 7,,, which will only be non-zero for a
finite number of modes N. If the i, at the flare
aperture are true eigenmodes of the horn and
guide, then 7, is unity for those modes that are not
cut off by the guide, otherwise 1, is negligibly
small. If the y, are not true eigenmodes, they will
be scattered as they propagate but with each y,
still mapping onto a spatially coherent field ¢, at
the horn aperture (producing a radiation pattern
given by P,(0,¢)). Provided there are no reflec-
tions the detector in the black body cavity can
absorb the all of the power coupled to a particular
¥, modal channel independently of all the other
\r, channels without any interference (which would
not be the case for a coherent detector). The total
power coupled from the point source to the cavity
by all of the modes in the horn aperture is then
given by Rotal(ga ¢) - Zn Pn(ga ¢)

Using standard techniques borrowed from
antenna engineering it is possible to model such
partially coherent multi-moded horns in a straight-
forward way [3,4]. We present two different
approaches. The first of these, known as the mode-
matching technique, is based on regarding the
structure as a sequence of smooth walled cylin-
drical waveguide sections each of which can sup-
port the appropriate set of TE and TM modes.
Thus, the longitudinal cross-section of the wave-
guide and horn structure is viewed as a series
of steps. At each corrugation there is a sudden
change in the radius of the guide with a resultant
scattering of power between the modes. In order
to predict the effect of such scattering the total
electric and magnetic fields are matched across
the waveguide step so that conservation of com-
plex power is maintained. Extending the tech-
nique leads to the scattering matrix description of
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propagation in the complete waveguide and horn
structure as discussed in detail by Olver et al. [5].
Note that only azimuthal order » = 1 tends to be
of interest for horns connected to coherent de-
tectors mounted in fundamentally moded wave-
guides. In this paper, in which we have to deal with
incoherent detectors, we have extended the tech-
nique to higher values of n. By following the
propagation all the way to the horn aperture the
mode-matching technique can be used to predict
the radiation patterns of corrugated horn antenna
feeds. The technique is especially useful if the
number of corrugations per wavelength is not very
large, or the horn shape is profiled rather than
being a simple cone. In Section 2 of this paper we
discuss modal-matching modelling as applied to
multi-moded far-IR horn antennas.

The second approach to modelling propaga-
tion in corrugated structures is based on the uni-
form surface impedance approximation. A hybrid
mode model of wave propagation in a corrugated
waveguide can be developed based on the as-
sumption of many corrugations per wavelength
and no sudden change in the waveguide or horn
profile. The corrugated wall of the guide is re-
garded as having a uniform non-isotropic sur-
face impedance (with a zero azimuthal transverse
component and non-zero longitudinal component
determined by the depth of the corrugation slots).
In general the longitudinal components of both the
electric and magnetic fields are required to satisfy
the boundary conditions. The true modes of
propagation of such a system cannot be pure TE
or TM, but rather a hybrid combination that
depends on the depths of the corrugations and
diameter of the guide. The application of the
boundary conditions determines the modal propa-
gation coefficients and transverse wave numbers of
a complete set of such hybrid modes. The surface-
impedance method is simple and reasonably ac-
curate and is particularly useful in the design of the
waveguide filter section. However, for high accu-
racy the effects of space harmonics in the corru-
gation slots should be included. This will be
necessary if the guide dimensions become too large
or the slot widths are greater than 1/2 [6].

The advantage of the hybrid mode model is
that computationally it is much more efficient than

the mode-matching approach, since hybrid modes
are true eigenfunctions of the propagation trans-
form and no scattering is involved. The modes can
be regarded as propagating into the conical horn
and developing a spherical wavefront which is equal
to the slant length of the horn at the horn aperture.
It is relatively straightforward to predict mode cut-
off effects in the waveguide sections in terms of the
waveguide radius and the slot depths. To achieve
the same results using the modal-matching ap-
proach would require a tedious computationally
intensive investigation of the parameter space in
question. In Section 3 we present the hybrid mode
model in more detail as applied to multi-moded
waveguides and horn antennas.

In Section 4 we discuss some practical issues.An
example is then analysed using the approaches
outlined in Sections 2 and 3, the performance of the
filter being predicted by the hybrid mode model
while the final radiation pattern presented as-
sumes the superior accuracy of the mode-matching
model.

2. Modal-matching model

In the modal-matching technique the corru-
gated horn/waveguide structure is regarded as a
sequence of cylindrical waveguide segments with
the radius stepping between the top and bottom of
the corrugation slots. For each segment the natu-
ral modes of propagation are the usual TE and
TM modes of a uniform cylindrical waveguide. At
the interface between two segments there is a
sudden change in the guide radius and the power
carried by the individual modes will be scattered
between the backward propagating modes in the
first guide segment and the forward propagating
modes in the second guide. This results, for a
corrugated structure with many such steps, in both
forward and backward propagating fields existing
within each segment. The modal-matching tech-
nique is based on matching the total transverse
field in the two guides at the junction (expressed as
a sum of both forward and backward propagating
modes) so that complex power is conserved and
the usual boundary conditions apply to the fields
at the conducting walls.
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The mode scattering properties of such an in-
terface between two guides can be represented by a
scattering matrix S, in which the reflection and
transmission characteristics are determined by the
usual equation (see for example Ref. [5]):

[ }] _ [S]{[Aq _ {[Su] [512]} [[A]}

] [C] [Su]  [S2] | | [C]

A and B are vectors made up of the forward and
reflected mode coefficients, respectively, looking
into the system at the input side, and C and D are
vectors of the incident and transmitted mode co-
efficients, respectively, looking into the system at
the output side. S|, etc. are all matrices theoreti-
cally of infinite size but obviously for computa-
tional purposes truncated to as small a number of
modes as is necessary for high accuracy.

For cylindrical waveguides the transverse elec-

tric fields of the two orthogonal sets of TM modes
(distinguished by superscripts ¢ and s) are given by:

(fj): L o S )i

where p,, represents the /th zero of J,(z) and «a is
the guide radius [7]. The two possible orthogonal
modes for each value of n and / arise from the
choice of the longitudinal z-component of the
appropriate field being either proportional to
cos(n¢g) or sin(nd) — hence the use of the two
superscripts ¢ and s to represent the two corre-
sponding cases. The transverse electric fields of the
corresponding two sets of TE modes are:

(eIF‘) _ \/ (2~ 4m)
e 1 (1~ (n/ ) )2 (d)

o {nJﬂ(%zr/a) ( cosng )f

S

naJ2, (Pu sinng
nJ nJy(pur/a) (SinnqS) A}
~ purfa  \ cosng ’

qur/a —sinn¢
—J,(qur/a) < 2;2}:12 > Q’A’] )

where ¢, represents the /th zero of J/(z) [7]. The
constant of proportionality has been chosen to

make fA \eZIE / TM|2rdrdq{) equal to unity. On order-

ing the guide modes €9 so that those of odd order
are TE,; while those of even order are TM,,; any
coherent field propagating within the waveguide
filter and horn can be represented by the expres-
sion:

¢ TEc s TEs ¢ TMc s TM.s
€otal = E e, 00, e ey
_ E c Gc s Gs
Am ni +Am ni

where eJ,, | = elf and e¥,, = e

In propagating through the waveguide and
horn only scattering between modes of the same
azimuthal index and same z-component depen-
dance on cos(n¢)/sin(n¢g) is possible because of
the cylindrical symmetry of the junction disconti-
nuity. It is therefore only necessary to compute the
scattering matrices S) for each azimuthal order
separately. The S are the same for both or-
thogonal mode sets. Note the S) must be calcu-
lated for all those values of # for which modes can
propagate. In the case of a coherent single mode
horn only S®") normally needs to be evaluated since
only the TE;; and TM;; modes are non-evanescent
in the waveguide filter section. Because of the azi-
muthal symmetry only scattering to TE,;,/TM,,
modes is possible. Multi-moded horn calculations
are therefore more complicated and computa-
tionally intensive.

At the step discontinuity where the guide radius
increases from a to b (see Fig. 2) the submatrix
elements of the scattering matrix S can be
written as:

Sn = (R +P+Q71P>_1(R*
S, =2(R*+PTQ7'P) ' Pt

- P+Q71P)7

Fig. 2. Step discontinuity in guide where either a > b or b > a.
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Sy =2(Q+ P(R)'P)'P,
Spn=—(0+PR)'P) Q- PR)'P),

where for both the TE and TM modes defined above
R; = (1/Z%)"%;, and Q; = (1/2F)"6; and cross-
coupled powers P, = [7" [ e (h,) rdrdp, with
appropriate values for the guide impedance Z¢/*
depending on the mode and guide radius [5], and i,
j are determined by the ordering of the TE,;/TM,,
modes (i,j = 2/ — 1 or 21, respectively). Note the
equations here differ slightly from those presented
in Ref. [5]. The superscripts @ and b on the im-
pedance Z, and the e and h fields indicate the ap-
propriate guide radius for the mode.

Assuming the modal field definitions above, the
P;; can be evaluated from the following expres-
sions for the cross-coupled power between the
modes on either side of the discontinuity:

Prg,—TE,,
(1 + 00) Dt (@) Dyr ()Gt (i), (gura/b)
(g /D) = (qu/a)")(Ze)’

)

Pry,—1t™,,
_ (1 + 6u0) G (@) Corr(b)pura/bJ, (pus) I (pura/b)
[(Pur /6)* = (Pui/@)’)(Zhr)”
Pre, 1., = 1D, (a)C,r(b)abnJ, (bp,,;/f/b)Jn(q,,p) ’
[Pur g} (Ztm)
and Pry,,1g,, = 0, where

(2 - 5}10)

272
na*J; .\ (pu)

n

)

Cnl(d) =

and

D,(a) = \/ 2- 5’102) :
na®(1 — (n/qu)”)J2(qu)

As stated in Ref. [4] for a step in which a > b (see
Fig. 2) the appropriate scattering matrix subele-
ments are Sj; (d > b) =5 (a < b), St (Cl > b) =
SH1 (a < b), Sh1 (a > b) =Sn (a < b), and Szz(a >
b) =Sy (a < b). For a given azimuthal order the
overall scattering matrix for the horn and wave-

guide sections can be derived by cascading the
scattering matrices for the sections in the appro-
priate way and including the phase delay effects of
propagation along the length of each guide seg-
ment. At the end of the horn the fields are laun-
ched into free space. There is a sudden jump in the
impedance and there may be significant reflections
at that point. We can model this effect to a good
approximation by assuming that the horn aper-
ture lies in an infinite ground plane. This in turn
can be modelled by a very large step into a
waveguide of infinite diameter. Finite element
analysis can be applied to the real horn aperture
configuration, if low level sidelobe effects are im-
portant or if the aperture is very narrow in terms
of the wavelength.

The modal fields at the horn aperture then
propagate without scattering to the far field. If the
waveguide filter is well matched to an integrating
cavity by the use of a flared section, for example,
all of the waveguide modes at the cavity entrance
to the waveguide horn structure are assumed to be
equally excited (i.e. carry the same amount of
power). Note that the modes as defined above are
not normalized for unity power. For each mode #nj
excited at the entrance port there is a corre-
sponding far-field radiation pattern e,; produced
by the horn:

e ooy (S e

depending on which of the orthogonal pair of
modes is excited and e,f,f,» ofs represents the radiation
pattern of the modal field e.* at the horn aper-
ture. Note in the above sum the subscripts n refers
to the azimuthal order of the mode, and for i and j
odd/even the modes are TE/TM, respectively. a,,; is
the normalization factor which ensures the mode
carries unit power at the entrance port. Since there
is assumed to be no phase relationship between
the modes at the entrance port of the system, the
total far-field radiation pattern for the horn plus
waveguide will be determined by summing the e,;
in quadrature. The far-field radiation pattern in
intensity is then given by:

)

Poor (0) o nZ/ (

2
+

c
nj

s
nj

€ €
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Some simplification is also possible in the analy-
tical expression for Py, as it clearly cannot de-
pend on azimuthal angle because of the cylindrical
symmetry. Applying the mode-matching approach
in the design and analysis of multi-moded horn
antennas is discussed in Section 4.

3. Surface impedance model

In the case of the alternative surface impedance
model the horn and waveguide are considered as
having their corrugated surface replaced by a wall
of uniform non-isotropic impedance (with different
impedances in the transverse and axial directions
[6]). This average surface impedance clearly as-
sumes many corrugations (>3) per wavelength. It
is extremely challenging to manufacture such
horns at wavelengths shorter than about 350 um
(~1.0 THz). Beyond this limit horns with few
corrugations per wavelength cannot be reliably
modelled by the surface impedance approach. The
characteristics of the true hybrid HE/EH modes of
propagation depend on the depths of the corru-
gations and the radius of the guide. The funda-
mental mode in a very wide cylindrical waveguide
with corrugation slot depths of 4/4 is the balanced
hybrid HE|; mode. This is the modal field usually
assumed at a corrugated horn aperture in pre-
dicting the radiation patterns for single-moded
(coherent) systems. The effective impedance for
any currents flowing across the corrugations is
infinite, so that Hy is zero. E, is also zero if we can
assume there are many corrugations per wave-
length. Similarly in a multi-moded horn we obtain
higher-order balanced hybrid modes, where all
such modes have zero transverse fields at the horn
aperture edge. Consequently, such horns will pro-
duce radiation patterns with low sidelobe levels
because of the gradually tapered fields at the horn
aperture. Away from the balanced-hybrid condi-
tion (for slot depths # //4) higher sidelobe levels
are to be expected as the effective surface imped-
ance across the corrugations is no longer infinite
and non-zero fields exist at the corrugated walls.
This may be an issue for the design of broadband
horn feed systems. In the throat of a horn the ef-
fective impedance produced by the corrugations

becomes mode dependent and is also non-infinite
for slot depths of 1/4. However, it is not necessary
to maintain the balanced mode condition in the
waveguide at the back of the horn as long as one
knows the propagation characteristics there.

The critical issue for a multi-moded horn is the
mode filtering properties of this waveguide section.
In order to determine which modes can propa-
gate in a corrugated waveguide it is necessary to
solve the characteristic equation for the propaga-
tion coefficient f (i.e. the guide wave number).
Assuming there are several corrugations per
wavelength the slots are narrow and only a single
non-propagating TM mode is capable of existing
in them [6]. Matching the admittance of the mth
order TM mode in the slot with that of the mode
in the inner region of the guide (see Fig. 3) yields
the characteristic equation for f3 [6]:

212
F,(Kry) — (mp)”__ (Kr1
Fm (K}”] ) k}"]

2
> Sm(krlvkro)v

where f = B/k, K* = k* — f* (the usual waveguide
equation) and ry is the radius to the bottom of the
corrugation so that (ry — ry) is the slot depth. Note
this is the notation used by Olver et al. [5] for the
inner and outer radii of the guide. S, (x,y) is given
by the equation:

Jr,n(x)Ym(y) B Jm(y)Yr;(x) )
Jm(x)Ym(y) - JM(y)Ym(x)
For the hybrid modes the axial components of the

electric and magnetic fields for the two possible
orthogonal modes are defined to be:

E.(r,¢) = ame(Kr)( cosm¢)

sinma¢

Su(x,y) =x

JUfUL
AL

corrugated waveguide

Fig. 3. Sketch of corrugated waveguide and horn defining inner
radius of guide r;, radius to bottom of slot ry, slant length of
horn L and horn aperture radius a.
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and As the frequency is increased for fixed values of
. r; and ry the high-frequency cut-off condition is

H.(r,¢) :a,,,yo/_lJm(Kr)< sinmd ), eventually reached where f§ tends to co. Fig. 5
—cosm¢ shows dispersion curves for modes of azimuthal

order 1 and 2. As kr; increases from the low-
frequency cut-off, a balanced-hybrid condition is
reached where A> = 1. For high frequencies the
HE;; mode is balanced hybrid when the corruga-
tion depth approaches 1/4. A fast wave to slow
wave transition takes place at f = 1 (dashed line).

where y is the admittance of free space and A is
the hybrid factor (ratio of axial magnetic to elec-
tric field). The requirement that the ¢-component
of the electric field be zero at the corrugations
yields the following relationship between A and p:

_ mf Beyond this, in the slow-wave domain, a high-
A=- F(Kry) frequency cut-off eventually occurs where f tends
to infinity and the mode terminates. Fig. 6 shows a
The cut-off condition = 0 yields either F,,(Kr) = plot of the high-frequency cut-off values for the
0, for the EH modes which exhibit pure TE-type HE,, and a selection of other modes.
properties in the limit, or F,(Kry) = S, (kry, kro), Charts such as Figs. 4 and 6 can be used to
for the HE modes which are pure TM in the limit. determine the bandwidth of corrugated guide if
In the former case the boundary condition corre- certain modes are to be propagated. Within the
sponds to that of a TE mode in a guide of radius surface impedance model, a mode is sustained with
r1, while the latter corresponds to a TM mode in a increasing frequency over the range in which the
uniform waveguide of radius ry. The low-frequency corrugation depth increases by slightly more than
cut-off values for several low-order modes are 2/2. In the case of the high-frequency cut-offs,
shown in Fig. 4. The cut-off depends on the ratio higher-order space harmonics have a non-negligi-
ri/ry for those modes that are pure TM-type in ble effect, and an error, depending on the mode and
the limit and is independent of r/ry for the TE- waveguide parameters, is to be expected for the
type. surface impedance model predictions. Clarricoats

17 % e
A5 7 99 7 8 g
08 Y // Eo
0.7 L
£ v 1] P
—~ 0.6 / p // =

0.5 / LA

o A

0.4 / 7 g B

0. >

0.2 / ?’:/ ]

O'; | Z EHu EHyr | Ho EHst | [EHi: | EH2| |He EHA  [EH [EH2

kr,

Fig. 4. Low-frequency cut-off hybrid mode chart where k is the cut-off wave number, r; is the inner guide radius and ry is the radius to
the bottom of the corrugation slots. For example, for r; /ry = 0.7 and kr; = 5.0 the highest-order mode that can just propagate is the
HE,> mode.
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EH HE

HEz2 // EHo,

10

Fig. 5. Dispersion characteristics for modes of azimuthal order 1 and 2 in a corrugated waveguide with ratio of inner radius r| to outer
radius to bottom of slot ry of r /ry = 0.6. k is the free space wave number and £ is the guide wave number. For free space the dispersion

curve is given by the dashed straight line as k = f.

rdry

Fig. 6. High-frequency cut-off hybrid mode chart where & is the high-frequency cut-off wavenumber, r; is the inner guide radius and r,
is the radius to the bottom of the corrugation slots. 1, 2, 3, 4 refer to the n in HE,; and EH,,;. Thus, for r,/ry = 0.7 the fundamental
HE,; mode is close to cut-off for kr; ~ 10.0 while EH,, is cut off at kr| ~ 4.0. (after Olver et al. [5]).

and Olver [6] show these to be of the order of
10%.

As the waveguide flares out into the horn the
hybrid modes develop a spherical wavefront with
centre of curvature at the apex of the cone defined
by the horn wall. The characteristics of the hybrid
modes change in a complex but gradual way from

the guide to the horn aperture in terms of the
balance A between the TE and TM components
(determined by relative strengths of E. and H,
components). The normalized guide wavelength f
also changes in a more complex way than is true
for smooth walled horns as is clear from Fig. 5.
The components of the electric fields of the two



J.A. Murphy et al. | Infrared Physics & Technology 42 (2001) 515-528 523

possible orthogonal HE,;/EH,; hybrid modes at
the horn aperture can be shown to be:

e = EO[(/_I - B)JHI(KM”/“) + (;1 + B)Jnfl(Knlr/a)}
C

os(nd) s
X ( sin(nqb)) exp (—jkr°/2L),

€p = Eo[(A = B)Jw1(Kur/a) — (A + )1 (Kur/a)]

X < sin (n) ) exp (—jkr? /2L),
—cos (n¢g)

where > = 1 — (K /ka)’. If the corrugation depths
are adjusted to be approximately equal to 1/4 then
the balanced-hybrid condition is satisfied and A =
+1 (for HE,; modes with K,; = p, ;) or A= —1
(for EH,; modes with K,; = p,.1,), and it becomes
true that the fields are zero at the edge of the
aperture (e.g. modes shown in Fig. 7). The bal-
anced-hybrid mode fields at the mouth of a horn

re-expressed in terms of Cartesian unit vectors
then becomes:

J,,,l ,1,11}"/61) exp(—jkrz/ZL)
Ey

Eug, =
4Tca2[J,,(p,,,”)]2
cos(n — )i — sinf(n — 1)
‘ (sin[(n ~ 1)tfi+ cos(n - 1)¢]i)’
Een, = Fy Jui1 (Pusrir/a) exp (—jkr? /2L)

4na(J, (pus1r))”
y (cos[(n +1)@li + sin[(n + 1)4)]1)
sin[(n 4 1)¢Ji — cos[(n + 1)¢Jj )’

where « is the radius of the horn aperture, and L is
the slant length of the horn (see Fig. 3).

In general the horn will be many wavelengths in
diameter and the far-field patterns can be assumed
to be given by a simple Fourier transform rela-
tionship (paraxial limit). Thus, if the modes at the

HE,

””';.'."i'i
zzz‘iz,,’,',',',';"i,t'.%’
tbll""'"w

HE;,

[

2\
:s*“\s\&\\,,.:.
W
W0

\)
A0
222
2%

Fig. 7. Balanced hybrid modes HE;; and HE,, at horn aperture.
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horn aperture are balanced HE/EH modes then
the radiation pattern is given by:

Prowa(0) = iE: <{ /OaJnl w117/ @)J, -1 (kr sin 0)

nl

x exp( — ikrz/ZL)rdr}2
X (4Tfaz[Jn(Pn11)]2)l>

EH a
+Z<{ / Tt (Pasrir /@) yr (kr sin 0)
nl 0

x exp( — ikr2/2L)rdr}2
x (4na2[‘]n(.pn+ll)]2)_l>'

The assumption here is that all modes carry equal
power. This will be valid if the hybrid modes
maintain their integrity and couple independently
to the integrating cavity. In practice this means
that the transition between the guide and the flared
horn sections should be slow enough and smooth
enough that scattering to higher-order hybrid
modes does not occur at the horn—guide disconti-
nuities. The horn aperture is wide enough that the
effective impedance there is the same for all modes.
In the next section we discuss the design of a multi-
moded horn using the ideas discussed in this and
the previous sections.

4. The design of multi-moded corrugated horns

The waveguide filter at the back of the horn
determines the number of modes that can propa-
gate. If we assume that there are many corruga-
tions per wavelength across the band of interest
(>3) then we can use the hybrid mode model as an
approximation. Some basic points about the cor-
rugated filter should be noted. A bandpass filter
generally defines the bandwidth of multi-moded
horns (typically A4// of 1/4 to 1/3). However, for
very wide-band operation it may be important to
know over what range of wavelengths the funda-

mental HE;; mode can propagate. At the long-
wavelength (low frequency) cut-off point the HE;
mode behaves like a TM|; mode in a guide defined
by the radius ry to the bottom of the slot. Thus,
the HE; cut-off wavelength A, is given by: A. =
27mry/3.83171. Note that the EH;; and Ey modes
have longer wavelength cut-offs (behaving like
TE,; and TMy; modes in a smooth guide of radius
r1), but will not propagate unless the corrugations
are very shallow, as is clear from Fig. 4. It is also
important that the HE;; mode not be close to
its high-frequency cut-off at the operating wave-
length, otherwise the horn will lose on-axis gain
and a hole will appear in the centre of the radia-
tion pattern. This means in effect that the ratio of
r1/ro must not be too small, or in other words the
slots must not be too deep (<Z), as is clear from
Fig. 6.

As an example, if optimizing operation for
wavelength A we choose the waveguide filter such
that », /ro = 0.7 and kr; = 5.02 (or r; = 0.82), then
the slot depth is 0.344 (i.e. approximately 1/3) and
ro = 1.144. Using Figs. 4 and 6 we predict that the
modes which can propagate are Hy, HE,;, HE,,
HE,,, HE;; and E(,. In general the Ey and the
EH,; modes are evanescent as is clear from Fig. 6
and the HE,, long-wavelength cut-off is at i, =
1.864, where A is the design frequency for which
the performance is optimized. Once the modes
determined by the waveguide filter are known we
can specify the relevant modal fields at the horn
aperture as in Section 3. The frequency at which
the best sidelobe rejection is required essentially
determines the slot depths near the horn aperture.
As the horn flares out the slot depths should be
adjusted to 1/4 [6]. As a practical example we have
chosen the aperture radius ¢ = 4.1 mm and slant
length L = 28 mm with the waveguide filter section
defined as above. The predicted far-field radiation
pattern is shown in Fig. 8 for the case of A = 550
pm using the hybrid mode model, with the con-
tributions of the component modes shown in
Fig. 9. However, because of the approximations
inherent in the approach we do not expect high
accuracy for the beam pattern.

The modal-matching scattering model allows us
to compute the radiation pattern of a horn more
accurately including the real corrugations. Thus,
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Fig. 8.

we can investigate the effects of varying the cor-
rugation pitch and the details of the transition
section over which the corrugation depths are
adjusted between the filter section and the horn
aperture. In Fig. 10 we show the radiation patterns

for the same horn as referred to above (a =4.1
mm, L = 28 mm) but for corrugation pitches of A
(very crude corrugations) and 1/4. In two cases a
short linear transition section near the horn throat
was used to step the corrugation depths from /3
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dashed corrugation pitch of 1/4, transition over length of horn. For comparison the thin dashed line shows the surface impedance

model.

to A/4. If the transition is extended over the full
length of the horn a significant change in the ra-
diation pattern is noticeable, as is clear in Fig. 10
for the second /4 pitch example. Superimposed
on the same plot is radiation pattern predicted
using the hybrid mode model. Clearly, given the
level of variation possible in the radiation patterns
the hybrid mode result must ultimately be accepted
as only approximate.

It is also interesting to consider the effect of
profiling the horn to obtain a narrower radiation
pattern (mimic a much longer conical horn). The
simple hybrid mode model is inadequate for de-
termining the aperture fields of such a system ac-

curately as there will be some hybrid modal
scattering through the profiled section of the horn.
In such a case a scattering matrix modal-matching
approach is clearly necessary. We present as an
example a profiled horn where the shape has a sine
squared taper (see Fig. 11). The horn aperture size
is as for the previous example (¢ = 4.1 mm). The
predicted beam pattern using the modal-matching
approach is shown in Fig. 12. The pattern clearly
has higher gain (narrower far-field FWHM for
example).

If a single mode horn is used to feed an antenna
then clearly the focal point should coincide with
horn phase centre in order to optimize the gain of
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Fig. 11. Profiled overmoded corrugated horn also showing flared backsection. All dimensions are in millimetres.
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the system. In the case of a multi-moded horn the
phase centre, as such, is an ambiguous term and, in
general, each independently propagating mode will
have a different phase centre location. A more
meaningful and useful concept is that of virtual
beam waist (the plane at which the width of the
beam is narrowest when propagated backwards
from the horn aperture as though in free space).
The optimum resolution with an antenna is then
obtained when the horn beam waist is coincident
with the focal plane, since a diffraction limited
image of the waist is formed on the sky. The lo-
cation of the virtual horn beam waist involves
plotting the near-field beam at various planes by
summing in quadrature the component indepen-
dent mode beam patterns after application of the
appropriate Fresnel transformations.

5. Conclusions

In this paper we have discussed two different
theoretical approaches to modelling corrugated
horn-filter configurations. One approach is based
on mode matching regarding the horn to be made
up of consecutive smooth walled waveguide seg-
ments and taking into account the consequent
scattering of power between the pure TE and TM
cylindrical waveguide modes. The second hybrid
mode approach approximates the corrugated
waveguide and horn walls by a uniform impedance

surface and the propagation is defined in terms of
hybrid HE and EH modes. The model assumes
that this effective surface impedance varies only
slowly and takes no account of any scattering that
may occur within the horn or waveguide. It is
thus more approximate than the mode-matching
model, which actually incorporates all of the scat-
tering that occurs at the individual corrugations in
the guide and horn. The mode-matching model
must be assumed therefore to be accurate and re-
liable, although, of course, ultimately limited by
the finite number of modes included in the calcu-
lations and any numerical instabilities that occur
in using a cascading process with a large number
of steps. We have found no particular problems
with such instabilities with typical few-moded cor-
rugated horns when the number of modes in the
calculation was kept to a minimum (10-20 modes),
consistent with a convergent result.

The mode-matching model has the disadvan-
tage of being computationally intensive. By com-
parison the hybrid mode model is very fast to
implement and particularly useful in predicting the
number of modes that will be transmitted by the
waveguide filter section. Reasonably good agree-
ment between the two models in terms of pre-
dicting the radiation pattern of conical corrugated
horns was obtained, although there was some de-
pendence of the patterns on the corrugation taper
details. Furthermore, if the horns are profiled to
enhance the beam quality then the simple hybrid
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mode model is inadequate for determining the
radiation pattern and the scattering matrix modal-
matching approach is necessary.

Corrugated overmoded horns are planned for
use as incoherent detector feeds on forthcoming
space missions. For example, the 550 and 850 GHz
channels on the High-Frequency Instrument (HFT)
of the PLANCK Surveyor will use overmoded
horn antennas as the detector feeds to achieve the
highest coupling efficiency to the cosmic micro-
wave background for cases where the resolution is
not diffraction limited. It also is envisaged that
few-moded bolometric feed horns will be used on
the SPIRE Instrument on the Far-IR and Sub-
millimeter Space Telescope (FIRST). The models
described in this paper will be used in the design of
these systems.

Ultimately, the verification of the models and
their implementation in software depends on a well
designed programme of experiments on over-
moded horn antennas. This is being planned as
part of the development of the HFI instrument
for PLANCK. Preliminary results are however
available for a prototype corrugated HFI horn,
designed to be single moded, but which was op-
erated at a higher frequency so that an overmoded
response takes place. Comparison with the mea-
surements indicates good agreement between ex-
periment and the predictions of the two models.
More systematic measurements of horn antennas
actually designed to be overmoded is planned for
the near future.

One limitation of the approach is the assump-
tion of good coupling of the waveguide to the in-
tegrating cavity. This can be achieved through
flaring of the guide, but it would be clearly ad-

vantageous to be able to model the coupling of an
unflared waveguide directly to a cylindrical cavity
in which an absorber is placed. Future develop-
ment of the technique will concentrate on the in-
tegrating cavity, so that the optimum location of
the absorber can be determined. Thus, any reflec-
tions at the guide cavity interface can be reduced
to a minimum and the coupling to the incoming
radiation from the far-IR source maximized.
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