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Abstract

Multi-moded horn antennas can be used as high efficiency feeds for
bolometers when diffraction limited resolution is not required. For
example, such horns are proposed for the PLANCK Surveyor, a satellite
telescope due to be launched in 2007 to make definite measurements of
the Cosmic Microwave Background. In a previous paper we described an
accurate approach involving electromagnetic modelling using a rigorous
mode matching technique to obtain both the horn aperture fields and the
corresponding far field radiation patterns. In this paper we extend this
description to determine the “phase center” of such horns when used on
large reflecting telescopes. The “phase center” is ill defined as the
individual spatially coherent fields making up the far field pattern all
appear to come from different phase centers. The best average phase
center location is therefore redefined in terms of the virtual beam waist
position behind the horn aperture at which the focus of the telescope
should be located in order to optimise angular resolution and on-axis gain
for the beam on the sky. A number of alternative techniques to locating
the phase center are discussed in detail in this paper.

Key Words: Multi-moded Horn Antennas, Phase center, Virtual Waist,
Modal analysis.
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1. Introduction

For a single moded system the phase center of a horn antenna is the
point along its axis which is the best fit center of curvature for the phase
front of the far field radiation pattern. It is convenient to think of a horn
antenna as a radiator rather than a receiver because the radiation
characteristics are the same for both cases (theorem of reciprocity). The
phase center should coincide with the focus of the telescope to optimise
the gain of the system as a whole. However, the phase center of a multi-
moded horn is an ill-defined concept since the field is only partially
spatially coherent [1]. Each independent spatially coherent component
field making up the beam can have a separate center of phase curvature.
An average phase center position can be computed by optimising the
predicted radiation patterns on the sky when the horn is placed close to
the telescope focus. However, a more useful re-designation of the phase
center would be the virtual waist position for the composite beam behind
the horn aperture [2,3].

To locate the virtual waist we propagate the horn aperture fields
backwards into virtual space behind the horn aperture plane and
determine the position at which the beam appears narrowest (see Fig. 1).
The individual spatially coherent component fields must be propagated
separately and combined in quadrature to determine the intensity pattern.
Since the phase front of the horn aperture is convex, the effective phase
center will be located inside the horn. Furthermore, as the phase error

term s=a’/2AL increases (where a is the radius of the horn aperture
and L is the slant length of the horn) the phase center moves towards the
back of the horn.

In an imaging telescope configuration, the far field radiation pattern of
the horn is the field that effectively illuminates the telescope aperture. On
the other hand the beam on the sky produced by the horn (taking the
magnification of the telescope into account) is a diffraction limited image
of the virtual fields at the telescope focus assuming that the focus lies
behind the horn aperture. These virtual fields can be estimated using near
field diffraction techniques if the spatially coherent component fields at
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Figure 1. Set-up of a horn aperture with respect to an antenna illustrating
the horn virtual waist and antenna focal point.

the horn aperture are available. The effects of telescope truncation can
often be neglected in determining the position of the best phase center.
For example in CMB experiments (in which multi-moded horns are used
e.g. PLANCK [4]) the beam edge tapers at the telescope are often very
low (typically —30dB) and to a good approximation the telescope can be
assumed to be of infinite extent. In these cases the field on the sky will be
an image of the horn field at the telescope focus without any significant
broadening because of the low level of spatial filtering at the telescope
aperture. The effects of aberrations may be important however for pixels
located near the edge of the field of view.

Because of the extra degrees of freedom resulting from having more
than one independent coherent field propagating, the relationship between
the on-axis gain, the resolution (full width half maximum) and the form
of the beam on the sky is more complex than for a single mode horn.
Determining the “phase center” is therefore a process of positioning the
horn aperture with respect to the telescope focus to optimise whichever
beam characteristic [3] is of interest. For most applications it is either the
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gain or the resolution that has to be optimised. The form of the beam,
however, may also be of importance.

In this paper the phase center of a multi-moded horn antenna is
computed using two alternative approaches. The first approach involves
decomposing the horn aperture field into Associated Laguerre Gaussian
Beam modes and propagating these backwards to locate the virtual waist
for the beam. As the modes propagate their width, radii of curvature and
phase slippage evolve. An equivalent method involves using a Fresnel
transformation of the field rather than a Gaussian Beam decomposition to
locate the waist. However, this has the disadvantage that the transform
becomes unstable for small propagation distances behind the aperture.
Assuming then the waist fields are imaged onto the sky, in both cases the
phase center is fixed by the point at which the beam characteristic of
interest is optimised. The second approach is most appropriate for cases
with non-negligible edge taper at the telescope and involves coupling the
farfield of the horn to the telescope and optimising the system by
adjusting the distance between the aperture and telescope, which
effectively changes the phase curvature of the beam at the telescope
aperture. The radiation pattern on the sky is then obtained by summing in
quadrature the Fourier transforms of the far fields of the independent
spatial modes of the horn with the appropriate phase error across the
telescope aperture. Again the phase center position corresponds to the
distance behind the horn aperture where the focus of the telescope should
lie to optimise the beam characteristic of interest.

A mode matching technique can be used to compute the radiation
pattern at the aperture of the horn [1,5]. In this technique a corrugated
conical horn structure is regarded as a sequence of cylindrical waveguide
segments with the radius stepping between the top and bottom of the
corrugation slots. A smooth walled profile on the other hand is
approximated by a series of cylindrical monotonically increasing radii
giving a stair like profile. The natural modes of propagation for each
segment are the TE and 7M modes of a uniform cylindrical waveguide.
There is a sudden change in the guide radius at the interface between two
segments and the power carried by the individual modes is scattered
between the backward propagating modes in the first guide segment and
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the forward propagating modes in the second guide segment. The mode
matching technique is based on matching the total transverse field in the
two guides at the junction so that the total complex power is conserved
with the usual boundary conditions applying to the fields at the
conducting walls. Track is also kept of the evanescent modes in the guide
as these can clearly propagate as far as the next step in the profile.

Because of the cylindrical symmetry of the junction discontinuity for
the case of regular conical horns, the scattering matrices S™ for each
azimuthal order are computed separately for all those values of » for
which modes can propagate [1]. This is because scattering only occurs
between modes with the same azimuthal number as they have the same z-
component dependence on cos(ng)/sin(ng). Each column, j, of the total
transmission S,; matrix corresponds to the scattered mode coefficients for

a particular mode, y,, at the input to the system [5]. Thus each

independent spatially coherent component in the guide €' can in general

be written as a total sum which is of the form e’ = Z A';.e;" where e_f" are
i

the TE and TM modes in the guide segment and the A’, are derived from

the scatter matrices S2/”” and the modal expansion coefficients of the
input independent coherent fields.

This paper is organised as follows. In section 2 we consider the quasi-
optical determination of the virtual waist position as an approach for
determining the phase center using Laguerre modes and an equivalent
method involving a Fresnel transformation. In section 3 we discuss the
coupling of the field from the horn antenna to a telescope and how the
diffraction limited image of the horn virtual waist is produced on the sky.
In section 4 we conclude with a discussion of the results of our study.

2. Determination of the horn virtual waist fields

Because of cylindrical symmetry any spatially coherent field,
E(r,¢,z), at the aperture of a conical horn antenna (smooth walled or
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corrugated) can be expressed conveniently as a linear sum of Associated
Laguerre Gaussian Beam modes [6] i.e.

E(r,¢,z):ZC"‘Pn(r,¢,z)- ()

These scalar Laguerre modes have the following mathematical form for a
beam travelling in the positive z direction given by

o es (r,¢,z e . ] cosag
(‘PZ‘S“‘ (r,¢, Z)J = l/lm( ,¢)exp( ikz + 1(2m +a+ 1){00 (Z){sin o j (2)

) syl (Y22

L (2r2 /W? )exp(— ik(r2 /2R))

n

and «is an integer representing the degree of the Laguerre polynomial. #
is called the beam width parameter and is a measure of the scale size of
the beam, R is the phase front radius of curvature and ¢, is the phase
slippage of the fundamental mode with respect to a plane wave between
the waist and the plane of interest (see fig.2). A mode travelling in the
negative z direction is obtained by setting z as —z where z=0 at the
aperture. The mode is normalised in the sense that the generalised power

Je

For single mode conical corrugated horn antennas the beam width
parameter at the aperture, W,, is often set to 0.6435a where a is the width
of the horn aperture and the radius of curvature of the beam at this
position is set to the slant length, L, of the horn. This optimises the power
in the fundamental hybrid HE,; horn mode [7]. The position of the waist,
A, for the beam mode set (which is not necessarily precisely equivalent to
the phase center for the horn field, of course) is given by the following
relationship A4 =L /1+(AL/2WDP). The beam width parameter at the
waist, W) is given by W, =W, /(1 +(aW /ALY, The radius of curvature,

2 . .
rdrd¢ is unity over any transverse plane.
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Figure 2. Laguerre Gaussian beam propagation, illustrating beam radius
W, waist W), radius of curvature R, and equi-phase surfaces as a function
of z, for any mode.

R, the width, W, and phase slippage, ¢y, of the beam a distance z from the
aperture are described using the usual relationships [7].

For a particular choice of R and W in fact, an infinite set of free space
modes, ¥2(r,4,z), exists which can be used to describe one of the

components of any complex scalar field, E(7, ¢ z),
Br8.2)= 3 4 Yo (.8.2)+ 3 B, Y2 (4,2) )

where the 4, and B,,, terms (modal coefficients) are given by

Ay = [[EC.0,2)[ 22 (r.8,2)] rdrdg @
r¢

B,, = [ [E(.0.2)[¥2" (r.¢.2)] rdrdg )
re¢

The transverse electric field of cylindrical horns and waveguides can be
written as a linear sum of 7F and TM modes where the cylindrical
components of the two orthogonal sets of TE and TM modes are given
respectively by
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e:f’ms — (2 B 5’10) n‘]n (qnlr/a) cos n¢ f
e, ma’ (1= (n/q,)");4,)| gur/a \-sinng

, sinng ) .
=J.(gur/ a)(cosn ¢] (/’}

1M ,cos 2 _
ef',’ = ——(2 25"0) J(p,r/a) Cf)sn¢ r
e:’;’Ls‘“ 7a Jn+1 (pnl ) sin n¢ (7)

M (pur/ @) [— sin n¢j A}

(6)

puria cosng

in which gq,, represents the /th root of .J',(z), pn represents the Ith root of

Ju(z) and a is the radius of the horn aperture. Here the constants of

proportionality were chosen for convenience to normalise the generalised
. 2

power ﬂe,’,,"/ ™" rdrd¢ to unity.

Aperture

The aperture field of the horn obtained using a mode matching
technique [1] expressed in terms of 7F and TM modes is converted to
Associated Laguerre Gaussian Beam modes. Waveguide modes with
cosng or sinng angular dependence clearly only couple to Laguerre
modes with the same »n¢ angular dependence. Each wave guide mode can
be re-expressed as:

T 1 ) A
= Joalguria)e,, +J, g r/a)e,, (8)
O G i U e s )]

. 1 A n
erltjw:Jm[‘jn—l(pnlr/a)en—l~Jn+l(pn1r/a)en+1] ©)

where the pair of orthogonal unit vectors é,.; and é,+; expressed in terms
of Cartesian unit vectors are given by é,.; = cos(n-1)¢f — sin(n-1)¢ f and
éur1 = cos(nt+1)g i + sin(ntl)¢ j. This then simplifies the analysis
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involved in expressing the wave guide modes as a linear sum of
Associated Laguerre modes. Clearly the waveguide modes couple to
normalised linear combinations of two free space Laguerre modes of the
form

2(2 - 6,, )m! —r’ Y 27’ H 2r? r.
= a S B 5. e -k
m( ¢) 7Z'W2(m + a)! exp( W2 j[Wz m W2 eXp J 2R ea

(10)
where o = nt1. We can therefore for example write
e = 3w 1), ) (an
. M
erll;w = Z(’Tn(l ;+I \l’l" ] + Tn(r:'-gvl 1+I‘I’::1+1) (12)

m

where the 7",.5',.’) can be regarded as the elements of a transformation matrix

7™ for waveguide modes of azimuthal order » and the T,S.’) are given by

TV = J._[\Pn I nl rdrd¢ 7;;(:1\41 = ”‘I’Z.” :IL rdrdg

mi n

(13)
¥, = I j‘l'::,‘. W ordrdg T8, = f j‘P::.“. ! rdrdg

M is the number of Laguerre modes used in the analy51s for a given value
of n and 2L is the total number of TF plus TM modes of azimuthal order n
used in the expansion of the horn aperture fields. Thus, at the horn
aperture the overall field for cach independent spatially coherent field

component in the guide, &', can be re-expressed as follows
2L
e' =) A} = Z(Z T AN T, ,A"P::,“] (14)
j j m

where j correspdnds to either / or /+L depending on whether the mode is
TE or TM, respectively.



720 Gleeson, Murphy, and Maffei

Once the Laguerre Gaussian expansion coefficients are determined the
component modes can be propagated and re-summed to determine the
fields at another plane either in front of the horn (forward direction) or in
the virtual half space behind the horn (backward direction). The Laguerre
mode definition used in this summation includes the phase slippage as in
equation (2). The total beam is made up of an incoherent sum of

component independent spatially coherent fields, e’ and thus can be
computed by adding in quadrature the propagated modal sums given in
equation (14). The position behind the aperture where the beam is
narrowest corresponds to the virtual waist region of the horn and can be
regarded as the phase center. One advantage of this approach is that once
the 7™ matrix is computed it is horn independent as long as the modal
beam parameter W is scaled with the horn aperture size. An alternative
less general approach would be to express the independent spatially

coherent &' fields directly as Laguerre Gaussian Beam mode expansions.
The Laguerre Gaussian approach is completely equivalent to applying a
Fresnel transformation to such fields as will now be discussed.

The Fresnel transform of each mode making up the aperture field is
most conveniently expressed in the following mathematical form with the
co-ordinate frames defined as in figure 3:

V4

Env/yM(r ¢ Z)__.qﬁ,, Jg”rj'u 1F/1M exp _ik Z+ +ro
nl 0>70> nI 2

y exp[ikraro cos(g, —¢,)

z

jradrad;/ﬁa (15)

In this case e'*'™

o can be written as in equations (8) and (9) in terms of
their Cartesian £ and f components which contain products with azimuthal
¢ terms of the form cos(nxl)¢, and sin(ntl)g,. On integrating
analytically over ¢, [8] these terms are converted to terms of the form

J ke, 1 2)27" cos(nt1)g, /sin(n+1)g, reducing the  Fresnel

integration to a combination of terms involving functional variation in r¢
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Figure 3. Fourier transform of the aperture field a distance z behind the
aperture.

of the form

I, (r0)~ J.Jnil (Z Y, /a)Jnil (kraro /z)exp(— ikra2 /2z)radra (16)
r=0

where y = p,, or g,,. The fields can clearly be reconstructed in the region
behind the horn and thus the virtual waist phase center located as before.
Analytically the process is identical to the procedure described for
Gaussian Beam Mode analysis. However the numerical approximations
involved in the two procedures are different. In fact Fresnel transforms
have the disadvantage that we cannot let z — 0 (for small values of z the
transform becomes unstable computationally) and therefore we cannot
probe the field at the aperture.

y

Figure 4. Conical corrugated back to back horn antenna.

2a=8.2mm
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As an example we take one possible conical corrugated horn antenna
model being proposed for the High Frequency Instrument [9] on the
PLANCK Surveyor (see fig. 4). The example discussed is based on such a
horn with a design frequency of 545GHz, aperture diameter 8.2mm and
slant length 28mm.

Figure 5 - 6 show contour plots of the virtual total field intensity
pattern in the vicinity of the horn virtual waist computed using
Associated Laguerre Gaussian Beam modes and for comparison also
using Fresnel diffraction. There is a clear tendency for the Fresnel
approach to begin to break down as z — 0 (ficlds close to the horn
aperture). The virtual waist phase center can be chosen as either the point
where the on-axis intensity is highest or where the 3dB width is
narrowest. By placing the telescope focal point at the waist an image of
that plane is formed on the sky if no significant truncation of the beam
occurs at the telescope. Since the horn is fed by a black body cavity both
polarisations of each mode propagate and therefore all beam patterns are
axially symmetric.

-4

=l ~

Off-axis distance (mm) |

X}

2.5 5 7.5 10 12.5 15
Position behind horn aperture (mm)

Figure 5. Beam intensity pattern in the vicinity of the horn virtual waist
using Associated Laguerre Gaussian Beam modes (highest contour level
is 65.26 (arbitrary units), contour spacing is 1.31). The vertical line
indicates the position of the minimum FWHM.
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Figure 6. Beam intensity pattern in the vicinity of the horn virtual waist
using direct Fresnel transformations (highest contour level is 66.0
(arbitrary units), contour spacing is 1.32). The vertical line indicates the
position of the minimum FWHM.

For this horn design, the phase center in terms of the point where the
on-axis intensity is highest is 11.5mm behind the aperture when Laguerre
Gaussian modes are used as the basis set and 11mm behind the aperture
when using smooth walled TF and 7M modes. Alternatively, the phase
center where the 3dB width is narrowest is 11mm behind the aperture
when using Laguerre and 10mm behind the aperture when using the
smooth walled modes. However because of the clear depth of field of the
beams in the vicinity of the waist these discrepancies are insignificant.

3. “Phase center” by optimising the telescope beam on the sky.

In the previous discussion of the phase center it was taken that the
waist (in a general sense) of the virtual field behind the horn could be
assumed to be the phase center. In reality when coupled to a telescope
some spatial frequency filtering of the beam will take place and this will
affect the image of the horn waist on the sky with a possible shift in phase
center position. An alternative approach to finding the phase center
therefore involves coupling the far field of the horn to the telescope and



724 Gleeson, Murphy, and Maffei

optimising the telescope beam on the sky (see fig.7). The radiation
pattern on the sky can be obtained by Fourier transformation of the far
field of the horn at the telescope aperture with the relevant phase error
due to the displacement, A, of the horn aperture from the focal plane of
the telescope.

Assuming paraxiality and neglecting obliquity factors the far field at

the telescope aperture of the 7E and TM modes at the horn mouth is given
by the Fraunhofer limit of the Fresnel transform given in equation (15)

i @,=27 r,=a V. 2

15 110 JFELESCOPE TE I TM : r

[e", J. J. enl (ra s ¢a )exp - lk z+ 2— X
. z

Tz
exp( ikrar'l' COS(¢H B ¢7)

9,=0 1,~
jradradqﬁa a7
z

where in the limit as z — oo the kra2 /2z term is negligible.

The beam on the sky is obtained by Fourier transformation of this field
with the correct phase curvature to take account of the position of the
horn with respect to the telescope focus. The position for which the 3dB

ya yT E ys
* A
1
\

f [

z ;T

A >
~~~~~~~ SR VAR

horn aperturg’
A
7
, A

/

»

X
a Xt telescope plane

sky
Figure 7. The far field of a horn antenna coupled to an imaging telescope
and Fourier transformed onto the sky where. The diagram shows the
variables used in the derivation.
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level of the beam on the sky is narrowest (best angular resolution) should
be close to that which optimises the on-axis gain but may not exactly
coincide. In order to determine the best angular resolution the beam
pattern on the sky needs to be computed as a function of the horn aperture
position with respect to the telescope focus. If the truncation levels are
significant for at least some of the modes, the patterns observed will not
be exact images of the virtual fields in the vicinity of the telescope focal
point.

1L /1M
nl

For each waveguide mode e

sky is therefore given by
D2 2z

[e"l,z;/m SKY ‘I J' J' ]i ell™ (., exp(zkr —COS(¢ - )j

=0 5=0 ,=0 ¢r=0

exp(ikr,, sin 0, cos(¢7, ~ @ ))exp(ikr,f"A 12f? )radradqﬁa r.dr,dg, (18)

at the horn aperture the field on the

where D is the diameter of the telescope aperture and A is the horn
displacement. The integration over ¢, ¢r and r, may be performed
analytically as in section 2 for Fresnel integration thus reducing equation
(18) to a combination of one dimensional integrals (similar to equation
(16)) with respect to rr of the form:

rp=D12

IZK,Y (HS)N J-jntl (Z,kar,. /f)Jnil (kr, sin Hs)exp(ikr,.z /2Rq_/f )r].drl. (19)

rp=0
where R,y is the effective radius of curvature of a mode because of the
displacement A of the horn aperture from the telescope focus with

= f*/A and where

{54, (O, ()= 17,4 ()T, ')} (20)

2 2

jnil(s’t)= 12—

The total power on the sky can be computed by adding in quadrature
the propagated modes given in equation 18. For simplicity the phase
center of the horn can be computed by maximising the on-axis gain. In
that case, only modes of azimuthal order 1 need to be included as these
alone have on-axis power because of azimuthal symmetry. Therefore the
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on-axis gain can be computed by coupling each mode of azimuthal order
1 to an on-axis point and adding these contributions taking into account
the partial coherent nature of the field.

Again in this case since paraxiality is assumed an alternative approach
involving Gaussian Beam modes can be chosen. The approach is more
stable especially if the horn aperture is placed close to the telescope focus
and the levels of truncation are low at the telescope. The disadvantage of
the modal approach in this case is that the telescope edge truncation
causes mode scattering at the telescope [10] although the defocusing
effect of moving the horn with respect to the telescope is readily included
by its effect on the phase radius of curvature term.

Again we consider an example of the horn discussed previously.
Figure 8 illustrates the intensity on the sky as a function of off-axis
distance for varying displacements of the horn aperture with respect to
the focus of the telescope where the level of truncation is at —30dB
(PLANCK requirements) and figure 9 shows the on-axis gain at the
telescope. The position at which the beam is narrowest in terms of its
FWHM (resolution) is also indicated on figure 8. As can clearly be seen
the FWHM varies slowly with the horn position compared to the on-axis
gain which is particularly susceptible to phase slippages between
component modes of the fields. In figure 10 the field on the sky is
illustrated for the case of non-negligible beam edge taper at the telescope
(the truncation level is —10dB). The sharp maximum in gain is lost as the
higher order spatial frequencies are now significantly truncated.

For the case of negligible beam edge taper at the telescope the phase
center in terms of the point where the on-axis intensity (on the sky and at
the telescope) is highest is 11.5mm behind the aperture. Alternatively, the
phase center where the 3dB width is narrowest is 11mm behind the
aperture. The predicted phase center locations using the alternative
definitions and theoretical approaches lie in the range 10mm — 11.5mm.
Clearly the beam pattern (given by a vertical cut on fig. 8) on the sky also
evolves in form in the region of the highest gain and resolution. This may
influence the chosen positioning for the horn depending on the
application. When the truncation level at the telescope is —-10dB the point
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Figure 8. Beam intensity pattern on the sky for varying displacements of
the horn aperture with respect to the telescope focus (highest contour
level is 77.0 (arbitrary units), contour spacing is 1.54). The level of
truncation at the telescope is at —30dB.
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Figure 9. On-axis gain at the telescope for varying displacements of the
horn aperture with respect to the telescope focus using smooth walled TE
and TM modes. The level of truncation at the telescope is —30dB.



728 Gleeson, Murphy, and Maffei

e

'
w
'S
&

Angle in the sky (arcmin)
<

b
FS
IS

2.5 5 7.5 10 12.5 15
Position behind horn aperture (mm)

Figure 10. Beam intensity pattern on the sky for varying displacements
of the horn aperture with respect to the telescope focus (highest contour
level is 34.0 (arbitrary units), contour spacing is 1.36). The level of
truncation at the telescope is at —10dB. The vertical line indicates the
position of the minimum FWHM.

where the on-axis intensity is highest is 10mm behind the aperture and
the 3dB width is narrowest at 15.5mm. However, the 3dB beam width is
clearly a very slowly varying function of the position of the horn as was
the case in figure 9 also.

4. Discussion and Conclusions

In this paper we discussed how useful techniques for locating the best
virtual waist phase center for a multi-moded partially coherent horn
antenna could be developed. The technique was based on near field
diffraction of the individual spatially coherent fields at the horn aperture
into the virtual propagation half-space behind the horn aperture and then
summing their contributions to the intensity in quadrature. Two
equivalent approaches based on either a modal or integral transformation
analysis were outlined and compared for an example prototype horn for a
real far IR system (HFI on PLANCK). For the case where the spatial
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frequency filtering of the horn beam is significant on a telescope a
straightforward paraxial approach based on Fresnel transforms is
outlined. The field on the sky can then be optimised for gain, resolution
or form,

Clearly on real telescopes the paraxial approach may be a significant
approximation, and especially for array imaging systems where
aberrations may be important. Distortion of the component spatially
coherent fields can result in an even more complex variation in gain,
resolution and form than in the case for the paraxial perfect imaging
discussed in this paper [11]. Ultimately for such cases an accurate
physical optics model may be necessary for fine tuning the phase center
location as computed using the straightforward approach presented in this

paper.
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