
Parameterisation of Radiation Forces for a Multiple Degree-of-Freedom Wave Energy
Converter Using Moment-Matching

Nicolás Faedo, Yerai Peña-Sanchez and John V. Ringwood
Centre for Ocean Energy Research, Maynooth University, Maynooth, Ireland

ABSTRACT

The motion of a Wave Energy Converter (WEC) can be described
in terms of an integro-differential equation, which involves a con-
volution operator. This convolution term accounts for the effect
of radiation forces acting on the device, and represents a com-
putational and representational drawback both for simulation,
and analysis/design of control/estimation strategies. We present
herein a moment-based strategy to compute a parametric form
of the radiation force subsystem for multiple degree of freedom
WECs. The strategy allows for the computation of a model that
exactly matches the steady-state behaviour of the target system
at a set of user-defined frequencies, while retaining the under-
lying physical properties of radiation forces. The potential and
capabilities of the presented method are illustrated considering a
CorPower-like device (heaving point absorber) as an application
case.

KEY WORDS: Radiation forces; Parametric form; Model order
reduction; Frequency-domain identification; Moment-matching

INTRODUCTION

While limited by the linear nature of potential flow theory, the
speed with which numerical simulation may be performed makes
the widely-known Boundary Element Method (BEM) a common
choice to compute hydrodynamic parameters for a given Wave
Energy Converter (WEC) (Penalba et al., 2017). However, one
of the major drawbacks of BEMs is that the results are com-
puted in the frequency domain and, hence, can only charaterise
the steady-state motion of the WEC under analysis. Seeking for
a more comprehensive approach, and following the well-known
theory developed in (Cummins, 1962), the motion of a WEC can
be expressed, in the time domain, using a particular well-known
integro-differential equation of the convolution class. The pres-
ence of these convolution terms account for the effect of radiation
forces acting on each of the different degrees of freedom (DoF)
of the device, constituting a (hydrodynamic) coupling between
these modes of motion.

The existence of these convolution terms represents a significant
drawback both for motion simulation, and for modern analy-
sis/design of control/estimation strategies. From a motion sim-
ulation point of view, it is well-known that the explicit compu-
tation of the convolution operator is computationally inefficient,
often worsened by the necessity of a small (time) discretisation
step to obtain accurate numerical integration. From a control/es-
timation theory point of view, the presence of these convolution
mappings complicates the application of well-established results
in the field, since modern control/estimation techniques are based
on the availability of a state-space representation (at least in lo-
cal coordinates) of the system under analysis (Faedo et al., 2017).
Motivated by these drawbacks, researchers often seek for a para-
metric approximation of this radiation force subsystem in terms
of a linear time-invariant dynamical representation, making ex-
plicit use of the corresponding hydrodynamic characteristics of
the device obtained from BEM solvers. By way of example, in the
case of control applications, studies that consider this approxima-
tion modality can be found in (Hals et al., 2011, Li and Belmont,
2014) while, for the estimation case, (Peña-Sanchez et al., 2018)
implements this same strategy.

To be precise, the prevailing approach is to approximate each
convolution term independently (see, for example, (Giorgi and
Ringwood, 2019, Li and Belmont, 2014)), as a single-input single-
output (SISO) dynamical system, even though the problem is
inherently multiple-input multiple-output (MIMO), as a conse-
quence of the multi-DoF characteristic of the WEC. One main
disadvantage of this “multi-SISO” approach is that treating each
convolution term independently often leads to an unnecessary
high-order dimensional parameterisation of the radiation force
subsystem, potentially rendering any control/estimation strategy
challenging for real-time applications (Faedo et al., 2017).

We have recently presented a moment-matching-based MIMO
identification method for wave energy applications in (Peña-
Sanchez et al., 2019), particularly to approximate the response of
an array of WECs, i.e. a “farm” of multiple 1-DoF devices. This
strategy is based on the underlying theoretical concepts devel-
oped in (Faedo et al., 2018b), and allows for the computation of
a model that exactly matches the frequency response of the target
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MIMO system at a set of user-selected frequencies F , providing
an efficient and accurate method to compute a state-space repre-
sentation for the WEC dynamics. Additionally, and as discussed
in (Faedo et al., 2018b), a wise selection of the set F within this
moment-based approach, helps to enforce the underlying (physi-
cal) properties of the WEC under analysis.

Motivated by these results, in this paper, we present an adapta-
tion of the MIMO identification framework developed in (Peña-
Sanchez et al., 2019) to compute a parametric approximation
of the radiation force subsystem of a multi-DoF device. We
demonstrate that treating the approximation of radiation forces
with our MIMO moment-based strategy (instead of the usual
“multi-SISO” approach) provides a highly accurate low dimen-
sional system, hence offering a reliable parametric model, while
also reducing the computational effort required for time-domain
simulations and control/estimation calculations. Moreover, we
show that we can guarantee essential physical properties of radi-
ation forces in the approximating model, such as bounded-input,
bounded-output (BIBO) stability.

The remainder of this paper is organised as follows. Section 2
recalls the theory behind moment-matching for MIMO systems.
Section 3 briefly discusses modelling of multi-DoF WECs in both
the time and frequency domains. Section 4 presents a moment-
domain analysis of radiation forces, while Section 5 discusses a
moment-based algorithm to compute a parametric approximation
for the radiation force subsystem of a multi-DoF WEC. Section
6 discusses an application case, where a CorPower-like device
(heaving point absorber) is considered. Finally, Section 7 encom-
passes the main conclusions of this study.

Notation and Preliminaries

Standard notation is considered through this study, with any ex-
ceptions detailed in this section. R+ (R−) denotes the set of
non-negative (non-positive) real numbers. C0 denotes the set
of pure-imaginary complex numbers and C<0 denotes the set of
complex numbers with a negative real part. The symbol 0 stands
for any zero element, dimensioned according to the context. The
symbol In denotes an order n identity matrix. The spectrum
of a matrix A ∈ Rn×n, i.e. the set of its eigenvalues, is de-
noted as λ(A). The notation W †, with W ∈ Rn×m, denotes the
Moore-Penrose inverse of W . The symbol

⊕
denotes the direct

sum of n matrices, i.e.
⊕n

i=1Ai = diag(A1, A2, . . . , An). The
expression ‖X‖F denotes the Frobenius norm of the matrix X.
The Kronecker product between two matrices M1 ∈ Rn×m and
M2 ∈ Rp×q is denoted as M1 ⊗M2 ∈ Rnp×mq. The convolution
between two functions f(t) and g(t) over a finite range [0, t], i.e.∫ t
0
f(τ)g(t − τ)dτ is denoted as f(t)∗ g(t). The Fourier trans-

form of a function f(t) ∈ L2(R) is denoted by F{f(t)} = f̂(jω),
while its Laplace transform is denoted as L {f(t)} = F (s),

where L2(R) =
{
f : R→ C|

∫∞
−∞ |f(t)2|dt < +∞

}
. The symbol

eqij ∈ Rq×q denotes a matrix with 1 in the ij-component and 0

elsewhere. Finally, the symbol εn ∈ Rn×1 denotes a vector with
odd components equal to 1 and even components equal to 0.

MOMENTS FOR MIMO SYSTEMS

We note that the theory recalled herein is originated within the
field of model order reduction in (Astolfi, 2010), being adapted
for the WEC identification problem in (Faedo et al., 2018b, 2019,

Peña-Sanchez et al., 2019). The interested reader is referred to
(Scarciotti and Astolfi, 2017, Chapter 1) for a thorough discussion
on different model order reduction techniques and, particularly,
on moment-based methods.

Consider a finite-dimensional, MIMO, continuous-time system Σ
described, for t ≥ 0, by the state-space model

Σ :
{
ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t), (1)

with x(t) ∈ Rn, u(t) ∈ Rq, y(t) ∈ Rq, A ∈ Rn×n, B ∈ Rn×q
and C ∈ Rq×n. Consider the transfer function W : C → Cq×q,
computed in terms of the associated impulse response matrix
w(t) = CeAtB with wij(t) ∈ L2(R), where wij(t) denotes the
ij-element of w(t), as

L {w(t)} 7→W (s) = C(sIn −A)−1B, (2)

and assume that (1) is minimal, i.e. controllable and observable1.

Definition 1. (Antoulas, 2005) The 0-moment of system (1) at
si ∈ C\λ(A) is the complex matrix η0(si) = C (siIn −A)−1B.
The k-moment of system (1) at si ∈ C is the complex matrix

ηk(si) =
(−1)k

k!

[
dk

dsk
W (s)

]
s=si

, (3)

with k ≥ 1 integer.

Remark 1. Note that moments, as in Definition 1, are the coef-
ficients of the Laurent expansion of the transfer function W (s)
around the complex point si.

Remark 2. The idea of the moment-based model order reduc-
tion technique is based on interpolating the transfer function of
the original system (and the derivatives of this) and the transfer
function of the reduced order model (and the derivatives of this)
at these interpolation points si.

The pioneering study (Astolfi, 2010) shows that the moments
of a SISO linear system are in a one-to-one relation with the
steady-state response (provided it exists) of the output of the in-
terconnection between a signal generator and the system Σ itself.
This concept is formally extended to MIMO systems in (Faedo
et al., 2019, Peña-Sanchez et al., 2019), and briefly recalled in the
following theorem.

Theorem 1. (Faedo et al., 2019, Peña-Sanchez et al., 2019) Con-
sider system (1) and the autonomous multiple-output signal gen-
erator

G :
{

Ξ̇(t) = (Iq ⊗ S) Ξ(t), u(t) = LΞ(t), (4)

with Ξ(t) ∈ Rqν , S ∈ Rν×ν , L ∈ Rq×qν , Ξ(0) ∈ Rqν , λ(A) ⊂ C<0,
λ(S) ⊂ C0 and the eigenvalues of S are simple. Suppose the
triple of matrices (L, Iq ⊗ S,Ξ(0)) is minimal. Let Π ∈ Rn×qν be
the (unique) solution of the Sylvester equation

AΠ +BL = Π(Iq ⊗ S). (5)

Then, there exists a one-to-one relation between the moments
η0(s1), η0(s2), . . . , η0(sν), with si ∈ λ(S) for all i ∈ Nν , and the
steady-state response CΠΞ of the output y of the interconnection
of system (1) with the signal generator (4).

Remark 3. The minimality of the triple (L, Iq ⊗ S,Ξ(0)) implies
the observability of the pair (L, Iq ⊗ S) and the excitability2 of
the pair (Iq ⊗ S,Ξ(0)).

1The reader is referred to (Khalil, 1996) for further detail on the
concept of controllability and observability of a dynamical system.

2We refer the reader to (Padoan et al., 2017) for the definition of
excitability.
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Remark 4. From now on, we refer to the matrix CΠ ≡ Y, with
Π the solution of (5), as the moment-domain equivalent of y(t).

Following this steady-state interpretation of moments, we now
recall from (Astolfi, 2010) the formal definition of a reduced order
model achieving moment-matching for system (1).

Definition 2. (Astolfi, 2010) Consider system (1) and the signal
generator (4). The system described by the equations

ΣG :
{

Θ̇(t) = F Θ(t) +Gu(t), θ(t) = QΘ(t), (6)

with Θ ∈ Rqν , θ(t) ∈ Rq, F ∈ Rqν×qν , G ∈ Rqν×q and Q ∈ Rq×qν
is a model of system (1) at S if system (6) has the same moments
at S as system (1).

Lemma 1. (Astolfi, 2010) Consider system (1) and the signal
generator (4). Then, the system defined in (6) is a model of
system (1) at S if λ(F ) ∩ λ(S) = ∅ and

Y = QP, (7)

where Y = CΠ is the moment-domain equivalent of the output
of system (1) computed from (5), and P is the unique solution of
the Sylvester equation

FP +GL = P (Iq ⊗ S). (8)

Remark 5. The transfer function of system ΣG interpolates the
transfer function of system Σ at the eigenvalues of the matrix
S. Equivalently, the steady-state output of the reduced order
model (6) exactly matches the steady-state output of the system
resulting from the interconnection of systems (1) and (4).

Given the characteristics of λ(S) in Theorem 1, we set a standing
assumption on the matrix S and we recall a useful lemma from
(Faedo et al., 2019), which provides an alternative path for the
computation of the matrix Y = CΠ, in terms of the impulse
response matrix of system Σ.

Assumption 1. Consider the finite set F = 0∪ {ωp}fp=1 ⊂ R+.
The matrix S in (4) is written in block-diagonal form as

S = 0⊕

(
f⊕
p=1

[
0 ωp
−ωp 0

])
, (9)

where ν = 2f + 1, f ≥ 0 integer.

Lemma 2. (Faedo et al., 2019, Peña-Sanchez et al., 2019) Con-
sider the interconnection between system (1) and the signal gen-
erator (4), and suppose Assumption 1 holds. Without losing
generality, assume that Ξ(0) = [1 εᵀν−1]ᵀ so that the minimality
of the triple (L, Iq ⊗ S,Ξ(0)) holds as long as the pair (L, Iq ⊗ S)
is observable. Then, the moment-domain equivalent Y can be
computed from the impulse response of system (1) as

Y =

q∑
i=1

q∑
j=1

eqijL
(
Iq ⊗Rw

ij

)
, (10)

where each Rw
ij ∈ Rν×ν is a block-diagonal matrix defined by

Rw
ij = Wij(0)⊕

(
f⊕
p=1

[
<{Wij(jωp)} ={Wij(jωp)}
−={Wij(jωp)} <{Wij(jωp)}

])
, (11)

and Wij(s) = L {wij(t)}.
Remark 6. Note that, following Lemma 2, each ωp in (9) repre-
sents a desired interpolation point for the model reduction pro-
cess, i.e. a frequency where the transfer function of system ΣG

matches the transfer function of the original system Σ.

Remark 7. The set F , as defined in this study, inherently in-
corporates the zero element, i.e. we always consider matching at
s = 0. This is particularly useful for a proper parameterisation
of the radiation force subsystem, as it helps to enforce underlying
physical properties (see Section 4).

EQUATIONS OF MOTION FOR A MULTI-DoF WEC

We now introduce the key concepts behind linear modelling of
multi-DoF WECs, both in the time and frequency domains. The
assumptions considered herein are consistent across a wide variety
of WEC control/estimation studies such as (Faedo et al., 2018c,
2019, Li and Belmont, 2014, Peña-Sanchez et al., 2018).

Equations in the time domain

The motion for a WEC with N DoF can be expressed in the
time-domain according to Newton’s second law, obtaining the
following linear hydrodynamic formulation:

Mχ̈(t) = Fr(t) + Fh(t) + Fe(t), (12)

where M =
⊕N

i=1mi is the mass matrix of the buoy with mi ∈
R+ the mass of the i-th DoF, and the elements of the vectors
χ,Fe,Fh,Fr ∈ RN contain the excursion xi(t), excitation force
fei(t), hydrostatic restoring force fhi(t) and radiation force fri(t)
acting on the i-th DoF, with i ∈ NN , respectively.

The linearised hydrostatic force Fh(t) can be written as −Shχ(t),
where the matrix Sh ∈ RN×N is defined as Sh =

∑N
i=1

∑N
j=1 e

N
ij⊗

shij and contains the hydrostatic stifness of each DoF (if i = j)
and each interaction between the different modes of motion of the
device due to the movement of each other DoF (if i 6= j). The
radiation force Fr(t) is modelled from linear potential theory and,
using Cummins’ equation (Cummins, 1962), is

Fr(t) = −µ∞χ̈(t)−
∫ +∞

0

K(τ)χ̇(t− τ)dτ, (13)

where µ∞ = limω→+∞A(ω) represents the added-mass matrix
at infinite frequency (Falnes, 2002) and K(t) =

∑N
i=1

∑N
j=1 e

N
ij ⊗

kij(t) ∈ RN×N , kij(t) ∈ L2(R) contains the (causal) radiation
impulse response of each DoF (if i = j) and each interaction due
to radiated waves created by the motion of other DoF (if i 6= j).

Finally, we can express the linearised equation of motion of the
multi-DoF WEC as

(M + µ∞)χ̈(t) +K(t)∗ χ̇(t) + Shχ(t) = Fe(t). (14)

Equations in the frequency domain

Applying the Fourier transform to (14), and considering the ve-
locity of each DoF a measurable output i.e. χ̇(t), the following
representation

ˆ̇χ(jω) = F̂e(jω)H(jω), (15)

where H : C0 → CN×N denotes the force-to-velocity frequency
response mapping of the WEC, holds. The mapping H(jω) can
be readily computed (Falnes, 2002) as

H(jω) =

(
B(ω) + jω (A(ω) +M)− Sh

jω

)−1

, (16)

where B(ω) and A(ω) represent the radiation damping, and the
radiation added mass matrix of the device, respectively. These
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parameters are calculated using hydrodynamic codes at a finite
set of uniformly spaced frequency samples Ω = {ωi}Mi=1 with
Ω ⊂ [ωl, ωu], where ωl and ωu represents the lower and upper
bound of the range, respectively. We note that the ideal fre-
quency range depends explicitly on the application, as discussed
in (Faedo et al., 2018b).

Mapping between time and frequency

Following the study performed in (Ogilvie, 1964), we recall that
there exists a straightforward relation between the parameters of
the models (14) and (15), which can be readily obtained via a
direct application of the Fourier transform as

B(ω) =

∫ +∞

0

K(t) cos(ωt)dt,

A(ω) = µ∞ −
1

ω

∫ +∞

0

K(t) sin(ωt)dt.

(17)

Then, the radiation force impulse response mapping K : R+ −→
RN×N can be directly written (Falnes, 2002) as

K(t) =
2

π

∫ +∞

0

B(ω) cos(ωt)dω. (18)

Considering equation (18), the frequency-domain representation
of the radiation force kernel K(t) can be obtained in terms of its
Fourier transform K(jω), i.e.

K(jω) = B(ω) + jω [A(ω)− µ∞] . (19)

The radiation kernel frequency response K(jω) has a set of par-
ticular properties, which have been used in the literature to en-
force a structure on the parametric model used to identify the
frequency domain data. Such properties are recalled from (Pérez
and Fossen, 2008) in Table 1.

Property Significance on K

I) limω→+∞K(jω) = 0 Strictly proper

II) limt→+∞K(t) = 0 BIBO stable

III) limω→0 K(jω) = 0 It has transmission zeros3 at the origin

IV) <{Kii(jω)} > 0, ∀i ∈ NN Passivity4

Table 1 Properties of the radiation kernel K.

MOMENT-BASED RADIATION SYSTEM

The radiation impulse response mapping defines a linear-time
invariant system completely characterised by K : R+ −→ RN×N ,
where its input is the vector containing the device velocities for
each DoF, i.e. χ̇(t). To be precise, the radiation subsystem ΣK

is given by

ΣK : θK(t) = K(t)∗ χ̇(t), (20)

where θK(t) ∈ RN is the output (radiation force) of system ΣK .

With the definition of ΣK , and following the theory presented in
Section 2, we can obtain a parametric model Σ̃KF for the radi-
ation force subsystem defined in (20) using the result of Lemma

3See Khalil (1996) for the definition of a transmission zero.
4See Khalil (1996) for a proof concerning the passivity condition on

the diagonal elements of K(jω).

2, which offers an explicit computation of the moment-domain
equivalent of a system in terms of its impulse response mapping.
To that end, and in the spirit of Assumption 1, we express the
velocity of the multi-DoF WEC χ̇(t) as an autonomous multiple-
output signal generator in a similar fashion to G in (4), i.e.

Gχ̇ :
{

Ξ̇χ̇(t) = (IN ⊗ S) Ξχ̇(t), χ̇(t) = Lχ̇ Ξχ̇(t), (21)

with S as in (9), Ξ̇χ̇(0) = [1 εᵀν−1]ᵀ and Lχ̇ such that the pair
(Lχ̇, S) is observable. Then, recalling the result of Lemma 2, the
moment-domain equivalent of the output of system ΣK in (20)
can be straightforwardly computed as

Y
K

=

N∑
i=1

N∑
j=1

eNijLχ̇
(
IN ⊗Rk

ij

)
, (22)

where each Rk
ij ∈ Rν×ν is a block-diagonal matrix defined by

Rk
ij = 0⊕

(
f⊕
p=1

[
<{Kij(jωp)} ={Kij(jωp)}
−={Kij(jωp)} <{Kij(jωp)}

])
. (23)

Note that each entry of Rk
ij directly depends on the hydrody-

namic coefficients computed with BEM solvers. To be precise,
let Aij(ω) and Bij(ω) be the ij-th element of the added mass
matrix A(ω) and the radiation damping matrix B(ω) of the de-
vice, respectively. Then,

<{Kij(jωp)} = Bij(ωp),

={Kij(jωp)} = ωp
[
Aij(ωp)− µ∞ij

]
,

(24)

where µ∞ij is the ij-th element of the matrix µ∞.

Remark 8. Note that each matrix Rk
ij already incorporates the

hydrodynamic property Kij(0) = 0 (see Table 1, Property III).

Finally, following Definition 2 and Lemma 1, we note that the
parametric (state-space) description

Σ̃KF :
{

Θ̇K(t) = FKΘK(t) +GKχ(t), θ̃K(t) = QKΘK(t), (25)

is a system that interpolates the target frequency response K(jω)
at the set F , i.e. it has the exact same frequency response of the
radiation subsystem ΣK at the frequencies defined in the set F ,
if QKPK = Y

K
, where PK ∈ Rν×ν is the unique solution of the

Sylvester equation

FKPK +GKLχ̇ = PK(IN ⊗ S), (26)

and Y
K

is computed from equation (22). The explicit computa-
tion of the matrices FK , GK , QK in (25) (fulfilling condition (26))
is addressed in the following section.

MODELS ACHIEVING MOMENT-MATCHING

Herein, we briefly summarise some of the key concepts behind the
algorithm proposed in (Peña-Sanchez et al., 2019) to compute a
moment-based time-domain model for an array of WECs, and
we adapt the procedure for our multi-DoF radiation force sub-
system case. We note that (Peña-Sanchez et al., 2019) regards the
moment-based concepts described in this study in synergy with
well-known results of subspace-based identification methods, as
detailed in (McKelvey et al., 1996).

To be precise, we approximate the dynamic and output matrix
from the target radiation subsystem ΣK in terms of the corre-
sponding singular value decomposition of the Hankel matrix H

169



(see (McKelvey et al., 1996)), constructed from K(jω) as defined
in (19) and computed at the finite set of uniformly spaced fre-
quencies Ω (see Section 3). This α-dimensional approximated
matrices dÂα ∈ Rα×α, Ĉα ∈ RN×α (where dÂα corresponds to a
discrete-time model) can be computed5 as
dÂα = (J1Ûα)†J2Ûα, Ĉα = J3Ûα. (27)

where the continuous-time equivalent matrix Âα can be obtained
directly from dÂα using, for instance, the bilinear transformation.

Remark 9. If dÂα, computed as in (27), has unstable eigenvalues,
one can always project such a set into the complex unit circle
following the procedure described in (McKelvey et al., 1996).

Finally, the moment-based identification algorithm for the radi-
ation force subsystem utilised herein can be summarised in the
following steps:

I ◦ Select a set of f interpolation points (frequencies ωp) F =
0 ∪ {ωp}fp=1 to achieve moment-matching.

II ◦ Compute the matrix IN ⊗ S following (9) and select any
Lχ̇ such that the pair (Lχ̇, IN ⊗ S) is observable.

III ◦ Calculate the moment-domain equivalent of the output of
system (20) Y

K
using equation (22).

IV ◦ Compute the matrices ÂNν and ĈNν from (27)6.

V ◦ Consider the parametric model for the radiation subsystem
described in (25) and set FK = ÂNν and QK = ĈNν .

VI ◦ Consider the frequency response of (25), i.e.

K̃(jω,GK) = QK (jωi − FK)−1GK

Using the frequency set Ω = {ωi}Mi=1, compute the input
matrix Gopt

K with the following optimisation-based proce-
dure:

Gopt
K = arg min

GK

M∑
i=1

∥∥∥K̃(jωi, GK)−K(jωi)
∥∥∥2
F

subject to:

FKPK +GKLχ̇ = PK(IN ⊗ S),

QKPK = Y
K
.

VII ◦ Compute a Nν-dimensional radiation force subsystem
time-domain model Σ̃KF achieving moment-matching at
S as

Σ̃KF :

{
Θ̇K(t) = FK ΘK(t) +Gopt

K χ̇(t),

θ̃K(t) = QK ΘK(t).

Remark 10. The method is based on the idea of building the
model Σ̃KF by matching the f + 1 (user defined) frequencies of
the set F , exploiting the system structure of (25), and solving for
an equality-constrained optimisation problem, which computes
the input matrix Gopt

ϕ that minimises the difference between the
target frequency response and that of (25), while ensuring the
moment-matching conditions in the model.

APPLICATION TO A CORPOWER-LIKE DEVICE

To illustrate the strategy proposed in this study, we consider the
CorPower 7-like device utilised in (Giorgi and Ringwood, 2019),

5We refer the reader to (McKelvey et al., 1996) for the explicit

expression of the matrices J1, J2, J3 and Ûα.
6We note that standard Matlab routines can be used to obtain

ÂNν and ĈNν from the frequency-domain data K(jω).
7See (CorPower, 2019) for more detail on the CorPower device.

and depicted herein in Figure 1a. We refer the reader to (Giorgi
and Ringwood, 2019) for a precise description of the dimensions
of this device.

(a) Schematic of the device
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(b) Singular values plot for K(jω)

Fig. 1 CorPower-like device considered in this study.

Following the analysis carried out in (Giorgi and Ringwood,
2019), we consider surge (mode 1), heave (mode 2) and pitch
(mode 3) as the more relevant DoF for this particular applica-
tion case. The corresponding hydrodynamic parameters A(ω)
and B(ω) can be appreciated in Figure 2. Note that the elements
{1, 2}, {2, 1}, {2, 3}, {3, 2} of the matrices A(ω) and B(ω) are not
shown in Figure 2, given that there is no interaction due to radi-
ation forces between these particular modes of motions, i.e. they
are exactly zero for all ω ∈ R+. The maximum frequency selected
in the BEM code, to compute the hydrodynamic parameters of
the CorPower-like device of Figure 2, is set to 10 [rad/s]. Nev-
ertheless, we note that ocean waves peak periods typically lie
between 3 [s] and 16 [s], which implies that the frequency range
of the wave excitation force Fe is approximately [0.4, 2.1] [rad/s]
(Faedo et al., 2018b). Hence, it is straightforward to conclude
that, under the modelling assumptions considered in Section 3,
the velocity of the multi-DoF device (input to ΣK) has significant
frequency components in the same range.

From now on, we denote the frequency-domain model of the
radiation subsystem corresponding to our CorPower-like device
K(jω) as the target response. In addition, we use the notation
Kij(jω) for the ij-element of the matrix K(jω). More precisely,
Kij : C0 −→ C is the frequency response mapping between the
output i (radiation force exerted on the i-th mode) and the input
j (velocity of the j-th mode).

Approximation of the radiation subsystem

We now specifically proceed with the computation of a moment-
based approximation Σ̃KF for the radiation subsystem ΣK ,
based on the knowledge of the target frequency response K(jω),
and using the procedure described in Section 5.

Recall that the first step of the algorithm is to select the set of
frequencies F to interpolate. In the SISO case (1-DoF device) of
(Faedo et al., 2018b), a sensible choice can be made by analysing
the gain of K(jω), and selecting dynamically important points,
such as the resonant frequency of the particular DoF under study,
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Fig. 2 Hydrodynamic parameters A(ω) (dot-dashed blue) and B(ω) (dashed green) for the CorPower-like device considered herein.

i.e. where the maximum amplification occurs. For this MIMO
case, it is well-known that the system gain depends on the cor-
responding input direction (see, for example, (Zhou and Doyle,
1998)), so that this set of dynamically important points cannot
be obtained by inspecting each element Kij(jω) independently.
Instead, we use the singular values of K(jω) (Zhou and Doyle,
1998), which are plotted in Figure 1b.

Following well-known theory for MIMO systems, it is straightfor-
ward to notice, from Figure 1b, that ω ≈ 1.7 [rad/s] represents
an interpolation point of dynamical importance (marked with a
blue-diamond in Figure 1b), being the frequency where the max-
imum amplification occurs, i.e. the frequency characterising the
H∞-norm of the system (Zhou and Doyle, 1998).

Based on this, we propose two different frequency interpolation
sets F , as follows:

F1 = {0, 1.7}, F2 = {0, 0.8, 1.7},

where F2 includes the set F1 and incorporates an additional low
frequency component ω = 0.8 [rad/s]. Note that both sets in-
clude the zero element (see Remark 7). Following the discussion
provided at the beginning of this section, the frequency range se-
lected to approximate K(jω) is given by Ω = [0.3, 3] [rad/s], with
a frequency discretisation step of 0.01 [rad/s]. Given that heave
(mode 2) is the main DoF of this WEC, Figure 3 presents the
Bode diagram for the target response K22(jω) (dashed-black),
and the moment-based approximated response K̃22(jω) (solid-
gray), for both parametric models Σ̃KF1 (left) and Σ̃KF2 (right).
The interpolation points for each model are denoted by an empty
red circle. As expected, the approximated systems have the exact
same frequency response as the target model for each correspond-
ing set F . Though using the set F1 as interpolation set provides
quite accurate results, the decrease in the approximation error
from system Σ̃KF1 to Σ̃KF2 can be clearly appreciated.

As a conclusive graphical illustration of the frequency-domain
performance for the models computed via our strategy, Figure 4
presents the singular value plot for the target response K(jω),
and the approximated mapping K̃(jω), both for Σ̃KF1 (left) and
Σ̃KF2 (right). It can be readily appreciated that both models
can accurately approximate the target singular values in every
principal direction, i.e. the target MIMO gain, with an increase
in accuracy when using the interpolation set F2 instead of F1.

To illustrate the case of time-domain simulations, Figure 5 (left
axis) presents the time-domain response of the parametric model
Σ̃KF2 , along with the corresponding target steady-state response
for the radiation subsystem of the CorPower-like device computed
from K(jω). It can be appreciated how, after the transient re-
sponse of system Σ̃KF2 extinguishes, each of the steady-state
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Fig. 3 Bode diagram for K22(jω) (dashed-black), and
K̃22(jω) (solid-gray), for both parametric models
Σ̃KF1 (left) and Σ̃KF2 (right). The interpolation
points are denoted by an empty red circle

outputs of the approximating model behaves almost identically
to its corresponding target output. Note that Figure 5 (right
axis) also offers the exact input (velocity) used to simulate such
a response.

Aiming to further assess the strategy, Table 2 offers a numeri-
cal appraisal of each of the moment-matching based parametric
models in terms of the following parameters:

Dim: Dimension (order) of the parametric model

NRMSEF: Normalized Root Mean Square Error (NRMSE)
computed against the target WEC frequency response ∀ ω ∈ Ω.

NRMSET: NRMSE computed (in steady-state) against the tar-
get steady-state radiation system response using inputs generated
with frequency content inside the set Ω. In order to get mean-
ingful results for the time-domain scenario of Table 2, and since
the inputs are generated from sets of random amplitudes, it is
found that the mean of 10 simulations is necessary to obtain a
95% confidence interval with a half-width of 0.25% of the mean,
computed as in (Peña-Sanchez et al., 2018).

The first row of Table 2 includes the “multi-SISO”, which corre-
sponds to a parametric model of the MIMO system ΣK obtained

171



10
0

50

60

70

80

90

100

110

120

130

10
0

50

60

70

80

90

100

110

120

130

Fig. 4 Singular value (SV) plot for K(jω) (dashed-black)
and K̃(jω) (solid-gray). The interpolation points are
denoted by an empty red circle.

0 5 10 15
-1

0

1
10

6

-2

0

2

0 5 10 15
-5

0

5
10

4

-2

0

2

0 5 10 15
-2

0

2
10

6

-2

0

2

Fig. 5 Time-domain response (left axis) of Σ̃KF2 (solid
gray) along with the corresponding target steady-
state response computed from K(jω) (dashed black).
The right axis offers the exact input (velocity) used
to elicit such a response (dotted green).

by approximating each individual element of the matrix K(jω)
with a SISO system. The strategy used to compute this previ-
ously discussed model is the SISO moment-matching method de-
scribed in (Faedo et al., 2018b) (with F2 as interpolation points),
resulting in a model of dimension 25.

It is noteworthy to highlight that, as can be appreciated in Table
2, the approach proposed herein provides highly accurate results
even with a single interpolation point (in addition to the zero fre-
quency), with only ≈ 4% of error in both the frequency- and time-
domain, and with an intrinsic decrease in computational complex-
ity, given the low dimension (order) of the resulting model. We
also note that the “multi-SISO” approach provides similar results
to those of Σ̃KF2 with higher computational requirements (i.e.

Model Dim NRMSEF NRMSET

“multi-SISO” 28 1.036% 0.985%

Σ̃F1 9 3.580% 4.045%

Σ̃F2 15 1.092% 0.664%

Table 2 Numerical comparison table.

higher system order). That said, we emphasize that the radiation
subsystem should be treated as a MIMO system when it comes
to its parametric approximation.

To conclude the assessment of our strategy, we analyse the
moment-based computed models Σ̃KF with respect to the phys-
ical properties of the radiation subsystem listed in Table 1.

• Property I ( ΣK is strictly proper): this property is always
fulfilled by the family of parametric models defined in (25),
see, for example, (Khalil, 1996).

• Property II ( ΣK is BIBO stable): the strategy proposed in
Section 5 preserves the dynamic matrix approximated using
the Hankel matrix associated with K(jω). This matrix can
always be constructed so that is Hurwitz (see Remark 10) and,
hence, system Σ̃KF is BIBO stable. By way of example, Fig-
ure 6 shows the pole-zero map for system Σ̃KF1 computed in
this same section for the CorPower-like device. It can be ap-
preciated that all the poles are contained in the open left-half
of the complex plane, i.e. Σ̃KF1 is BIBO stable.
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Fig. 6 Pole-zero map for the approximating model Σ̃KF1 .

• Property III (ΣK has transmission zeros at s = 0): this prop-
erty is specifically enforced by considering 0 as part of the set
of interpolation points F (see Remark 8). In practice, this
can be (graphically) appreciated in the pole-zero map of Fig-
ure 6, where the zero at s = 0 manifests explicitly for the
approximating model Σ̃KF1 .

• Property IV (ΣK is passive): this particular physical property
is not enforced by our strategy. However, we note that, if the
target data K(jω) effectively comes from a passive model8,

8This is clarified since errors can manifest in BEM codes, producing
hydrodynamic coefficients that correspond to a non-passive system. For
further discussion, see (Faedo et al., 2018b).
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Fig. 7 Nyquist plot (diagonal elements) of K̃(jω) for Σ̃KF2 .

the parametric models computed with our strategy, for the
WEC radiation force subsystem, are virtually inherently pas-
sive9. Figure 7 depicts the Nyquist plot for the diagonal ele-
ments of K̃(jω) for Σ̃KF2 , where it can be appreciated that
<{K̃ii(jω)} > 0 for all i ∈ N3 and, hence, ΣKF2 is passive.

CONCLUSIONS

This paper presents a MIMO moment-based identification frame-
work for the radiation force subsystem of multi-DoF WECs. The
proposed strategy computes a parametric model of the target ra-
diation force mapping using raw frequency-domain data produced
by well-known BEM-based hydrodynamic codes. Such a moment-
based model exactly matches the target steady-state response for
a user-defined set of frequencies, allowing for the preservation
of the relevant dynamic characteristics of the device. Moreover,
we show that this parametric approximation retains important
properties of radiation forces, such as input-output stability and
passivity, agreeing with the underlying physics that characterise
such a system. The performance of the strategy is demonstrated
and analysed from both a time- and a frequency-domain perspec-
tive, using a CorPower-like multi-DoF device as application case.
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