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Mode Conversion at Diffracting Apertures 
in Millimeter and Submillimeter Wave 

Optical Systems 
J. Anthony Murphy, Member, IEEE, Stafford Withington, Member, IEEE, and Aidan Egan 

Abstruct- Diffraction effects, which occur when the fields in 
a beam waveguide are truncated at absorbing stops, can be 
conveniently analyzed using scattering-matrix theory applied to 
Gaussian-beam modes. We present recursion relationships for the 
elements of the scattering matrix when a nonaxially-symmetric 
beam illuminates an axially symmetric stop. We demonstrate 
the technique by calculating the total loss and beam profiles 
in a system comprising a diagonal horn, a lens, a window, and 
two off-axis mirrors. The finite size of each component is taken 
into account. 

I. INTRODUCTION 
N a recent paper we described a technique for determining I the power that is lost when the beam in a beam waveguide is 

truncated by an axially symmetric stop [l] [ 2 ] .  The technique 
is based on the principle that for a Gaussian-mode system, with 
a given set of mode coefficients, the scale size and form of the 
beam at a plane are completely characterized by the Gaussian 
radius and phase slippage respectively. Hence, the power lost 
at a circular aperture is fully determined by two quantities 
both of which are easily calculated using single-mode design 
techniques [3]. 

If a beam waveguide has a number of truncating compo- 
nents, the beam profile at the exit pupil and the total loss 
depend on the degree to which beam diffracts at each of the 
apertures. Consequently, although the technique described in 
[2] is invaluable for determining how big a component has to 
be in order to avoid truncation, it only gives a limited amount 
of information about the way in which a system behaves 
when a significant amount of truncation occurs. In this paper, 
we describe a numerically-efficient technique for calculating 
the beam profiles and loss at any plane in a complicated 
quasioptical system for which diffraction losses cannot be 
ignored. The scheme provides an excellent way of checking 
in detail the performance of systems designed using the above 
"single-mode'' technique. 

The presence of an absorbing stop in a beam waveguide 
causes power to be scattered between modes [4]. That is to say, 
if we represent the incident beam by a vector whose compo- 
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nents are the coefficients of a Gaussian-mode expansion, then 
we can truncate the beam by linearly operating on the vector 
to produce a new vector which describes the transmitted field. 
For this technique to be useful, it must be possible to calculate 
the elements of the scattering matrix in a numerically efficient 
manner. In this paper, we present recursion relationships for 
the elements of the scattering matrix when a non-axially- 
symmetric beam illuminates an axially-symmetric stop. We 
illustrate the technique by analyzing a system comprising a 
diagonal horn, a lens, a window and two off-axis mirrors. The 
finite size of each component is taken into account. 

11. THEORY 

For a circular stop that is coaxial with the direction of propa- 
gation and perfectly absorbing outside the transmitting region, 
the propagating fields are most conveniently described as a 
sum of Associated Laguerre-Gaussian modes E(r,  8 , z )  = 
Cn,,A~,7,bclnQ7c0s(7-, 0,  Z ) + A & $ ; + ~ ~ ( T - ,  8 ,  z ) ,  where the modes 
are defined by 

1 + j (2n + cr + l)q50 

The associated Laguerre polynomials are defined as in [5],  and 
W ,  R, and q50 have their usual significance [6]. If the circular 
aperture, at z = zo, has radius a then the field at the aperture 
has the form Eap(r, 8, zo) = 0 for T > a, and we can write 

where T denotes a truncated mode. Since a truncated mode is 
not a true mode of propagation, some of the power in a given 
incident mode will be redistributed between the other modes. 
Mathematically, we can write each truncated mode as a sum 
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of true propagating modes: 

+:JCos(r, 6, zolT = 

and +E+in(r7t9, z , ) ~  = S&a,,nn+)~Sin(rl 6, z,) . (3) 

Because of the symmetry of the aperture, S&,,,, and S;,,,,, 
are given by 

6, z,) 
mp'  

m,a' 

- Ska/,na - S;aj,na = S,a/IE,n e x ~ [ 2 ( n  - m)j40] 1 (4) 

where 

and xt = 2 ( a / W ) 2 .  The field can then be re-expressed in 
terms of the propagating modes: 

E a p ( r 7  6 ,  z o )  = Bka'+f+OS(T,  6 , z o )  

+ BLa,+$+(r, 6, z,) , 
m,a' 

(6) 

where BZZ, = E,,, S$z,,n,Aik. We can regard SZ:,,na 
as a scattering matrix, which operates on the vector 
Ai? of incident mode coefficients to yield the vector BZZ,, of 
transmitted mode coefficients. Thereafter, the beam propagates 
with the new set of mode amplitudes until the next aperture 
is encountered. 

An important feature of the technique is that it is possible 
to derive recursion relationships for the overlap integrals 
I& (xt ) and these enable the truncation calculations to be 
evaluated analytically. This allows the scattering matrix to be 
determined quickly without the need for a whole series of 
lengthy numerical integrations. The relationships (for a 2 0) 
are 

E+l ,n+l= I:,, + ( L m ( X t )  - ~ m + l ( x t ) )  
. (Ln+l(xt) - Ln(x t ) )epz t  (7) 

-I:$' = dm + a + 1 I E , ~  

- m I z + l , o  form > 0 (8) 

+ dm + a + 1 I& 

for m,n > 0 .  (9) 

JGTX 1;;; = 6 I;:;- 1 

- JmTirz+l,, 

To initiate the above series we need to compute I:,o (= I&) ,  
and these can be determined by using 

I& = 1 - exp[-xt] 
l:,n = ( L - l ( x t )  - Ln(s t ) )  exp[-xt]. 

(10) 

(11) 

Note, that if we wish to truncate the series at then 
the last of the recursion relationships above requires determin- 
. o  1ng Im,n UP to Emax+amaxrn7 IA,n UP to Iimax+amax-l,n and 
E , n  UP to Gmax+amax-2 ,n )  etc. 

~ 

1701 

TABLE I 
BEAM PARAMETERS OF AN OPTICAL SYSTEM COMPRISING A DIAGONAL HORN, 

A LENS AND Two OFF-AXIS MIRRORS. THE BEAM PARAMETERS 

LONG AND HAS A 3.5 mm SQUARE APERTURE. 
ARE CALCULATED AT 400 G f i  THE HORN IS 19.0 mm 

component I separation(") I W(mm) I a /W I Add%.) I P_ (%) I Loss (%) u 
n I I I I  I I II 

111. EXAMPLE 
As an example, consider the 200-900 GHz optical system 

listed in Table I [l], where a diagonal horn is coupled to a 
submillimetre-wave telescope through a lens and two off-axis 
mirrors. The horn is part of a superconducting mixer which 
is located in a cryostat, and therefore the beam has to pass 
through a window which must be made as small as possible. 
In Table I, we list the normalized truncation radius ( u / W ) ,  the 
phase slippage from the aperture of the horn, and the fractional 
amount of power remaining in the co-polar beam Pco. Since 
the total amount of co-polar power contained in the beam is 
proportional to (E,,(2dA, where the integral is over the cross 
sectional area of the beam, this implies that: 

The Ai<: are the mode coefficients for the co-polar field at 
the horn aperture, and the B::: are the resulting transmitted 
mode coefficients after scattering at each stop where truncation 
occurs in the beam guide, up to and including the relevant 
component. If we use the technique described in [2] to 
calculate the amount of power lost at an individual aperture 
(and assuming no other truncation loss in the optical system) 
we arrive at the figures given in the last column. In Fig. 1, 
we use the mode coefficients, phase slippages, and Gaussian 
radii to reconstruct the beam profiles at a number of different 
planes. 

The last column is the loss at each component if one as- 
sumes that the beam remains unchanged after passing through 
each stop up to that point. The fifth column, however, shows 
that the total loss is, in reality, much less than the sum of these 
individual losses. Clearly, in this particular case, the apertures 
are many wavelengths in diameter, and the beam diffracts only 
slightly after passing through each stop. Consequently, the first 
lens after the mixer truncates the beam, and this truncated 
beam passes all of the way through the optical system without 
much further interference. From a modal point of view, the 
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Fig. 1. (a) Reconstructed beam profiles at various planes in the example 
optical system fed by a diagonal horn (see Table I) in the diagonal 45 deg 
or X-Y directions. The two curves correspond to the apolar  power (solid 
line) and total power (dashed line). Also shown is the beam at the aperture 
of a 15m telescope to which the system is coupled. (h)  Reconstructed beam 
profiles at various planes in the example optical system is the vertical and 
horizontal (V-H) directions. The diagonal horn does not have any cross-polar 
components in the V-H direction, hence the apolar  and total powers are 
equal. Also shown in the beam at the aperture of a 15 m telescope to which 
the system is coupled. 

first lens is acting as a mode filter which rejects some of the 
higher order modes. In low noise receivers it is, of course, 
desirable to reject the high-order modes at low temperatures 
because then less noise is coupled into the system. 

ACKNOWLEDGMENT 

The authors would like to thank EOLAS and the British 
Council for financing some of the travel costs incurred. 

REFERENCES 

S. Withington, J.A. Murphy, A. Egan, and R.E. Hillis, “A broadband 
quasioptical system for submillimetre wave radio-astronomy receivers,” 
Int. J .  Infrnred and Millimeter Waves, vol. 13, pp. 1515-1537, 1992. 
J. A. Murphy, A. Egan, and S. Withington, “Truncation in millimetre and 
submillimetre-wave optical systems,” submitted to IEEE Trans. Anfennus 
Propagat. 
P. F. Goldsmith, “Quasi-optical techniques at millimeter and submil- 
limeter wavelengths,” in Infrared and Millimeter Waves, vol. 8, no. 9, 

R. Padman, and J.A. Murphy, “A scattering matrix formulation for 
Gaussian beam mode analysis,” in Proc. IEEIURSI 7th Int. Conf. on An- 
tennas and Propagarion, ICAP, York, England, Apr. 1991, pp. 201-204. 
I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products. 
London: Academic Press, 1980. 
H. Kogelnik and T. Li, “Laser beams and resonators,” Proc. IEEE, 
vol. 54, pp. 1312-1329, 1966. 

pp. 277-343, 1982. 

J. Anthony Murphy (M’88) was born in Cork, Ireland on October 30, 
1954. He received the B.Sc. and M.Sc. degrees in Experimental Physics from 
University College, Cork, Ireland, in 1977 and 1979, respectively, the M.S. 
degree in Physics from the California Institute of Technology in 1981 and 
the Ph.D. degree in Physics from the University of Cambridge, England, in 
1986. 

From 1985 to 1987 he was a Research Associate at the Cavendish 
Laboratory, Cambridge, where he was engaged in receiver development for 
the James Clerk Maxwell Telescope on Mauna Kea, Hawaii. In 1988 he was 
appointed as lecturer in the Experimental Physics Department, St. Patrick’s 
College, Maynooth, Ireland. His main research interest is in millimeter- and 
submillimeter-wave optics. 

Stafford Withington (M’89) was born in Chesterfield, England, on May 27, 
1957. He received the B. Eng. Hons. degree, first class, from the University of 
Bradford, England, in 1979, and the Ph.D. degree in Radio Astronomy from 
the University of Manchester, England in 1983. 

He has held a number of positions, including a lectureship in the Department 
of Electrical Engineering at Sheffield University and a Royal Society Overseas 
Fellowship in the Department of Radio and Space Science at Chalmers Uni- 
versity of Technology, Sweden. He is currently a Senior Research Associate in 
the Department of Physics at Cambridge University and a Fellow of Downing 
College, Cambridge. In recent years he has concentrated on the development 
of low-noise submillimeter-wave receivers for use in radio astronomy, and 
he is particularly interested in superconducting detector technology and 
submillimeter-wave optics. 

Aidan Egan was born in Offaly, Ireland, on April 30, 1969. He received the 
B.Sc. and M.Sc. degrees in Physics from St. Patrick’s College, Maynooth, 
Ireland, in 1990 and 1992 respectively. Currently he is pursuing the Ph.D. 
degree in Physics at Trinity College, Dublin, Ireland, where his research 
interests are in modelling of multi-electrode semiconductor lasers, self- 
pulsation and optical synchronization. 

Authorized licensed use limited to: Maynooth University Library. Downloaded on March 26,2021 at 17:38:38 UTC from IEEE Xplore.  Restrictions apply. 


