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Abstract—Based on a small prototype of the McCabe
wave pump device, this paper studies the optimal size
of an interconnected pontoon system, where the power
take-off systems attached to each barge are equipped with
optimal linear passive dampers. To this end, an optimiza-
tion procedure is developed, where the objective is to
maximize the extracted energy of the device under given
sea states. A multi-DOF mathematical model is presented to
describe the device motion, and associated hydrodynamic
parameters are computed using a boundary element model
tool, based on linear potential flow theory. Numerical
results, under regular and irregular waves, are presented.
Simulation results show that the optimal dimension of
the device, under given sea states, can be found using
the developed methodology. In addition, it is found that
the three-body hinge-barge device tends to perform like
a two-body system under optimal control conditions. This
indicates that a two-barge control system may be a better
design solution in those situations, considering the high
cost of power take-off systems.

Index Terms—Multi-body wave energy converters, hinge
barge, geometry optimization, energy maximizing control,
optimal linear passive control.

I. INTRODUCTION

ANumber of studies have been done on the ge-
ometric optimization of wave energy converters

(WECs), aiming to improve their energy extraction
from incident waves. In [1], the authors optimize the
geometric shape and the radius of a floating WEC,
using an average annual wave energy spectrum of its
design location at the Atlantic marine energy test site
as the input. In [2], the optimal diameter and draft
of a one-body heaving point absorber are investigated
for the nearshore region of Rio De Janeiro, and the
optimization process is based on a frequency-domain
model and aims at maximizing both absorbed energy
and absorption bandwidth when providing a natural
period close to the predominant wave periods of the
sea site. In [3], the authors perform geometric optimiza-
tion for a conical-bottom buoy with three types of PTO
which are linear, constant, and quadratic non-linear,
using the commercial software Flow-3D. A genetic
algorithm is also applied in the geometric optimization
of WECs [4] [5] [6].

However, most of these geometric optimization stud-
ies are performed independently of the control system,
and little convergence has been reached in design prin-
ciple. Recently, a more holistic approach is proposed for

WEC geometry design and optimization, i.e. the con-
trol strategy employed by the power take-off system
(PTO) is informed in the design stage of the device
geometry. In [7] [8] [9], control-informed geometric
design (CIGD) is investigated for a single WEC that
employs a 1-DOF cylinder as the absorber, considering
its radius and draft as the design parameters to be
optimized, and results indicate that optimal geome-
try can be obtained depending on the type of PTO
control strategies employed at the design optimization
stage of the device. In [10], control-informed geometric
optimization is performed for a wave farm consisting
of multiple identical 1-DOF WECs, and results show
that a layout optimized without knowledge of the
control system to be used can be inferior to the extent
of recovering 40% less energy than the considered
farm layout optimized with knowledge of the control
system.

This paper focuses on geometric optimization of
a multi-body hinge-barge WEC, using the CIGD ap-
proach. Hinge-barge WECs are composed of an as-
sembly of joints, and designed to operate along the
propagation direction of incident waves. To date, a
number of hinge-barge WECs has been proposed, e.g.,
the SeaPower WEC, the Mocean WEC, the M4 WEC
[11] and the McCabe Wave Pump device [12]. Their
performance is studied through numerical simulations
and verified by physical experiments. Results indicate
that this type of WEC usually has a broad frequency
response range and a high capture width ratio [13]
[14]. However, limited work has been done to optimize
the geometric size and it is still not clear whether
two pontoons or three pontoons are the best, or what
the optimal dimensions are, in particular considering
the control strategies employed by the power take-off
(PTO) system. In this paper, the candidate device used
in study is originally from the McCabe Wave Pump
WEC [15].

The remainder of the paper is organized as fol-
lows: in Section II, the method used for geometric
optimization of the hinge-barge WEC is briefly pre-
sented. In Section III, the mathematical model, based
on Lagrangian mechanics, is explained. Section IV
explains the optimization methodology of PTO control
parameters. Section V illustrates the detailed geometric
optimization procedure. In Section VI, the proposed
optimization procedure is applied to a small-scale pro-
totype and corresponding numerical simulation results
are presented. Finally, discussions are presented in
Section VII and conclusions are drawn in Section VIII.
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II. METHOD

The proposed geometric optimization aims to find
the optimal size of the WEC while incorporating the
PTO control strategy at the geometry design stage,
which will yield a better performance of the device
at the operation stage, in terms of energy production.
As the hinge-barge WEC is designed to operate along
the propagating direction of incident waves, only the
geometric sizes of fore barge and aft barge in the wave
propagation direction are considered as geometric op-
timization variables.

The original three-barge WEC is equipped with two
PTO systems, one located between the fore barge and
the central barge and the other located between the aft
barge and the central barge. It is well known that the
control strategy employed by a PTO controller affects
the energy production and it further may influence the
results of geometric optimization, as indicated in [9].
However, the sensitivity of the optimal geometry to
the control strategy is not the focus of the paper. We
assume that each PTO system employs a linear passive
controller and the associated PTO damping coefficients
are optimized for each set of WEC geometry parame-
ters and sea states during the optimization procedure.

Additionally, geometric optimization requires esti-
mating the energy production (as an objective function)
of a device under given sea states. To approach that, a
multi-DOF mathematical model is required to describe
the device dynamics. To model the collection of multi-
ple bodies linked by hinges or by rigid connection, the
methodology treats three barges as free-response units
in the hydrodynamic model and considers the central
barge and the damping plate as one body as they are
rigidly connected, then incorporates all the constraints
representing the hinge connections in a formulation
of motion equations. The hydrodynamic problem is
solved based on linear potential flow theory. It has
previously been shown the hydrodynamics of hinge
barges are predominantly linear [16]. The mathematical
model evaluates the wave induced response of the
central barge in surge, heave and pitch modes, also
allows the computation of the rotation of fore and aft
barges relative to the central barge.

The developed mathematical/computational model
allows the lengths of fore barge and of aft barge
and control forces of fore PTO and of aft PTO to be
adjusted. Based on this mathematical model, the PTO
forces or the corresponding damping coefficients are
optimized during the optimization procedure and the
power production is calculated in given sea states, fully
considering the hydrodynamic interactions and hinge
coupling in all motion modes.

Finally, the optimized geometric sizes, i.e. the fore
barge length and the aft barge length, are selected
while incorporating the optimal linear passive control
strategy at the geometry design optimization stage.

III. MATHEMATICAL MODELING

Several mathematical models have been proposed
for hinge-barge devices. In [17], the wave-induced
response of a two-body hinged system is investigated

using a frequency-domain mathematical model, with
the constraints in the hinge connection being imposed
by the Lagrange multiplier technique. Later on, this
method is applied to study the performance of a two-
body hinged WEC under regular waves [18]. This
augmented formulation using the Lagrange multiplier
technique is based on Hamiltonian theory and the
dynamic equations are formulated in terms of a set
of redundant coordinates. However, the developed
frequency-domain based model is not suitable for case
studies of irregular waves and for model-based control.
In [19], a time-domain model is proposed for a 4-DOF
McCabe Wave Pump WEC that moves in heave and
pitch, using another popular approach for describing
dynamics of multibody systems, i.e. the embedded
technique.

In this section, a 5-DOF time-domain model is pre-
sented to describe the device’s motion in heave, surge
and pitch, as well as the relative pith motions of the
fore barge and the aft barge to the central barge, using
the embedded technique based on Lagrangian mechan-
ics. In addition, the presence of ballast in three barges
that influences the center of mass are considered in the
hydrodynamic modeling and numerical simulations.

A. Frame of Reference

Figure 1 shows the device used in this study. Three
kinds of reference frames are used to describe the dy-
namics of this multibody system, including one global
inertia frame and three local body frames.

Wave direction

Sea bed

Damping plate

Body 1 Body 3Body 2

L1 L3

B1 B2

O3

O2

O1 H1 H2Og

Z

X

Fig. 1. The three-body hinge-barge WEC used in study [19].

1) Global inertia frame: The global inertia frame is
fixed in space and its location and orientation do not
change over time. The general displacement of a body
in a multibody system is defined by a rotation plus a
translation.

2) Local body frame: Each local body frame is fixed
to a point of each barge and the point is defined by
the user. It is a non-inertial frame of reference and
its location and orientation in space vary over time
relative to the global inertia frame. For a rigid body,
its particles do not move with respect to its local body
frame. The configuration of a rigid body in a multibody
system is identified by defining the location of the
origin and the orientation of the corresponding local
body frame with respect to the global inertial frame.
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3) Generalized frame: The generalized frame is used
when the embedding technique is used to formu-
late the dynamic equations of constrained multibody
systems [20]. A multibody system, consisting of n
interconnected rigid bodies, requires 6n generalized
coordinates in order to describe the system configu-
ration in 3D space. These generalized coordinates are
not independent if the hinge constraints exist, and
the number of independent generalized coordinates is
defined by the number of degrees of freedom of a
system.

Independent generalized coordinates are important
to understand and control of the motion of a multibody
system. Deriving the kinetic energy, force and virtual
work expressions in terms of generalized coordinates,
the equation of motion eventually is associated with
the system-independent coordinates, with constraint
forces automatically eliminated using the embedding
technique.

The generalized coordinates of the studied three-
body hinge-barge WEC, in two-dimensional space, is
defined as:

q(t) = [q1, q2, q3, q4, q5, q6, q7, q8, q9]T

= [xb1, zb1, θb1, xb2, zb2, θb2, xb3, zb3, θb3]T ,
(1)

where Ri = [xbi, zbi]
T is the global position vector of

the origin of the body frame i, and xbi and zbi represent
the Cartesian coordinates in the x and z directions,
respectively. θbi is the orientation angle of local body
frame i with respect to the global inertia frame.

The multi-body system has 5 DOFs in 2D space, and
the independent generalized coordinates are defined
as:

qs(t) = [θb1(t), xb2(t), zb2(t), θb2(t), θb3(t)]T . (2)

B. Center of Mass and Inertia Matrix
It is well known that the mass of each barge influ-

ences its hydrodynamic characteristics and system dy-
namics, and center of mass also influences the evalua-
tion of generalized forces associated with independent
generalized coordinates. For the studied prototype,
ballast is used in each barge to lower its center of mass
and to increase stability. The center of mass of each
barge is therefore not located at the centroid.

The inertia matrix of body i is defined as:

M i =

 mi 0 mizig
0 mi −mixig

mizig −mixig Iiyy

 , (3)

where mi is the inertia mass of body i, and (xig, z
i
g)T

is the position vector of the center of mass of body i
defined in the local body frame i. Iiyy is the moment of
inertia of body i defined in local body frame i.

As indicated in Eq. (3), the mass matrix of a rigid
body will become diagonal if the origin of the body
frame is fixed to the center of mass of the body, which
also results in the elimination of off-diagonal terms
during the transformation from the Cartesian frame to
the generalized frame. Therefore, for simplicity, and for
eliminating the inertial coupling between the rotation

and translation of each body frame, the origin of each
local body frame is attached to the center of mass of
each barge. Table I lists the distance of the vertical
center of each barge mass with respect to its bottom
surface.

TABLE I
VERTICAL DISTANCE OF CENTER OF MASS OF EACH BARGE TO ITS

BOTTOM SURFACE

Property Value

Fore barge 4 cm
Central barge 5 cm
Aft barge 4 cm

C. Hinge Constraints
For a hinge joint Hk between a planar body i and

a planar body j in a multibody system, the hinge
constraint allows only relative pitch motion between
the two bodies. The hinge constraint is defined as: the
global position of the hinge point Hk, defined by the
set of coordinates of body i, equals the global position
of point Hk defined by the set of coordinates of body
j, i.e. ri = rj .

The global position vector of the hinge point, defined
through body frame i, is expressed in terms of a
translation and a rotation, and given by

ri = Ri + AiH̄
i
k, (4)

where H̄
i
k = (hikx , h

ik
z )T is a local position vector of

hinge point Hk, defined in body frame oi, is constant
in the case of rigid body analysis, and Ri is the global
position vector of the origin oi of the body frame i. Ai

is the transformation matrix from local body frame i
to the global inertial frame.

The global position vector of the hinge point, defined
through body frame j, is:

rj = Rj + AjH̄
j
k, (5)

where H̄
j
k is a local position vector of hinge point Hk

defined in body frame j. The transformation matrix
from local body frame j to the global frame is:

Aj =

[
cos(θj) −sin(θj)
sin(θj) cos(θj)

]
. (6)

For small amplitude of pitch rotation, the transfor-
mation matrix can be linearized using cos(θj) ≈ 1 and
sin(θj) ≈ θj .

D. Equation of Motion
Based on the D’Alembert-Lagrange equation, the

equation of motion of the hinge-barge WEC is ex-
pressed [19] as:

M sV̇ s(t) + (Bs + Bvisc,s)V s(t) + GsXs(t) + M∞sV̇ s(t)

+

∫ t

0

Ks(t− τ)V s(τ)dτ = F es(t) + F us(t),

(7)
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M s = P TMP ,

Bs = P TBP + P TMṖ + P TM∞Ṗ ,

Bvisc,s = P TBviscP ,

Gs = P TGP ,

M∞s = P TM∞P ,

Ks = P TKP ,

F es = P TF e,

F us = P TF u,

(8)

where M = diag(M1,M2,M3) is the mass matrix
and M s is the generalized mass matrix associated
with independent generalized coordinates, M∞ is the
matrix of added mass at infinite frequency, P is the sys-
tem Jacobian matrix, Bvisc = diag(B1

visc,B
2
visc,B

3
visc)

is the linearized viscous damping matrix, Bs =
diag(B1

s,B
2
s,B

3
s) is the Coriolis-Centripetal matrix,

G = diag(G1,G2,G3) is the total hydrostatic ma-
trix, F e(t) = [(F 1

e)T , (F 2
e)T , (F 3

e)T ]T is the matrix of
generalized excitation force with F i

e = (F i
ex, F

i
ez)T

representing the wave excitation force vector related
to the generalized coordinates of body i.

The PTO force vector is:

F u(t) = F PU c(t) = F P [u1(t), u2(t)]T , (9)

where u1(t) and u2(t) represent the PTO control force
applied at fore PTO and aft PTO, respectively.

The PTO control configuration matrix F P [21] is
defined as:

F T
P =

[
0 1 0 −1 0 0
0 0 0 −1 0 1

]
. (10)

The independent velocity vector, V s(t), is defined
through:

V (t) = PV s(t). (11)

Matrix P is derived from the linearized kinematic
constraint equations and expressed as:

P =



h11z 1 0 −h21z 0
−h11x 0 1 h21x 0

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 1 0 −h22z h32z
0 0 1 h22x −h32x
0 0 0 0 1


. (12)

If the pitch velocities of the fore and of aft barges
in V s(t) are defined relative to the pitch of the central
barge, the system Jacobian matrix is defined as:

P =



h11z 1 0 −h21z + h11z 0
−h11x 0 1 h21x − h11x 0

1 0 0 1 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 1 0 −h22z + h32z h32z
0 0 1 h22x − h32x −h32x
0 0 0 1 1


. (13)

The linearized viscous matrix is identified from ex-
perimental and simulation results. More details are
given in [22].

min
Bvisc,s

JLS =

nf∑
i=1

n∑
j=1

|Hj(wi)− Ĥj(wi)|2, (14)

where nf is the number of frequencies of the spectrum
of the incident waves, n is the number of degrees
of freedom, Hj and Ĥj are the experimental, and
theoretical, transfer functions between the jth DOF and
the incident wave, respectively.

IV. CONTROL PARAMETER OPTIMIZATION

Both spectral and pseudo-spectral methods can be
used to compute an approximate solution of the
equation of motion. [23] presents the pseudo-spectral
approach while this section illustrates the spectral
method for approximating the solution.

States and control variables are represented by a
linear combination of basis functions. Here, truncated
zero-mean Fourier series are used to approximate the
velocity and PTO control forces, and the basis functions
are defined as:

Φ = [cos(w0t) sin(w0t) ... cos(nw0t) sin(nw0t)]
T , (15)

where w0 is the fundamental angular frequency.
The ith components of the position and velocity

vectors, are given, respectively, as follows:

xi(t) ≈ ΦT (t)x̂i, (16)

vi(t) ≈ ΦT (t)v̂i, (17)

where x̂i = [x̂1, x̂2, ..., x̂Ndc
]T and v̂i =

[v̂1, v̂2, ... v̂Ndc
]T are the Fourier projection vectors of

displacement and velocity of mode i, respectively.
The total displacement and velocity vectors are for-

mulated, respectively, as follows:

Xs(t) = [x1(t), x2(t), ..., xNdc(t)]
T

≈ [ΦT x̂1, ΦT x̂2, ..., ΦT x̂Ndc
]T

= Ψ(t)X̂s,

(18)

V s(t) = [v1(t), v2(t), ..., vNdc(t)]
T

≈ [ΦT v̂1, ΦT v̂2, ..., ΦT v̂Ndc
]T

= Ψ(t)V̂ s,

(19)

where Ψ(t) = INdc
⊗ ΦT is a Ndc block diagonal

matrix and its each block is ΦT . The symbol ⊗ de-
notes the Kronecker product of two matrices and the
symbol INdc

denotes an identity matrix of size Ndc.
The matrix X̂s = [x̂T

1 , x̂T
2 , ..., x̂T

Nbs
]T and V̂ s =

[v̂T
1 , v̂T

2 , ... , v̂
T
Nbs

]T .
The derivatives of displacement and velocity with

respect to time are given, respectively, as:

Ẋs(t) ≈ [Φ̇
T

(t)x̂1, Φ̇
T

(t)x̂2, ..., Φ̇
T

(t)x̂Ndc
(t)]T

= [ΦT (t)Dx̂1, ΦT (t)Dx̂2, ..., ΦT (t)Dx̂Ndc
]T

= Ψ(t)DdcX̂s,
(20)
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V̇ s(t) = Ψ(t)DdcV̂ s, (21)

where Ddc = I ⊗ D. The differential matrix D ∈
RNbs×Nbs is block diagonal, and each diagonal block
Dk with k = 1, 2, ..., Nbs/2 is

Dk =

[
0 kw0

−kw0 0

]
. (22)

The PTO control force is expressed as:

F us(t) = P TF P [ΦT (t)û1,Φ
T (t)û2]T

= P TF PΨ2∗2Nbs
Û c,

(23)

where Ψ2∗2Nbs
= I2 ⊗ ΦT and Û c = [ûT

1 , û
T
2 ]T .

ûi = [û1, û2, ..., ûNbs
]T is the control Fourier projection

vector.
Substituting Eqs. (18), (19), (21) and (23) into Eq. (7),

the equation of motion is re-formulated in a residual
form:

r(t) = (M s + M∞s)Ψ(t)DdcV̂ s + (Bs + Bvisc,s)Ψ(t)V̂ s

+ GsΨ(t)X̂s +

∫ t

0

K(t− τ)Ψ(τ)V̂ sdτ − P TΨe(t)Ê−

P TF PΨ2∗2Nbs
Û c,

(24)
where r is a vector of size Ndc×1, and its ith component
is:

ri(t) =

Ndc∑
p=1

[(M s + M∞s)i,pΦ
T (t)Dv̂p + (Gs)i,pΦ

T (t)x̂p

+ (Bs + Bvisc,s)i,pΦ
T (t)v̂p +

∫ t

0

Ki,p(t− τ)ΦT (τ)v̂pdτ ]

− (P TΨe(t)Ê)i − (P TF PΨ2∗2Nbs
Û c)i.

(25)
The residual form of the equation of motion is min-

imized by solving

〈φj , ri〉 = 0,

〈Φ, ri〉 = 0Nbs×1.
(26)

The discretized equation of motion becomes a linear
system:

HV̂ s = LÊs + CÛ c, (27)

with H is a block matrix with Ndc ×Ndc blocks:

H =

 H1,2 ... H1,Ndc

...
...

HNdc,1 ... HNdc,Ndc

 , (28)

and

Hi,p = (M s + M∞s)i,pD + (Bs + Bvisc,s)i,pINbs

+ (Gs)i,pD
−1 + Gi,p.

(29)
L is a block matrix:

L =

 L1,1 ... L1,Nall

...
. . .

...
LNdc,1 ... LNdc,Nall

 . (30)

The ith row, jthcolumn block of L is:

Li,j = (P T )i,jINbs
. (31)

C is a block matrix:

C =

 C1,1 C1,2

...
...

CNdc,1 CNdc,2

 . (32)

The ith row, jth column block of C is:

Ci,j = (P TF P )i,jINbs
, (33)

where i = 1, 2, ..., Ndc and j = 1, 2.
The total energy absorbed by the WEC is:

J = −
∫ T

0

[PΨV̂ s]
TF PΨ2×Nbs

Û cdt

= −T
2
V̂

T

s CÛ c,

(34)

and the mean power is defined as:

J =
1

2
V̂

T

s CÛ c. (35)

The control parameter optimization issue is mathe-
matically defined as:

Minimize J =
1

2
V̂

T

s CÛ c

Subject to : HV̂ s = LÊ + CÛ c.
(36)

V. GEOMETRIC OPTIMIZATION

The overall optimization objective is to find the opti-
mal geometric design parameters, with the optimized
PTO control parameters, for the given sea state. This
is an energy-maximization optimization problem [24],
with two geometric design variables to be optimized,
i.e. the length of fore barge L1 and the length of the
aft barge L3. Figure 2 illustrates the optimization pro-
cedure, and it shows that the optimization of geometric
design variables and the optimization of PTO control
parameters are integrated in the overall optimization.

For each defined WEC geometry set, a discretized
mesh is created to approximately describe the wet
surface of rigid bodies and used in the hydrodynamic
model. Hydrodynamic parameters, e.g., added mass,
are computed based on linear potential flow theory,
assuming the motion of the floating device is small
so that the boundary conditions are satisfied. Multi-
ple methods can be employed to approach the solu-
tion, e.g., the genetic algorithm and exhaustive search
method.

Within the overall optimization routine, PTO damp-
ing coefficients are optimized for each considered ge-
ometry set, and the given sea state, by solving the
formulated optimization problem described in previ-
ous section. The optimized fore and aft PTO damping
coefficients yield maximum energy for the considered
geometry in the given sea state. Figure 3 shows the de-
tailed variation of capture width ratio for a device with
L1 = 0.4m and L3 = 0.4m, over different damping
coefficients for fore and aft PTOs. These optimal linear
PTO damping coefficients are used in the computation
of mean power.
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Fig. 2. Scheme of control-informed geometry optimization.

Fig. 3. Variation of capture width ratio over PTO damping coeffi-
cients for the geometry set with L1 = 0.4 m, L2 = 0.28 m and L3 =
0.4 m. Passive controllers are employed by PTOs.

An energy-maximization based index is employed to
evaluate the performance of each geometry set during
the overall optimization routine, and the geometry set
with maximum energy generation is selected as the
optimal geometric design parameters.

VI. RESULTS

Simulations are carried out in MATLAB, with the
algorithm used for solving the PTO optimization prob-
lem is implemented by the fmincon function included
in the MATLAB Optimization Toolbox and the ap-
proach used for selecting the optimal geometric design
parameters is achieved by employing the exhaustive
search method. Hydrodynamic parameters, including
added mass, radiation damping coefficients and ex-
citation force coefficients are computed in WAMIT
[25], a boundary element method code based on the
linear potential flow theory. The flow is assumed as
ideal, i.e., inviscid and irrorational in the fluid domain,

thereby the flow velocity potential satisfies the Laplace
equation and boundary conditions.

th

McPump prototype are 2.01 m × 0.4 m × 0.15 m (i.e.,
length × width × height). The original dimensions of
the fore barge are 0.68m×0.4m×0.1m, 0.28m×0.4m×
0.15 m for the central barge, and the original dimen-
sions of the aft barge are 1.0m×0.4m×0.1m. A damping
plate with dimensions 0.4m×0.4m×0.03m is affixed to
the central barge to limit heave, and it is lowered 0.127
m below the bottom of the central barge. The spacing
between any two neighboring barges in still water is
0.06 m. In the following context, fore barge length L1
and aft barge length L3 are the design parameters to
be optimized, while the geometric parameters of the
central barge are kept as for the original prototype.

We assume both of the two PTOs are equipped
with an optimal linear passive controller, and the PTO
damping coefficients vary from 0 to 50 Nms/rad,
depending on the sea state and geometry parameters.
Table II shows ranges of design and control parameters
used in simulation. The lengths of fore barge and of aft
barge vary from 0.1 m to 2.0 m with a step of 0.1 m.

TABLE II
RANGES OF CONTROL AND GEOMETRY DESIGN PARAMETERS

Range Parameters
B1 [Nms/rad] B2 [Nms/rad] L1 [m] L3 [m]

Min. 0 0 0.1 0.1
Max. 50 50 2.0 2.0

1) Initial regular wave test: Consider a regular wave
with an amplitude of 0.02 m and an angular frequency
of 4 rad/s, the proposed methodology is employed to
optimize the geometric design parameters L1 and L3.

As indicated in Table III, the optimal length of the
fore barge is close to the value of the original 1/25th

prototype, while the optimal length of the aft barge
is 50% larger than the original prototype. The mean
power of the optimized device under this sea state is
1.1 W, while the mean power of the original 1/25th

prototype is 0.9 W. This indicates that the electricity
generation can be improved by 22% in this sea state
by the geometric optimization method.

TABLE III
OPTIMIZED GEOMETRY DESIGN PARAMETERS UNDER A REGULAR
WAVE WITH AN AMPLITUDE OF 0.02 M AND A FREQUENCY OF 4

RAD/S

Barge Name Optimal Length

Fore barge 0.7 m
Aft barge 1.5 m
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Fig. 4. Optimized lengths of fore barge and aft barge in different
wave lengths. The length of central barge is fixed as 0.28m. The
PTOs are equipped with optimal linear passive controllers. The wave
amplitude is fixed as 2 cm.

2) Further regular wave tests: The hinge-barge WEC
has a broad frequency response with respect to incident
waves. It is meaningful to investigate the optimal
geometric lengths of the device in different incident
wave conditions. The optimized results given by the
proposed control-informed geometric optimization are
shown in Figure 4.

It is found that, in general, the optimal length of
fore barge is greater than that of the aft barge in short
wavelengths and is much less than the aft barge in
long wavelengths. The optimal length of the aft barge
is about 0.4 times the length of the incident wave and
the optimal length of the aft barge varies in a range
of 0.15-0.35 times the length of incident wave, in long
wavelengths.

Polychromatic waves can be created as a linear
combination of monochromatic waves using a ocean-
wave spectrum, defined by a significant wave height,
a peak period, and random phases [26]. In this section,
the polychromatic wave is created using the Pierson-
Moskowitz spectrum, with a significant wave height of
Hs = 4.82 cm and a peak period of Tp = 1.1 s, which
is scaled down from one of the most common sea
states in Galway Bay, off the west coast of Ireland. The
resulting wave load acting on the WEC is computed
using WAMIT.

Table IV summarizes the optimization results for the
considered irregular waves. It shows that the optimal
length of the aft barge is greater than that of the
fore barge. Figure 5 presents the instantaneous power
of the optimized WEC equipped with optimal linear
PTO passive controllers, under this irregular wave.
It is found that the fore PTO generates more energy,
compared to the aft PTO, with the fore PTO having a
mean power of 0.18 W, while the aft PTO has a power
of 0.08 W, which means the fore PTO contributes 70%

of the total energy production. In addition, compared
with the original prototype, the geometric optimization
improves the energy production from 0.14 W to 0.26
W. The increment ratio is 78.6% for the given irregular
waves.

TABLE IV
OPTIMIZED GEOMETRIC DESIGN PARAMETERS UNDER THE

IRREGULAR WAVES WITH Hs = 4.82 cm AND Tp = 1.1 s

Barge Name Optimal Length

Fore barge 0.1 m
Aft barge 1.3 m
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Fig. 5. Instantaneous power of the device with optimized geometric
parameters and optimized PTO control parameters, for irregular
waves with Hs = 4.82 cm and Tp = 1.1 s.

VII. DISCUSSION

The previous section presents the optimal geometric
parameters of a three-body hinge-barge WEC under
multiple regular waves and an irregular wave. Results
indicate that energy production of the WEC can be
improved in these independent incident waves. How-
ever, WECs are expected to work in a sea site for a
long term, which means only one geometry set will
be used in the construction of the full-scale prototype
and is normally fixed after deployment. In addition, the
deployed WEC will encounter different incident waves
during long-term operation. As illustrated in Figure 6,
the statistical analysis of the measured ocean waves
at Galway Bay in January 2017 shows that the values
and occurring frequency of significant wave height and
peak energy period vary over a wide range. It is there-
fore meaningful to determine the optimal geometric
design parameters with a long-term perspective.

To approach that, a new evaluation/selection func-
tion is proposed to evaluate the total energy production
of the WEC in the long term, considering all likely
sea states. Sea state information can be gleaned from
historical measurements and/or prediction of future
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Fig. 6. Scatter diagram of the measured ocean waves in Galway Bay,
off west coast of Ireland, in January 2017. Raw data can be found at
[27].

ocean waves. The evaluation function to select the
optimal geometric design parameters over a long term
is defined as:

Eacc(L1, L3) =

Ns∑
j=1

f(j)P (j, L1, L3), (37)

where j is an index of the sea state that is from
measurement or prediction in the short term, e.g, half
an hour, Ns is the total number of sea states considered,
f(j) is a weight function, referring to the likelihood of
occurrance of sea state j in the long term, P (j, L1, L3)
represents the generated mean power of one geometry
set of L1 and L3 in sea state j. Thereby, Eacc is an
index proportional to the total energy generation of a
particular geometry set in the long term.

Table V presents the long-term optimization results
for the hinge-barge prototype. The sea state values
are scaled down from the historical data presented
in Figure 6, based on the principle of Froude scaling.
Results indicate that both the optimal fore barge length
and the optimal aft barge length should be greater than
the original design values, for this deployment site.

TABLE V
OPTIMIZED DESIGN GEOMETRY PARAMETER IN LONG TERM

Barge Name Optimal Length

Fore barge 1.4 m
Aft barge 1.8 m

Results in Figure 3 also show that the WEC with this
geometry set (L1 = 0.4m,L2 = 0.28m,L3 = 0.4m) has
a trend to perform like a two-body system, as the the
total energy production tends to approach an upper
bound constant when increasing the aft PTO damping
to high values, where the central barge and the aft
barge will perform like one rigidly connected body.

Extending the investigation to more geometry set-
tings reveals that the two-body-like trends are main-
tained. A relative low, yet optimal, damping value
is suggested for the fore PTO to maximize the to-
tal energy generation while high damping values are
suggested for the other PTO that yields a two-body
performance. As presented in Figure 7(a), the optimal
damping coefficient of the fore PTO, i.e. B1∗, increases
with barge length. As presented in Figure 7(b), the
ratio of suggested optimal PTO damping coefficients
for each geometry set is held at a high value.

The fact that the three-body hinge-barge WEC acts
like a two-body system in the optimal control condition
(passive control in this study) is meaningful to both the
designers of a physical device and of for PTO control.
It is well-known that, among all material costs, capital
cost of PTOs and controllers are high. Therefore, if
the optimal geometric parameters and PTO configu-
rations are properly ascertained, the techno-economic
performance [28] [29] of hinge-barge WECs can be
significantly improved.

VIII. CONCLUSIONS

In this work, a methodology for control-informed
geometric optimization of a hinge-barge wave energy
converter (WEC) is presented, based on an embedding
technique for modeling multi-body systems and a spec-
tral method for solving the equation of motion. The
optimization process is applied to a three-body hinge-
barge WEC that is originally from a 1/25th protytope
hinge barge. This WEC has 5 degrees of freedom
and is equipped with two optimal linear passive PTO
controllers.

The simultaneous design of device geometry and
PTO control parameters yields better performance, in
terms of energy generation. However, the optimal ge-
ometry depends on incident waves, on a short-term
perspective, e.g., the optimal length of the fore barge
varies in a range of 0.15-0.35 times the length of inci-
dent waves and the optimal length of aft barge is about
0.4 times the length of incident waves. As indicated in
the pilot study, the three-body hinge-barge WEC with
a fore barge length of 1.4m and an aft barge length of
1.8 m has a higher energy generation, with the long-
term perspective.

It can be concluded that the three-body hinge-barge
WEC acts like a two-body control system in the optimal
control condition (optimal linear passive control is
employed in this study). From a techno-economic per-
spective, it is meaningful to perform further analysis
on the benefits of employing two PTO control systems
or one PTO control system, by considering the capital
cost of PTO control systems and considering electricity
generation of PTOs over the long term.

It should be noted that this method is based on a
linearised model and the linear potential flow theory,
which limits its application to linear waves and small
amplitude motions. It is of further interest to investi-
gate the implications of such limitations.

WANG & RINGWOOD.: GEOMETRIC OPTIMIZATION OF A HINGE-BARGE WAVE ENERGY CONVERTER
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APPENDIX A
INNER PRODUCT

Formally: ∫ T0

0

Φ(t)ΦT (t)dt =
T

2
INbs

, (38)

〈φi, φj〉 =

∫ T

0

φi(t)φj(t)dt =
T

2
δij , (39)

where INbs
is an identity matrix of size Nbs, and δij is

the Kronecker delta.
In a concise form,

〈Φ,
Ndc∑
p=1

(M s + M∞s)i,pΦ
T (t)D〉v̂p

=
T

2

Ndc∑
p=1

(M s + M∞s)i,pDv̂p,

(40)

〈Φ,
Ndc∑
p=1

(Bs + Bvisc,s)i,pΦ
T (t)v̂p〉

=
T

2

Ndc∑
p=1

(Bs + Bvisc,s)i,pINbs
v̂p,

(41)

〈Φ,
Ndc∑
p=1

(Gs)i,pΦ
T x̂p〉 =

T

2

Ndc∑
p=1

(Gs)i,pINbs
x̂p

=
T

2

Ndc∑
p=1

(Gs)i, pD
−1v̂p,

(42)

〈Φ, (P TΨe(t)Ê)i〉 =
T

2

Nall∑
j=1

(P T )i,jINbs
êi, (43)

〈Φ, (P TF PΨ2∗2Nbs
Û c)i〉 =

∫ T

0

Φ(t)(P TF P )i,juj(t)dt

=

∫ T

0

2∑
i=1

Φ(t)(P TF P )i,juj(t)dt =
2∑

j=1

T

2
(P TF p)i,jûj .

(44)

The radiation force is

〈Φ,
Ndc∑
p=1

∫ t

0

Ki,p(t− τ)ΦT (τ)v̂pdτ〉 =
T

2

Ndc∑
p=1

Gi,pv̂p.

(45)
Gi,p is a block diagonal matrix with Nbs/2 blocks:

Gi,p =


G1

i,p

G2
i,p

. . .

... G
Nbs/2
i,p

 , (46)

and its kth block is:

Gk
i,p =

[
Ri,p(kw0) kw0(Bi,p(kw0)−M∞i,p)

−kw0(Bi,p(kw0)−M∞i,p) Ri,p(kw0)

]
,

(47)
where Ri,k(kw0) is the added mass, and Bi,p(kw0) is
the radiation damping coefficient. They are frequency
dependent values.
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