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Abstract—To maximise the energy converted from a
Wave Energy Converter (WEC), a real-time control law is
required, which, due to its non-causal nature, necessitates
the knowledge of the wave excitation force in future time.
This future excitation force time series is usually obtained
using forecasting strategies, which are essentially based
on present and past values of the wave excitation force.
Unfortunately, the excitation force is virtually always a
non-measurable quantity, which leads to the necessity of
a suitable estimation technique. There have been several
methods developed for this unknown-input estimation
problem, though some drawbacks can be readily identified.
One fundamental issue comes from the convolution term
accounting for the effect of radiation forces acting on the
WEC. The usual approach is to approximate this convo-
lution operation by a suitable parametric representation.
However, in general, a more accurate parametric approxi-
mation directly implies a higher dimension of the model
representing the WEC dynamics. This can potentially con-
stitute a problem for real-time capabilities as it naturally
increases the underlying computational complexity. In this
paper, a newly developed moment-based estimator is pre-
sented, which does not require of an approximation of
the radiation force dynamics. The presented moment-based
estimator has been compared to an input-unknown Kalman
filter, which represents a benchmark method for excitation
force estimation within the wave energy community.

Index Terms—Wave energy, input-unknown estimation,
excitation force, moment-domain

I. INTRODUCTION

ONE way to reduce the generating cost of
electricity from waves is to maximise the energy

extracted from Wave Energy Converters (WECs) [1].
In order to maximise the energy extracted, several
optimal control strategies have been developed. Most
of these control methods are inherently non-causal, in
that they require knowledge of future values of the
wave excitation force (input) acting on the WEC, (see
[2] and [3]). We note that there are a few sub-optimal
control methods, which minimise or eliminate the
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need to know the excitation force [4]. Nevertheless,
as discussed in [3], the vast majority of the optimal
energy-maximising control strategies require its future
knowledge.

There are some proven codes, such as WAMIT
[5] and NEMOH [6], to compute the hydrodynamic
parameters of WECs. In particular, WAMIT and
NEMOH belong to the family of Boundary Element
Methods (BEMs) [7]. However, BEMs solve the
radiation and diffraction problems in the frequency-
domain and can only characterise the steady-
state motion of the WEC under analysis. A more
comprehensive dynamical model in the time domain
for WECs can be performed by considering the
well-known Cummins’ equation [8]. There is a direct
relationship between Cummins’ equation and the
hydrodynamics of the WEC in the frequency domain
data, which is given in [9]. The final time-domain
dynamical model is a integro-differental equation,
which includes a convolution term accounting for the
effect of radiation forces acting on the device. This
convolution term greatly increases the computational
complexity.

The future excitation force time series (Fex), which
is required for most real-time controllers, is usually
obtained using forecasting strategies, which are
essentially based on present and past values of
Fex. Unfortunately, the excitation force is virtually
always a non-measurable quantity, which leads to
the necessity for estimation. Previous solutions to
the excitation force estimation problem include the
Kalman filter and extended Kalman filter ([10], [11],
[12] and [13]). However, some drawbacks can be
identified. One of the primary drawbacks is within
the effect of radiation forces acting on the WEC, more
specifically the convolution term accounting for these
forces. The usual approach is to approximate this
convolution term by a suitable parametric structure.
However, in general, accurate approximations of the
convolution term increases the dimension of the model
representing the WEC dynamics. This can potentially
constitute a problem for real-time capabilities, as it
naturally increases the computational complexity.

This paper proposes a moment-based excitation
force estimator. This strategy is based on recent
advances in moment-based theory (particularly in the
control and identification areas [14], [15], [16] & [17]),
and exploits a particular parametrisation of the steady-
state response of the WEC, providing a sensible set of
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mappings to compute the estimation of the excitation
forces, which is intrinsically related to the WEC
dynamics. An advantage with this method is that,
within the moment-domain, there is no requirement
to approximate the radiation force convolution term,
thus greatly reducing the computational complexity,
leading to improved real-time capability. To the best
of our knowledge, this is the first application of
the moment-based framework to any state or input
estimation problem.

A cylindrical buoy has been considered as an
example case in this paper. The device is axisymmetric
and has a uniform cross-sectional area, so that linear
potential theory can reasonably be applied to the
device. It has also been assumed that the device only
moves in the heave (vertical) direction, for simplicity.

The remainder of this paper is organised as follows.
In Section II, moment-based theory is introduced. In
Section III, the linear WEC model is recalled, both in
the time-domain and the moment-domain. In Section
IV, a moment-based approach to the estimation
problem is proposed. This includes an algorithm,
to outline the steps involved in a concise method.
In Section V, the results are obtained from the case
study and discussed. Finally, Section VI contains some
concluding remarks.

Notation
Standard notation is considered through this study

with any exceptions detailed in this section. R+(R−)
denotes the set of non-negative (non-positive) real
numbers. C0 denotes the set of pure-imaginary com-
plex numbers and C− denotes the set of complex
numbers with a negative real part. The symbol 0 stands
for any zero element, with dimension according to
the context. The symbol In denotes a size n iden-
tity matrix. The spectrum of a matrix A ∈ Rn×n,
i.e. the set of its eigenvalues, is denoted λ(A). The
symbol

⊕
denotes the direct sum of n matrices, i.e.⊕n

i=1Ai = diag(A1, A2, ..., An). The convolution be-
tween two functions f(t) and g(t) over a finite interval
[0, t] ⊂ R+, i.e

∫ t
0
f(τ)g(t − τ)dτ is denoted f(t) ∗ g(t).

If matrix A ∈ Rn×m then A† ∈ Rm×n symbolises the
Moore-Penrose inverse. εn ∈ Rn stands for a vector
with odd components equal to 1 and null even com-
ponents. Within an algorithm a semicolon (;) defines a
new row in a matrix and a comma (,) defines a new
column in a matrix.

II. MOMENT-BASED THEORY

This section briefly reviews linear moment-based
theory. The reader is referred to [18] for detailed de-
scription of these topics. Consider a finite-dimensional,
single-input, single-output, continuous-time system
described, for t ≥ 0, by the state-space model

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t), (1)

where x(t) ∈ Rn, u(t) ∈ R, A ∈ Rn×n, B ∈ Rn and
CT ∈ Rn. Consider the associated transfer function

H(s) = C(sIn −A)−1B, (2)

and assume that (1) is minimal (i.e. controllable and
observable).
Definition 1 [19] The 0-moment of system (1) at si ∈
C\λ(A) is the complex number η0(si) = C(siIn −
A)−1B. The k-moment of system (1) at si ∈ C is the
complex number

ηk(si) =
(−1)k

k!

[
dk

dsk
(C(sIn −A)−1B)

]
s=si

, (3)

with k ≥ 1 an integer. In [18], a novel interpretation of
moments is given in terms of the steady-state response
(provided it exists) of the output of the interconnection
between a signal generator and system (1). The result
is recalled in the following theorem.
Theorem 1( [18]; [20]) Consider system (1) and the signal
generator

ξ̇(t) = Sξ(t), u(t) = Lξ(t), (4)

with ξ(t) ∈ Rν , S ∈ Rν×ν , LT ∈ Rν and ξ(0) ∈ Rν .
Assuming that the triple (L, S, ξ(0)) is minimal, λ(A) ⊂
C−, λ(S) ⊂ C0 and the eigenvalues of S are simple.
Let Π ∈ Rn×ν be the unique solution to the Sylvester
equation

AΠ +BL = ΠS. (5)

Then, there exists a one-to-one relation between the
moments η0(s1), η0(s2), ..., η0(sν), with si ∈ λ(S) for
all i ∈ {1, ..., ν}, and the steady-state response CΠξ of
the output y of the interconnection of system (1) with
the signal generator (4). Note that, from now on, the
matrix CΠ = Y is referred to as the moment-domain
equivalent of y(t).

III. WEC MODEL

As mentioned in Section I, the WEC hydrodynamical
model is based on linear potential theory, consider the
fluid is to be inviscid and the flow both irrotational and
incompressible. Under these assumptions, the dynamic
model of the device is given by:

mẍ(t) = −Fr(t)− Fh(t) + Fex(t) + u(t), (6)

where m is the mass of the device, x the device
excursion, Fh is the hydrostatic restoring force, Fr is
the radiation force, Fex is the excitation force and u
represents the control input force, which is supplied
by means of a Power Take-Off (PTO) system. Fh(t) =
KHx(t), where KH denotes the hydrostatic stiffness.
The radiation force Fr is modelled from linear potential
theory and using the well-known Cummins’ equation
[8], as

Fr(t) = A∞ẍ(t) +

∫ +∞

0

k(τ)ẋ(t− τ)dτ, (7)

where A∞ = limω→+∞A(ω), with A∞ ≥ 0 represents
the added-mass asymptote at infinity frequency. The
control input has been parameterised similarly as in
[21].

u(t) = muẍ(t) + buẋ(t) +Kux(t), (8)

where the values of {mu, bu,Ku} ⊂ R can be obtained
by several optimal (or suboptimal) control strategies
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[2]. Finally, the complete linearised equation of motion
of the WEC is

ẍ(t) =
−k(t) ∗ ẋ(t)− buẋ(t)− (Ku +KH)x(t) + Fex(t)

m+A∞ +mu
.

(9)

A. Moment-domain formulation
The equations of motion from (9) are now re-written

in a more suitable structure following [14]. For the
remainder of this paper, the state-space representation
is as follows

ϕ̇(t) = Aϕ(t) +Bu(t), y(t) = Cϕ(t), (10)

where ϕ(t) = [x(t) ẋ(t)]T ∈ Rn, with n = 2, is the
state-vector continuous time model and y(t) = ẋ(t) ∈
R is the output of the system. The function u(t) ∈ R
is assumed to be the input. The radiation convolution
term has been included as a feedback term purely as
an algebraic manipulation to develop the state space
representation of (9) and the meaningful input is the
wave excitation force, Fex(t), i.e.

u(t) = Fex(t)− k(t) ∗ ẋ(t). (11)

The PTO force has been parametrised using the state
variables via (8), being now included in the state ma-
trix, A, and the input matrix, B. Therefore, the matrices
in (10) are

A =

[
0 1

− KH+Ku
m+A∞+mu

− bu
m+A∞+mu

]
,

B =

[
0
1

m+A∞+mu

]
, C =

[
0 1

]
.

(12)

Following [14], Fex, in the moment-based framework,
is expressed as a signal generator (see (4)), as

ξ̇ex(t) = Sξex(t), Fex(t) = Lexξex(t), (13)

where the dimension of S is the same as in (4),
LTex ∈ Rν , ξex(t) ∈ Rν and, without loss of generality,
the initial condition of the signal generator is chosen
as ξex(0) = εν . Since the eigenvalues of S are simple
and lie is C0, S can be written in a real block-diagonal
form as

S =

q⊕
p=1

[
0 ωp
−ωp 0

]
, (14)

where ν = 2q, with q ≥ 0 integer. Note that, with this
selection of matrices, the assumption on the minimality
of the triple (Lex, S, εν) holds as long as (Lex, S) is
observable.

One usual assumption for the numerical generation
of the wave excitation force, in many ocean engineering
applications, is that it can be described as the sum
of several frequency components [22]. Note that this
is indeed the same class of input induced by the
signal generator (13)-(14). Based on this selection of
matrices, the moments of system (10), driven by the
signal generator (13), can be computed by solving a
Sylvester equation (5). [14] Considering superposition,
the Sylvester equation for the WEC device case can be
written as

AΠ +B(Lex − R̄) = ΠS, (15)

where Π ∈ Rn×ν and R̄T ∈ Rν is the moment-domain
equivalent of the state and radiation convolution term
respectively. Proof of this statement can be found in
[14], and is briefly summarised below for convenience.
The moment-domain equivalent of the convolution
term is as follows:

R̄ = VR, (16)

where R ∈ Rν×ν is a diagonal block matrix defined by

R =

q⊕
p=1

[
rωp −mωp
mωp rωp

]
, (17)

and its entries depend on the added mass A(ω) and the
radiation damping B(ω) of the device at each specific
frequency induced by the eigenvalues of S, as

rωp = B(ωp), mωp = −ωp[A(ωp)−A∞]. (18)

A(ω) and B(ω) are obtained by using hydrodynamic
solvers, such as WAMIT or NEMOH. Note that the
relationship of these coefficients with time-domain
analysis can be found in [9].

IV. ESTIMATION

This section presents an estimator in the moment-
domain for Fex, which uses the measurements of the
position of the device to compute an estimate of such
a signal. This study deals with the dynamical system
model as in (10), (11) and (12). Following (13), the
estimated excitation force is defined as,

F̂ex(t) = L̂exξex(t), (19)

where the dimension of ξex(t) is as in (13) and L̂Tex ∈
Rν . The assumption on the minimality of the triple
(L̂ex, S, εν) holds as long as the pair (L̂ex, S) is ob-
servable. For the estimation problem, each of the ωp
represents an element of the finite set of frequencies
chosen to map out the spectrum of the sea state. Using
(13), ξex(t), can be computed as follows:

ξex(t) = exp[St]εν =


cos(ω1t)
− sin(ω1t)

...
cos(ωqt)
− sin(ωqt)

 . (20)

The steady-state of the WEC is related to the moment
representation by the solution of the signal generator
(13),

ϕss(t) = Πξex(t). (21)

The state-vector is comprised of the position and the
velocity of the system, and the output is the velocity.
Note that Π can be partitioned similarly to ϕ:

Π =

[
X
V

]
, (22)

where XT ∈ Rν and V T ∈ Rν are the moment-domain
equivalent of position and velocity, respectively. From
[23] the moment-domain equivalent of ẋ(t), denoted as
V , can be computed in terms of X , i.e.,

V = XS. (23)
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Using (23), (22) can be re-written as:

Π =

[
X
XS

]
, (24)

where (XS)T ∈ Rν . Using (21) and (24) the steady-state
position is given by xss(t) = Xξex(t).

B. Estimation within time window
One possible approach to approximate the moment-

domain equivalent of the position, where X̂ is the
approximate of X , is to define a set of specified time
instants, i.e. T = {t1, . . . , tn} ⊂ R+, where ti+1− ti = τ .
At these time instants the position is measured and the
signal generator is evaluated. Then by selecting a time
window, of size dti = ti+m − ti, within the specified
time instances, the matrices below can be built:

Ξi = [ξex(ti) . . . ξex(tm+i)],

Λi = [x(ti) . . . x(tm+i)],
(25)

where Ξi ∈ Rν×m and ΛTi ∈ Rm. Building (25) in
such a way enables the approximated moment-domain
equivalent of position to be expressed as,

X̂i = ΛiΞ
†
i , (26)

where X̂T
i ∈ Rν and Ξ†i ∈ Rm×ν . Using (23) and

(26), the moment-domain equivalent of the state for
time window dti, i.e. Π̂i, can be readily approximated.
Consequently, using Π̂i, L̂exi can be calculated, for dti,
by rearranging (18) as

L̂exi = −(BBT )−1BT (AΠ̂i − Π̂iS +B ˆ̄Ri), (27)

where (BBT )−1 always exists since B is full-column
rank [24] and ˆ̄Ri is the approximation of the moment-
domain equivalent of the radiation convolution term,
ˆ̄Ri = X̂iSR. Using (19) and (27), it is straightforward
to compute the estimate of the excitation force for this
time window, at time tm+i, as F̂ex(tm+i) = L̂exiξ(tm+i).
However, this is only for one time window, therefore,
after sliding the time window by one specified time
instant, i → i + 1, everything from the beginning of
this subsection can be repeated to compute F̂ex for the
next time window.

Algorithm 1 Moment-based estimation
1: procedure Moment estimation(T ,A,B,S,R,ξex,x)
2: T = {t1, . . . , tn}
3: n = length(T ).
4: m = length of time window
5: for i = 1; i ≤ n−m; i+ + do
6: for j = i; j ≤ i+m; j + + do
7: Λi = x(tj).
8: Ξi = ξ(tj).
9: end

10: X̂i = ΛiΞ
†
i .

11: V̂i = X̂iS.
12: Π̂i = [X̂i; V̂i].
13: L̂exi = −(BBT )−1BT (AΠ̂i − Π̂iS +BV̂iR).
14: F̂ex(ti+m) = L̂exiξ(ti+m).
15: end

Fig. 1. Bode diagram of the force-to-velocity frequency response,
H(jω), for the device computed with WAMIT

C. Algorithm layout
The moment estimator algorithm shown in Algo-

rithm 1 requires 7 inputs. T is the set of time instants,
T = {t1, . . . , tn} ⊂ R+, A and B can be found in (12), S
can be found in (14),R in (17), ξex in (20) and x(ti) ∈ R,
represents the measurement of position at time ti.
Defining a time window as Ti = {ti, . . . , ti+m} ⊂ T ,
each cycle of the first for loop represents a time win-
dow and, once Fex has been computed for the loop,
the window is shifted and the steps repeated.

V. RESULTS & DISCUSSION

As mentioned in the Section I, a cylindrical heaving
buoy is the device selected to test the moment estima-
tor. The device parameters are shown in Table I:

TABLE I
PARAMETERS OF WEC MODEL

Parameter Symbol Value

Radius r 5.0 m
Length L 10.0 m
Draft h 5.0 m
Mass m 4× 105 kg

Applying the Fourier transform to (9) and considering
the velocity as the measured output, the following is
obtained

˙̄x(jω) = F̄ex(jω)H(jω), (28)

where H(jω) denotes the force-to-velocity response.
Note that the expression force-to-velocity is used here
to denote the frequency response of the WEC consider-
ing the excitation force as the input to the system and
velocity as the output, i.e.

H(jω) =
1

bu +B(ω) + jω[A(ω) +m+mu] + KH+Ku
jω

.

(29)
Without any loss of generality, it is assumed in the

following case study that mu = bu = su = 0, i.e.
there is no presence of a control input. From Fig. 1,
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Fig. 2. JONSWAP spectrum considered for the results

TABLE II
TO DETERMINE THE TIME WINDOW SIZE

Size of time
window

Accuracy (%) Computation
time (µs)

q 94.85 13.61

2q 96.79 30.2

3q 97.05 37.15

i.e. the Bode diagram of the force-to-velocity frequency
response of the device obtained through WAMIT, the
resonant frequency of the device can be seen to be≈ 1.2
rad/s.

For the numerical values in the results, a JONSWAP
spectrum is used to reproduce the wave conditions
[25], i.e.

E(f) = αg2(2π)−4f−5 exp

[
−5

4

(
f

fp

)−4]
γ
exp

[
− f−fp

2σ2f2p

]
,

(30)
where g is the acceleration due to gravity, α is the
spectral energy parameter, where α = 5.061

H2
s

T 4
p

(1 −
0.287 ln(γ)), the peak enhancement factor γ = 3.3, σ is
the spectral width parameter, where σ = 0.07(f ≤ fp)
and σ = 0.09(f > fp) for a realistic sea-state (refer-
enced in [26] and [27] for Pico island). The present
results were obtained using a significant wave height
of Hs = 1.5m and peak period of Tp = 8s (please see
Fig. 2). First the window size, dt, is investigated. The
sampling time is ti+1 − ti = τ = 0.05s.

D. Time Window Size

Two crucial aspects of an estimator are the accuracy
of the estimate and the computation time it requires.
To remain consistent, the same number of frequencies
are used in the comparison of the window size. Three
different size windows are investigated, qτ, 2qτ and
3qτ , where q is the number of frequencies, and τ =
0.05s is the sampling time. 5 frequencies were chosen
for the signal generator, ωp ∈ {0.4, 0.8, 1.2, 1.6, 2}. The

0 10 20 30 40 50 60 70 80 90 100
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E
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n 
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rc
e 

(N
)

105

Actual
Moment dt=q

Moment dt=2q
Moment dt=3q

Fig. 3. Actual excitation force and estimated using the Moment-
based estimator with windows of size qτ , 2qτ and 3qτ , where q is
the number of frequencies and τ is the sampling time and equal to
0.05s. Five frequencies used ωp ∈ {0.4, 0.8, 1.2, 1.6, 2}.

Fig. 4. The accuracy of the estimator for different numbers of
frequencies.

accuracy is obtained using the Normalised Root Mean
Square Accuracy (NRMSA) formula:

NRMSA =

1−

√∑N
k=1(fk − f̂k)2√∑N

k=1(fk)2

 100, (31)

where N is the number of estimated values. From
Table II can be seen that the larger time windows
are more accurate. However, the computation time is
substantially longer. Therefore, for the purpose of this
paper, the size of the time window will be qτ for the
rest of the paper.

As a baseline, the moment-based estimator is com-
pared to the Kalman filter with harmonic oscillator that
can be found in [10], [11] and [12]. In these papers,
the excitaition force has been modelled the same as
(13). However, a state space representation has been
interchanged for the radiation convolution term, for
the Kalman filter, which can be found in [14]. Three
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Fig. 5. The accuracy of the estimator. a) completely random frequencies, b) random frequencies and the resonant frequency of the device,
c)random frequencies and the peak of the JONSWAP spectrum used and d) random frequencies with the resonant frequency of the device
and the peak of the spectrum.

different aspects of the estimators have been compared,
the accuracy, the sensitivity to frequency selection and
the computation time.

E. Accuracy
When choosing the finite set of frequencies for the

signal generator, key frequencies should be considered.
The resonant frequency of the device, 1.2 rad/s, and
the peak of the JONSWAP spectrum, 0.8 rad/s, are ex-
amples of such frequencies. With this information, the
frequencies chosen start at ω0 = 0.4 rad/s, and the peak
of the JONSWAP spectrum used, 2ω0 = 0.8 rad/s, and
the resonant frequency of the device, 3ω0 = 1.2 rad/s,
are then the second and third harmonic receptively.
Using (31) as a metric, the accuracy of the estimation
has been investigated.

As shown in Fig. 4, the NRMSA increases with the
number of frequencies used, as expected. However, it
can be seen that the moment-based estimator performs
worse than the Kalman filter when only one or two
frequencies are used in the estimation. When three or
more frequencies are chosen the estimation accuracy
stabilises at 94.6% for the Kalman filter and 94.21%.
Any increase in the number of frequencies increases the

computational complexity, which is explored in Section
V.G.

F. Sensitivity to frequency selection
This section investigates the performance of the es-

timator and its sensitivity to frequency selection. Four
different frequency selection methods are considered
to test the sensitivity. Method one assumes there is no
knowledge of the device or the sea state where the
device is situated, the frequencies are chosen randomly
where ωp ∈ [0, 3]. The next two methods assumes
knowledge of either the peak of the spectrum or the
resonant frequency of the device followed by randomly
generated frequencies. The fourth method assumes
knowledge of both of these frequencies. The remainder
of the frequencies are then randomly generated. Similar
to the previous section, (31) was used as a metric for
the accuracy of the estimation.

However, running only one simulation for one set of
randomly generated frequencies would lead to results
which may not be statistically significant. Therefore,
1000 simulations were run, with different randomly
generated frequencies each time. To determine how
many simulations must be carried out to obtain a
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statistically significant NRMSA value, the central limit
theorem was assumed. Using the variance of the sim-
ulations and the central limit theorem, to obtain a 95%
confidence interval it is found that 410 simulation are
necessary to achieve this with a half-width of 0.25%
of the mean [12]. This means that, for a given average
NRMSA estimate obtained from 410 simulations, there
is a 95% probability that the actual average NRMSA
lies within ±0.25% of the estimated average NRMSA

From Fig. 5, the importance of the choice of key
frequencies is clear. However, the moment-based es-
timator can still achieve accurate estimation provided
at least three frequencies are included in the signal
generator. It is possible to choose the frequencies from
a forecasted sea spectrum given by meteorological
agencies, and adapt them as the sea state changes.
However, it is worth to highlight the moment-based
estimator is more robust with the frequency selection.

G. Computation time
As mentioned in the introduction, one of the mo-

tivators for the development of this new estimator is
the potential to reduce the computational complexity
to improve real-time capability. The potential comes,
in particular, from the moment-based representation
of the radiation convolution term. The computation
time has been examined from two frequencies to six
frequencies. Similar to Section V, 1000 simulations were
run and the computation time for one step of the
estimation was computed, from these simulations the
variance was calculated to obtain the amount of simu-
lations needed to run using the central limit theorem.
It was found that to achieve a 95% confidence interval
30 simulation are needed to achieve this with a half-
width of 0.25% of the mean. The results are contained
in Table III.

TABLE III
COMPUTATION TIME

Number of
Frequen-
cies

Moment
(µs)

Kalman
(µs)

% of
Improve-
ment

2 9.36 10.24 +8.59

3 10.57 11.27 +6.21

4 12.17 14.14 +13.93

5 13.61 16.19 +15.94

6 16.44 18.21 +9.72

It can be seen that the computation time for each
step of the estimation increases with the number of
frequencies, which was expected as increasing the
number of frequencies increases the dimension of the
moment representation of the state. It can also be seen
that for each computation step the moment estimator
is effectively quicker by at least 6.21%.

VI. CONCLUSION

In this paper, a new excitation force estimator has
been built using linear based theories in the moment-
domain. Accurate estimates are needed for forecasting

to deal with the non-causal nature of the majority of
controllers to maximise the energy extracted. This is
mainly motivated by recent advances in moment-based
theory and the ability it contains for dealing with the
radiation convolution term.

The moment-based estimator only requires the posi-
tion measurements to obtain an estimate. It can be seen
that, provided at least 3 frequencies are chosen, the
moment-based estimator provides a slightly worse esti-
mate than the Kalman filter when the frequencies were
chosen to be harmonics of 0.4 rad/s. However, when
the frequencies were chosen randomly, with at least
three frequencies, the moment-based estimator proved
to be similar or better. Therefore, the moment-based
estimator is more robust for the frequency selection,
provided at least three are chosen. From Section V. F, it
is clear to see the importance of key frequencies, such
as the resonant frequency of the device and the peak
of the spectrum, within the estimation.

Further work will investigate the size of the time-
window used to compute the estimate of the excitation
force, and different sampling times to further improve
the computational time. Additionally, a correction term
is to be included in the computation of the Sylvester
equation, aiming to provide robustness to a certain
class of modelling errors.
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