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Abstract—The neural control of blood pressure involves ef-
fectors related both to peripheral resistance and the heart.
These mechanisms, using blood pressure measurements from
the baroreceptors, work in unison to maintain blood pressure
at an acceptable value. However, it is less well known that the
neural baroreflex is affected by the pulsatile nature of blood flow,
which also modulates the blood pressure signal. Furthermore, the
presence, or absence, of low-frequency (circa 0.1 Hz in humans)
oscillations in blood pressure may be predicated on the pulsatility,
or lack of pulsatility. The absence of pulsatility may be found
in patients with artificial (turbine type) hearts, or with left
ventricular assist devices (LVADs). This paper shows the effect
of pulsatility on the neural baroreflex, and consequently on the
generation of low-frequency oscillations, via simulation results.

Index Terms—Feedback control, limit cycle, baroreflex, neural
control, low-frequency oscillations, pulsatility

I. INTRODUCTION

The neural baroreflex has been studied through a number
of disciplines, and there is general acceptance of a neural
feedback mechanism via the baroreceptors and the brain [1].
In the baroreflex, shown in Fig.1, blood pressure (BP) is
measured via the baroreceptors (in the aortic arch and carotid
sinus) and actuated via manipulation (via sympathetic nerves)
of smooth muscle in the arterioles, and via manipulation of
cardiac output (via sympathetic and parasympathetic nerves).

Over the last few decades, there has been increasing interest
in low frequency (LF) oscillations in blood pressure, often
termed Mayer waves [2], occurring at around 0.1 Hz in
humans. While their purpose is uncertain, and their origin not
yet agreed upon, certain evidence for their origin as a result
of a neural baroreflex nonlinearity has been given [3], where
the oscillation frequency has been shown to scale well with
variation in species.

A final aspect related to the work reported in this paper is
that of blood pressure pulsatility. In the vast majority of cases,
analysis of the neural baroreflex omits any consideration of
blood pressure pulsatility, and instead considers some heart-
period averaged quantity, such as mean arterial pressure (or
perhaps systolic, or diastolic). In particular, there is a paucity
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of research on what the effect a lack of pulsatility might have
on the baroreflex. While it could be argued that this is an
unimportant case due to the fact that all humans and animals
have pulsatile hearts, interventions such as (turbine-based)
artificial hearts, or left ventricular assist devices (LVADs), may
diminish, or completely extinguish, blood pressure pulsatility.

This paper enumerates the effect of a disappearance of
pulsatility on the baroreflex via both an analytical technique
and simulation, and shows that the presence of pulsatility acts
to reduce the neural baroreflex gain. This gain reduction, or
increase in the absence of pulsatility, may have some long-term
physiological effects [4], [5], but such discussion is beyond
the scope of this paper. However, this study does quantify the
potential effect of a change in pulsatility on LF BP oscillations,
where some experimental evidence exists that LVAD insertion
results in an increase in Mayer wave activity which, in turn,
can be linked with an increase in baoreflex gain [3], [6].

The original contributions of this paper may be sum-
marised as follows: A complete (peripheral resistance + car-
diac branches) baroreflex model is presented, with the effect
of pulsatility on the complete baroreflex presented, while the
effect only on the peripheral resistance branch was considered
in [6]. Finally, a higher fidelity blood pressure trace is now
used to evaluate a piecewise linear approximation to the
periodic pulsatile BP signal, as required in the equivalent
nonlinearity (EQNL) calculation [7] (see Section IV-A). The
paper therefore allows the effect of pulsitility on the complete
neural baroreflex to be evaluated, which manifests itself in
terms of modulation of low-frequency oscillations in mean
arterial pressure (MAP), as a result of changes in baroreflex
gain.

II. THE NEURAL BAROREFLEX

The baroreflex is the homeostatic mechanism that main-
tains blood pressure. The neurally controlled baroreflex model
used in Fig.1 shows the critical components, which include:
dynamic components G(s), time delays τ and non linear-
ities f(s). The model in fig.1 is a three branch model:
parasympathetic cardiac, sympathetic cardiac and sympathetic
resistance, operating as a feedback system to maintain a BP
set point. The main controller for the baroreflex is considered
to be the central nervous system (CNS) as depicted in Fig.1.978-1-7281-2800-9/19/$31.00 ©2019 IEEE



Fig. 1. The neural baroreflex, containing both peripheral resistance and cardiac branches. P denotes blood pulsatility, represented as a pressure signal

The CNS accepts sensory measurements of blood pressure
from baroreceptors in the aortic arch and carotid sinus, and
influences blood pressure primarily through manipulation of
peripheral resistance (via neurally innervated smooth muscles
around the arterioles) and heart-rate. The dynamic components
of the model are expressed as:

GCNS(s) = e−sτb
1.33s+ 1

s+ 1
(1)

Gpc(s) = kpc
1

1.22s+ 1
(2)

Gsc(s) = ksc
1

1.29s2 + 1.29s+ 1
(3)

Gsr(s) = ksr
11s2 + 6.64s+ 1

4.27s4 + 21s3 + 36s2 + 22s+ 1
(4)

All other quantities are defined below:
• r∗ vascular resistance of arteries
• Vh stroke volume of the heart
• fh heart rate
• Bsetp blood pressure set point
• Boutp resulting blood pressure
• e−sτ delay introduced by smooth muscle and nerves at

various stages throughout the model. The distinct time
delays are shown in table I

The nonlinearities (f(s)) represent the baroreflex curve,
which is expressed as an arctan function:

y = h tan−1(β(x− x∗)) + y∗ (5)

The cardiac branches are combined through the following
equation:

g ∗ (Up, Us) = kpUp + ksUs + fh (6)

where, ks = 0.88, sympathetic gain, kp = −1.2
The arctan function in equation 5 was parameterised for

the three branches of the baroreflex system: parasympathetic
cardiac, sympathetic cardiac and sympathetic resistance. The
parameters shown in table II were found in [6] to fit ex-
perimental data for rabbits experiencing normoxia. When

accounting for peripheral resistance, the model ignores arterial
compliance and has a constant (r∗) for vascular resistance.

TABLE I
TIME DELAYS FOR BAROREFLEX MODEL

τpc τsc τsr τa τb

0.3 0.8 0.85 0.2 0.4

TABLE II
ARCTAN PARAMETERS FOR NORMOXIA

Arctan function x* y* β h

Original Arctan Function -71 55 -0.12 33

III. LOW-FREQUENCY OSCILLATIONS

Low-frequency (LF) oscillations, often called Mayer waves
[2] occur at frequencies below respiration and heart rate,
typically at around 0.1 Hz in humans and 0.3 HZ in rabbits.
The LF oscillation frequency is dependent on species size and
this dependence has been explained by a nonlinear feedback
model [3], with the length of the nerve conduction paths
(i.e. conduction delay) being responsible for the frequency
variation

The development in [3], which only considers the peripheral
resistance control of BP, uses an extension of Nyquist’s sta-
bility criterion, via a describing function representation of the
baroreflex curve [8]. However, Nyquist’s criterion cannot be
directly applied to the full neural BP control system, consisting
of both cardiac and peripheral resistance effectors, as shown
in Fig.1. Rather, an alternative approach, based on establishing
conditions for sustained propagation around the neural BP
control loop is required. [9]

However, both approaches (Nyquist and sustained prop-
agation) require a compact representation of the nonlinear
baroreflex curves representing the static relationship between



BP and sympathetic/parasympathetic nerve activity to the
peripheral resistance and heart. This can be achieved via the
describing function [8].

A. Describing function representation

While the sigmoidal baroreflex curves can be represented by
a range of parametric functions, the arctan function has been
shown to be a good fit and leads, with some manipulation,
to a relatively simple describing function representation [8].
Specifically, for the arctan function in Equation (5), the
describing function is given [8] as:

DF (M) =
2h

βM2

(√
1 + β2M2 − 1

)
(7)

where β and h represent the parameters of the arctan func-
tion (see Table II) and M is the effective amplitude of the
sinusoidal oscillation incident on the arctan function. We
note that one of the assumptions of the describing function
representation is that any harmonics of the incident sinusoid
(sustained oscillation), appearing at the nonlinearity output, are
effectively eliminated by the low-pass filtering characteristics
of following dynamical elements. This is ensured by the
low-pass nature of the dynamic blocks Gps, Gsc, and Grc,
which follow the nonlinear characteristics fpc, fsc, and frc,
respectively.

B. Factors affecting LF oscillations

There are a number of physiological conditions and inter-
ventions which have been shown to affect the presence/absence
of LF BP oscillations. These include hypoxia [8], Haemor-
rhage [10], and modulation of nitric oxide synthesis [11].
Invariably, these interventions involve modulation of the over-
all baroreflex gain, which is consistent with the nonlinear
feedback theory for LF oscillations in [3].

However, one phenomenon which has the potential to alter
baroreflex gain, and consequently affect the presence/absence
of LF oscillations, but has received relatively little exposure
in the literature, is BP pulsatility. BP pulsatility may be
modulated in cases where cardiac flow assist devices, such
as LVADs or turbine-based artificial hearts. Some evidence
exists [12] that a reduction in pulsatility is accompanied by
an increase in the incidence of LF oscillations. The specific
focus of the current research is to establish the link between
pulsatility, baroreflex gain and the presence/absence of LF
oscillations as a surrogate measure of baroreflex gain.

IV. EFFECT OF PULSATILITY

The effect of pulsatility on the baroreflex system will be
investigated in two ways: firstly, where a pulsatile signal is
introduced, and another where the baroreflex parameters are
modified (via an ‘equivalent nonlinearity’) to represent the
effect of pulsatile blood pressure signals. A pulsatile signal,
P , derived from the blood pressure signal shown in Fig. 3, is
introduced into the model in Fig.1.The effect pulsatility has
on modulating baroreflex curves, fpc, fsc, and fsr, is also
considered as described in Section IV-A.

A. Equivalent nonlinearity
The EQNL concept used, based on the approach outlined in

[7], is illustrated in fig. 2, which allows a nonlinear function,
having an input consisting of a low-frequency signal, together
with a high-frequency (in this case, pulsatile) signal, to be
represented by a new nonlinear function (the equivalent non-
linearity) having only the low-frequency signal as the input.

Fig. 2. EQNL concept

The first step in obtaining the equivalent nonlinearity is to
represent the pulsatile signal with a piecewise linear approxi-
mation, as shown in shown in Fig. 3.

The signal in figure 3 comes from a set of clinical data
measuring blood pressure from the abdominal aorta, One
complete cycle was segmented into 4 parts, t0 − t1, t1 − t2,
t2−t3, t3−tp, in a similar manner to that done in [6] and [13],
though the pulsatile data used for the current approximation
is of significantly higher resolution. The parameters for the
individual segments of the piecewise linear approximation are
shown in Table. III

Fig. 3. Piecewise Rabbit BP signal

TABLE III
SEGMENTATION OF CLINICAL DATA

Parameter to − t1 t1 − t2 t2 − t3 t3 − tp

A (height) 29.18 26.02 0 3.37
τ (length) 0.068 0.104 0.0452 0.053

For a candidate nonlinearity f( ), the original nonlinear
system’s output is:

y = f(r + d(t)) (8)



Let p(q)dq be the probability that, for any time t, d(t) lies in
the range q to q+dq. When d(t) has the value q, the expected
value for y is [6]:

y =

∫ ∞
−∞

f(r + q)p(q)dq (9)

To calculate p(q), let F (q) be the probability that the dither
signal is above q, giving

dF (q)

dq
= −p(q) (10)

Three of the four segment are triangles with an offset of
b and an amplitude A, this results in the probability density
function being expressed as:

p(q) = −dF (p)
dp

=
1

2A
(11)

The equivalent nonlinearity (EQNL) for the first segment
t0 − t1 is found by:

y1 =

∫ b−A1

b+A1

1

2A1
[h tan−1(β(r + q)) + y∗] dq (12)

Both the second and fourth segments are triangles and were
found in a similar manner to the first segment. The probability
density function uses the values in table III. The third segment
however is a straight like with an offset of b. Meaning the
linearity is the original EQNL but with an offset of b and a
constant probability function:

y3 = h tan−1(β(r + q)) + y∗] dq (13)

The final EQNL for the dither signal is the combination of
all four segments:

y = α1y1 + α2y2 + α3y3 + α4y4 (14)

where α1 = 0.252, α2 = 0.385, α3 = 0.167, α4 = 0.196.

B. Approximate model

The approximate model is the model shown in fig.1 where
P = 0, but the nonlinearities have the EQNL baroreflex
parameters. To find these parameters we graph the original
arctan function in equation 5 beside the EQNL. We then alter
the slope (B) of equation 5 to match the gain and midpoint of
the EQNL. This is carried out three times one for each of the
nonlinearities (f(s)) in fig.1. The altered B is shown in table
IV.

TABLE IV
B VALUES FOR BAROREFLEX BRANCHES

Arctan Function Bpc Bsc Bsr

Original Arctan (Case 1&2) -0.1342 0.02 0.0383
EQNL Arctan (Case 3) -0.1342*0.75 0.02*0.75 0.383*0.45

The modified arctan parameters are deemed a fit to the
EQNL if the midpoint and the slope(B)’s of both match. This
is the case for all three branches:

• Fig.4 shows the original baroreflex curve for the parasym-
pathetic cardiac branch of the baroreflex (fpc(s)), the
equivalent nonlinearity obtained by including the pulsatile
BP input, and the best arctan fit to the EQNL curve. The
fit shows a 25% reduction in slope (B).

• Fig.5 shows the original baroreflex curve for the sym-
pathetic cardiac branch of the baroreflex (fsc(s)), the
equivalent nonlinearity obtained by including the pulsatile
BP input, and the best arctan fit to the EQNL curve. The
fit shows a 25% reduction in slope (B).

• Fig.6 shows the original baroreflex curve for the sym-
pathetic resistance branch of the baroreflex (fsr(s)), the
equivalent nonlinearity obtained by including the pulsatile
BP input, and the best arctan fit to the EQNL curve. The
fit shows a 55% reduction in slope (B).

Fig. 4. Parasympathetic Baroreflex gain altered by presence of pulsatility

Fig. 5. Sympathetic Baroreflex gain altered by presence of pulsatility



Fig. 6. Sympathetic Resistance Baroreflex gain altered by presence of
pulsatility

TABLE V
TEST CONDITIONS

Case Baroreflex Gain Pulse Signal

1 Original Arctan Function Baroreflex Parameters Yes
2 Original Arctan Function Baroreflex Parameters No
3 EQNL Baroreflex Parameters No

V. RESULTS

The effect of pulsatility on the neural baroreflex was inves-
tigated by comparing three cases of the model shown in fig.1.
The test conditions for all three cases are a combination of the
arctan parameters from table IV and the presence or absence
of the pulsatile signal P . The conditions for each case are
shown in the table V.

When testing the three cases, the gain value for the KC

block in 1 is set to investigate both the presence and absence
of LF oscillations. The gain of the CNS is established through
a trial basis as a physiological value is hard to acquire due
to the difficulty in obtaining an absolute measure of nerve
activity.

The results from the 3 cases detailed in Table V may
be described as follows: case 2 is the first to display LF
oscillations this is the only case that does not account for
a pulsating heart, either via the EQNL baroreflex parameters,
or injection of the pulse signal P itself as shown in Fig.7,
while cases 1 and 3 both remain at a steady state value (no
LF oscillations). Note also that the pulsatile (high-frequency)
is not obvious on the BP signals in Fig.7.

Fig.7 shows that a lack of pulsatile behaviour increases
the baroreflex’s sensitivity to LF oscillations. This is due to
the effective increase in baroreflex gain; note the greater gain
(slope) of the baroreflex curves for the non-pulsatile cases in
Figs.4, 5, and 6.

Fig. 7. CNS gain with case 2 oscillating

VI. CONCLUSIONS

A lack of pulsatility can lead to elevation of the baroreflex
gain which, in turn, can manifest itself via an increase in the
likelihood of LF oscillations. While an increase in the presence
of LF oscillations may, in itself, be relatively unimportant
(though symptomatic of elevated baroreflex gain), it may
have other more profound consequences. To date, little is
understood regarding any effects that LVADs, or artificial
(turbine type) hearts may have on the neural baroreflex. This
paper demonstrates that elevated baroreflex gain ensues with
a decrease in blood flow/pressure pulsatility, which may have
longer term effects.
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