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ABSTRACT:  Parametric resonance is a highly nonlinear phenomenon, difficult to model and foresee, 
with often detrimental consequences on the power production efficiency of wave energy converters. Para-
metric excitation, due to time-varying parameters of the system, activates an internal excitation mechanism, 
which diverts part of the energy from the principal degree of freedom, consequently generating parasitic 
motions. Although the ability of a mathematical model to articulate parametric instability is beneficial for 
design and control purposes, the increase in computational burden and complexity is often unacceptable. 
However, using computationally frugal nonlinear Froude-Krylov force calculations, applicable to axisym-
metric devices, it is possible to define mathematical models fast enough for computation in real time. The 
focus of the paper is a floating oscillating water column device, inspired by the Sparbuoy device, in order to 
demonstrate the ability of such a mathematical model to describe parametric roll responses.

Since parametric resonance is due to time-
varying system parameters (Fossen and Nijmeijer, 
2012), linear models, which take the mean wetted 
surface into account, are inadequate. In contrast, 
it has been shown that parametric instability can 
be detected by nonlinear Froude-Krylov (FK) 
models, which integrate the static and dynamic 
pressure of  the undisturbed wave field over the 
instantaneous wetted surface. Particular exam-
ples, in wave energy applications, are given by the 
SEAREV (Babarit et al., 2009) and the Wavebob 
(Tarrant and Meskell, 2016) devices, for which 
parametric resonance is a detrimental parasitic 
effect, studied with a mesh-based nonlinear FK 
force model (LAMSWEC) (Gilloteaux, 2007), 
which compares well with wave tank tests, pro-
vided an appropriate viscous drag description 
is included. Nonetheless, the main drawback of 
mesh-based nonlinear FK models is the compu-
tational time, since they require time-consuming 
re-meshing routines.

However, while mesh-based approaches are 
likely to be the only option for a geometry of 
arbitrary complexity, a computationally efficient 
method is available for axisymmetric devices 
(Giorgi and Ringwood, 2017a). Note that the sym-
metry of revolution assumption is not particu-
larly restrictive for point absorbers, since they are 
usually designed to be non-directional, therefore 
axisymmetric. In this paper, an oscillating water 
column (OWC) spar buoy is considered, inspired 
by the Sparbuoy device (Gomes et al., 2017), since 
wave tank tests have shown such a device to be par-
ticularly prone to parametric resonance.

1  INTRODUCTION

Exact and representative mathematical models are 
of  paramount importance for effective design and 
optimization of wave energy converters (WECs). 
Although, in the wave energy community, linear 
models are predominantly implemented, thanks 
to their simplicity and computational conven-
ience, they often provide a poor description of the 
dynamical behaviour of the system, far from being 
an accurate representation of the actual response 
of the device. Indeed, conditions for linearity are 
seldom met, in wave energy applications, since the 
purpose of maximising power extraction requires 
to exaggerate the motion, consequently enhancing 
nonlinear effects (Giorgi and Ringwood, 2017b).

One remarkable example of extremely nonlin-
ear phenomenon, undetectable by linear models, is 
parametric resonance, which consists of an inter-
nal excitation mechanism, diverting a portion of 
the incoming energy away from the main degree of 
freedom, namely the one where wave energy is con-
verted. Therefore, if  not expressly exploited, para-
metric excitation is effectively a source of energy 
loss, eventually reducing the overall conversion effi-
ciency. Consequently, the ability to model and pre-
dict such a phenomenon is valuable for both design 
and control purposes, so that parametric resonance 
can be prevented, or even taken advantage of (Olvera  
et al., 2007). Furthermore, parametric motion 
should also be taken into account for survivability 
considerations, since excessive parametric motion 
may jeopardize the device integrity (Tarrant and 
Meskell, 2016).



506

The remainder of the paper is organized as fol-
lows: Sect. 2 presents the nonlinear mathematical 
model, while Sect. 3 describes the device configura-
tion and parameters. Some results are presented in 
Sect. 4, while Sect. 5 gives concluding remarks and 
considerations.

2  MATHEMATICAL MODEL

Two right-handed frames of reference are intro-
duced: an inertial frame (x, y, z), with the origin at 
the still water level (SWL), x pointing in the direc-
tion of propagation of the wave, and z pointing 
upwards; and a non-inertial frame ˆ ˆ )ˆ( , ,t x y z , fixed 
with the body, with the origin at the centre of grav-
ity of the body. Assuming the fluid to be inviscid, 
and the flow to be irrotational and incompressible, 
linear potential theory can be formulated, defining 
the equation of motion for a generic single body, in 
the body-fixed frame of reference, as: 

M FK FK d rad vis moor PTOst dy
��x f f f f f f f= + + + + + + , 	 (1)

where M is the inertial matrix, ( )ˆ ˆ ˆ, , , , ,x y z φ θ ψ=x  is 
the state vector in the body-fixed frame, f are the 
generalized force vectors, composed of 3 forces (F), 
and 3 torques (T). The force components on the 
right hand side of (1) are the static and dynamic 
FK forces fFKst

 and fFKdy, respectively, the diffrac-
tion force fd, the radiation force frad, the viscous 
force fvis, the mooring force fmoor, and the power 
take-off  (PTO) force fPTO.

The mooring system is potentially an impor-
tant factor for generation of parametric instability, 
according to the particular mooring configuration 
(Davidson and Ringwood, 2017). Likewise, the vis-
cous drag force, may be essential in nonlinear FK 
force models, to avoid unrealistic magnification of 
the motion, when parametric instability appears 
(Babarit et al., 2009). In this paper, linear radiation 
and diffraction forces are considered, which is a rea-
sonable approximation for devices much smaller than 
the characteristic wave length (Falnes, 2002). A com-
putationally convenient state space representation 
has been used to model radiation forces, based on a 
moment-matching technique (Faedo et al., 2017).

Froude-Krylov forces correspond to the integral 
of the pressure of the undisturbed incident wave 
field, over the wetted surface of the device. Such 
a pressure is defined, according to linear Airy’s 
theory, as: 

p x z t p p z
cosh k z h

cosh kh
x tst dy, , ,( ) ( )( )

( )
( )= + = − +

+
γ γ η 	

	
(2)

where pst = −γ z is the static pressure, pdy the dynamic 
pressure, γ the specific weight of sea water, η(x,t) a 
2-dimensional wave with amplitude a = Hw/2 and 
wave period Tw, k the wave number, and h the water 
depth. It is also convenient to apply Wheeler stretch-
ing to (2), as shown in (Giorgi and Ringwood, 2018b).

Froude-Krylov forces (FFK) and torques (TFK) 
are computed by integrating the pressure, shown 
in (2), over the instantaneous wetted surface S(t):

F F F n nFK FK g st
S t

dy
S t

st dy
p dS p dS+ = + +

( ) ( )
∫∫ ∫∫ 	 (3a)

T T r F r n r nFK FK g st

S t

dy

S t
st dy

p dS p dS+ = × + × + ×
( ) ( )
∫∫ ∫∫ 	(3b)

where Fg is the gravity force, n = (nx, ny, nz) is the 
unit vector normal to the surface, pointing out-
wards, r is the position vector, and × is the cross 
product.

Under linear approximation, a constant wet-
ted surface is considered, in integrals (3) and (4), 
relying on the assumption of small relative motion 
between the wave and the device. In contrast, non-
linear FK forces are computed with respect to the 
instantaneous wetted surface, therefore taking the 
real position of the device, with respect to η, into 
account.

For a geometry of arbitrary complexity, the 
actual calculation of the nonlinear FK integrals 
requires the use of plane panels to discretize the 
surface, which consequently has to be remeshed, 
at every time step, in order to define the instan-
taneous wetted surface (Gilloteaux, 2007). Such 
a remeshing routine makes the approach compu-
tationally expensive. However, for axisymmetric 
buoys, a convenient parameterization of the wet-
ted surface can ease the calculation of the FK 
integrals. Such a method, described hereafter, is 
validated in (Giorgi and Ringwood, 2018a).

The assumption of an axisymmetric geometry 
allows an analytical description of the complete 
wetted surface, therefore avoiding computation-
ally expensive mesh-based techniques. The geom-
etry of a generic buoy, symmetric around a vertical 
axis, can be described in cylindrical coordinates, 
with respect to the body-frame ( )ˆ, ,ˆ ˆx y z , as follows:

( ) ( )
( ) ( )
( )

[ ] [ ]1 2

, cos 
, sin  ,

ˆ
ˆ ,

,ˆ
,

x f
y f
z

ϑ ϑ
ϑ ϑ θ π π
ϑ

 =


= ∈ − ∧ ∈
 =

� �
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� �

	 (4)

where f ϑ( )  is a generic function of the vertical 
coordinate � , describing the profile of revolution 
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of the axisymmetric body, as shown in (Giorgi and 
Ringwood, 2017b).

The change of coordinates, from Cartesian 
( )ˆ, ,ˆ ˆx y z  to cylindrical ( ),ϑ� , shown in (5), requires 
the inclusion of e eϑ×�  in the integral, where e�  
and eϑ  are unit vectors in the �  and ϑ  direc-
tions, respectively. Furthermore, n can be expressed 
as 

e e

e e
ϑ

ϑ

×

×
�

�
. Finally, since the integrals are defined in 

the body frame, it is necessary to map the pres-
sure from the inertial-frame (where it is defined) 
onto the body surface. The transformation, from 
(x, y, z) to ( )ˆ ˆ ˆ, ,x y z , is represented by the Euler 
angle triad φ θ ψ, ,( ) , corresponding to roll, pitch, 
and yaw angles, respectively. The 3-2-1 Euler angle 
sequence is the rotation convention commonly used 
for marine vehicles, thought of as three sets of rigid 
rotations (Fossen, 2011). In order to apply a rota-
tion around the origin of the body frame (instead 
of around the origin of the inertial frame), a trans-
lation needs to be applied before and after the rota-
tion, so that the two origins overlap at the moment 
of the rotation. Consequently, the integral for FFKdy

 
in (3), for example, becomes: 

( )
( )

( )
2 2

1 1
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,
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dyFK dy
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F
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Although such an approach is applicable to any 
geometry with symmetry of revolution, the vast 
majority of axisymmetric point absorbers can be 
described as a combination of cylinders, cones, 
and spheres. Note that discs (lids), which close the 
surface of a cylinder, cannot be described using 
cylindrical coordinates. To this end, polar coordi-
nates are valid alternatives to cylindrical, as shown 
in (Giorgi and Ringwood, 2018a).

Finally, the FK force integrals must be solved 
numerically using, for example, a trapezoidal rule. 
The computation time depends on the integra-
tion scheme utilized, a 2D-quadrature scheme  
(Shampine, 2008), and on the relative and absolute 
tolerances used to approximate the integral, both 
set to 10−3. The ultimate value of the computation 
time depends on hardware capabilities (Intel(R) 
Xeon(R) CPU (E5–1620 v3 @ 3.50 GHz) proces-
sor, with 16.0 GB RAM and Windows 7 Profes-
sional 64 bit), on the complexity of the geometry, 
and on the number of bodies and degrees of free-
dom (DoFs) considered. For the device studied 
in this paper, described in Sect. 3, the calcula-
tion time for the nonlinear FK forces, is between 
1⋅10−2 s and 4⋅10−2 s, at a single time instant. The 
consequent run time for computing the response 
of the device depends on the discrete time solver 
scheme, the time step, and the simulation duration. 

Using a constant time step second-order Runge-
Kutta scheme, varying the time step from 0.005s to 
0.025s, for a regular wave of period about 0.7s, the 
resulting run time is between one and three times 
the simulation time. Therefore, such a method has 
the potential to run roughly in real time, or a little 
slower, depending on the particular implementa-
tion. However, the computation times given are 
for computations performed in Matlab, which is 
between one and two orders of magnitude slower 
than lower level coding languages, such as C or 
Fortran (Wendt et al., 2017). With C or Fortran 
implementation, therefore, real time execution is 
easily achievable. Nevertheless, although the mesh-
based LAMSWEC nonlinear FK model is coded 
in Fortran (which is a significantly faster imple-
mentation than Matlab), it has a run time about 10 
times longer than the simulation time (Gilloteaux, 
2007), therefore about one order of magnitude 
slower than the method used in this paper.

3  SPARBUOY MODEL

The device studied in this paper is inspired by the 
Sparbuoy WEC (Gomes et al., 2017), which is a 
floating OWC, extracting energy from the relative 
motion between a hollow spar buoy and the water 
column contained within. The 1:100  scale proto-
type is considered, for which wave tank experiments 
highlight parametric resonance (Gomes et al.,  
2017). The shape and dimensions of the floater are 
shown in Fig.  1, while Table  1 tabulates relevant 
physical quantities (zg the center of gravity, zb the 
center of buoyancy, m the mass of the floater, I 
the roll/pitch inertia, and Tn the natural period). 
Moorings are modelled, in surge and sway, as linear 
restoring coefficients, chosen in order to match the 
surge natural period, given in (Gomes et al., 2017).

Mooring forces are known to, potentially, play 
an important role in parametric resonance gen-
eration, as discussed in (Davidson and Ringwood, 
2017). However, since the purpose of the present 
paper is to show the ability of the nonlinear FK 
model to articulate hydrodynamically induced 
parametric roll, the mooring model has been 
extremely simplified.

The Sparbuoy device can be modelled as a two-
body system, considering the floater in 6-DoFs, and 
an additional heaving DoF for the water column, 
effectively modelled as a weightless rigid piston 
(Henriques et al., 2016). The hydrodynamic coef-
ficients are computed with the boundary element 
method software WAMIT, using generalized modes 
for the moonpool free surface (WAMIT Inc., 2014).

A linear air turbine is considered, for which the 
ratio between the pressure difference in the cham-
ber and the flow rate is constant (kPTO). Ignoring 
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air compressibility effects (Sheng et al., 2015), it 
follows that the force exchanged between the water 
column and the floater is: 

F k APTO PTO wc= ± ( ) − ( )( )2 3 7� �x x , 	 (6)

where Awc is the cross sectional area of the water 
column, �x  is the heave velocity of the floater 
( (3))�x  and the water column ( (7))�x , respectively. 
The symbol ± means that FPTO acts on the two 

bodies with opposite sign. The turbine coefficient 
is optimized for each wave condition, using the 
linear model, in order to maximise power capture 
(Sheng et al., 2015).

With the aim of  defining a parsimonious 
model, nonlinear computation of  FK forces are 
applied only to the floater’s heave, roll, and pitch 
DoFs, since in (Giorgi and Ringwood, 2018a) it 
is suggested that a nonlinear description of  surge 
and sway is likely to be of  little additional value in 
terms of  accuracy, compared to the other DoFs. 
Nonlinear heave and pitch calculations can be val-
idated against WAMIT results (for modest device 
motion), as shown in Fig. 2, computing, in linear 
conditions, heave and pitch excitation force coef-
ficients, fex 3( )  and fex 5( ), respectively. In fact, 
nonlinearities are negligible if  the floater is kept 
in place, and the incoming wave is extremely small 
(Hw = 10−6 m); in such conditions, linear and non-
linear results overlap. Likewise, the hydrostatic 
stiffness coefficients have been verified, by com-
puting the nonlinear force/torque after an infini-
tesimal displacement, in the complete absence of 
waves.

Figure 1.  Shape and dimensions of the Sparbuoy-like 
device, at 1:100 prototype scale.

Table 1.  Physical properties of the Sparbuoy-like 
device, at 1:100 prototype scale. Coordinates given in the 
inertial frame.

Surge

Heave

Roll

Sway Pitch

zg [m] -0.205
zb [m] -0.168
m [kg]   2.395
I [kg/m2]   0.00733
Tn [s] 12.7 0.89 1.35

Figure 2.  Validation, against WAMIT results and in 
linear conditions (Hw = 10−6 m), of nonlinear Froude-
Krylov (NLFK) calculations of excitation coefficients in 
heave and pitch.
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4  RESULTS

Parametric instability is well-known to appear 
when two conditions are verified (Fossen and  
Nijmeijer, 2012): the amplitude of the excitation is 
larger than the damping of the secondary DoF, and 
the frequency of external excitation is about twice 
the natural frequency of the parametrically excited 
DoF. Therefore, in order to study the amplitude 
and the frequency conditions separately, simula-
tions have been performed using a dense grid of 
wave conditions, with 11 wave heights, equally 
spaced between 0.005  m and 0.0150  m, and 76 
wave periods, equally spaced between 0.5 s and 2 s.

Dissipation mechanisms, in the roll DoF, are the 
radiation damping and the viscous drag (which is 
modelled as an additional linear loss, proportional to 
the velocity) losses. Due to the lack of accurate infor-
mation regarding the determination of a viscous 
drag coefficient, it is initially set to zero, and then a 
sensitivity analysis is performed. The resulting maxi-
mum roll response, without drag, is shown in Fig. 3.

It is noteworthy that the nonlinear FK model 
is indeed able to articulate the highly-nonlinear 
phenomenon of hydrodynamic parametric reso-
nance which, in this case study, is the only possible 
source of generating a response in the roll DoF. 
Furthermore, as predicted by theory (Fossen and 
Nijmeijer, 2012), and consistent with experimen-
tal results (Gomes et al., 2017), parametric roll is 
sharply localized at wave periods equal to or half  
of the roll natural period, while elsewhere the roll 
response is null. Likewise, it can be noted that 
parametric instability kicks in after an amplitude 
threshold is passed, namely for a 0.009 m heighs 
wave, at Tw = 0.5Tn.

Further insight can be gained by analysing the 
spectral energy content of the response of the 
device, both in roll and pitch. Considering, by 
way of example, a representative wave height of  
0.01 m, the Fourier transform is computed for all 
wave periods, as shown in the waterfall plots in 
Fig. 4 and Fig. 5, for roll and pitch, respectively. 
Both the Fourier frequency components (ω), and 
the excitation frequencies (ωe), are normalized by 
the roll natural frequency (ωn).

Considering Fig. 4, it is clear that the roll response 
is nonzero only for normalized excitation frequen-
cies of 1 and 2, and the spectra contain has an evi-
dent peak at the normalized frequency component 
of 1. In fact, while the roll degree of freedom is 
never externally excited, parametric resonance acti-
vates an internal excitation mechanism at integer 
multiples of the normalized excitation frequency.

Conversely, since waves are externally exciting 
the device in the pitch DoF, the spectra of the 

Figure 3.  Maximum roll response, in degrees, without 
viscous drag. Wave periods are normalized by the roll 
natural period.

Figure 4.  Magnitude of the Fourier transforms of the 
roll response, in degrees, at different excitation frequen-
cies ωe, with wave amplitude of 0.01 m. Both frequencies 
are normalized by the roll natural frequency (ωn).

Figure 5.  Magnitude of the Fourier transforms of the 
pitch response, in degrees, at different excitation frequen-
cies ωe, with wave amplitude of 0.01 m. Both frequencies 
are normalized by the roll natural frequency (ωn).
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response shows a peak at the same excitation fre-
quency; indeed, Fig. 5 shows that peaks align along 
the bisector of the horizontal plane (direction  
ω = ωe). Looking at the plot from the perpendicular 
direction of the diagonal (direction ω = −ωe), one 
can recognize the typical shape of the first-order 
pitch response. However, for a normalized excita-
tion frequency of 2, when parametric roll happens, 
a peak in the pitch spectra is generated at the pitch 
natural frequency.

From the discussion so far, it is clear that 
parametric resonance is an extremely frequency-
dependent phenomenon. Regular waves steadily 
excite the device at the same frequency, facilitat-
ing the progressive build-up of parametric instabil-
ity, when the excitation frequency is equal to, or 
twice, the resonant frequency. However, real waves 
are panchromatic, so conditions for parametric 
excitation are weaker. Figure 6 shows an example 
of the roll response, subject to an irregular wave 
realization of a JONSWAP spectrum, with a peak 
enhancing factor of 5, significant wave height  
Hs = 0.015 m, and peak period Tp = 0.68 s.

Figures  3 to 6 demonstrate that the model is 
able to articulate parametric instability. However, 
in spite of the fact that the likelihood of, and the 
conditions for, parametric generation are well 
described, the severity of the parametric response is 
overestimated. In fact, although the model consid-
ered in this paper has simplified mooring and PTO 
systems, with respect to the one tested in (Gomes et 
al., 2017), making the comparison less relevant, the 
maximum roll response obtained in the wave tank 
is about 21 degrees, about half that obtained here. 
Such a result is consistent with the absence of vis-
cous drag loss in the model for rotational DoFs. A 
similar issue is found, for example, in (Babarit et al., 
2009), where the LAMSWEC (mesh-based nonlin-
ear FK) method is applied to the SEAREV device, 
without modelling viscous drag effects.

Therefore, in order to discuss the influence of 
viscous drag on the generation of parametric reso-
nance, a sensitivity study is performed. Considering 
a wave at half the pitch natural period (0.68 s), and 
Hw = 0.01 m, 11 linear drag coefficient values are 
used, equally spaced between 0 and 0.01Nms. The 
resulting time traces are shown in Fig. 8, where each 
area represents the envelope of a time trace, using 
one drag coefficient value, while the amplitudes of 
the steady state responses are shown in Fig. 7.

As expected, larger linear drag coefficients cause 
the roll response to diminish, until it effectively dis-
appears for a drag coefficient of 0.01Nms. In fact, 
one of the usual solutions adopted, in order to 
avoid parametric roll, is to increase viscous dissipa-
tion, for example through additional fins attached 
to the main floater body (Gomes et al., 2017). 
However, Fig. 8, which plots simulation results of 

Figure 6.  Roll response, without drag, to an irregular 
wave with Hs = 0.015 m and Tp = 0.68 s.

Figure 7.  Amplitudes of the steady state roll responses, 
for a wave with Tw = 0.68 s and Hw = 0.01 m, for 11 linear 
drag coefficients, equally spaced between 0 and 0.01 Nms.

Figure 8.  For a wave with Tw = 0.68 s  and Hw = 0.01 m, 
for 11 linear drag coefficients, equally spaced between 0 
and 0.01N ms, each area corresponds to the envelop of the 
roll response time traces. As drag increases, roll response 
decreases.
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1000 wave periods long, shows also that the tran-
sient period for building-up steady parametric roll 
significantly increases with the drag coefficient 
value. Consequently, a very long transient in regu-
lar wave conditions would reduce the significance 
of parametric resonance in real sea conditions: 
given the panchromatic nature of irregular waves, 
there would be insufficient time to generate a sus-
tained parametric response.

5  CONCLUSIONS

Parametric resonance is a highly-nonlinear phe-
nomenon, often unexpected by wave energy con-
verter designers. In fact, at an early design stage, 
when significant modifications to the device 
concept, operating principle, shape, and dimen-
sions take place, over-simplistic linear models are 
commonly used, due to their computational con-
venience. However, parametric resonance, unde-
tectable by linear models, is usually discovered 
(with some dismay!) after the first wave tank tests, 
at a stage where there is less design freedom, due to 
the larger financial investment needed. Therefore, 
since parametric roll is usually detrimental, sub-
optimal mitigating actions take place, in order to 
contain the undesired phenomenon.

On the contrary, having a computationally viable 
mathematical model, able to describe nonlinearities, 
including parametric resonance, is potentially benefi-
cial for informing the design process of the real device 
dynamics. Furthermore, reliable knowledge of the 
device dynamics can eventually channel the device 
design into exploiting nonlinear behaviours, instead 
of limiting them. In particular, since instability is an 
extreme magnification of a small perturbation, a 
dedicated design that takes advantage of parametric 
resonance is potentially highly beneficial for power 
production. A well informed control strategy may 
exploit parametric resonance in order to generate the 
conditions for maximum power generation.

Such device/control design approaches require 
a fast and representative model of the device. The 
present paper takes a step in this direction, imple-
menting a computationally convenient modelling 
approach for nonlinear Froude-Krylov force calcu-
lation for an axisymmetric wave energy converter, 
able to compute almost in real time, despite a rela-
tively slow coding language, but already an order 
of magnitude faster than previous similar models. 
The ability of such a method to articulate para-
metric excitation is demonstrated by considering a 
Sparbuoy-like device, known to have a parametric 
response. Such a mathematical model can be useful 
for design investigations, for example exploring the 
sensitivity of parametric roll generation to viscous 
drag variations.
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