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Abs t rac t  

Gaussian beam mode analysis can be applied in an elegant way 
to study the coupling of power between two horn antennas. 
Coupling efficiencies are evaluated for a number of horn com- 
binations and the results presented in a straightforward form 
useful in the design of submillimetre-wave interferometers and 
astronomical receiver systems. We show that there is a marked 
variation in efficiency (up to 30%) depending on the coupling 
optics, even for beams with well matched profiles. 
Keywords:  Submm-wave horns, power coupling. 

1 I n t r o d u c t i o n  

Gaussian beam mode analysis (GBMA) can be employed as a conve- 
nient technique to model propagation in quasi-optical systems of long 
focal length [1]. The technique has been used, for example, to calcu- 
late the aperture efficiency of a Cassegrain antenna fed by a microwave 
horn [2],[3]. This amounts to a calculation of the power coupling of 
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the receiver horn to a point source in the far field of the telescope. 
The effects of beam truncation, an inevitable feature of quasi-optical 
systems, can also be conveniently characterised using GBMA [4], [5]. 
A number of classes of horn antenna used in submillimetre waveband 
have been studied in the literature, such as the single moded corru- 
gated and smooth walled conical horns, and the dual moded diagonal 
and Potter  horns [61,[31,[7],[8 ]. 

GBMA can also be applied in an elegant way to characterise 
the coupling between two horn antennas even when an optical system 
intervenes. This is of importance, for instance, in heterodyne radio- 
astronomy systems at millimetre and submillimetre wavelengths where 
local oscillator power is coupled quasi-optically, and horn antennas are 
usually employed both as local oscillator and detector feeds. Horn an- 
tennas are preferred because of their well defined beam patterns with 
relatively low sidelobe structure. Thus, a straightforward method for 
evaluating the coupling efficiency of the local oscillator source antenna 
and the detector feed antenna is useful in receiver quasi-optical design. 
The purpose of this paper is to explain how GBMA can be applied 
to yield such a method. The approach is analogous to that described 
in another paper devoted to beam truncation at symmetric apertures, 
referred to above [41 

Three kinds of horn antenna will be considered: corrugated con- 
ical, smooth walled conical, and diagonal. We will investigate the 
coupling between various combinations of pairs of these horns, includ- 
ing coupling between two horns of the same type. In section 2 the 
application of GBMA to the study of coupling efficiency is described 
in detail. In section 3 an equivalent technique based on the Fres- 
nel Integral Transform is outlined, which verifies the integrity of the  
approach based on GBMA. The results are presented as linear plots 
which are easy to apply in analysing power coupling in quasi-optical 
systems. The consequence of beam truncation is discussed in section 
4 and the implication for practically attainable coupling efficiencies is 
evaluated. In section 5 we describe how the power coupling plots can 
be used together with single mode design techniques. This section is 
self contained and can be used without reference to the rest of the  
paper. 
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2 G a u s s i a n  B e a m  M o d e  A n a l y s i s  o f  C o u -  

p l i n g  E f f i c i e n c y .  

2.1 G B M A  of  horn antennas  

In Gaussian beam-mode analysis the electric field E of a quasi-collimated 
beam propagating in the z direction is written in terms of a basis mode 
set: 

E(x,v,z) = Z A,¢~(x, V; W(z),R(z))exp(-jkz). 
The scalar field E represents one of the transverse components of the 
physical electric field; there is usually a different set of mode coem- 
cients Ai for each of the two transverse polarization. Both W, the 
beam width parameter, and R, the phase radius of curvature, scale 
with z [1]. If some level of Cartesian symmetry applies (as with diag- 
onal horn beams, for instance), the natural mode set to work with is 
the so called Hermite-Gaussian beam mode set represented by 

1 w i H , ~ ( v ~ x / W )  H n ( v ~ y / W )  × ¢m,~(x,y) -= 2 re+n-1 m! n! ~r ( 1  ) exp -(~-~ + ~--~)(x + y2) + j(~ + ~ + 1)A¢o. , 

where A¢oo is the phase slippage term for the fundamental mode and 
is given by 

A¢00 : arctan \ AR ] " 

This is the term that causes a multi-moded field to change its form 
(i.e. its amplitude pattern) as it diffracts[7]. Alternatively, for ex- 
amples with cylindrical or rotational symmetry (e.g. conical horns), 
the Laguerre-Gaussian beam modes are more convenient. These are 
similarly represented by 

exp W 2  J - ~  + j (2n  + a + 1)A¢°° ~,sin a0 ] "  

On occasion it may be necessary to use the less natural mode set 
for one of the horn fields when considering coupling between different 
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types of horn. In fact, since optical components of finite through- 
put tend to produce circularly symmetric truncation of a propagating 
beam, the Laguerre-Gaussian mode set is often the more natural one 
to use in any practical application. We witl not consider in detail here 
the evaluation of the beam mode expansion for the different horns, 
since this is well discussed in a number of papers in the literature, e.g. 

[61,[3],[7]. 
The scale size of the propagating beam consisting of a sum of 

modes is determined by the beam width parameter W. This is normally 
chosen to be the 1/e beam width in amplitude of the best-fit simple 
Gaussian approximating the fields and is determined by optimizing 
the power coupling to the fundamental mode, which is given by 

2. 
IAoo] 2 = f ¢~o(X, y; W(z), R(z)) E(x, y, z) dA 

Quite often the most convenient plane on which to evaluate W is at 
the horn aperture, because an analytical expression for the field exists 
at that plane. The corresponding beam width parameters for the cor- 
rugated, conical and diagonal horns are given by Wh = 0.634a, 0.768a 
and 0.433a, respectively, where a represents the radius/sidelength of 
the aperture [2],[3],[7]. 

The mode coefficients A ~  can then be determined from the 
equality 

E ( x , y , z h )  = ~-'~ A~,~¢m,~(x,y; W = Wh, R = L). 
r t ~ n  

where z~ is the position of the aperture of the horn and the phase 
radius of curvature R is equal to the axial length of the horn, L. The 
Amn are determined using the relationship 

A~,~ = / / E ( x ,  y, zh) ¢~n(x, y; Wh, L) dxdy. 

A similar expansion can be written in terms of Laguerre-Gaussian 
beam modes if the field is expressed in cylindrical polar co-ordinates. 
Calculating how the field pattern of the beam evolves with z is then 
just a question propagating the modes and resumming at the point 
of interest. For any horn of a particular type (e.g. diagonal, conical, 
corrugated etc.) the mode coefficients are identical provided the field 
has been normalised. 
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It is often more instructive to explicitly express the phase slip- 
page between the modes as a result of beam propagation, since it is 
that  term alone that governs how the form of the beam alters, 

E(x,  y, z) = ~ Ann exp(jACm,0¢m,~(x, y, z; W (z), R(z) ) exp ( - j k z ) .  

For Hermite-Gaussian modes the term A¢~,~ = (m 4- n 4- 1)A¢00 is 
given by 

A¢,~,~ = (m + n 4- 1)[arctan(~W2(z)/AR(z)) - arctan(xW2h/AL)], 

the local beam width parameter being W(z), and the local phase ra- 
dius of curvature being R(z). In the case of Laguerre Gaussian modes 
the corresponding phase slippage A ¢ ~  = (2n 4- ~ 4- 1)A¢00 term is 

/ken a : (2n 4- o~ 4- 1)[arctan(TrW2(z)/AR(z)) - arctan(Tr~Y2/AL)], 

In general there will be a number of optical refocusing compo- 
nents in the beam path. In that case the total accumulated phase slip- 
page can be determined by adding the phase slippages between optical 
components in the beam path, including the phase slippage between 
the horn and first focusing component (an alternative method based 
on A B C D  matrices is presented in section 5 below). 

2.2  C a l c u l a t i n g  c o u p l i n g  eiT[iciencies 

Consider two horns coupled together by an optical system. The power 
coupling efficiency is defined to be 

If El(x,  y, z).E~(x, y, z) dxdyl 2 U-- 
f I E1 (x, y, z) I 2 dxdy f I E~ (x, y, z) I 2 dxdy'  

where the subscripts 1 and 2 refer to the two horns. In general, 
the horn fields have cross polar components, so that  if we express 
both the co-polar and cross-polar fields, then E1 -- El,xi + El,yj, and 
E2 = E2,~i + E2,uj. Furthermore, if the fields are normalised so that  
the generalised power is equal to unity (i.e. f IEl(X,y,z)l 2 dxdy = 
f tE2(x, y, z)l 2 dxdy = 1), then ~7 can be re-expressed in the simpler 
form 

~ = EI,xE~ + E~,~,E~ ) 
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To ensure good coupling the physical parameters of beams pro- 
duced by the two horns should match well. Thus, the optical coupling 
system is normally designed so that the beam width parameters W1 
and W2 for the two horns are equal to each other at all points along 
the axis of propagation. Since the best fit Gaussian does not in reality 
describe a beam precisely, this simple approach may not always give 
exactly the best possible coupling efficiency, but, clearly, the discrep- 
ancy will be quite small. 

As a beam propagates from the mouth of a horn both the scales 
size and the form of the beam pattern changes. The scale size is deter- 
mined by the local value of W(z) ,  while the form of the beam pattern 
depends on the phase slippage term ACoo, as discussed above. Since in 
calculating coupling efficiencies we assume that the two horn beams 
are matched in terms of their scale sizes, W1 = W2, it is therefore 
the difference in the phase slippages for the two horn beams from the 
respective aperture planes that determines the coupling efficiency. 

The differences in the phase slippages (A¢00)1 -- (A¢00)2 is inde- 
pendent of the position on the optical axis and equal to the total phase 
slippage between the two horn apertures. Thus, if (A~,mn, Av,m,~) and 
(B~,m,~, By,m,,) are the mode coefficients for the two polarizations of 
the two horns, (EI,~, El,y) and (E2,~, E2,y), then it is easy to show that 

* . )i 2 77 = A~,mnB,,m, ~ + Ay,m,~By,,~n ) exp(j(m + n + 1)A¢00 , 

and A¢00 here refers simply to the total phase slippage between the 
apertures. Thus,  we obta in  t he  elegant  resul t  t h a t  U only  de-  
pends on the  to ta l  phase slippage of the  f u n d a m e n t a l  m o d e ,  
A¢0o! If both horns are written in terms of associated Laguerre Gaus- 
sian beam modes then 

2 

B *  * ~(A¢0o) = ~']~(A~,~ ~,~ + Ay ,~By ,~a)exp j (2n  + a + 1)A¢0o • 

It should be noted that a A¢00 of 2n7~ is equivalent to forming an 
upright image of the aperture field pattern of horn 1 at the aperture 
of horn 2, while a phase slippage of (2n + 1)7r yields to an inverted 
image. A phase slippage of ~/2 is equivalent to forming the Fourier 
transform of the aperture field. 
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The resulting linear plots of coupling efficiency as a function of 
total phase slippage A¢00 for an ideal optical system (no mode trun- 
cation) are presented in Figures 1 and 2, for all of the different horn 
pair combinations. In Figure 3 the coupling efficiencies are presented 
for the case where the cross-polar power is lost in the quasi-optical 
couphng system. This may occur, for example, in the presence of 
polarising grids, so that  the only the copolar fields of the two horns 
couple. As might be expected when corrugated horns are used, the 
losses in efficiency involved are not quite as dramatic as with those 
horns which have a greater higher order mode content. 

Note that  only phase slippages up to ~/2, and not ~, are repre- 
sented on these plots. However, this is all that is necessary, since the 
symmetry  of the horns being considered here implies a phase slippage 
of ~ is equivalent to a phase slippage of zero, or 2~. In using the plots, 
therefore, one should remember that a phase slippage of 7 < ~-/2 is 
equivalent to a phase slippage of 7r 4- 7, 2~ 4- 7 etc. 

The most dramatic feature of Figures 1,2 &: 3 is the marked re- 
duction in efficiency for a relatively large spread of phase slippages of 
A¢00 above about 10 degrees. Clearly, to optimise coupling efficiency 
the coupling optics should be designed for phase slippages as close as 
possible to zero (or nTr), that is where one horn aperture is approxi- 
mately imaged onto the other with the correct phase curvature. In the 
case of horn combinations involving at least one corrugated horn, the 
efficiency recovers as the phase slippages approaches :n-/2 (or equiv- 
alently, (n + 1/2)7r). It is clear that with inappropriately designed 
optics based on a single mode simple Caussian appro~mation (where 
the effects of higher order modes are ignored) the coupling efficiency 
reduction could be as bad as 30 percent. 

Of course computationally one cannot include an infinite number 
of terms in the estimation of 7, and so the power associated with the 
higher order modes is not accounted for. The very high order modes, 
however, have phase slippage terms which vary extremely rapidly as 
the beam propagates. Thus, unless A¢00 = n~r, the interference due 
to these highly rapidly varying phase terms should tend to cancel out 
the contribution of the very high order modes to the overall coupling 
efficiency. As a confirmation of the validity of the approach using 
CBMA we have therefore also analysed the coupling efficiency using 
the Fresnel Integral Transform, as will be described in detail in the 
next section. 
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Figure 1: Coupling efficiencies for horns of same type. 
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It should also be remembered that above we have assumed ide- 
alised coupling optics with infinite throughput so that there are no 
beam truncation effects. All modes propagate so the ideal modal sums 
are over an infinite number of modes. In the case of a real optical sys- 
tern this will not be the case, high order modes will be severely t run-  
cared producing a significant effect on the coupling efficiency. This 
will be discussed further below in section 4. 

Since the aperture of one horn is effectively focused onto the 
other to ensure the efficient coupling of power, standing waves will 
be a significant factor in any practical set-up. These effects have not  
been included in the analysis, but will modulate the power coupled 
between the horns, especially for those combinations with reduced 
coupling efficiencies. 

3 Horn Coupling Efficiency evaluated us- 
ing the Fresnel Integral Transform 

The same data will be obtained if the Fresnel Integral Transform (FIT) 
is applied to compute the fields on the coupling plane, since formally 
Gaussian beam modes can be shown to be eigenfunctions of the FIT[9]. 
To verify the integrity of the GBMA approach we have therefore re- 
evaluated the coupling ei~ciencies using the FIT. Although exactly 
equivalent, one of the disadvantages of the FIT is that it is compu- 
tationally much more time consuming to apply in modelling beam 
propagation in an optical system. This is a reflection of the fact tha t  
Gaussian beam modes are a more natural way in which to describe 
the beam in a quasi-optical system. 

We have estimated ~/by taking the unusual approach of rewriting 
the FIT in terms of the total phase slippage parameter A¢00. As we 
have seen, the phase slippage parameter is the only important variable 
in determining the coupling efficiencies using the GBMA approach. 
The FIT approach can be simplified by realising that  any complex 
optical system involving a number of refocusing components will be 
equivalent, as far as the power coupling is concerned, to a simple 
single lens system involving the same types of horns, provided the 
phase slippage between the horn apertures is identical (to within 2n~) 
to the complex system and the two beams are matched. To simplify 
the analysis yet further each horn can be assumed diffraction limited, 



Horn Antennas 511 

so that the waist plane coincides with the horn aperture. 
In the system shown in Figure 4, a lens is placed a distance z from 

one of the horn apertures (horn 1,say) directly in front of second horn 
(horn 2, say), and the physical parameters of the horns are adjusted 
so the beams match. The resulting field over the (x2, Y2) plane at the 
aperture of horn 2 due to the field El(x l ,y l )  at the aperture of horn 
1 is given by the usual FIT: 

e-dkz / /  
El(~,y~,z) = j A z  d~l@l El(~l,yl)  × 

where the effect of the lens is achieved mathematically by multiplying 
by the phase curvature term exp(jk(x~ + y~)/2f), with f being the 
focal length of the lens. f should be set equal to the radius of curvature 
R of the incident E1 to ensure the phase curvatures are matched. The 
coupling efficiency for the two horns is, therefore, given by 

1 f / / /  , ~? -- A 2 z 2  dxldyldx2dy2 El(Xl,yl)E2(x2,y2)x 

(_.~ ((~-x~, (~1-~ ~ ÷ ~  
exp 2z -2--R" ] ] 

We can express many of the variables in the integral in terms of func- 
tions of A¢0o, since tan A¢oo = Az//TrW{~l, where lJV01 is the width 
parameter of the beam waist at the aperture of horn 1. Thus, f = 
R = z csc 2 A¢00, and the beam width at the aperture of horn 2 is 
given by W2 = W01 sec A¢o0. After some algebraic manipulation, the 
expression for 7/becomes 

c s c  2 A¢oo 
/ / / / d X l d Y ~ d X 2 d Y 2  E1 (X1, Y1)E2(X2, ](2) x 

ox~ (_~ (x~ ÷ ~ '  + ~ ÷ ~ _ ~ _ ~  + ~ 1 ~  ! ~ 
tan A¢0o sin ~¢o0 ] / I 

where the dimensionless quantities X1 = Xl/Wol, Y1 = yl/Wol, X2 = 
x2/W2,  and Y2 = y2/W2. For given type of horn, the aperture dimen- 
sions are proportional to Wol and W2, therefore ~ is just a function of 
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Figure 4: Simple lens system 
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A¢00, as expected. A similar expression can be derived for cylindrical 
polar coordinates. 

To compare the results for ~ calculated using the FIT to that  
obtained using GBMA, the coupling efficiencies have been plotted for 
the cases of two diagonal horns and two conical horns being coupled 
together (see Figure 5.) On comparing Figures 1 and 5 it is found that  
there is almost perfect agreement between the two approaches, thus 
verifying the integrity of the GBMA approach. 

4 B e a m  Truncat ion  

In submillimetre-wave quasi-optical systems fed by diagonal or conical 
horns there is inevitably some level of truncation because of the high 
spatial frequency content of the horn aperture fields and the typical 
low throughput of the optics (an inevitable consequence of the rather 
long wavelength of the radiation). Most of this truncation can be 
assumed to take place at the first optical component viewed by the 
transmitter  or receiver horn. In typical receiver optical design the 
diameter of this component is usually between 4W and 6W. It is also 
worth noting that, in the case of a corrugated horn, truncation effects 
can be effectively eliminated provided all components are greater than 
five beam width parameters in diameter [4] . 

To model the effects of truncation on coupling efficiencies, we 
now consider the example case of an optical component of diameter 
5W, placed in the beam path of a radiating horn antenna. The greatest 
loss in coupling efficiency occurs when the field is truncated in the 
Fourier plane of the horn aperture. This is because the field is most 
physically confined at the horn aperture with the consequence that  its 
Fourier transform will have well developed diffuse sidelobe structure. 
A simple example of this would be a truncating lens in the far field 
of a diffraction limited horn. The resulting power loss and diffraction 
effects can be conveniently analysed using scattering matrix theory 
applied to GBMA [5]. The relationship between the mode coefficients 
at the horn aperture and new mode coefficients A~l~ of the field after 
truncation can be expressed by 

A~la = ~ Su,,~,At,a, exp(j(2n' + a' + 1)7c/2) 

since, as already noted, a phase slippage of 7r/2 corresponds to a 
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Fourier transformation. Note that  Gaussian-Laguerre modes are the 
natural  modes to use when considering circularly symmetric trunca- 
tion of the beam. Figure 6 shows the resulting reduced coupling ef- 
ficiencies for various combinations of conical and diagonal horns. As 
with previous figures, a phase slippage of A¢00 = 9' < 7r/2 on these 
plots is equivalent to a phase slippage of 7r 4- ,), 27r 4- ~/etc. For exam- 
ple, an overall phase slippage of 7r (i.e. ~/= 0) can be unders tood as 
further propagation beyond the t runcat ing stop, resulting in an addi- 
tional phase slippage of 1r/2 for the beam from the horn aperture, and 
thus yielding an inverted spatially filtered image of the horn aperture 
field. As can be seen on comparing with Figures 1 and 2, the effects 
of the truncation are only important  for low values of 7 < 5 °. 

5 Use of Coupling Efficiency Plots. 

In this section we explain how to use the coupling efficiency plots 
using a straightforward procedure based on simple single mode optical 
design. We suggests the following procedure: 

1. For the two horns determine the corresponding values for 
W1/a and W2/a at the horn apertures. 

2. Normally in the design process the beam width parameters 
of the two horn beams are matched on all planes. If the optical sys- 
tem is expressed in terms of an ABCD matrix [1] then the following 
relationships are useful: 

L2 = a e  B / L 1 )  - / ' 

I(C+D/L1)_jAD/TrW~]_I/2 
w~= 

where L1 and L2 refer to the axial lengths of the horns. 
3. Determine A¢00 by calculating the total phase slippage be- 

tween the apertures of the horns. In terms of the ABCD matrix this 
is given by the following relationship: 

A¢00 = [arctan 1 --- D---L2/B ['AL2/TrW2~ 

The appropriate plot can be used to determine the coupling ef- 
ficiency. If A¢00 is close to zero, any truncation effects in the optics 
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should be considered, and providing the radius of any truncating s top 
is not less than 5W, the appropriate coupling efficiency curves in Fig- 
ure 7 can be used as a good estimate of 7]- 

As an example, consider the case of a diagonal horn of side length 
5A and axial length 15A coupled to a conical horn via a large lens o f  fo- 
cal length 200A, with the diagonal horn aperture located 300A from the 
lens. At the mouth of the diagonal horn W = 2.17A, the corresponding 
waist position is located a distance dl = L J ( 1  + (,~Ll/TrW2) 2) = 7.4.X 
behind the horn aperture, with a waist beam width parameter  of 
W01 = W1/(1  + (TrW2/.,~L1) 2) = 1.5,~. Thus, applying the usual for- 
mulas for the propagation of a simple Gaussian beam [10], a waist  of 
W02 = 1.9A is formed a distance d2 = 573A from the lens. A coni- 
cal horn will couple reasonably well to this beam provided its virtual 
waist has a beam radius of 1.9A and coincides with the beam waist 
of the diagonal horn beam formed by the lens. If the horn mouth  
is to be 15A in front of the virtual waist, then its aperture radius 
a = W2/0.77 = 4.09A, while its length L2 = 23.5X The phase slip- 
page between the two horn apertures can be shown to be 78 ° . The  
corresponding coupling efficiency from figure 2 is clearly about  71%. 

6 Conc lus ions  

We have presented a graphical technique for determining the efficiency 
with which power can be coupled between two horn antennas by  a 
quasi-optical system. The technique is based on the notion that the 
scale size of the beam at a plane is characterised by the Gaussian 
radius, and the form of the beam is characterised by phase slippage. 
Since the form evolves as the beam propagates, the coupling efficiency 
is completely characterized by the phase slippage alone for reasonably 
well matched beams. 

Although the underlying scheme is applicable to any long focal 
length system, we have concentrated on diagonal, smooth-wall conical 
and corrugated horns; these horns cover the range of behaviour likely 
to be encountered in practice. We have calculated the appropriate 
coupling efficiency plots for these horns and shown how these plots can 
be used together with single mode design techniques. We have also 
indicated how truncation might be expected to reduce the expected 
coupling efficiency in certain situations. The most dramatic feature is 
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the marked reduction in efficiency for a relatively large spread of phase 
slippages of A¢00 above about 10 degrees, although in the case of horn 
combinat;ons involving at least one corrugated horn, the efficiency 
recovers again as the phase slippages approaches 90 degrees. Thus, 
with inappropriately designed optics, based on a single mode simple 
Gaussian approximation, there can be a coupling efficiency reduction 
of up to 30 percent for some combinations. 
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