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1. Introduction  
We exploit the similarity between irregular Cellular Automata (CA) and Geometric 
Proportional Analogies (GPA), as both involve manipulations of geometric objects 
(points, lines and polygons). We describe how each GPA effectively defines a CA-like 
transition rule and we adapt an algorithm (called Structure Matching) used for solving 
GPAs to solving CAs. Irregular CAs improve on regular CAs by allowing an irregular 
tessellation of the plane, while further extensions support transition rules that lie beyond 
the scope of traditional CA. We describe three facets of the resulting model; layered 
inferences, incremental structures and the merge operation. Examples describe how 
structure matching (Mullally et al, 2005) is used to update and enhance a topographic 
land-cover map. 

2. Regular and Irregular Cellular Automata 
Regular CA were conceived by Ulam and Von Neumann in the 1950's and consist of a 
regular grid of cells, each in one of a finite number of states. The state of a cell at time t
is a function of two values. First, the cell's state at time t-1 and secondly, the states of 
each of a finite number of neighbourhood cells at time t-1. Neighbouring cells are 
defined relative to the central cell and all cells have the same update rules (or transition 
rules). Irregular CA use an irregular tessellation of the 2D plane and are thus more easily 
applied to vector data. We also include point and line features in our irregular CA, as they 
are regularly found in GPAs and in vector data. 

While irregular CA have been proposed (O'Sullivan, 2001), no standard means of 
describing neighbourhoods has emerged. We exploit the similarity between the transition 
rules of irregular CAs and geometric proportional analogies (GPA), applying the same 
predicate calculus representation (Gentner, 1983) of GPAs to our CA.  

2.1 Knowledge Representation and Geometric Proportional Analogies  
Both irregular CA and GPAs manipulate collections of geometric objects. GPAs are IQ-
test type analogy problems involving collections of geometric objects, specified in the 
form A:B :: C:D (read as, A is-to B as C is-to D) – see Figure 1. The objective of these 
problems is to generate the missing information (D) given the three other pieces of 
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information (A, B and C). The A & B pair specifies a transformation which must be 
applied to C, to generate the missing D.  

Figure 1. Apply the A-to-B transformation rule to C, thereby generating D. 

Part A of Figure 1 defines the before part of a transition rule, while B defines the 
situation after applying the rule. In a typical GPA the A-to-B transformation will involve 
modifying, adding or removing information about the collection of objects introduced in 
A. Applying this transition rule to C allows us to generate the missing part D.  

We describe parts A, B and C of a GPA using predicate calculus, thus part D can be 
generated by standard analogical reasoning models (i.e. Gentner, 1983, Keane et al, 
1994; O’Donoghue et al, 2006). Parts A, B and C contain points, lines and polygons and 
each part corresponds to a CA neighbourhood. Areas that share a common boundary are 
neighbours to each other in a Voronoi spatial model (Gerevini & Renz, 2000) and 
neighbourhood topologies are described by binary relations including: line-adjacent, 
point-adjacent and hasPoint. Note these descriptions may be replaced by relations from 
the Region Connection Calculus (Chon, 1997) or DE9IM (Egenhofer & Herring, 1990) 
without affecting the remainder of the algorithm. Neighbourhoods additionally record the 
defining characteristics of each point, line and polygon, such as categorical information, 
which is recorded as unary attributes associated with the point, line or polygon.   

3. The Structure Matching Algorithm 

Structure Matching (O’Donoghue, 2006) is a multi-phase algorithm essentially 
combining Structure Mapping (Gentner, 1983), Attribute Matching (Bohan and 
O’Donoghue, 2000) and Copy with Substitution and Generation (CWSG) (Holyoak et al, 
1994) processes – which we now describe. 

i) Structure Mapping: Identifies the isomorphic 1-to-1 mapping between parts A and C. 
Structure mapping is a computationally expensive operation, being a variant of the 
Largest Common Sub-graph member of NP-Complete problems (Johnson and Garey, 
1979). For efficiency reasons, we first apply a rough-cut filter that only allows structure 
mapping to proceed when the neighbourhood and the transition rule have the same 
number of cells in each of the states. A key output of this phase is the object-to-object 
alignment between the geometric objects of parts A and C.   

ii) Attribute Matching: Ensures that all paired objects in the object-to-object alignment 
are in the same state (category or theme), as described by the objects attributes. For 
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example, a building polygon can only be placed in correspondence with another building 
polygon and a text feature can only be aligned with another text feature, etc. 

iii) CWSG – the Copy with Substitution and Generation algorithm generates the missing 
part D. This copies part B while substituting the mapped objects identified during the 
structure mapping phase.  

4. Extended Cellular Automata 
Many geo-spatial applications require inferences other than altering the state of a 
neighbourhoods central cell, adding and removing information associated with points, 
lines and cells, as well as changes to the topology of the neighbourhood itself. These 
modifications are supported by the structure matching algorithm as alterations to the 
neighbourhood definitions of each cell. However, it is important to place constraints on 
the (arbitrary) inferences that can be generated by the CWSG phase of structure 
matching, as  it is too profligate and may destroy the integrity of the CA itself. The 
following three extensions overcome specific limitations identified in previous CA.  

4.1 Neighbourhood Frequency  

A typical map will have some neighbourhoods that occur very frequently (e.g. a house 
surrounded by a garden), while other neighbourhoods occur very infrequently. We 
highlight a power-law distribution in the frequencies with which neighbourhoods occur. 
So, a small number of neighbourhoods occur very frequently, while large numbers of 
other neighbourhoods will only be found once in any given map. Some categories of 
geographic object (e.g. roads and road-side) regularly have large numbers of neighbours 
requiring a large number of transition rules. But defining a transition rule for every 
possible neighbourhood can prove impractical. For example, a road-side’s neighbourhood 
may contain over 60 polygons from 13 different categories, requiring an astronomical 
number of transition rules (Tobler, 1979) SN = 1360 =6.8*1066 - even before topology is 
taken into account. We propose a solution to this problem, using the incremental 
structures described below.  

4.2 Incremental Matching Method 

As stated earlier, structure matching can be an expensive process, particularly for 
neighbourhoods with large number of objects. We now present an efficient strategy for 
identifying extensive structures (eg roads, railways and rivers) and irregular structures (eg 
hospitals, universities and schools). Our solution uses an incremental matching method 
(Keane et al, 1994) that involves two key aspects. First we identify a “root” 
neighbourhood that defines a starting point. Secondly, we identify a number of 
incremental neighbourhoods that can be iteratively added to that root or a previous 
incremental collection. Identifying a composite building can be achieved by identifying a 
“root” structure and iteratively adding connected buildings to the collection (Figure 3). 

355



Figure 3. A composite building identified incrementally. 

4.3 Layered States and Type 1 CA 

Wolfram (1994) identifies four categories of CA, one of which (Type 2) converges to a 
unique steady state within a finite number of update cycles. Type 2 CA are particularly 
important as the start and final states of the CA may correspond to some situation in the 
real world. We ensure convergence to a final state by introducing additional states and by 
layering the inferences generated by structure matching. We define L extra states, in 
addition to the K initial cell states and refer to these L additional states as first-order 
states if they are derived directly from the initial K states. States belong to layer N if they 
can only be derived from the states in layer N-1. Additional states may correspond to sub-
categorizations of the initial K states contained within a topographic map.  

    

Figure 2. (left) Neighbourhood rule identifies a semi-detached dwelling. Generalisation 
by merging select neighbourhood polygons (right). 

4.4 Merge Cells 

The inferences of our extended CA may alter properties of points and lines as well as 
cells. As our neighbourhoods are essentially topological descriptions, modifications to the 
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neighbourhood topology are easily achieved by changing the relations in the updated 
neighbourhood description.  

Problematically, modifying or deleting cells can destroy the crucial contiguity of the CA, 
creating cells with incomplete neighbourhoods – such as that used by Shi and Pang 
(2000). To overcome this problem we use a merge operation which ensures that no 
boundary cells are ever accidentally created. This merge operation can be applied to 
points, lines and cells. Figure 2 illustrates how merge can be used for detail reduction and 
generalisation. Features may still be removed by simply merging them with existing cells 
without negative consequences and therefore reach the final solution state. However, no 
constraints are required on modifying or deleting existing points or lines. Furthermore, no 
constraints are required on inserting new points, lines or cells. 

5. Conclusion  
We exploit the similarity between irregular Cellular Automata (CA) and geometric 
proportional analogies (GPA), as both involve manipulations of specific configurations of 
geometric objects (involving points, lines and polygons). We adapt the knowledge 
representation and algorithm used for solving analogy problems to the domain of 
geometric information. 

We introduce three extensions to the basic CA, overcoming some practical limitations on 
the application of CA to some problems types. First we introduce layered states that 
increase the number of states in the CA while ensuring it will converge to a stable state in 
a finite number of steps. Secondly, an incremental matching method addresses the 
problems of processing large structures that extend across many neighbourhoods. This 
incremental method is also useful in identifying irregular structures that are difficult to 
represent with standard transition rules. Finally, we describe some limitations that are 
placed on the modification and deletion of cells in the CA to maintain the crucial 
contiguity of the CAs cellular structure. These three methods have been successfully 
implemented to enhance the data contained within topographic maps. 
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