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Abstract—A shot-noise limited single-user single-input single-
output (SISO) Poisson fading channel with partial channel state
information (CSI) at the transmitter and perfect CSI at the
receiver is considered. We address an optimal transmit power
allocation problem that maximizes the ergodic capacity of the
SISO Poisson fading channel subject to peak and average power
constraints with only quantized CSI available at the transmitter,
acquired via a no-delay and error-free feedback link with finite-
rate from the receiver to the transmitter. Due to the non-
convexity of the proposed optimization problem, a globally
optimum solution is difficult to obtain. However, we manage
to obtain a locally optimal quantized power allocation (QPA)
scheme by solving its dual Lagrangian optimization problem.
We develop two efficient optimal QPA algorithms for solving
the dual optimization problem and show that both of these
algorithms converge to the globally optimal solution of the dual
problem. A low-complexity near-optimal QPA algorithm is also
derived for the case of large number of feedback bits. The results
are then extended to the high peak signal-to-noise ratio (SNR)
regime and an explicit expression for the approximate asymptotic
ergodic capacity behavior in the high SNR regime with high rate
quantization (as the number of feedback bits goes to infinity)
is also provided. It is seen via numerical simulations that this
asymptotic capacity expression correctly approaches the capacity
of the corresponding full CSI case as the number of feedback bits
becomes large. Finally, the effectiveness of the derived algorithms
is examined through numerical simulations.

Index Terms—Free-space optical communication, wireless op-
tical communications, Poisson fading channels, limited feedback,
optimization.

I. INTRODUCTION

FREE-SPACE OPTICS (FSO) has recently gained signifi-
cant interest among a number of applications, e.g., metro

network extensions, last-mile access, fibre-backup, back-haul
for wireless networks [1]. Its remarkable advantages, such
as flexibility, cost-effectiveness, high security, fast installation
time, plentiful license-free spectrum and immunity from in-
terference caused by external sources [2][6], have enabled it
to become an increasingly attractive means for high data rate
transmission. Despite so many benefits, a major drawback of
the FSO channel is atmospheric turbulence-induced fading,
which can result in significant degradation of the commu-
nication performance. This has hampered further widespread
utilization of FSO. Hence, effective and powerful techniques
to mitigate the undesirable effect of turbulence-induced fading
are needed in FSO systems design.
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One popular approach to combat the unfavorable impact
of turbulence-induced fading so as to achieve higher system
performance is to dynamically adapt transmit power or rate ac-
cording to the instantaneous time-varying channel conditions,
often referred to as channel state information (CSI), available
at the transmitter and the receiver. In FSO communication,
changes in the fading associated with atmospheric turbulence
(in the order of milliseconds) occur on a sufficiently slow time
scale with respect to the data rate (in the order of Gigabits
per second)[4]. Therefore the block fading channel model,
where the CSI changes independently from block to block
but remains unchanged within each transmission block, can be
employed to describe how the FSO channel varies with fading
[5][4][2][3][6]. One obvious issue which can significantly
affect the performance of such dynamic transmit power or
rate adaptation algorithms is related to the degree of accuracy
or resolution of the CSI available at the transmitter.

Many of the existing work on the resource optimization of
FSO communication systems assume that both the transmitter
and the receiver have perfect knowledge of full CSI, so that
the transmitter can optimally and adaptively assign its transmit
power or rate based on perfect CSI, achieving the optimal
system performance. For example, for the case of shot-noise
limited ideal photodetection FSO block fading channel with
unlimited bandwidth, also referred to as the Poisson fading
channel (where information is transmitted by modulating the
intensity of an optical beam, and individual photon arrivals at
the photodetector receiver follows a Poisson counting process),
the authors of [3] studied the optimal power and rate control
law for maximizing the ergodic capacity of a SISO Poisson
fading channel subject to peak and average transmit power
constraints and a service outage constraint. In [4], upper and
lower bounds on ergodic and outage capacity, and approx-
imate expressions for the capacity-versus-outage probability
of MIMO Poisson fading channels with peak and average
power constraints were investigated. In [5] and [6], the authors
derived the exact expressions of ergodic and outage capacity of
MIMO Poisson fading channel, respectively, and their corre-
sponding optimal power allocation schemes. Other FSO fading
channel models have been also considered, such as [7], where
MIMO FSO fading channels with non-ideal photodetection
(background noise modelled as additive white Gaussian noise
(AWGN)) were investigated with pulse-position modulation
(PPM) of the transmitted signals, and equal gain combining
(EGC) at the receiver. In this paper, the authors analyzed the
outage probability with full CSI and no CSI available at the
transmitter.

However, the assumption on having perfect CSI at the
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transmitter is not achievable in a practical system due to
inaccuracies of channel estimation at the receiver and the
unreliability and data rate constraints of the feedback channel.
To the best of our knowledge, imperfect CSI at the transmitter
of the Poisson fading channel was first considered in [2]. The
authors of [2] proposed a general class of ergodic capacity
maximization problems of the SISO Poisson fading channel
for different levels of CSI available at transmitter and with
perfect CSI at the receiver. The characterization of optimal
power control policies for two extreme cases of the general
problem, i.e., perfect CSI and no CSI case, were fully derived.
However, for partial CSI case, only a general form of power
control law is provided. This motivated us to study the exact
characterization of power allocation laws for the problem
considered in [2] under a specific form of partial CSI available
at the transmitter.

Our main contributions in this paper are as follows:

• We study the optimal power allocation schemes that
maximize the ergodic capacity, as defined in [2], of a
shot-noise limited SISO Poisson fading channel with
quantized CSI at the transmitter, acquired via a no-
delay and error-free feedback link with finite-rate from
the receiver to the transmitter, and perfect CSI at the
receiver. Note that the main difference between our work
and [2] is in the consideration of quantized feedback of
CSI to the transmitter.

• Although the considered optimization problem is non-
convex, we develop a locally optimal QPA scheme for
the original problem by solving its dual Lagrangian
optimization problem with a 2-Step iterative design
algorithm called ’QPA-DP’.

• Two simple and effective algorithms to implement the
Step 1 of ’QPA-DP’ are developed. The optimal algo-
rithm 1 for Step 1 employs a simple iterative Lloyd-
like algorithm similar to [9], [10]. However, unlike [9],
[10], we are able to prove that at each iteration, a unique
solution is found and thus the algorithm is guaranteed to
converge to the optimal solution of Step 1. The optimal
algorithm 2 for Step 1 is obtained by using some nice
properties of the quantized power control law that we
derive. Combining these algorithms with the algorithm
for Step 2 of ’QPA-DP’, we design two algorithms both
of which converge to the globally optimal solution of
the dual problem.

• Furthermore, in the case of a large number of feedback
bits, we derive a fast and low-complexity suboptimal
QPA algorithm.

• The results are then extended to the high peak signal-to-
noise ratio (SNR) regime and an explicit expression for
the approximate asymptotic ergodic capacity behavior in
the high SNR regime for high rate quantization (as the
number of feedback bits goes to infinity) is provided.

• Finally, the effectiveness of the derived algorithms are
evaluated through numerical simulations.

This paper is organized as follows. Section II introduces
the system model and the problem formulation. Section III
presents a locally optimal QPA scheme for the proposed opti-
mization problem obtained by solving its dual problem. Two

effective optimal QPA algorithms are developed to find the
global optimal solution of the dual problem. In Section IV, a
low-complexity suboptimal QPA strategy is derived. Section V
extends the results to the high SNR regime and the asymptotic
capacity behavior of high SNR regime in high resolution
quantization is also investigated. Simulation results are given
in Section VI, followed by concluding remarks in Section VII.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a shot-noise limited single-user single-input
single-output (SISO) Poisson fading channel with unbounded
bandwidth as described in [2][3]. It is assumed to be a
block fading channel on account of the slowly varying nature
of optical fade. Let [0, T ] be the time interval of signal
transmission and reception. The channel input is a nonnegative
real-valued signal {x(t), t ∈ [0, T ]}, which is proportional to
the transmitted optical power and is subjected to the peak and
average power constraints below:

0 ≤ x(t) ≤ A, t ∈ [0, T ];
1

T

∫ T

0

x(t)dt ≤ ρA, (1)

where A > 0 stands for the peak power and 0 ≤ ρ ≤ 1 denotes
the average-to-peak power ratio. The corresponding channel
output is a Z+-valued nondecreasing Poisson counting process
{y(t), t ∈ [0, T ]}, having an instantaneous rate (denoted as
R(t)) equal to

R(t) = S

[⌈
t

Tc

⌉]
x(t) + λ0, t ∈ [0, T ], (2)

where Z+ denotes the space of positive integers, {S[k], k ∈
Z+} is the independent and identically distributed (i.i.d.)
nonnegative real-valued random channel fade with a known
distribution in the k-th coherence interval((k− 1)Tc, kTc] (Tc

represents the channel coherence time and �x� indicates the
smallest integer greater than or equal to x), and λ0 ≥ 0
is the (constant) background noise (dark current) rate. The
channel fade is assumed to follow a lognormal distribution
as proposed in [4][2], i.e., S ∼ eχ, where χ is normally
distributed with mean μ and variance σ2. Its probability

density function is given as fS(s) = 1
sσ

√
2π

e−
(log(s)−μ)2

2σ2 .
We assume that the receiver has perfect or full knowledge
of CSI, while various levels of CSI feedback can be made
available to the transmitter. In general, the transmitter CSI can
be specified in terms of the random variable V = φ(S), where
the function φ(·) denotes the mapping from the receiver CSI
to the transmitter CSI. The maximum capacity C (in nats per
second) of the SISO Poisson fading channel under the peak
and average power constraints (1), achieved by i.i.d. {0, A}-
valued channel inputs (corresponding to an ON-OFF keying
(OOK) signaling scheme), is given by [2],

C = max
p:V→[0,1]
E[p(V )]≤ρ

λ0E[p(V )(1 + Sr) log(1 + Sr)

− (1 + p(V )Sr) log(1 + p(V )Sr)] (3)

where r = A
λ0

is the peak SNR. p(V ) is the probability of
the channel input taking value A, conditioned on the available
transmitter CSI, and can be interpreted as the duty cycle of
the transmitted signal [2][3][4]. Since the transmitted power
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in OOK signaling scheme is directly proportional to the duty
cycle, optimizing p(.) in (3) can also be viewed as designing
an optimal power allocation policy [3].

The two extreme cases of this general Problem (3): perfect
CSI and no CSI available at the transmitter, where φ is an
identity mapping ( i.e., V = S) and a constant mapping (i.e.,
V = a constant), respectively, have been considered in [2]. For
the sake of completeness, the optimal power control scheme
p∗(.) for these two special cases are given below respectively
as in [2],

(1) Full CSI at the transmitter case:

p∗(s) = [pμf
(s)]+, (4)

where [x]+ = max(x, 0),

pμf
(s) =

1

sr

(
e−(1+

μf
As )(1 + sr)(1+

1
sr ) − 1

)
(5)

and μf is the nonnegative Lagrange multiplier associated with
the average power constraint and is determined by solving
μf (E[[pμf

(S)]+]−ρ) = 0. When μf > 0 (i.e., average power
constraint is active), p∗(s) ∈ [0, 1

2 ], while when μf = 0 (i.e.,
average power constraint is inactive), p∗(s) ∈ [e−1, 1

2 ].
(2) No CSI at the transmitter case:

p∗ = min{ρ, p0}, (6)

where p0 is the solution of below equation:

E[Sr log(1 + p0Sr)] = E[(1 + Sr) log(1 + Sr)− Sr], (7)

and p∗ ∈ [0, 1
2 ], p0 ∈ [e−1, 1

2 ].
When only partial CSI available at the transmitter, in the

next, we will design an optimum power allocation strategy
for the capacity maximization Problem (3) based on quantized
CSI, acquired via a no-delay and error-free feedback link with
finite-rate from the receiver to the transmitter (also known as
limited feedback technique).

Remark 1: In the low SNR regime for λ0 � 1, it was
shown in [2] that regardless of whether the transmitter is
provided with CSI or not, the maximum capacity of the
Poisson fading channel is CL = pL(1−pL)E[S2]A2

2λ0
+ O(λ−2

0 ),
where pL = min{ρ, 12}, which means that in this scenario,
transmitter CSI is not needed. Therefore, quantized CSI feed-
back is beneficial only when λ0 is not too high (i.e., excluding
the low SNR regime).

III. OPTIMUM QUANTIZED POWER ALLOCATION (QPA)
WITH LIMITED FEEDBACK

In this section, we consider the case where the receiver
can obtain perfect information of CSI S and then forward
some appropriately quantized information about S to the trans-
mitter through a finite-rate feedback link. More specifically,
given B bits of feedback, a power (duty cycle) codebook
P= {p1, . . . , pL} of cardinality L = 2B, known a priori
by both the transmitter and the receiver, is designed off
line purely on the basis of the statistics of S. Given a
channel realization S = s, the receiver employs an index
mapping φ from the current instantaneous s information to
one of L integer indices (which partitions the scalar space
of s into L disjoint regions R1, . . . ,RL and is defined as

φ(s) = j, if s ∈ Rj , j = 1, . . . ,L). The corresponding
index j = φ(s) is then sent to the transmitter via the feedback
link. The transmitter then uses the associated power codebook
element (e.g., if the feedback signal is j, then pj will be
used as the duty cycle of the transmitted signal) to adapt its
transmission strategy.

Let Pr(Rj), E[•|Rj ] represent Pr(S ∈ Rj) (the probability
that S falls in the region Rj ) and E[•|S ∈ Rj ], respectively.
Then Problem (3) with limited feedback can be expressed as

CL = max
pj∈[0,1],Rj,∀j

L∑
j=1

λ0E[pj(1 + Sr) log(1 + Sr)

− (1 + pjSr) log(1 + pjSr)|Rj ] Pr(Rj)

s.t.
L∑

j=1

pj Pr(Rj) ≤ ρ (8)

Our aim is thus to jointly optimize the channel partition
regions and the power codebook, such that the capacity is
maximized under the above constraints. It is easy to verify that
(8) is a non-convex optimization problem. Thus it is very hard
to find the globally optimal solution directly. However, in what
follows, we are able to find a local optimum for Problem (8)
by solving its Lagrange dual problem in an efficient manner.

A. A 2-Step Iterative Design Algorithm for Locally Optimum
QPA

The Lagrangian of Problem (8) can be written as,

L({pj}, {Rj}, μ) =
L∑

j=1

λ0E [pjβ(Sr) − β(pjSr)| Rj ] Pr(Rj)

− μ

⎛
⎝ L∑

j=1

pj Pr(Rj)− ρ

⎞
⎠ , (9)

where β(x) = (1 + x) log(1 + x) and μ is the nonnegative
Lagrange multiplier associated with average power constraint.
The dual problem of (8) is then defined as

min
μ≥0

g(μ) (10)

where g(μ) is the Lagrange dual function, defined as,

g(μ) = max
pj∈[0,1],Rj,∀j

L({pj}, {Rj}, μ)

=

(
max

pj∈[0,1],Rj,∀j
G({pj}, {Rj}, μ)

)
+ μρ (11)

where

G({pj}, {Rj}, μ) �
L∑

j=1

λ0E

[
pjβ(Sr) − β(pjSr) − μ

λ0
pj

∣∣∣∣Rj

]
Pr(Rj). (12)

In order to solve the above dual problem we begin with an
arbitrary initial value for μ. Then, Step 1 and Step 2 below are
iteratively applied until a pre-specified convergence criterion
is met:

Step 1: With a fixed value of μ, find a locally optimal solu-
tion (a locally optimal power codebook and the corresponding
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quantization regions) of the Lagrange dual function problem
(11).

Step 2: With the resulting power codebook and channel
partition, update the optimal value μ value by solving the dual
problem (10)1, i.e., μ

(∑L
j=1 pj Pr(Rj)− ρ

)
= 0.

We call this 2-Step iterative design algorithm for solving
the Lagrange dual problem (10) (i.e., a locally optimum QPA
for Problem (8)), as the ’QPA-DP’algorithm. In the following,
we will study how to implement Step 1 and Step 2, and then
combine these two steps to obtain the ’QPA-DP’ algorithm.

B. An Inefficient Solution to Step 1

In Step 1, with a given μ, a general approach to
find a solution for Problem (11) is to utilize Generalized
Lloyd Algorithm (GLA) with a modified Lagrangian dis-
tortion measure

∑
j E [d(S, j)|Rj ] Pr(Rj), where d(s, j) =

λ0

(
pjβ(sr) − β(pjsr) − μ

λ0
pj

)
, as stated in [8]. This modi-

fied GLA is implemented using a sufficiently large number of
training samples (channel realizations for S) and is designed
based on two necessary optimality conditions: 1) with a given
power codebook P= {p1, . . . , pL}, the optimal channel CSI
partition is determined by the nearest neighbor condition,
namely, for ∀j = 1, . . . ,L,

Rj = {s : d(s, j) ≥ d(s, i), ∀i ∈ {1, . . . ,L}, i 
= j}. (13)

Note that Rj , ∀j need not be unique since ties may be broken
arbitrarily; 2) with a given channel partition R1, . . . ,RL, the
optimal power codebook is found by the generalized centroid
condition, namely,

p∗j = argmax
pj∈[0,1]

E[d(S, j)|Rj ] Pr(Rj), ∀j = 1, . . . ,L,
(14)

which is a concave optimization problem. Therefore, begin-
ning with an arbitrary initial codebook, one can repeatedly
apply the two optimality conditions described above until
convergence to obtain a locally optimal power codebook and
corresponding channel partitions for Problem (11).

However, the computational complexity of implementing
GLA can be quite high and it can take a very long time to
converge, due to the fact that GLA based quantizer design
requires a large number of training samples drawn from
empirical distributions. In order to avoid this computational
burden, in the following, we will derive two alternative optimal
QPA algorithms with lower complexity and faster convergence
rates. Most importantly, we will show that they can find the
unique optimal solution for the Problem (11) with a fixed μ.

C. Optimal Algorithm 1 for Step 1

Let a power codebook P= {p1, . . . , pL} and the corre-
sponding channel partitioning R1, . . . ,RL denote an opti-
mal solution to Problem (11). And let {s1, . . . , sL} indi-
cate the associated quantization thresholds on S axis, where

1When the average power constraint of Problem (8) is inactive, i.e.,∑L
j=1 pj Pr(Rj) < ρ, then we must have μ = 0. Alternatively, when

the average power constraint is active, i.e.,
∑L

j=1 pj Pr(Rj ) = ρ, we have

μ ≥ 0 and can solve
∑L

j=1 pj Pr(Rj) = ρ to obtain μ.

0 = s1 < · · · < sL < sL+1 = ∞. Then we have
Rj = [sj , sj+1) for j = 1, . . . ,L. Our aim is to jointly
optimize the power codebook {p1, . . . , pL} and the channel
thresholds {s2, . . . , sL}, so that the objective function in
Problem (11) (or G({pj}, {Rj}, μ)) is maximized. We employ
a simple iterative algorithm, similar to [9][10]. Let k denote
the iteration number. The algorithm starts from an initial guess
of

{
s
(0)
2 , . . . , s

(0)
L
}

satisfying 0 < s
(0)
2 < · · · < s

(0)
L < ∞,

then produces a sequence of iterates
(
{p(k+1)

j }, {s(k+1)
j }

)
=

θ
(
{p(k)j }, {s(k)j }

)
, where the operator θ works as follows

: for given channel thresholds
{
s
(k)
j

}
, a power codebook{

p
(k+1)
j

}
is chosen to maximize G

(
{p(k+1)

j }, {R(k)
j }, μ

)
and then for fixed

{
p
(k+1)
j

}
,
{
s
(k+1)
j

}
is found to maxi-

mize G
(
{p(k+1)

j }, {R(k+1)
j }, μ

)
, until the resulting value of

objective function G({pj}, {Rj}, μ) converges within a pre-
specified accuracy, namely, G(k+1)−G(k)

G(k+1) < ε.
We carry out the following steps at each iteration (for

simplicity, we will omit the iteration index):

1) Given a set of {s2, . . . , sL} where 0 < s2 < · · · < sL <
∞, the optimal {p1, . . . , pL} is obtained by maximizing
G({pj}, {Rj}, μ), i.e., ∀j = 1, . . . ,L,
pj =

argmax
pj∈[0,1]

λ0E

[
pjβ(Sr)− β(pjSr)− μ

λ0
pj

∣∣∣∣Rj

]
Pr(Rj).

(15)

It is easy to verify that with a fixed channel partition,
(15) is a concave optimization problem. Thus by using
the KKT optimality conditions, the optimal power level
is given as

pj =
[
pμj
]+

, μ ≥ 0, (16)

where pμj is the solution of the equation

λ0E
[
Sr log

(
1+εμ(Sr)Sr

1+pμ
j Sr

)∣∣∣Rj

]
= 0, and

εμ(sr) =
1

sr

(
e
−
(
1+ μ

srλ0

)
(1 + sr)(1+

1
sr ) − 1

)
.

(17)

2) Given {p1, . . . , pL}, the optimal {s2, . . . , sL} is de-
termined by maximizing G({pj}, {Rj}, μ), i.e., (18),
Problem (18) is generally a non-convex optimization
problem. However, we will prove in Lemma 3 below that
there exists a unique maximum point for Problem (18),
i.e., only one optimal solution. This optimal solution sj
is obtained by solving

ϕ(sj) = 0, with
∂ϕ(sj)

∂sj
< 0. (19)

where

ϕ(sj) � λ0

[
pj−1β(sjr) − β(pj−1sjr) − μ

λ0
pj−1

−pjβ(sjr) + β(pjsjr) +
μ

λ0
pj

]
. (20)
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sj = argmax
sj

λ0E

[
pj−1β(Sr) − β(pj−1Sr)− μ

λ0
pj−1

∣∣∣∣Rj−1

]
Pr(Rj−1)

+ λ0E

[
pjβ(Sr) − β(pjSr)− μ

λ0
pj

∣∣∣∣Rj

]
Pr(Rj), ∀j = 2, . . . ,L (18)

In addition, we also show in Lemma 3 that the optimal
{s2, . . . , sL} obtained from (18) automatically satisfies
0 < s2 < · · · < sL < ∞.

We call this simple iterative algorithm as "Iterative Power and
Thresholds Optimization (IPTO)".

We will now present an important property of the function
εμ(sr).

Lemma 1: With a finite r, when μ = 0, the function εμ(sr)
is monotonically decreasing in s, and e−1 ≤ εμ(sr) ≤ 1

2 .
While when μ > 0, εμ(sr) has a unique maximum point,
denoted as sM, and is increasing when s ∈ [

0, sM
]

and then
decreasing over s ∈ (

sM,∞)
. In this case, −∞ ≤ εμ(sr) <

1
2 .

Proof: See Appendix A.
Lemma 2: Based on Lemma 1, the optimal quantized power

levels obtained by (16) of the IPTO algorithm satisfy: when
μ = 0, 1

2 ≥ p1 > · · · > pL ≥ e−1; while, when μ > 0,
0 ≤ pj ≤ 1

2 , ∀j = 1, . . . ,L and if the power levels of any
two adjacent regions Rj and Rj+1 satisfy pj > pj+1, we also
have 1

2 ≥ pj > pj+1 ≥ e−1.
Proof: See Appendix B.

With Lemma 2, we can obtain the following Lemma:
Lemma 3: There exists a unique optimal solution

{s2, . . . , sL} for Problem (18), which can be obtained
by solving (19). And the resulting {sj}Lj=2 also satisfies
0 < s2 < · · · < sL < ∞.

Proof: See Appendix C.
The IPTO algorithm can be formally summarized as below:

IPTO Algorithm:
Initialize k = 0, and choose arbitrary initial values of{
s
(0)
2 , . . . , s

(0)
L
}

such that 0 < s
(0)
2 < · · · < s

(0)
L < ∞;

repeat

(1) Given
{
s
(k)
2 , . . . , s

(k)
L
}

, optimal
{
p
(k+1)
1 , . . . , p

(k+1)
L

}
is given by (16), ∀j = 1, . . . ,L;

(2) Given
{
p
(k+1)
1 , . . . , p

(k+1)
L

}
, optimal

{
s
(k+1)
2 , . . . ,

s
(k+1)
L

}
is determined by solving (19), ∀j = 2, . . . ,L;

(3) k = k + 1;
until Convergence;

Remark 2: In the IPTO algorithm, the value of the ob-
jective function of Problem (11) obtained at each step,
i.e.,

{G(k) + μρ
}

, is a monotonically increasing sequence
and is upper bounded by the Lagrangian for the full CSI
case. Meanwhile, at each iteration k, a unique value of{
p
(k+1)
j

}
,
{
s
(k+1)
j

}
is found. Thus the IPTO algorithm is

guaranteed to converge to the optimal solution of Problem
(11).

D. Optimal Algorithm 2 for Step 1

In order to obtain the optimal quantized power codebook
{p1, . . . , pL} and channel partition thresholds {s2, . . . , sL}
from the IPTO algorithm, one could equivalently solve the
following system of simultaneous nonlinear equations:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ϕ(sj) = 0, with
∂ϕ(sj)

∂sj
< 0, j = 2, . . . ,L; (21a)

pj = [pμj ]
+, j = 1, . . . ,L,

with λ0E

[
Sr log

(
1 + εμ(Sr)Sr

1 + pμj Sr

)∣∣∣∣∣Rj

]
= 0 (21b)

where ϕ(sj) and εμ(sr) are given in (20) and (17), re-
spectively. From Remark 2, the IPTO algorithm converges
to the unique optimal solution of Problem (11). Thus there
must be only one {p1, . . . , pL}, {s2, . . . , sL} satisfying the
above nonlinear equations system (21a)(21b). This motivates
us to develop an alternative optimal QPA algorithm to solve
(21a)(21b) directly with the aid of the following Lemma.

Lemma 4: The optimal quantization thresholds must sat-
isfy: ∀j = 2, . . . ,L,

sjr

(
−1 +

(
1 +

1

sjr

)
log(1 + sjr)

)
− μ

λ0
≥ 0. (22)

which also can be written as sjr log(1 + εμ(sjr)sjr) ≥ 0
Proof: The proof follows directly by applying the Mean

Value Theorem and is omitted due to space restrictions.
Remark 3: It is easy to verify that the left hand side (LHS)

of (22) in Lemma 4 is a monotonically increasing function,
thus (22) can be rewritten as sj ≥ slb, ∀j = 2, . . . ,L, where

slb satisfies slbr
(
−1 +

(
1 + 1

slbr

)
log(1 + slbr)

)
− μ

λ0
= 0

(or slbr log(1 + εμ(slbr)slbr) = 0). When μ = 0, slb = 0 and
in this case, sj ≥ slb is always met. Whereas, when μ > 0,
slb > 0 and slbr log(1 + εμ(slbr)slbr) = 0, clearly we have
εμ(slbr) = 0. As a result, with 0 < s2 < · · · < sL, as long
as s2 ≥ slb, all other partition thresholds will automatically
satisfy sj ≥ slb, ∀j = 3, . . . ,L.

With Lemma 4, we can obtain the following Lemma:
Lemma 5: When μ = 0, all the power levels are strictly

positive, i.e., pj > 0, ∀j = 1, . . . ,L. When μ > 0, the power
level in the first region could be zero or positive, i.e., p1 ≥ 0,
but the power levels in the last L − 1 regions are always
strictly positive, i.e., pj > 0, ∀j = 2, . . . ,L. Let pm, 1 ≤ m ≤
L, represent the largest power level when μ > 0. Then the
optimal power levels must satisfy, 0 ≤ p1 < · · · < pm−1 <
pm and pm > pm+1 > · · · > pL ≥ e−1.

Proof: See Appendix D.
Remark 4: From Lemma 5, we can see that Lemma 4

ensures at most one zero power level. Besides, when μ = 0,
there is no outage at all; while when μ > 0, the first region
could be in the outage.
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From Lemma 5, the nonlinear equations system (21a)(21b)
can be rewritten as,⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ϕ(sj) = 0, with
∂ϕ(sj)

∂sj
< 0, j = 2, . . . ,L; (23a)

λ0E

[
Sr log

(
1 + εμ(Sr)Sr

1 + pjSr

)∣∣∣∣Rj

]
= 0,

j = 1, . . . ,L, p1 = [p1]
+. (23b)

Instead of jointly solving the above 2L−1 nonlinear equations,
we can show that all these equations actually involve only one
variable, which can be solved in a straightforward manner.
Given a specific value of s2, we can solve (23b) with j = 1
for p1 and set p1 = [p1]+, and then solve (23a) with j = 2
for p2. After that, by recursively solving (23b) with j = n
for sn+1 and (23a) with j = n + 1 for pn+1, where n =
2, . . . ,L − 1, we can successively obtain s3, p3, . . . , sL, pL.
As a result, equation (23b) with j = L thus has only one
unknown variable s2 and can be numerically solved for s2.
We call this optimal QPA algorithm as ’Power and Thresholds
via Nonlinear Equations’ (PTNE) method.

E. Optimum QPA: QPA-DP

So far we have presented two alternative optimal QPA
algorithms called IPTO and PTNE for implementing Step 1.
Now, we need to determine the optimal μ for Step 2 by solving

μ

⎛
⎝ L∑

j=1

pj Pr(Rj)− ρ

⎞
⎠ = 0. (24)

The algorithm for Step 2 is straightforward as it is a con-
vex problem. Since the average power

∑L
j=1 pj Pr(Rj) can

be shown to be a monotonically decreasing and continuous
function of μ following a similar proof to that of Lemma 1 in
[13], we can find the unique optimum for μ by solving (24)
using a simple bisection method.

Combining the algorithms for Step 1 and Step 2, the
QPA-DP algorithm for solving the dual problem (10), can
then be summarized by the following steps:

QPA-DP algorithm:
Given μ = 0, obtain the optimal {pj}, {sj} by IPTO or
PTNE algorithm and calculate ρ0 =

∑L
j=1 pj Pr(Rj);

If ρ > ρ0
μ = 0;

Else
Initialize μmin and μmax;
repeat
(1) μ = (μmin + μmax)/2;
(2) Given μ, the optimal {pj}, {sj} are obtained

by IPTO or PTNE algorithm;

(3) if
(∑L

j=1 pj Pr(Rj)− ρ
)
> 0, then μmin = μ,

else if
(∑L

j=1 pj Pr(Rj)− ρ
)
< 0, then μmax = μ;

until Convergence : |μmin − μmax| < ε

Remark 5: Obviously, the QPA-DP algorithm converges
to the global optimum solution of the dual problem (10).
However, due to the non-convexity of original problem (8), the

solution obtained by the QPA-DP algorithm may not be the
global optimum of the original problem (8). But the optimal
μ, {pj}, {sj} obtained by the QPA-DP algorithm satisfy the
KKT conditions of the original problem (8), thus it must be
a locally optimum solution of Problem (8).

IV. SUBOPTIMAL QPA-DP ALGORITHM

In this section, we will develop a suboptimal, but compu-
tationally efficient algorithm for implementing Step 1 of the
QPA-DP algorithm (i.e., we will replace IPTO or PTNE by a
more efficient algorithm). We aim this algorithm to be close
to optimum in the high rate quantization regime, i.e., for a
large number of feedback bits B.

According to [11], for sufficiently large B (or L), the design
of optimal channel partitions is of less significance. Thus, in
high rate quantization, the criterion of equal probability per
region (EPrPR) can be utilized to design a simple suboptimal
(asymptotically optimum) channel partition policy, as stated
in [11][12]. Let FS(s) denote the cumulative distribution
function of the lognormally distributed channel fade, given
as, FS(s) = 1

2 + 1
2 erf

[
log(s)−μ√

2σ2

]
. Applying EPrPR directly

to our problem, we can obtain ∀j = 2, . . . ,L, FS(sj) =
j−1
L ,

which implies ∀j = 2, . . . ,L

sj = exp

{
μ−

√
2σ erf−1

(
1− 2

j − 1

L
)}

. (25)

Then with given {sj}, we can easily and immediately solve
(23b) for p1, . . . , pL. However, the problem is that, when μ >
0, there may exist some quantization thresholds obtained by
(25) that do not satisfy sj ≥ slb, as required by Lemma 4.
This can lead to more than one region having zero power
levels when solving (23b) for {pj}, thus resulting in a reduced
throughput. Next we will propose a modified EPrPR scheme
to obtain a set of suboptimal quantization thresholds for large
L.

Lemma 6: When μ > 0, p1 must be zero for a sufficiently
large L and as L → ∞, s2 → slb.

Proof: See Appendix E.
Remark 6: Lemma 6 shows that when μ > 0, with high rate

quantization, the power level for the first region R1 approaches
zero, i.e., R1 becomes an outage region. In addition, as
L → ∞, the boundary between the outage and the non-outage
regions approaches to slb, which is consistent with the perfect
CSI case.

Remark 3 implies that in order to meet sj ≥ slb, ∀j =
2, . . . ,L we just require s2 ≥ slb. Then by Lemma 6, we
have for large L, s2 ≈ slb. Therefore, if s2 obtained by
(25) meets s2 ≥ slb, i.e., exp

{
μ−√

2σ erf−1
(
1− 2 1

L
)} ≥

slb, we can directly apply the EPrPR algorithm to ob-
tain the other suboptimal quantization thresholds, and
then solve (23b) for p1, . . . , pL. Otherwise, if s2 =
exp

{
μ−√

2σ erf−1
(
1− 2 1

L
)}

< slb, we first use slb as an
approximation for s2, which leads to only the first region being
in outage. We can then apply EPrPR to all other non-outage
regions to obtain FS(sj) = FS(slb)+

j−2
L−1 (1−FS(slb)), ∀j =
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3, . . . ,L. Thus, in this case, we have ∀j = 3, . . . ,L,

sj = exp

{
μ−

√
2σ erf−1

(
1− 2

(
FS(slb) +

j − 2

L − 1
(1− FS(slb))

))}
.

(26)

After obtaining {sj}, we can solve (23b) for p1, . . . , pL. We
name this suboptimal algorithm for Step 1 of QPA-DP as the
modified EPrPR (MEPrPR).

V. QPA-DP ALGORITHM IN THE HIGH SNR REGIME

In the high SNR regime (in the limit as λ0 → 0 or
r = A

λ0
→ ∞), the system of nonlinear equations (21a)(21b)

becomes⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

sj =
μ

A

pj−1 − pj
pj log(pj)− pj−1 log(pj−1)

, with

pj log

(
1

pj

)
> pj−1 log

(
1

pj−1

)
, j = 2, . . . ,L; (27a)

pj = exp

{
−1− μ

AE[S|Rj ]

}
, j = 1, . . . ,L, (27b)

and the capacity with limited feedback, denoted as CLH,
becomes,

CLH =
L∑

j=1

Apj log

(
1

pj

)
E[S|Rj ] Pr(Rj) (28)

where {pj} and {sj} can be obtained from solving (27a)(27b)
by using IPTO or PTNE algorithm. (1) When μ = 0, i.e.,
the average power constraint is not active, from (27b), we
have p1 = · · · = pL = e−1, which implies ρ ≥ e−1 (due to∑L

j=1 pj Pr(Rj) < ρ) and only one power level is needed
to fully obtain the maximum capacity. In other words, no
feedback is required. Thus in this case, the maximum capacity
is always

CLH = Ae−1E[S]. (29)

(2) When μ > 0, i.e., the average power constraint is active
(implying

∑L
j=1 pj Pr(Rj) = ρ < e−1), from (27b), it is

easy to obtain 0 < p1 < · · · < pL < e−1, implying there
is no outage in the high SNR regime. Since the function
x log

(
1
x

)
is increasing when x ∈ (

0, e−1
)
, the inequality

pj log
(

1
pj

)
> pj−1 log

(
1

pj−1

)
in (27a) is always satisfied.

Thus, applying (27b) into (28), the maximum capacity (28)
with μ > 0 becomes,

CLH =

L∑
j=1

ApjE[S|Rj ] Pr(Rj) +

L∑
j=1

μpj Pr(Rj)

= Ae−1
L∑

j=1

e
− μ

AE[S|Rj ]E[S|Rj ] Pr(Rj) + μρ. (30)

When L is large, due to there being no outage in the high
SNR regime, we can directly apply EPrPR (25), to obtain a
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Fig. 1. Effect of increasing feedback bits on the capacity performance of
the SISO Poisson fading channel.

suboptimal channel partition policy, as stated in Section IV.
Then, by applying (25), we have, ∀j = 1, . . . ,L,

E[s|Rj ] ≈ L
2
e

σ2

2 +μ

[
erf

(
σ√
2
+ erf−1

(
1− 2

j − 1

L
))

− erf

(
σ√
2
+ erf−1

(
1− 2

j

L
))]

� aj , (31)

(where � stands for definition). Thus for high rate quanti-
zation, the maximum capacity in the high SNR regime with
μ > 0 can be approximated as

CLH ≈ Ae−1

L
L∑

j=1

e
− μ

Aaj aj + μρ. (32)

VI. NUMERICAL RESULTS

In this section, we will evaluate the capacity performance
of a shot-noise limited SISO Poisson fading channel with
the proposed QPA strategies via numerical simulations. The
channel fade with a lognormal distribution is considered to be
normalized, such that E[S] = e

σ2

2 +μ = 1 by setting μ = −σ2

2 ,
as advocated in [2], [4]. According to [2], [4], the value of
the variance of log(S), σ2 can be chosen anywhere between 0
(negligible fading) to 2 (severe turbulence). Here we consider
the moderate fading scenario with σ2 = 0.4 and fix the peak
power to be 1, i.e., A = 1.

Fig. 1 illustrates the ergodic capacity performance of the
SISO Poisson fading channel obtained by QPA-DP strategy
with feedback bits B = {1, 2} versus the peak SNR (r = A

λ0
),

for three different average power constraint situations, i.e.,
ρ ≥ 0.5, ρ = 0.1 and ρ = 0.01, respectively, in order to
study the effect of increasing the number of feedback bits
on the capacity performance. For comparison, we also plot
the corresponding capacity performance of the two extreme
cases, i.e., full CSI case and no CSI case. First, it can be
easily observed that when ρ ≥ 0.5, which implies the average
power constraint is always inactive (μ = 0) regardless of
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Fig. 3. Locally optimal power control law with 2 bits of CSI feedback at
the transmitter (SNR = 0 dB).

the SNR value, the capacity performance of the full CSI
case is almost identical to that of no CSI case. Thus in
this case any knowledge of CSI at the transmitter does not
improve capacity substantially. However, the improvement
becomes more pronounced when ρ is small. When ρ = 0.1 or
ρ = 0.01, introducing one extra bit of quantized CSI feedback
substantially shrinks the capacity gap between the no CSI and
the full CSI case. Even only one bit feedback can dramatically
eliminate most of the capacity gap between the no CSI and
full CSI case and as few as 2 bits of feedback are required to
achieve a capacity performance very close to that of full CSI
case. To be specific, for ρ = 0.1 and SNR= 20 dB, with no
CSI, 1 bit feedback and 2 bits of feedback, the capacity losses
due to imperfect CSI are approximately 13.38%, 3.95% and
0.93% respectively. A similar behavior can be also observed
from Fig. 2 for the capacity performance obtained by QPA-DP
in high SNR regime (r → ∞).

Fig. 3 shows the behaviour of the locally optimal power
control law obtained by the QPA-DP versus the channel fade
for different values of average power ρ, with 2 bits of feedback
and SNR = 0 dB. It can be observed from Fig. 3 that

each power control law is a stepwise curve, since with 2
bits of feedback, the entire channel fade space is quantized
into 4 regions and within each region, the power level is
constant. More specifically, Fig. 4 diagrammatically provides
an example of how the state space is partitioned for ρ = 0.01
(for other values of ρ, similar graphs can be easily obtained),
where the channel state space is quantized into 4 regions
by the quantization thresholds s2, s3, s4. The first region has
zero power and thus is in outage. In Fig. 3, with SNR = 0
dB, the QPA-DP algorithm yields ρ0 = 0.4712. Then when
ρ > ρ0, the average power constraint of Problem (8) is
inactive and μ = 0. In this case, the power control law is
a decreasing stepwise curve as shown in Fig. 3. Whereas,
when ρ ≤ ρ0, the average power constraint is satisfied with
equality at optimality, and in this case, if ρ � ρ0 (such as
ρ = 0.01 and ρ = 0.1 as shown in Fig. 3 ), the power
control law is an increasing stepwise curve. If ρ � ρ0 (such as
ρ = 0.4 in Fig. 3 ), the power control law is a first increasing
and then decreasing stepwise curve. A similar observation for
the full CSI case can be found in [2]. In addition, Fig. 5
illustrates the power control law comparison between full
CSI, optimal algorithm (QPA-DP) and suboptimal strategy
(MEPrPR), where in order to clearly show the comparison,
only results for ρ = 0.01 and ρ = 0.4 are plotted.

Fig. 6 depicts the capacity performance of the suboptimal
QPA-DP algorithm (MEPrPR) versus peak SNR with feedback
bits B = {2, 3}, for ρ = 0.1 case and ρ = 0.01 case
respectively, and compares these results with the correspond-
ing throughput performance obtained by the optimal QPA-
DP algorithm. As observed from Fig. 6(a), for any ρ = 0.1
or ρ = 0.01, even with only 2 bits feedback, the capacity
performances of MEPrPR and corresponding optimal QPA-
DP are almost indistinguishable. For clearer visualization, in
Fig. 6(b), we zoom into the detail of the area A in Fig. 6(a),
which shows that with the same number of feedback bits, the
performance of optimal QPA-DP is only slightly better than
that of MEPrPR, and with increasing number of feedback bits,
the capacity loss due to the suboptimal quantization policy
gradually vanishes. For example, at ρ = 0.1 and SNR= 25 dB,
with 2 bits and 3 bits of feedback, the capacity gap between
MEPrPR and optimal QPA-DP is about 0.0006 and 0.0002,
respectively. Furthermore, we compared the computational
speed of MEPrPR and the optimal QPA-DP algorithm. QPA-
DP and MEPrPR were implemented in MATLAB (version
7.11.0.584 (R2010b)) on a Dual-Core processor (CPU AMD
AthlonTMII P360 with a clock speed of 2.30 GHz and a
memory of 2 GB). It was seen that for a fixed μ with 3 bits of
feedback, QPA-DP took approximately 67.14 seconds whereas
MEPrPR took only 0.33 seconds to achieve comparable levels
of accuracy. These results confirm that MEPrPR is a computa-
tionally highly efficient near-optimal algorithm, especially for
a moderate to large number of feedback bits.

In addition, Fig. 7 shows the asymptotic capacity behavior
of suboptimal QPA-DP in the high SNR regime (derived
in Section V) versus the number of quantization levels L
with ρ = 0.1, and compares the result with the full CSI
performance of the high SNR regime given by (29) of [2]. It
can be seen from Fig. 7 that the capacity increases significantly
as the number of quantization level L increases, however, as L
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increases beyond a certain number (L ≥ 23, i.e., B ≥ 3 bits),
the capacity curve starts to saturate and gradually approaches
the corresponding full CSI performance. This further confirms
that only a small number of feedback bits is enough to obtain
a capacity close to the perfect CSI-based performance.

VII. CONCLUSIONS AND EXTENSIONS

In this paper, we have considered the ergodic capacity
maximization problem of a shot-noise limited SISO Poisson
fading channel subject to peak and average power constraints,
with only quantized CSI available at the transmitter acquired
via limited feedback, and perfect CSI at the receiver. Two
optimal QPA algorithms for solving the dual problem of the
original optimization problem are developed and it is shown
that both can converge to the globally optimal solution of the
dual problem, which is also a locally optimal QPA solution
for the original optimization problem. Furthermore, a fast and
low-complexity suboptimal QPA algorithm is derived for high
rate quantization. The results are also extended to the high
SNR regime and an explicit expression for the approximate
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Fig. 6. Capacity performance comparison between suboptimal QPA-DP
(MEPrPR) and optimal QPA-DP.

asymptotic ergodic capacity behavior in the high SNR regime
for a large number of feedback bits is also provided. Although
the presented optimal QPA design methods result in locally
optimal solutions (due to the non-convexity of the original
problem), numerical results illustrate that only 2 bits of
feedback result in capacity performance almost identical to
that of the full CSI case at the transmitter. Future work will
involve extending the results to MIMO Poisson fading chan-
nels along with consideration of other types of communication
performance measures, such as outage probability.

APPENDIX

A. Proof for Lemma 1

Note that

∂εμ(sr)

∂s
=

r

(sr)2
(ημ(sr) + 1), (33)

where ημ(sr) = 1
sr e

−(1+ μ
srλ0

)
(1+sr)(1+

1
sr )( μ

λ0
−log(1+sr)).

Then we have

∂ημ(sr)

∂s
=
re−(1+ μ

srλ0
)(1 + sr)

1
sr

(sr)3

[
f̂(sr) +

(
μ

λ0

)2

(1 + sr)
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−2
μ

λ0
(1 + sr) log(1 + sr)

]
, (34)

where f̂(sr) = −(sr)2+(1+sr) log2(1+sr). Since s ≥ 0, we

have ∂2f̂(sr)
∂s2 = 2r2(−sr+log(1+sr))

1+sr ≤ 0 and ∂f̂(sr)
∂s |s=0 = 0,

which gives ∂f̂(sr)
∂s ≤ 0. Due to f̂(sr)|s=0 = 0, we can get

f̂(sr) ≤ 0.
(1). When μ = 0, (34) becomes,

∂η0(sr)

∂s
=

re−1(1 + sr)
1
sr

(sr)3
f̂(sr) ≤ 0, s ≥ 0. (35)

Thus, η0(sr) ≤ lims→0 η0(sr) = −1, which, combining
with lims→0

∂ε0(sr)
∂s = − r

24 < 0, gives, ∂ε0(sr)
∂s < 0.

Therefore ε0(sr) is a monotonic decreasing function, and
e−1 = lims→∞ ε0(sr) ≤ ε0(sr) ≤ lims→0 ε0(sr) =

1
2 .

(2). When μ > 0, lims→0
∂εμ(sr)

∂s = ∞ and
lims→∞

∂εμ(sr)
∂s = 0, thus when s ∈ (0,∞), ∂εμ(sr)

∂s = 0
implies η(s) = −1. From the definition of ημ(sr), only when

log(1 + sr) ≥ μ
λ0

, i.e., s ∈
[
e

μ
λ0r − 1,∞

)
, ημ(sr) ≤ 0. Thus

in this case, from (34), we have,

∂ηµ(sr)

∂s

(a)

≤ re
−(1+ μ

srλ0
)
(1 + sr)

1
sr

(sr)3

[
f̂(sr)−

(
μ

λ0

)2

(1 + sr)

]

(b)
< −re

−(1+ μ
srλ0

)
(1 + sr)

1
sr

(sr)3

(
μ

λ0

)2

(1 + sr)

< 0 (36)

where (a) is obtained by applying log(1 + sr) ≥ μ
λ0

and (b)

is due to the fact that when s > 0, function f̂(sr) < 0. Thus

when s ∈
[
e

μ
λ0r − 1,∞

)
, ημ(sr) is monotonically decreasing

over s and

−∞ = lim
s→∞ ημ(sr) < ημ(sr) ≤ ημ(sr)

∣∣∣
s=e

μ
λ0r −1

= 0,

(37)

which implies that equation ημ(sr) = −1 (i.e., ∂εμ(sr)
∂s =

0, s ∈ (0,∞)) only has one solution, denoted as sM, and

sM ∈
(
e

μ
λ0r − 1,∞

)
. Therefore, we can obtain that when

s ∈ [
0, sM

]
, ∂εμ(sr)

∂s ≥ 0, and when s ∈ (
sM,∞)

, ∂εμ(sr)
∂s < 0,

which indicates that εμ(sr) is increasing when s < sM, until
it achieves its unique maximum value at sM point, and then
decreasing after s > sM. And due to εμ(sr) < ε0(sr),
lims→∞ εμ(sr) = e−1 and with finite r, lims→0 εμ(sr) =
−∞, we have −∞ < εμ(sr) <

1
2 .

B. Proof for Lemma 2

From (16), we have that each power level pj = [pμj ]
+, j =

1, . . . ,L, where pμj satisfies,

λ0E

[
Sr log

(
1 + εμ(Sr)Sr

1 + pμj Sr

)∣∣∣∣∣Rj

]
= 0, μ ≥ 0. (38)

In order to meet (38), we must have min(εμ(Sr)|Rj) ≤
pμj ≤ max(εμ(Sr)|Rj) (otherwise, (38) will become

λ0E
[
Sr log

(
1+εμ(Sr)Sr

1+pμ
j Sr

)∣∣∣Rj

]

= 0), which leads to,

[min(εμ(Sr)|Rj)]
+ ≤ pj ≤ [max(εμ(Sr)|Rj)]

+. (39)

(1) When μ = 0, according to Lemma 1, we have 1
2 =

ε0(s1r) > ε0(s2r) > · · · > ε0(sL+1) = e−1, due to 0 =
s1 < s2 < · · · < sL < sL+1 = ∞. Thus in each region
Rj , ∀j = 1, . . . ,L, ε0(sj+1r) < ε0(sr) ≤ ε0(sjr), and then
from (39), we can obtain ε0(sj+1r) < pj ≤ ε0(sjr), which
gives 1

2 ≥ p1 > · · · > pL ≥ e−1.
(2) When μ > 0, from Lemma 1, −∞ ≤ εμ(sr) ≤ 1

2 .
Then from (39), we have 0 ≤ pj ≤ 1

2 , ∀j = 1, . . . ,L. Now
we will show that if the power levels of two adjacent regions
Rj and Rj+1 (j = 1, . . . ,L − 1) satisfy pj > pj+1, then
pj > pj+1 ≥ e−1. Assume pj > pj+1 
≥ e−1, then we must
have e−1 > pj > pj+1 or pj ≥ e−1 > pj+1. For any of these
two cases, due to pj+1 < e−1, pμj+1 < e−1, and then from
(38), we must have min(εμ(Sr)|Rj+1) < e−1, otherwise, it

will lead to λ0E
[
Sr log

(
1+εμ(Sr)Sr

1+pμ
j+1Sr

)∣∣∣Rj+1

]
> 0. From

Lemma 1, εμ(sr) is a first increasing and then decreas-
ing function over s with an unique maximum point and
lims→∞ εμ(sr) = e−1, thus if ∃st such that εμ(str) < e−1,
then εμ(sr) must be monotonically increasing over [0, st].
Therefore min(εμ(Sr)|Rj+1) < e−1 and ∀s ∈ Rj < ∀s ∈
Rj+1, gives ∀s ∈ Rj , εμ(sr) < min(εμ(Sr)|Rj+1). Thus
from (39), we can get pj < [min(εμ(Sr)|Rj+1)]

+. Due
to [min(εμ(Sr)|Rj+1)]

+ < pj+1, we can conclude that
pj < pj+1, which is in contradiction with pj > pj+1.
Therefore we must have pj > pj+1 ≥ e−1.

C. Proof of Lemma 3

Let ω(sj) denote the objective function of Problem (18),
i.e.,

ω(sj) = λ0E

[
pj−1β(Sr) − β(pj−1Sr) − μ

λ0
pj−1

∣∣∣∣Rj−1

]

Pr(Rj−1) + λ0E

[
pjβ(Sr)− β(pjSr)− μ

λ0
pj

∣∣∣∣Rj

]
Pr(Rj).

(40)

According to the Fermat’s theorem, every local extremum
of the differentiable function ω(sj) on the open set (0,∞),
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satisfies ∂ω(sj)
∂sj

= 0, i.e., by using Leibniz integral rule, we
have,

∂ω(sj)

∂sj
= ϕ(sj)fS(sj) = 0, (41)

where fS(s) is the pdf of S, and

ϕ(sj) =λ0

[
pj−1β(sjr)− β(pj−1sjr) − μ

λ0
pj−1

−pjβ(sjr) + β(pjsjr) +
μ

λ0
pj

]
. (42)

Since fS(s) > 0, when s ∈ (0,∞), we have ∂ω(sj)
∂sj

= 0

equivalent to ϕ(sj) = 0.
The first and second derivative of ϕ(sj) with respect to sj

are

∂ϕ(sj)

∂sj
= pj−1A log

(
1 + sjr

1 + pj−1sjr

)
− pjA log

(
1 + sjr

1 + pjsjr

)
,

∂2ϕ(sj)

∂s2j
=

λ0r
2(pj−1 − pj)(1 − pj−1 − pj − pj−1pjsjr)

(1 + sjr)(1 + pj−1sjr)(1 + pjsjr)
,

(43)

respectively. Let s0 =
1−pj−1−pj

pj−1pjr
. From (43), we have,

(1) Case pj−1 < pj : If sj < s0, then ∂2ϕ(sj)

∂s2j
< 0; while if

sj ≥ s0, then ∂2ϕ(sj)

∂s2j
≥ 0. Thus we can obtain that ∂ϕ(sj)

∂sj
is

first decreasing over [0, s0) and then increasing over [s0,∞).

And we also have ∂ϕ(sj)
∂sj

∣∣∣
sj=0

= 0, then,

(a) If limsj→∞
∂ϕ(sj)
∂sj

< 0, i.e., pj−1 log(
1

pj−1
) <

pj log(
1
pj
), ∂ϕ(sj)

∂sj
will have only one zero-crossing point, i.e.,

sj = 0. In this case, we have ∂ϕ(sj)
∂sj

≤ 0, which implies
that ϕ(sj) is a monotonically decreasing function of sj . Since
ϕ(sj)|sj=0 = −μ(pj−1 − pj) > 0 (note that ϕ(sj)|sj=0 
= 0,
since according to Lemma 2, if μ = 0, then we must have
pj−1 > pj), and

lim
sj→∞ϕ(sj) = lim

sj→∞ sjA

(
pj−1 log

(
1

pj−1

)
− pj log

(
1

pj

))
− μ(pj−1 − pj)

= −∞, (44)

we can obtain that ϕ(sj) = 0 has only one solution, thus the
function ω(sj) has a unique maximum point.

(b) Otherwise, if pj−1 log
(

1
pj−1

)
> pj log

(
1
pj

)
, i.e.,

limsj→∞
∂ϕ(sj)
∂sj

> 0, then ∂ϕ(sj)
∂sj

will have two zero-crossing
points, i.e., sj = 0 and sj = s
 > 0, where s
 satisfies
∂ϕ(sj)
∂sj

∣∣∣
sj=s�

= 0, namely,

pj−1A log

(
1 + s
r

1 + pj−1s
r

)
− pjA log

(
1 + s
r

1 + pjs
r

)
= 0.

(45)

Therefore, we have ∂ϕ(sj)
∂sj

≤ 0 over the range [0, s
],

and ∂ϕ(sj)
∂sj

> 0 over the range (s
,∞), which gives that

the function ϕ(sj) is first decreasing over [0, s
] and then
increasing over (s
,∞). By applying (45), we have

ϕ(s
) =

λ0pj−1

(
log(1 + s
r) − 1

pj−1
log(1 + pj−1s
r)− μ

λ0

)

− λ0pj

(
log(1 + s
r)− 1

pj
log(1 + pjs
r) − μ

λ0

)
(46)

Since − 1
x log(1 + x) is monotonically increasing over x > 0,

with pj−1 < pj , we have − 1
pj−1

log(1 + pj−1s
r) <

− 1
pj

log(1 + pjs
r). Applying this result into (46), we have
ϕ(s
) < 0. Then due to ϕ(0) = −μ(pj−1 − pj) > 0 and

lim
sj→∞ϕ(sj) = lim

sj→∞ sjA

(
pj−1 log

(
1

pj−1

)
− pj log

(
1

pj

))
− μ (pj−1 − pj)

= ∞, (47)

we can get that ϕ(sj) = 0 has two solutions, which implies
that the function ω(sj) in this case has one maximum and one
minimum.

(2) Case pj−1 > pj : When sj < s0, we have ∂2ϕ(sj)

∂s2j
> 0;

while when sj ≥ s0, we have ∂2ϕ(sj)

∂s2j
≤ 0. Thus we can obtain

that the function ∂ϕ(sj)
∂sj

is first increasing over
[
0, s0

)
and then

decreasing on
[
s0,∞)

. From Lemma 2, we get 1
2 ≥ pj−1 >

pj ≥ e−1 for any μ ≥ 0, which gives pj−1 log
(

1
pj−1

)
<

pj log
(

1
pj

)
, thus ∂ϕ(sj)

∂sj

∣∣∣
sj=∞

< 0. With ∂ϕ(sj)
∂sj

∣∣∣
sj=0

= 0,

we have that∂ϕ(sj)
∂sj

has two zero-crossing points, i.e., sj = 0

and sj = s
 > 0. Therefore, we have ∂ϕ(sj)
∂sj

≥ 0 over range

[0, s
], and then ∂ϕ(sj)
∂sj

< 0 over the range (s
,∞), which
implies that the function ϕ(sj) is first increasing over [0, s
]
and then decreasing over (s
,∞). In this case, since pj−1 >
pj , we have − 1

pj−1
log(1+ pj−1s
r) > − 1

pj
log(1+ pjs
r).

Applying this result into (46), we have ϕ(s
) > 0. Then since
ϕ(0) = −μ(pj−1 − pj) ≤ 0 and

lim
sj→∞ϕ(sj) = lim

sj→∞ sjA

(
pj−1 log

(
1

pj−1

)
− pj log

(
1

pj

))
− μ(pj−1 − pj)

= −∞, (48)

we obtain that when μ = 0, ϕ(sj) = 0 has only one solution
at s ∈ (0,∞), which is the only maximum of the function
ω(sj); while when μ > 0, ϕ(sj) = 0 has two solutions,
which indicates that function ω(sj) has one minimum and
one maximum.

Therefore, based on the above analysis, we can conclude
that there exists only one maximum point in Problem (18) and
thus only one optimal solution to Problem (18). Obviously, this
optimal solution sj is obtained by solving:

ϕ(sj) = 0, with
∂ϕ(sj)

∂sj
< 0. (49)

Now we will prove that the optimal quantization thresholds
sj , ∀j = 1, . . . ,L always meet 0 < s2 < · · · < sL < ∞. As
we mentioned before, for each iteration k, given 0 < s

(k)
2 <
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· · · < s
(k)
L < ∞, the optimal

{
p
(k+1)
j

}
is obtained by (16),

i.e., p(k+1)
j =

[
pμj
]+

, where pμj is the solution of the equation,

λ0E
[
Sr log

(
1+εμ(Sr)Sr

1+pμ
j Sr

)∣∣∣R(k)
j

]
= 0. By applying the mean

value theorem (MVT) for integration, above equation can be
rewritten as,

λ0 log

(
1 + εμ(s

qr)sqr

1 + pμj s
qr

)
E
[
Sr

∣∣∣R(k)
j

]
= 0, (50)

which gives 2, pμj = εμ
(
sqjr

)
, where sqj ∈

(
s
(k)
j , s

(k)
j+1

)
and

obviously, 0 < sq1 < · · · < sqL < ∞. Thus,

p
(k+1)
j =

[
pμj
]+

=
[
εμ

(
sqjr

)]+
, ∀j = 1, . . . ,L. (51)

Then, with given
{
p
(k+1)
j

}
, we have proved that the optimal{

s
(k+1)
j

}
can be found by solving (19). ϕ

(
s
(k+1)
j

)
= 0 can

be rewritten as,

μ

λ0
= β

(
s
(k+1)
j r

)
−

β
(
p
(k+1)
j s

(k+1)
j r

)
− β

(
p
(k+1)
j−1 s

(k+1)
j r

)
p
(k+1)
j − p

(k+1)
j−1

(52)

According to the MVT, we have

β
(
p
(k+1)
j s

(k+1)
j r

)
− β

(
p
(k+1)
j−1 s

(k+1)
j r

)
p
(k+1)
j − p

(k+1)
j−1

= s
(k+1)
j r

(
1 + log

(
1 +�pjs

(k+1)
j r

))
(53)

where �pj ∈
(
min

(
p
(k+1)
j−1 , p

(k+1)
j

)
,max

(
p
(k+1)
j−1 , p

(k+1)
j

))
.

Applying (53) into (52), we can obtain,

�pj = εμ

(
s
(k+1)
j r

)
. (54)

From (51), we have,

εμ

(
s
(k+1)
j r

)
∈
(
min

([
εμ

(
sqj−1r

)]+
,
[
εμ

(
sqjr

)]+)
,

max
([

εμ
(
sqj−1r

)]+
,
[
εμ

(
sqjr

)]+))
(55)

When μ = 0, from Lemma 1, ε0(sr) is monotonically decreas-
ing in s, thus, from (55), we must have s

(k+1)
j ∈ (

sqj−1, s
q
j

)
.

While when μ > 0, from Lemma 1, (i.e., ϕ
(
s
(k+1)
j

)
= 0, )

(54) may have one or two solutions but must have only one
solution in the set

(
sqj−1, s

q
j

)
. Hence, we have proved that

only one solution of (54) satisfies (19). Next, we will show
that when μ > 0, this unique solution must belong to the set(
sqj−1, s

q
j

)
.

(1) Case p
(k+1)
j−1 < p

(k+1)
j :

a) If p
(k+1)
j−1 log

(
1

p
(k+1)
j−1

)
< p

(k+1)
j log

(
1

p
(k+1)
j

)
, we have

shown that in this case,
∂ϕ(s

(k+1)
j )

∂s
(k+1)
j

< 0, s
(k+1)
j > 0 and

ϕ
(
s
(k+1)
j

)
= 0 only has one solution. Then we must have

the solution s
(k+1)
j ∈ (

sqj−1, s
q
j

)
.

2Note that there exists at most one pµj for which there may exist two

different sqj in the set
(
s
(k)
j , s

(k)
j+1

)
which meets pµj = εµ

(
sqjr

)
, but it

does not affect the following analysis.

b) If p
(k+1)
j−1 log

(
1

p
(k+1)
j−1

)
< p

(k+1)
j log

(
1

p
(k+1)
j

)
, in this

case, we have proved that ϕ
(
s
(k+1)
j

)
= 0 has two so-

lutions, denoted as s1j and s2j and s1j < s2j , and only
∂ϕ(s

(k+1)
j )

∂s
(k+1)
j

∣∣∣∣
s
(k+1)
j =s1j

< 0, namely, only s1j is the maximum

point of ω
(
s
(k+1)
j

)
. Let sM denote the maximum point of

the function εμ(sr), then according to Lemma 1 and (54), we
have s1j < sM < s2j . Since p

(k+1)
j−1 < p

(k+1)
j , we must have

sqj−1 < s1j < sM (otherwise if sqj−1 ≥ s1j , then s2j must belong
to the set

(
sqj−1, s

q
j

)
, thus we have s1j ≤ sqj−1 < s2j < sqj ,

which implies p
(k+1)
j−1 > p

(k+1)
j ), and sqj > s1j (otherwise,

none of s1j and s2j would exist in the set
(
sqj−1, s

q
j

)
), which

gives s1j ∈ (
sqj−1, s

q
j

)
.

(2) Case p
(k+1)
j−1 > p

(k+1)
j : The proof follows along sim-

ilar lines and is omitted to save space. Therefore, the op-
timal

{
s
(k+1)
j

}
obtained by (19) always satisfies s

(k+1)
j ∈(

sqj−1, s
q
j

)
, ∀j = 2, . . . ,L, and then since 0 < sq1 < · · · <

sqL < ∞, we have 0 < s
(k+1)
2 < · · · < s

(k+1)
L < ∞. This

completes the proof for Lemma 3.

D. Proof for Lemma 5

When μ = 0, from Lemma 2, it is obvious that pj > 0, j =
1, . . . ,L. When μ > 0, from (21b), we have that the optimal
quantized power for region Rj , j = 1, . . . ,L, is pj =

[
pμj
]+

,
where pμj is determined by solving the equation

λ0E

[
Sr log

(
1 + εμ(Sr)Sr

1 + pμj Sr

)∣∣∣∣∣Rj

]
= 0, (56)

which also can be expressed as,

E
[
Sr log

(
1 + pμj Sr

)∣∣Rj

]
= E

[
Sr

(
−1 +

(
1 +

1

Sr

)
log(1 + Sr)

)
− μ

λ0

∣∣∣∣Rj

]
.

(57)

If E
[
Sr

(−1 +
(
1 + 1

Sr

)
log(1 + Sr)

)− μ
λ0

∣∣∣Rj

]
≤ 0, then

to satisfy the equation (57), we must have pμj ≤ 0,

which implies pj =
[
pμj
]+

= 0. On the other hand, if

E
[
Sr

(−1 +
(
1 + 1

Sr

)
log(1 + Sr)

)− μ
λ0

∣∣∣Rj

]
> 0, pμj has

to be strictly positive in order to meet the equation (57), which
gives pj =

[
pμj
]+

> 0.
From Lemma 4, we have ∀j = 2, . . . ,L,

sjr

(
−1 +

(
1 +

1

sjr

)
log(1 + sjr)

)
− μ

λ0
≥ 0. (58)

Let y(s) = sr
(−1 +

(
1 + 1

sr

)
log(1 + sr)

) − μ
λ0

. It is easy

to get that ∂y(s)
∂s = r log(1 + sr) > 0 for s > 0, thus function

y(s) is monotonically increasing over variable s ∈ (0,∞).
Then with (58), we obtain that y(s2) ≥ 0 and for s ∈ (s2,∞),

sr

(
−1 +

(
1 +

1

sr

)
log(1 + sr)

)
− μ

λ0
> 0, (59)
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which implies, ∀j = 2, . . . ,L,

E

[
Sr

(
−1 +

(
1 +

1

Sr

)
log(1 + Sr)

)
− μ

λ0

∣∣∣∣Rj

]
> 0.

(60)

Therefore, we have pj > 0, ∀j = 2, . . . ,L, i.e., the optimal
quantized powers in the last L−1 regions are strictly positive.
However due to y(0) = − μ

λ0
< 0 and y(s2) ≥ 0, E [y(S)|R1]

could be positive, negative or zero, implying the power level
in the first region could be positive or zero, namely, p1 ≥ 0.

Now we will show that the optimal power levels of case
μ > 0 always satisfy 0 ≤ p1 < · · · < pm−1 < pm
and pm > pm+1 > · · · > pL ≥ e−1, where pm is the
largest power level. By applying the MVT for integration,
(56) becomes, λ0 log

(
1+εμ(s

qr)sqr
1+pμ

j s
qr

)
E [Sr|Rj ] = 0, which

gives pμj = εμ
(
sqjr

)
, ∀j = 2, . . . ,L, with sqj ∈ (sj , sj+1).

Obviously, 0 < sq1 < · · · < sqL < ∞. We have proved
above that all the power levels are always strictly positive
except p1, which could be zero or positive (i.e., p1 ≥ 0),
thus, p1 = [εμ (s

q
1r)]

+
, pj = εμ

(
sqjr

)
, ∀j = 2, . . . ,L.

According to Lemma 1, when μ > 0, εμ(sr) is first increasing
in s ∈ [

0, sM
]

(where sM is the unique maximum point
of εμ(sr)), and then decreasing over s ∈ (

sM,∞)
with

lims→∞ εμ(sr) = e−1. Without loss of generality, assuming
sM ∈ [sn, sn+1), n ∈ [1,L], we must have 0 < sq1 <
· · · < sqn−1 < sn ≤ sM and sM < sn+1 < sqn+1 · · · <
sqL < ∞, which gives 0 ≤ p1 < · · · < pn−1 and
pn+1 > · · · > pL ≥ e−1, respectively. If pn−1 < pn
and pn > pn+1, then 0 ≤ p1 < · · · < pn−1 < pn and
pn > pn+1 > · · · > pL ≥ e−1. Whereas, if pn < pn−1

(or pn < pn+1), then we must have sM < sqn < sn+1

(or sn < sqn < sM ) , which implies pn > pn+1 (or
pn > pn−1), thus, we obtain 0 ≤ p1 < . . . pn−2 < pn−1 and
pn−1 > pn > · · · > pL ≥ e−1 (or 0 ≤ p1 < · · · < pn < pn+1

and pn+1 > pn+2 > · · · > pL ≥ e−1). Any of these cases can
be written in the form of 0 ≤ p1 < · · · < pm−1 < pm and
pm > pm+1 > · · · > pL ≥ e−1, where pm,m ∈ [1,L] is the
largest power level.

E. Proof for Lemma 6

First of all, we will prove that as L → ∞, p1 → εμ(str)
where st = limL→∞ s2 ≥ slb. From Remark 3, sL > · · · >
s2 ≥ slb > 0 and εμ(slb) = 0. When L → ∞, according
to the Monotonic Sequence Theorem, this strictly monotonic
and lower bounded sequence {sj}Lj=2, must converge to its
greatest lower bound st = limL→∞ s2. Consequently, given an
arbitrarily small ε > 0, we can always find a sufficiently large
L such that s3−s2 < ε. Therefore, when L → ∞, s3−s2 → 0.
From (23b) with j = 2, we can obtain p2 = εμ (s

q
2r), where

sq2 ∈ (s2, s3), then as L → ∞, s3 − s2 → 0 implies sq2 → st.
Therefore, p2 → εμ(str), as L → ∞. By applying the MVT,
the (23a) with j = 2 can be rewritten as �p2 = εμ(s2r),
where �p2 satisfies

β(p2s2r)− β(p1s2r)

p2 − p1
=

∂β(ps2r)

∂p

∣∣∣∣
p=
p2

, (61)

and �p2 ∈ (min(p1, p2),max(p1, p2)). Obviously,
limL→∞ �p2 = εμ(str) = limL→∞ p2. Let h = p2−p1, and

then as L → ∞, (61) becomes,

lim
L→∞

β(p2s2r)− β((p2 − h)s2r)

h
=

∂β(ps2r)

∂p

∣∣∣∣
p=p2

, (62)

which gives limL→∞ h = 0, i.e., limL→∞ p1 = limL→∞ p2 =
εμ(str).

Now suppose p1 > 0 for any given arbitrarily large L, which
implies st > slb. Then p1 must satisfy the optimality condition
λ0E

[
Sr log

(
1+εμ(Sr)Sr

1+p1Sr

)∣∣∣R1

]
= 0. For any given value

of L, the region R1 can be divided into two parts R11 and
R12, where R11 = [0, st) and R12 = [st, s2). As L becomes
arbitrarily large, R12 becomes vanishingly small, and then

λ0E

[
Sr log

(
1 + εμ(Sr)Sr

1 + p1Sr

)∣∣∣∣R1

]

→ λ0E

[
Sr log

(
1 + εμ(Sr)Sr

1 + εμ(str)Sr

)∣∣∣∣R11

]
< 0, (63)

which is a contradiction to the optimality condition for p1 > 0.
Thus, p1 must be zero, which implies p1 = εμ(slbr) for a
sufficiently large L. Since limL→∞ p1 = εμ(str) = εμ(slbr),
we must have limL→∞ s2 = st = slb.
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discrete code rates and power levels,” IEEE Trans. Commun., vol. 51,
no. 12, pp. 2115–2125, Dec. 2003.

[12] K. Huang and R. Zhang “Cooperative feedback for multiantenna cog-
nitive radio networks,” IEEE Trans. Signal Process., vol. 59, no. 2,
pp. 747–758, Feb. 2011.

[13] R. Cendrillon, W. Yu, M. Noonen, J. Verlinden, and T. Bostoen,
“Optimal multiuser spectrum balancing for digital subscriber lines,”
IEEE Trans. Commun., vol. 54, no. 5, pp. 922–933, May 2006.

Authorized licensed use limited to: Maynooth University Library. Downloaded on April 09,2021 at 14:17:04 UTC from IEEE Xplore.  Restrictions apply. 



4356 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 61, NO. 10, OCTOBER 2013

Yuanyuan He (S’08-M’12) received her B.Eng.
degree in communication engineering from Yan-
shan University, China, in 2005, the M.Eng. degree
in electronic engineering from Harbin Institute of
Technology, China, in 2007, and the Ph.D. de-
gree in the Department of Electrical and Electronic
Engineering, University of Melbourne, Melbourne,
Australia, in 2011, where she is has been a Post-
doctoral Research Fellow since 2011. Her research
interests lie in the area of wireless communications
including resource allocation, cognitive radio, and

limited feedback.

Subhrakanti Dey (SM’06) was born in India in
1968. He received the B.Tech. and M.Tech. degrees
from the Department of Electronics and Electri-
cal Communication Engineering, Indian Institute of
Technology, Kharagpur, India, in 1991 and 1993,
respectively, and the Ph.D. degree from the Depart-
ment of Systems Engineering, Research School of
Information Sciences and Engineering, Australian
National University, Canberra, Australia, in 1996.

He has been with the Department of Electrical and
Electronic Engineering, University of Melbourne,

Parkville, Australia, since February 2000, where he is currently a full
Professor. From September 1995 to September 1997 and September 1998 to
February 2000, he was a postdoctoral Research Fellow with the Department
of Systems Engineering, Australian National University. From September
1997 to September 1998, he was a post-doctoral Research Associate with
the Institute for Systems Research, University of Maryland, College Park.
His current research interests include networked control systems, wireless
communications and networks, signal processing for sensor networks, and
stochastic and adaptive estimation and control.

Prof. Dey currently serves on the Editorial Board of Elsevier Systems and
Control Letters. He was also an Associate Editor for the IEEE TRANS-
ACTIONS ON SIGNAL PROCESSING and the IEEE TRANSACTIONS ON

AUTOMATIC CONTROL. He is a Senior Member of IEEE.

Authorized licensed use limited to: Maynooth University Library. Downloaded on April 09,2021 at 14:17:04 UTC from IEEE Xplore.  Restrictions apply. 


