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Evaluation of the overset grid method for control studies of
wave energy converters in OpenFOAM numerical wave tanks

Christian Windt · Josh Davidson · Dominic D.J. Chandar · Nicolás

Faedo · John V. Ringwood

Abstract Computational fluid dynamics (CFD) based

numerical wave tanks are valuable tools for the de-

velopment and evaluation of energy maximising con-

trol systems for wave energy converters (WECs). How-

ever, the exaggerated body motion amplitude, which

can be induced by the energy maximising control sys-

tem, challenges the commonly applied mesh morph-

ing method in CFD, due to the resulting mesh distor-

tion and subsequent numerical instability. A more ad-

vanced mesh motion method is the overset grid method,

which can inherently handle large amplitude body mo-

tions and has recently become freely available in the

open source CFD software OpenFOAM. The overset

grid method can, therefore, potentially eliminate the

mesh distortion problem, hindering the simulation of

WECs under controlled conditions. To evaluate the cap-

ability of the overset grid method for control studies of

WECs in an OpenFOAM numerical wave tank, this pa-

per presents a detailed comparison of the overset grid

and mesh morphing methods, considering five test cases

of increasing complexity. The test cases range from a

static equilibrium test to the modelling of a controlled

WEC, and good agreement is demonstrated between

the two mesh motion methods, except for the case of

the controlled WEC, when the device motion becomes

large, and the mesh morphing simulation crashes. The
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runtimes for overset grid simulations are observed to be

approximately double the time required for the mesh

morphing simulations.

Keywords Mesh motion, Overset grids, Numerical

wave tank, Energy Maximising Control, OpenFOAM

1 Introduction

Throughout the last decades, an increased effort, in the

research and development (R&D) of novel technologies

to harness various renewable energy resources, can be

observed. Among the developing technologies, offshore

renewable energies, and specifically ocean wave energy,

show significant potential to contribute to the global

energy supply (Falcao, 2010).

In wave energy research, engineers rely on small

scale physical wave tank tests, small and/or full scale

numerical wave tank tests, as well as large scale open

ocean trials. While open ocean trials are associated with

significant costs for the construction, deployment, oper-

ation, and maintenance of the prototype, experiments

in physical wave tanks and numerical wave tanks are

cheaper to conduct and, furthermore, allow testing in

a more controlled environment. Thus, at low to mid

technology readiness levels (TRLs) (Mankins, 1995),

physical wave tanks and numerical wave tanks are the

most important tools for the WEC development, com-

plementing each other. Generally, by testing in a real

physical environment, physical wave tanks allow all the

relevant details of the wave-structure interaction (WSI)

to be captured. However, although still cheaper com-

pared to open ocean trials, physical wave tank exper-

iments are associated with higher costs compared to

numerical wave tank experiments, when many design

iterations are required (Kim et al., 2016). The main cost
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drivers are instrumentation, construction of the proto-

type, test facilities, and staff. Additionally, the accuracy

of physical wave tank experiments potentially suffers

from peculiarities of the test facility, such as reflections

from the tank walls, unwanted friction in mechanical

restraints/constraints, measurement errors/noise, and

scaling effects.

Overcoming the drawbacks of high costs, measure-

ment noise, mechanical friction (Windt et al., 2019c)

and, to a great extend, scaling effects (Windt et al.,

2019f), numerical wave tanks provide powerful tools for

the analysis of WECs. A range of numerical models,

with varying computational cost and fidelity, are avail-

able for WSI problems (Penalba et al., 2017a). Lower

fidelity models, based on linear hydrodynamic mod-

elling techniques, such as boundary element method-

based numerical wave tanks, are computationally ef-

ficient; however, the accuracy of low fidelity models

decreases drastically when the amplitude of the waves

and the WEC motion increases, and, thereby, violates

the validity of the underlying linearising assumptions

(Giorgi and Ringwood, 2017). To broaden the range

of validity, linear models can be extended to capture

non–linear effects, such as viscous drag or non–linear

Froude–Krylov forces. Next, mid fidelity models, such

as fully non–linear potential flow solvers, still assume ir-

rotational and inviscid fluid but are able to capture non-

linear free surface deformations. Finally, higher fidelity

models, such as CFD–based numerical wave tanks, de-

liver accurate results over a wide range of test condi-

tions by including the relevant non–linear hydrodynamic

effects, at the expense of increased computational cost

(Folley, 2016).

The relative strengths and weaknesses of the various

numerical models can be leveraged at different stages

of the device R&D. During early stage development,

lower-fidelity models are suitable for parametric stud-

ies, where a vast number of simulations are required to

cover a broad parameter space. At higher TRLs, the

system under investigation becomes more refined and a

higher level of accuracy is required to evaluate the per-

formance of the system. The use of a high fidelity model

has been shown to be particularly vital for the accur-

ate assessment of energy maximising control systems,

which drive the WEC into resonance with the incom-

ing wave field, resulting in large amplitude motions (see

Figure 1), beyond the limits within which lower fidelity

models are reliable (Davidson et al., 2018; Giorgi et al.,

2016; Ringwood et al., 2014).
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Figure 1: Operational space of an uncontrolled and controlled
WEC device (Windt et al., 2019b), with zero initial conditions
and under regular wave excitation: The linear velocity of the
WEC in the heave degree of freedom is plotted over the WEC
position in the heave degree of freedom.

Although the fidelity of a CFD–based numerical wave

tank is well suited for the evaluation of energy maxim-

ising control system (Davidson et al., 2018), large amp-

litude body motion can introduce numerical instabilit-

ies due to the required, explicit, accommodation of the

device motion in the finite volume domain. A number of

different dynamic mesh motion methods are available,

whose usage and suitability for WEC experiments are

reviewed by Windt et al. (2018b). Among these meth-

ods, the overset grid method shows particular poten-

tial for handling large amplitude, multi-degree of free-

dom, WEC motion (Windt et al., 2018a, 2019a). The

overset grid method, implemented in the OpenFOAM

CFD toolbox opera, developed at the Institute Of High

Performance Computing, Singapore (Chandar, 2019),

is used here to assess its feasibility for WEC control

studies.

1.1 Related studies

To date, only a relatively small number of studies have

employed the overset grid method for CFD–based nu-

merical wave tank WEC experiments (Stansby et al.,

2015; Coiro et al., 2016; Elhanafi et al., 2017a,b; Bharath

et al., 2018; Windt et al., 2018a; Chen et al., 2019a,b;

Coe et al., 2019; Windt et al., 2019a; van Rij et al.,

2019). The limited use of the overset grid method in

the wave energy field can be attributed to:

(1) The significantly higher computational cost (Jung

and Kwon, 2009)

(2) The introduction of numerical errors in the volume

of fluid environment, such as violation of mass con-

servation (Chandar, 2019; Ferziger and Peric, 2001)

(3) The limited availability of the overset grid method

in commonly used CFD software.
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Until recently, the overset grid method was only avail-

able in commercial CFD software packages. All of the

initial WEC–related studies, which employed the over-

set grid method, were implemented in the commercial

CFD solver STAR-CCM+ (STAR-CCM+, 2019).

The first study was conducted by Stansby et al.

(2015), investigating drag effects on the performance of

the M4 WEC for different floater shapes. Forced oscil-

lation tests were performed in a CFD–based numerical

wave tank to determine the drag coefficient term, Cd, in

the Morrison equation (Morison et al., 1950). The au-

thors point out, that a decrease in Cd can be achieved

by changing the shape of the floater, which, in turn, res-

ults in better performance. Some discrepancy is found

between the experimental and numerical results for Cd;

however, no quantitative validation of the CFD–based

numerical wave tank is presented.

Similarly, Coiro et al. (2016) perform CFD–based

numerical wave tank experiments, employing the over-

set grid method, to evaluate the influence of viscous

effects on the performance of a point–pivoted WEC.

The authors indicate worrying mismatch, compared to

physical wave tank data, for some system characterist-

ics, such as the natural frequency of the WEC. Unfor-

tunately, no further investigation of the cause of the

mismatch is provided.

Elhanafi et al. (2017a,b) investigate the performance

and survivability of a floating-moored oscillating water

column device. Numerical results for the device motion,

generated power, and mooring line tension, for a 1:50

scale model, are compared to physical wave tank data.

The authors find good agreement between the numer-

ical and experimental results, with an overall maximum

normalised root mean square deviation of 14.6%.

Bharath et al. (2018) perform numerical simulation

of diffraction and radiation experiments, for a spherical

WEC, operating in heave and surge degrees of freedom

(DoF). Numerical results from CFD simulations are

compared to lower fidelity numerical models, as well as

physical wave tank data. The authors find good agree-

ment between the CFD–based numerical wave tank and

physical wave tank results, and identify free surface ef-

fects as the main cause of differences between CFD-

based and lower fidelity numerical models.

Coe et al. (2019) perform a design-load analysis of a

two-body WEC, the Triton, employing the overset grid

method to account for the relative motion of the two

bodies. Monochromatic and focused waves are modelled

to analyse design-load conditions, showing that focused

waves result in larger loads, compared to equivalent

monochromatic waves.

Also performing a design load analysis, van Rij et al.

(2019) consider the so–called RM3 WEC. The authors

evaluate structural loads on the device at three differ-

ent levels of computational fidelity: low–, mid–, and

high–fidelity. For the high–fidelity simulations, the CFD

solver is coupled with a finite element solver, for which

good agreement between experimental and numerical

results is found. The authors conclude that the numer-

ical model can deliver reliable design load data.

More recently, the availability of the overset grid

method in CFD software has been improved via the

code release of the overset grid method for the open-

source CFD toolbox OpenFOAM v1706 and later, mak-

ing it freely available to a wider user community. How-

ever, overset grids in OpenFOAM have, to date, only

been applied for WEC experiments by Windt et al.

(2018a, 2019a) and Chen et al. (2019a,b).

Chen et al. (2019a) show a number of different hy-

drodynamic free-surface problems, modelled using the

overset grid method, implemented in OpenFOAM v1706.

A free decay test of a locked self-reacting floating point

absorber is modelled. A qualitative and quantitative

analysis is presented for the radiated waves and the

heave decay, respectively. For the heave decay, suffi-

cient agreement with the available experimental data

is found.

Chen et al. (2019b) furthermore present a contri-

bution to the Blind Test Series 3 of the Collaborative

Computational Project in Wave Structure Interaction,

using the overset grid method, implemented in Open-

FOAM v1706. Since experimental data was inaccessible

at the time of publication, no validation is presented.

In a previous study (Windt et al., 2018a) by the

authors of the present paper, the performance of the

overset implementation in OpenFOAM version v1706 is
assessed, comparing free decay experiments of a scaled

model of the Wavestar WEC against physical wave

tank experiments. Major drawbacks, in terms of accur-

acy of the solution, computational overhead, and par-

allelisation of the solution process are revealed. Sub-

sequent to the publication by Windt et al. (2018a),

improvements to the overset grid method have been

implemented and released in OpenFOAM v1712 and

v1812. Namely, improved parallel computation through

better performance of the momentum predictor and re-

vised decomposition tolerances in v1712 (ESI, 2017),

as well as revised pressure-velocity coupling in v1812

(ESI, 2018). The updated overset grid method in v1812

is assessed by Windt et al. (2019a), finding a significant

improvement compared to the initial v1706 implement-

ation assessed (Windt et al., 2018a) and, thus, showing

potential for the application of WEC experiments, spe-

cifically for control studies. In (Windt et al., 2019a),

the overset implementation in v1812 is also compared

to the in-house overset toolbox, opera (Chandar, 2019).
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While the two overset implementations are found to dis-

play good agreement in terms of WEC motion, opera

shows considerably better computational efficiency.

1.2 Objectives

The objectives of the current paper stem from the find-

ings by Windt et al. (2019a), which identify the follow-

ing as pertinent future work:

a) Further evaluation of the opera overset grid imple-

mentation in OpenFOAM

b) The application of the overset grid method to WEC

control studies

The preliminary study by Windt et al. (2019a) only

presents a single test case when comparing the res-

ults between the mesh morphing and the overset grid

method, considering the motion of an uncontrolled WEC

subjected to an irregular wave series. The current paper

provides more in–depth comparative studies, based on

an array of test cases with increasing complexity: (1) a

static equilibrium test, (2) a heave free decay test, (3)

a wave excitation force test, (4) a wave induced motion

test of an uncontrolled device in regular waves, and (5)

a wave induced motion test of a controlled device in ir-

regular waves. This paper presents the first study mod-

elling a moored point-absorber type WEC, under con-

trolled conditions, in the OpenFOAM environment with

overset grids. The employed controller is designed based

on a recently proposed moment-based control strategy

proposed by Faedo et al. (2018).

1.3 Outline of the paper

The remainder of the paper is organised as follows. Sec-

tion 2 briefly introduces the two dynamic mesh mo-

tion methods, mesh morphing and overset grids, used

throughout this study. Subsequently, Section 3 details

the case studies, while the CFD–based numerical wave

tank setup is described in Section 4. Results of the

comparative study between mesh morphing and overset

grids for the five assessment test cases are presented and

discussed in Section 5. Finally, conclusions are drawn

in Section 6.

2 Dynamic mesh motion methods

Several dynamic mesh motion methods are available to

accommodate moving bodies in CFD–based numerical

wave tank simulations. For WEC simulations, the re-

view by Windt et al. (2018b) identifies mesh morph-

ing as the most commonly used dynamic mesh mo-

tion method, due to its relative simplicity and general

applicability. More advanced methods are re-meshing,

sliding mesh interfaces, or overset grids. The latter is at-

tracting increased attention, due to its capability of eas-

ily handling multi-body, multi-DoF motion with arbit-

rarily large amplitudes, which opens the way for WEC

experiments that were previously infeasible in CFD–

based numerical wave tanks, as discussed by Davidson

et al. (2019).

This section will introduce the two dynamic mesh

motion methods employed in this paper, i.e. mesh morph-

ing (Section 2.1) and overset grids (Section 2.2). For

further insight, the interested reader is referred to the

presented references.

2.1 Mesh Morphing

In a finite volume method algorithm, if grid connectiv-

ity should be retained (meaning no topological changes),

mesh morphing is the classical method to accommodate

body motion in the computational domain. In the six-

DoFRigidBodyMotion solver in OpenFOAM, the spher-

ical linear interpolation (SLERP) algorithm is imple-

mented to calculated the mesh displacement based on

the distance of a cell to the moving body, which gives

control over the grid quality during mesh deformation

(OpenFOAM Foundation, 2014). As depicted in Fig.

2, the displacement of the body leads to a deforma-

tion of single control volumes, while the total volume

of all control volumes in the domain remains constant

throughout the simulation. The user specifies an inner

and outer distance, between which mesh deformation

is allowed and prohibited elsewhere (see Figure 2).

For large translational WEC displacements, moder-

ate rotational WEC displacements, or multiple bodies

moving in close proximity, the deformation of the ori-

ginal, good quality, mesh can lead to poor grid quality,

such as large aspect ratios and/or highly skewed, non-

orthogonal cells, resulting in numerical instability and,

ultimately, causing the simulation to crash.

The reduction in mesh quality depends on the layout

of the numerical domain, the choice of the inner and

outer distances, and the amplitude of the body motion.

If the amplitude of the body motion is (roughly) known

a priori, the simulation can be set up such that the

likelihood of numerical instability from mesh distortion

is reduced. However, if the dynamics are not known

a priori, time consuming preliminary studies must be

performed.
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This weakness of the mesh morphing method, in

handling large displacements, limits the range of allow-

able motion in WEC experiments. This is especially

true for rotational DoFs, which commonly forces stud-

ies to constrain rotational modes of motion and consider

WECs moving only in heave, for example. Certain sea

states, or control settings, which result in large resonant

WEC motions, can not be simulated, due to the numer-

ical instability caused by the degradation in mesh qual-

ity. However, it is these sea states and conditions where

the CFD–based numerical wave tank is required most,

since the large resonant motions lead to non–linearities,

not captured by lower fidelity simulation models

Inner Distance

Outer Distance

Inner Distance

Outer Distance

(a) t = 0 (b) t = 1

Figure 2: Idealised illustration of the mesh morphing method.
In the area between inner and outer distance mesh deforma-
tion is allowed

2.2 Overset Grids

In the overset grid method, (at least) two grids (back-

ground and body-fitted) are defined, which may arbit-

rarily overlay each other (see Figure 3). The different

grids are internally static, thereby retaining their ori-

ginal structure and quality, but are allowed to move

relative to each other. In order to pass information

between the different grids, interpolation must be per-

formed. The overset grid method can be split into the

four sequential steps:

1. Identification of hole cells

2. Identification of fringe cells

3. Identification of donor cells

4. Interpolation between fringe and donor cells

Hole cells embrace cells in the background grid, lying

inside the moving body. These cells are marked and

blanked out during the solution process. This step is

the main cause for the extensive computational cost

of the overset grid method (Thompson, 1999). In the

second step, cells adjacent to hole cells are identified as

fringe cells. Likewise, cells at the outer boundary of the

body-fitted grid are also identified as fringe cells. These

cells are used as boundary cells in the solution pro-

cedure. Boundary values for fringe cells are determined

through solution interpolation. In the third step, the

interpolation partners on both grids, the donor cells,

are identified. Lastly, interpolation between fringe and

donor cells is performed. For dynamic simulation, all

steps have to be performed at every time step. The

quality of the numerical results is directly impacted by

these four steps, and therefore depends on the employed

interpolation scheme and the problem discretisation in

the background and body–fitted grid.

The major advantage of the overset method, is that

large amplitude motion in multiple DoFs is possible,

with the mesh structure and quality remaining constant

throughout the simulation. This has been used, for ex-

ample, to simulate ship motion, with a moving rudder

and a spinning propeller, using separate overset grids

for the hull, rudder and propeller (Shen et al., 2015).

The disadvantage of the overset grid method is the

increase in computational time, due to steps (1)-(4) de-

scribed above. Additionally, interpolation of field vari-

ables (e.g. α, p, etc.) between grids can lead to con-

servation and convergence issues, and represents the

biggest challenge of the overset grid method (Ferziger

and Peric, 2001). For multi-phase problems, the conser-

vation issues can results in artificial water convection,

indicated by a change of the water level. For a detailed

analysis of interpolation strategies and their implica-

tions on the solution accuracy, the interested reader is

referred to Chandar (2019).

Figure 3: Illustration of the overset grid method. Background
mesh in black; overset mesh in red

3 Case Studies

This section presents the case studies, used to assess the

performance of the opera overset grid method, and to

model a WEC under controlled conditions. Section 3.1

describes the considered WEC, Section 3.2 presents the

input waves, used for the different WSI simulations, and

Section 3.3 details the proposed tests for the assessment

of the overset grid method.
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3.1 WEC device

The WEC device is based on the system considered for

the Blind Test Series 3 of the Collaborative Compu-

tational Project in Wave Structure Interaction (Rans-

ley et al., 2019), which comprises an axisymmetric, cyl-

indrical buoy, featuring a sharp-cornered bottom and a

moon-pool (see Figure 4). All relevant geometrical di-

mensions of the WEC are shown in Figure 4 and the

inertial properties listed in Table 1. The buoy is moored

to the tank floor, using a linear spring, with a stiffness

of 67N m−1. A mooring pretension, based on the spring

stiffness, the draft, and buoyancy properties of the sys-

tem, of 31.55N is measured. It should be noted that the

presented WEC device serves as a realistic example for

the present study; however, no comparison to experi-

mental data is presented herein.

0.577m

x

z

0.289m

0.5m

0.152m

3.0m

0.33m

2.67m

Figure 4: Photograph and schematic of the considered WEC,
including the main dimensions.

Table 1: Inertial properties of the considered WEC

Property Unit Value

Mass [kg] 61.459
Ixx [kg m2] 3.56
Iyy [kg m2] 3.56
Izz [kg m2] 3.298

3.2 Input waves

In the case studies, both regular and irregular, JON-

SWAP, sea states are considered, with a (significant)

wave height of Hs = 0.12m and (peak) period of Tp =

1.94s. The wave characteristics are chosen based on the

scatter diagram of the AMETS test site in Bellmullet,

Co. Mayo, off the West Coast of Ireland. Compared

to other test site (e.g. BIMEP, SEMREV), AMETS is

characterised by relatively large wave heights (Penalba

et al., 2017b; Atan et al., 2016). A full scale irregular sea

state1 with a significant wave height, Hs, of 3.5m, and

a peak period, Tp, of 10.6s shows the highest occurrence

(Sharkey et al., 2011).

For the Blind Test Series 3, the WEC device was

tested in a physical wave tank with 3m water depth.

Thus, Froude scaling with a scaling factor of 1/30th is

applied, to retain deep water conditions of the AMETS

site. This results in the scaled Hs of 0.12m, and a Tp of

1.94s.

Time traces of the recorded free surface elevation,

measured in the CFD–based numerical wave tank at

the intended WEC location, during a preliminary wave-

only simulation, as well as the according spectral dens-

ity distribution, are shown in Figures 5 a) and b), re-

spectively, for the regular sea state, and for the irregular

sea state in Figures 6 a) and b), respectively.

3.3 Assessment of the overset grid method

For the assessment of the overset grid method, five

different test cases, of increasing complexity, are con-

sidered, detailed in Sections 3.3.1 - 3.3.5.

3.3.1 Static equilibrium test

To test the numerical stability of the solver, a simple

test case of a floating WEC initialised in its equilib-

rium position, without external excitation (e.g. input

waves), is simulated for a duration of 10s. The sim-

ulated body position and the resulting hydrodynamic
forces are compared between the mesh morphing and

overset grid methods.

3.3.2 Free decay test

In a next test case, the WEC is initialised away from

its equilibrium position, in the form of an initial heave

displacement of 0.05m. No input waves are considered

for the test case, so that an oscillatory, decaying, motion

around the device’s equilibrium position is expected.

Again, the simulated body motions and the resulting

hydrodynamic forces are compared between the mesh

morphing and overset grid methods.

1 Unlike a regular sea state, an irregular sea state refers
to a free surface elevation time trace which is composed of
a finite sum of harmonics of a sufficiently small fundamental
frequency ω0 (Mérigaud and Ringwood, 2017), serving as a
numerical approximation to real panchromatic (continuous
spectrum) seas.
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Figure 5: Surface elevation time trace and the corresponding
spectral density distribution of the regular, 2nd order Stokes
wave
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Figure 6: Surface elevation time trace and the corresponding
spectral density distribution of the irregular sea state

3.3.3 Wave excitation forces test

To introduce WSI in the assessment of the overset grid

method, wave excitation force experiments are considered.

Regular waves are created by a numerical wave maker,

propagate through the domain, and interact with the

WEC device, which is held fixed at its equilibrium po-

sition. For the assessment of the overset grid method,

the excitation forces on the body are post-processed

and compared with results from the mesh morphing

method. Holding the body fixed in this test eliminates

any dynamic mesh motion from the experiment, there-

fore, any difference between the two sets of results in-

dicates interpolation errors in the overset grid method

between the background and overset mesh.

3.3.4 Wave induced motion – uncontrolled WEC

As a first test of wave induced WEC motion, regular

waves are created by a numerical wave maker, similar

to the wave excitation force test, propagate through

the domain, and interact with the WEC device. How-

ever, in this test case, the uncontrolled WEC device is

now allowed to move in three DoF, i.e. heave, surge,

and pitch. The simulated body motions and the hydro-

dynamic forces are compared between the mesh morph-

ing and overset grid methods.

3.3.5 Wave induced motion – controlled WEC

Finally, the performance of the overset grid method is

assessed for a WEC in operational conditions. A power

take-off (PTO) system is implemented in the CFD–

based numerical wave tank as a linear spring-damper

system. The implementation of the PTO allows the

WEC to be controlled using a reactive output-feedback

controller.

The energy maximising optimal controller, considered

in this study, is synthesised in an output-feedback form2,

using both displacement and velocity of the device as

measurable variables. To be precise, an optimal control

law u : R+ −→ R written in a parametric form

u(t) = −kuz(t)− buż(t), (1)

with H = {ku, bu} ⊂ R, is applied to the WEC, real-

ised by means of the PTO system, where z(t) and ż(t)

represent the heave displacement and velocity of the

device, respectively. This set of energy maximising op-

timal parameters H is computed using the moment-

based optimal control framework developed by Faedo

et al. (2018). Briefly summarised, this model-based

strategy uses an efficient parametrisation of the sys-

tem variables in terms of the so-called moments of the

analysed system, which are intrinsically related to the

steady-state response mapping of the WEC for a given

wave input (Faedo et al., 2018; Windt et al., 2019h).

The resulting optimisation procedure guarantees max-

imum power extraction from a given sea state for the

parametric form (1), while securing the internal stabil-

ity of the closed-loop (in the Lyapunov sense (Gold-

hirsch et al., 1987)), as a direct consequence of this

moment-based parametrisation and the system-theoretic

approach considered.

To assess the influence of the controller on the device

dynamics, and, ultimately, on the dynamic mesh mo-

tion method, simulations of a uncontrolled (i.e. no PTO)

and controlled WEC are performed and compared us-

ing mesh morphing and overset grids. For these test

cases, the simulated body motions are monitored and

compared.

2 The reader is referred to (Goodwin et al., 2001, Chapter
2) for further detail on the fundamentals behind feedback
control techniques.
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4 Numerical wave tank setup

In this section, the CFD–based numerical wave tank

setup is detailed. The governing equations are presen-

ted (Section 4.1), as well as the treatment of numer-

ical wave generation and absorption (Section 4.2), and

the specifics for the two different dynamic mesh motion

methods utilised: mesh morphing (Section 4.4) and the

overset grid method opera (Section 4.5).

4.1 Governing equations

The hydrodynamics in the CFD–based numerical wave

tank are modelled by solving the incompressible Reyn-

old Averaged Navier-Stokes (RANS) equations, describ-

ing the conservation of mass (Equation (2)) and mo-

mentum (Equation (3)).

∇ ·U(t) = 0 (2)

∂ρU(t)

∂t
+∇·ρU(t)U(t) = −∇p(t)+∇·T(t)+ρfb(t)+u(t)

(3)

In Equations (2) and (3), t denotes time, U(t) is the

fluid velocity, p(t) the fluid pressure, ρ the fluid dens-

ity, T(t) the stress tensor, and fb(t), the external forces,

such as gravity. u(t) is the control input. The water

wave advection is captured via the volume of fluid method,

proposed by Hirt and Nichols (1981), following:

∂ α(t)

∂ t
+∇·(U(t)α(t))+∇·[Ur(t)α(t)(1− α(t))] = 0 (4)

Φ(t) = α(t)Φwater(t) + (1− α(t))Φair(t) , (5)

where α(t) denotes the volume fraction of water, Ur(t)

is the relative velocity between liquid and gaseous phase

(Berberović et al., 2009), and Φ(t) is a specific fluid

quantity, such as density.

4.2 Numerical wave generation and absorption

The IHFOAM (Higuera et al., 2013) toolbox is em-

ployed for wave generation and absorption. IHFOAM

is readily implemented in OpenFOAM v1812, and can

be classified as a static boundary method (Windt et al.,

2019g). Waves are generated at the up–wave boundary

of the CFD–based numerical wave tank, by prescrib-

ing the target water level, through the water volume

fraction, and the fluid velocity. For an irregular sea

state, the wave amplitudes and phases for each fre-

quency component of the wave act as inputs to the wave

maker. For wave absorption, a correction velocity, based

on shallow water theory, is imposed at the down–wave

domain boundary, to cancel out the incoming wave.

To measure the free surface elevation, the iso-surface

of the volume fraction α(t) = 0.5 is recorded through-

out the course of the simulation, and can be extracted

at specific locations in a post-processing step.

4.3 Turbulence modelling

To account for turbulence, a RANS turbulence model,

specifically the standard k-ω SST turbulence model

(Menter, 1992), with industry standard, high Reynolds

number, wall functions is employed for the wave in-

duced motion test of the controlled WEC. The choice of

the turbulence model is based on the literature review

presented by Windt et al. (2018b), in which the k-ω

SST turbulence model is identified as one of the most

commonly used turbulence models in the field of ocean

wave energy. For brevity, the governing equations of the

k-ω SST turbulence model are not presented here. The

interested reader is referred to Menter (1992). It should

be noted here that the application of turbulence mod-

elling for WECs is still an active field of research. As

pointed out by Schmitt and Elsässer (2017), in oscil-

lating flows, the value of y+ changes through a wave

cycle3 and, thus, no single grid size can be found to

comply with the requirements posed on y+. The time-

variance of y+, 0 < y+ ≤ 500 for the present case, and,

thus, the time-varying validity of wall functions, must

be considered when analysing simulations of oscillating

flows which include turbulence modelling.

Turbulence modelling is only considered for the sim-

ulations of the last assessment test case, wave induced

motion of the controlled WEC. Under controlled condi-

tions, it is assumed that turbulent effects are of import-

ance. For the cases under controlled conditions, max-

imum Keulegan-Carpenter (KC) number4 of approx. 10

can be found. For all other test cases, laminar flow

conditions are assumed, to reduce the computational

overhead for the comparative study between the mesh

morphing and overset grid methods.

3 y+ is defined as u∗·y/ν, where u∗ describes the friction
velocity, y is the distance to the nearest wall, and ν denotes
the kinematic viscosity
4 KC is defined as um·T/L, where um is the amplitude of

the (oscillating) flow velocity, T the oscillation period, and L
the characteristic length scale. Here the oscillation period is
considered to the Tp and the length scale is the wall thickness
of the structure
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4.4 Mesh morphing

In this section, the setup of the CFD–based numerical

wave tank employing mesh morphing will be described,

which is adapted from (Windt et al., 2019a,e) and val-

idated in (Ransley et al., 2019; Windt et al., 2019d).

The CFD–based numerical wave tank spans a length

of 3.5λp (in the x–direction, see Figure 7) and 1.3λp in

the y–direction, perpendicular to the wave propagation

direction. In the z–direction, the CFD–based numerical

wave tank spans 2d, where d is the water depth. The

still water line is located at z = 0. The structure is loc-

ated 1.2λp down–wave from the wave generation bound-

ary, and 2.3λp up–wave from the absorption boundary,

corresponding to (x, y, z) = (0, 0, 0).

The symmetry of the problem is exploited, and a

symmetry boundary condition is applied in the xz-plane,

at y = 0. This imposes constraints on the motion of the

device, only allowing translational motion in surge and

heave, as well as rotational motion in pitch. Since only

unidirectional, long crested waves are considered in this

study, the sway, roll and yaw DoFs are negligible. The

inner distance for the mesh morphing method is set to

0.05m, while the outer distance is set to 1.5m, i.e. ap-

prox. 3 device diameters. Note that the outer distance

is chosen based on the optimal distance between con-

trolled WECs as indicated by Balitsky et al. (2014);

Garcia-Rosa et al. (2015).

4.4.1 Convergence study

To determine the converged spatial and temporal dis-

cretisation size, i.e. time step and cell size, convergence

studies are performed on the basis of the regular wave,

described in Section 3.2. For the spatial discretisation,

the smallest cell size in the z-direction, around the free

surface interface, has been parametrised by the wave

height. Three different cell sizes, i.e. 5 cells per wave

height (CPH), 10CPH, and 20CPH are tested. In the in-

terface region, the mesh features a horizontal to vertical

aspect ratio of 2. Towards the down–wave boundary of

the CFD–based numerical wave tank, cell stretching is

applied to enhance the wave absorption and reduce the

overall cell count. In the y-direction, cells feature an as-

pect ratio of 1, over a length of 2R, whereR is the device

radius. Further away from the structure, i.e. y ≥2R, cell

stretching is applied.

For the convergence studies, the measured wave height

has been extracted from the simulations through phase

averaging (Windt et al., 2019g). Table 3 shows the res-

ult of the spatial convergence study. With a fixed time

step of ∆t = 0.002s, oscillatory convergence can be

found for a cell size of ∆z =10CPH. The relative grid

uncertainty Ū is 1.32%.

For the temporal convergence study, the cell size in

the interface region ∆z is fixed to 10CPH. Three dif-

ferent (fixed) time step sizes, i.e. ∆t = 0.004s, 0.002s,

0.001s, are considered. Again, the phase averaged wave

height is used as the input for the convergence study.

Table 2 shows the results of the temporal convergence

study. With a cell size in the interface region of

∆z =10CPH, monotonic convergence can be found for

a time step size of ∆t = 0.002s. The relative grid un-

certainty Ū is 1.74%.

To ensure converged solutions for the body motion,

a spatial convergence study is also performed for the

grid size around the body. Three different grid sizes,

equivalent to 5, 10, and 20 CPH are considered and the

root mean square values of the heave motion are used

as input for the convergence study. The results are lis-

ted in Table 4. Monotonic convergence can be found

with a relative grid uncertainty Ū = 0.26%. Generally,

it is desirables to use uniform meshes in the interface

region to prevent spurious velocities in the interface re-

gion, induced by cell nodes hitting cell faces. Overall,

the results of the presented convergence studies, for the

spatial and temporal discretisation sizes, are consistent

with the reviewed literature in (Windt et al., 2018b).

Table 2: Results of the temporal convergence study

Absolute wave height
∆t ∆ t ∆ t

∆z 0.004s 0.002s 0.001s Convergence Type Ū

10CPH 0.108m 0.113m 0.115m Monotone 1.74%

Table 3: Results of the spatial convergence study

Absolute wave height
∆z ∆z ∆z

∆ t 5CPH 10CPH 20CPH Convergence Type Ū

0.002s 0.111m 0.113m 0.112m Oscillatory 1.32%

Table 4: Results of the spatial convergence study

Absolute wave height
∆z ∆z ∆z

∆ t 5CPH 10CPH 20CPH Convergence Type Ū

0.002s 3.33 × 10−2m 3.36 × 10−2m 3.37 × 10−2m Monotone 0.26%

A screen shot of the spatial discretisation of the CFD–

based numerical wave tank is shown in Figure 7. The

field variable α, at time t = 0, is depicted in Figure 8.
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Figure 7: Two-dimensional (2D) slice (xz-plane) of the spa-
tial problem discretisation. The WEC device is is located at
(x, y, z) = (0, 0, 0).

Figure 8: 2D slice (xz-plane) of the CFD–based numerical
wave tank. The water (blue) and air (red) phase are depicted,
together with the WEC device (yellow).

4.5 Overset grid

The setup of the CFD–based numerical wave tank, for

the overset grid simulations, follows the setup outlined

by Windt et al. (2019a). The domain comprises a back-

ground (black colour code in Figure 9) and an overset

mesh (red colour code in Figure 9). The dimensions,

as well as the spatial discretisation of the background

mesh are the same as for the mesh morphing CFD–

based numerical wave tank, and the symmetry bound-
ary condition is also applied in the xz-plane, at y = 0.

The overset mesh region, spans 1.6R x 1.6R x 0.9R

in the x-, z-, and y-directions. The discretisation in

the overset mesh has been chosen to reflect a similar

discretisation around the WEC device, as in the mesh

morphing CFD–based numerical wave tank. The device

is located in the centre of the overset mesh.

Figure 9: 2D slice (xz-plane) of the CFD–based numerical
wave tank for the overset grid method, where the background
mesh is blue, the overset region is red

4.5.1 opera

For this study, the in-house overset grid toolbox opera

is employed, based on the results from the study by

Windt et al. (2019a). Compared to the native overset

grid method in OpenFOAM v1812, three main differ-

ences can be identified in opera:

1. The donor search algorithm uses a dual-level par-

allelism approach, for increased computational effi-

ciency.

2. The interpolation layers on the near body mesh are

two-layered, avoiding the need for the interpolation

of gradients.

3. The inverse distance interpolation algorithm has been

improved.

For a more detailed description of the opera algorithm,

and some performance assessment studies, the inter-

ested reader is referred to Chandar (2019).

In (Windt et al., 2019a), a comparison between the

overset grid implementation in opera and the native

overset grid implementation in OpenFOAM v1812 is

undertaken. As shown in Figure 10, good agreement5

is found between the two overset grid implementations.

However, the implementation of the overset method in

opera is observed to be more computationally efficient

than the implementation in OpenFOAM v1812, deliv-

ering 1.42 times faster computation, in terms of run

time, for the specific case study tested by Windt et al.

(2019a).
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Figure 10: Heave and surge displacements of a WEC, exposed
to irregular waves, from simulations performed with opera
and the native overset grid implementation in OpenFOAM
v1812.

5 For the quantitative results, the interested reader is re-
ferred to Windt et al. (2019a)
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5 Results and Discussion

This section presents and discusses the results of the

assessment of the overset grid method based on the five

different test cases, introduced in Section 3.3.

5.1 Static equilibrium test

First, results for the static equilibrium test are presen-

ted in Figure 11, where Figures 11 (a), (b), and (c) show

the device displacement in the surge, heave, and pitch

DoF, respectively. Figures 11 (d), (e), and (f) show the

hydrodynamic forces and moments in the surge, heave,

and pitch DoF, respectively. For all subfigures (and all

subsequent plots in this Section 5, unless stated differ-

ently), the black solid line shows the results from opera,

while the dashed red line refers to the results with mesh

morphing.

A clear mismatch between opera and mesh morph-

ing can be observed for all plotted quantities in Figure

11. Overall, relatively small amplitudes of the device

displacement are seen. The device displacement in the

surge DoF shows an order of magnitude of O(10−4 m),

an order of magnitude of O(10−3 m) in the heave DoF,

and an order of magnitude of O(10−3 deg) in the pitch

DoF. Similarly, the order of magnitude of the hydro-

dynamic forces are relatively small (O(10−2 N) in the

surge DoF, O(101 N) in the heave DoF, and O(10−2 N)

in the pitch DoF). The plot of the heave displacement

indicates an offset for the equilibrium position of the

device simulated with opera. While the body oscillates

around 0m in the heave DoF for mesh morphing, the

equilibrium position for opera is at approximately−0.25×
10−3m, which is reflected in the non–zero mean force

(F̄ z ≈ 1.25N). This small offset can be induced by

a mismatch in the body volume, between the mesh

morphing and opera setup, induced by slight differences

in the mesh. Following V = F̄ z/ρg, the volume defect can

be estimated as V = 1.8 × 10−4, which is 0.2% of the

total device volume.

Comparing the different motion and force data re-

corded during the static equilibrium test to the WSI

simulations (see Section 5.3 or 5.4), the observed WEC

motion and forces on the WEC body are at least one or

two orders of magnitude smaller. This indicates that,

although qualitatively relatively large deviations can

be observed between mesh morphing and opera for the

static equilibrium test, these deviations have a negli-

gible influence for WSI simulations.

Since the difference between the two data sets for

mesh morphing and opera, for this test case, is relatively

obvious from a qualitative comparison, no quantitative

comparison is subsequently presented here.

Regarding the computational expense of the overset

grid method, the relative runtime tr is introduced, as

tr =
tr,o
tr,MM

, (6)

where tr,MM denotes the runtime for the mesh morphing

method and tr,o denotes the runtime of the overset grids

method.

For the static equilibrium test case, tr = 1.5, in-

dicating longer run times for the overset grid method,

which is consistent with the findings by Windt et al.

(2019a). For comparative purposes, Table 5 lists the

relative runtime for the first four considered test cases.

5.2 Free decay test

Figures 12 (a) and (b) show the time traces of the dis-

placement and hydrodynamic forces in the heave DoF,

respectively, during the free decay test. A qualitative

assessment of the results shows a closer match between

the results from opera and mesh morphing, compared

to the results of the static equilibrium test shown in

Section 5.1. The results suggest that the larger order

of magnitude of the device motion and hydrodynamic

force blurs the deviations observed for the static equi-

librium test.

Generally, slightly larger motion and force amplitudes

can be observed for the results from opera, compared

to mesh morphing. Noteworthy are the spikes which

can be observed in the force signal from opera; how-

ever, these spikes in the fluid force do not propagate

to the motion of the device and seem to be smoothed

out by the motion solver. At the time of writing, the

authors were not able to identify the cause of the ob-

served spikes and further analysis of similar test cases

with different initial conditions should be performed in

the future.

For a quantitative assessment, the root-mean squared

deviation (nRMSD) is considered, following

nRMSD =

√∑N
i=1(yMM (i)− yo(i))2

N
· 1

n
, (7)

where N indicates the number of samples of the signal,

yMM is the result from mesh morphing, and yo is the

result from opera. n is the normalisation factor.

For the case of the heave free decay test, the ini-

tial displacement, i.e. n = 0.05m, is considered for the

normalisation of the RMSD of the heave displacement.

For the heave force, n is chosen to be the analytical

hydrostatic force in the equilibrium position, i.e. n =

634.14N.
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Figure 11: Heave, surge, and pitch displacements and forces during the free floating body test
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Figure 12: Heave displacement and forces during heave free
decay test

nRMSD values of 2.7% and 0.2% are calculated for

the heave displacement and heave forces, respectively.

These deviations can be regarded as relatively small

and are consistent with the findings by Windt et al.

(2019a).

In terms of relative runtime, opera shows an increase

in runtime, compared to mesh morphing, of a similar

order of magnitude as for the static equilibrium test,

i.e. tr = 2.

5.3 Wave excitation forces on a fixed body

Figures 13 (a), (b), and (c) show the wave excitation

forces and moments in the surge, heave, and pitch DoF,

respectively, from opera and mesh morphing. A qual-

itative inspection of the time traces from opera and

mesh morphing show good agreement between the two

dynamic mesh motion methods, similar to the heave

free decay test. For the quantitative comparison, the

nRMSD is considered, following Equation (7), where

the RMSD is normalised by the maximum force/moment

magnitude. For the forces and moments in the surge,

heave, and pitch DoFs, relatively small nRMSD val-

ues of 0.6% can be calculated, revealing also quantitat-

ively good agreement between overset grids and mesh

morphing. Since the device is fixed during the wave ex-

citation force tests, and thus no mesh motion is allowed,

so any deviations are assumed to stem from interpol-

ation in the overset grid method. From the relatively

small nRMSD, it can thus be concluded that the inter-

polation errors are generally minimal.

Regarding the computational overhead, opera also

shows an increased runtime, compared to mesh morph-

ing, i.e. tr = 1.9, for this test.
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Figure 13: Forces on the fixed WEC, exposed to regular waves



Evaluation of the overset grid method for control studies of wave energy converters 13

5.4 Wave induced motion – uncontrolled WEC

Figures 14 (a), (b), and (c) show the WEC displacement

in the surge, heave, and pitch DoFs, respectively. Fig-

ures 14 (d), (e), and (f) show the hydrodynamic forces

and moments acting on the WEC device in the surge,

heave, and pitch DoFs, respectively.

Similar to the free decay and wave excitation force

test cases, a relatively good qualitative agreement between

opera and mesh morphing can be observed. For the

quantitative assessment, the nRMSD, following Equa-

tion (7) is evaluated, where the RMSD is normalised

by the maximum displacement or force/moment mag-

nitude. nRMSD values of 3.9%, 0.4%, and 0.4% are cal-

culated for the displacement in the surge, heave, and

pitch DoFs, respectively. For the hydrodynamic forces

in the surge and heave DoFs, and the moment in the

pitch DoF, nRMSD values of 0.5%, 1.1%, and 4.5% are

calculated, respectively.

Comparing the nRMSD values for the hydrodynamic

forces for the case of the wave induced motion test

and the wave excitation force tests, larger deviations

between mesh morphing and opera can be observed,

specifically in the pitch DoF. The larger deviations could

be attributed to either/both the required interpolation

in the overset grid algorithm or the influence of the

mesh deformation in the mesh morphing i.e. skewed

cells with larger aspect ratios. For dynamic WSI sim-

ulations, compared to the static body in the wave ex-

citation force test, the interpolation between the grids

is more challenging, due to the varying interpolation

partners, caused by the larger relative motion between

the grids.

Regarding the relative runtime, opera shows an in-

crease in runtime, consistent with the previously presen-

ted test cases, at tr = 2.

Table 5: Runtime comparison between mesh morphing and
opera

Test case tr,o/tr,MM

Static equilibrium test 1.5
Free decay test 2.0
Wave excitation force test 1.9
Wave induced motion – uncontrolled WEC 2.0

tr,MM: runtime mesh morphing
tr,o: runtime overset grids

5.5 Wave induced motion – controlled WEC

This section assesses the performance of the overset grid

method for a controlled WEC in operational conditions,

by considering an irregular sea state, comparing against

the mesh morphing method, and contrasting motion of

and controlled and uncontrolled WEC.

5.5.1 Mesh morphing

Figures 15 (a) - (c) show the surge, heave, and pitch

displacement of the uncontrolled (black solid) and con-

trolled (dash red) WEC device, respectively. For the

case of the uncontrolled WEC, it can be observed that

the WEC surges in the wave propagation direction, and

oscillates back due to the mooring forces, with a max-

imum displacement of 0.25m (from its equilibrium po-

sition). In heave, a maximum displacement amplitude

of approx. 0.1m is measured at t = 88s, while a max-

imum pitch angle of approx. 20 deg can be measured at

t = 41s. For the case of the controlled device, a clear in-

crease in device motion, most significantly in surge mo-

tion, can be observed. Results for the controlled WEC,

modelled with mesh morphing, are only available up to

50.2s, at which the simulation crashes.

Figure 15 shows screen shots of the CFD–based nu-

merical wave tank, for an uncontrolled and controlled

WEC cases, taken at four different time instances, rep-

resenting: equal motion for the controlled and uncon-

trolled case (t = 23s), larger heave displacement in the

controlled case, with similar surge and pitch motion

(t = 35s), larger pitch and surge displacement in the

controlled case, with similar heave motion (t = 46s),

and the last time instance for the controlled device be-

fore the simulation crashes (t = 50.2s). At t = 50.2s,

the mesh, down wave of the controlled WEC, is highly

skewed, causing numerical instabilities due to the high

cell non-orthogonality. The checkMesh toolbox, imple-

mented in OpenFOAM, indicates 88 additional, severely

non-orthogonal faces and 30 incorrectly oriented faces

at t = 50.2s. Overall, the results highlight the import-

ance of using advanced mesh motion methods for WEC

control studies.

5.5.2 opera

Figures 16 (a) - (c) show the surge, heave, and pitch

displacement of the uncontrolled (black solid) and con-

trolled (dash red) WEC device, respectively. Again, the

enhanced device motion under controlled conditions is

highlighted. The WEC surges in the wave propagation

direction with a maximum displacement of 1m (from its

equilibrium position) (at t ≈ 50s). In heave, the max-

imum amplitude is 0.12m (at t = 64s), while a max-

imum pitch angle of −40 deg is measured at t = 48s.

For a better comparison between the results from

mesh morphing and overset grids, Figures 17 (a) - (c)
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Figure 14: Heave, surge and pitch displacements and forces of the moving WEC, exposed to regular waves
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Figure 15: Heave, surge and pitch displacements of the un-
controlled and controlled WEC device, modelled with mesh
morphing, exposed to irregular waves. Additionally, the mesh
deformation in the CFD–based numerical wave tank for the
mesh morphing method is shown. After 50.2s, the simulation
of the controlled WEC aborts, due to poor mesh quality.

show the surge, heave, and pitch displacement of the

uncontrolled WEC, modelled with the mesh morphing

(red dashed) and opera (solid black). For the case of

the uncontrolled WEC, the device follows the same tra-

jectory, when modelling with opera or mesh morphing,

which is consistent with the findings in Sections 5.1–

5.4. For the case of the controlled WEC (see Figures 17

(d) - (f)), the trajectories for the surge, heave and pitch

displacement, too, show similar results when modelled

with opera or mesh morphing; however, modelling the

controlled WEC with opera allows simulation of the

complete sea state, avoiding any limitations induced by

poor mesh quality.

6 Conclusions

The performance of the overset grid method is evalu-

ated, by comparing the hydrodynamic forces and body

motions of a moored point absorber WEC, simulated

using the overset grid against simulations using the

mesh morphing method, for several test cases with in-

creasing levels of complexity. From the results it can be

concluded that the accuracy of the overset grid method,

implemented in OpenFOAM through the opera tool-

box, is equivalent to the mesh morphing method, but

is better able to handle the large amplitude WEC mo-

tions during control studies. However, the drawback of

the overset grid method is an approximate two-fold in-

crease to the run-time. To avoid unnecessary computa-

tional cost, CFD engineers are, thus, advised to assess

beforehand, if the mesh morphing method exceeds the

limits of numerical stability.
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Figure 16: Heave, surge and pitch displacements of the un-
controlled and controlled WEC device, modelled with opera,
exposed to irregular waves

Figure 17: Heave, surge and pitch displacements of the un-
controlled and controlled WEC device, modelled with opera
and mesh morphing, exposed to irregular waves
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