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Abstract— Energy-maximising control of wave energy con-
verters can be separated into two different classes: optimisation
and non-optimisation based strategies. While optimisation-
based controllers can outperform non-optimisation based
strategies, the computational requirements associated with
numerical optimisation routines, and the high control forces
required under optimal conditions, can render these energy-
maximising control laws unsuitable for realistic scenarios. Non-
optimisation-based controllers present an alternative solution,
where linear time-invariant systems are used to approximate
the so-called impedance-matching condition. These strategies
are often simple to implement but suffer from performance
degradation when motion constraints are considered. This pa-
per aims to present a critical comparison between both families
of controllers, highlighting the strengths and weaknesses of
each approach. We present simulation results for a state-of-the-
art CorPower-like device under polychromatic (irregular) wave
excitation, for both (motion) unconstrained and constrained
scenarios.

I. INTRODUCTION

Energy-maximising control for wave energy convert-
ers (WECs) can be clearly divided into two cate-
gories: optimisation-based (OB) and non-optimisation-based
(!OB) controllers (see, for example, [1]). In the case of
optimisation-based controllers, the energy-maximising con-
trol objective is treated as an optimal control problem, where
both input and state variables are often discretised using
different criteria, aiming to map the infinite-dimensional
problem into a computationally (numerically) tractable non-
linear program, with model predictive control (MPC) as
a typical example [2]. In contrast, non-optimisation-based
controllers do not rely on numerical routines, but are mostly
based on the fundamental principle behind maximum power
transfer in electric circuits: the impedance-matching principle
[3].

Naturally, OB and !OB come with clear differences, and
each category presents its strengths and weaknesses. To be
more precise, OB strategies compute an optimal control
law uopt, implemented through the so-called power take-
off (PTO) system, by solving the energy-maximising optimal
control formulation:

uopt = arg max
u∈U

1

T

∫ T

0

v(t)u(t)dt,

subject to:

{
WEC dynamics,
state and input constraints,

(1)
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where T ∈ R+, v denotes the velocity of the wave en-
ergy system and U denotes the set of admissible inputs.
The optimal control formulation (1), which directly aims
to maximise time-averaged power extraction from ocean
waves, has been solved using a variety of strategies, mostly
inspired by receding-horizon control techniques, such as
MPC. An immediate advantage of this OB approach is that
constraint handling becomes straightforward, i.e. one can
translate physical limits on device motion and PTO force into
state and input constraints in (1), as long as they represent
a feasible set. A clear disadvantage is that the real-time
capabilities of problem (1) depend on a number of factors,
primarily the discretisation technique utilised to parameterise
the state and input variables, and the hardware available
for its implementation [1]. Examples can be found in1, [4]
(MPC), [5] (spectral optimal control) and [6], [7] (moment-
based control).

On the other hand, !OB control strategies attempt to
provide a (physically implementable) realisation of the
impedance-matching condition for maximum power transfer.
To be precise, under the assumption that there exists a
frequency-response function G characterising the WEC dy-
namics, the impedance-matching condition explicitly utilises
the so-called intrinsic impedance of the system, i.e. Z =
G−1, and the optimal control law that maximises power
transfer (in the frequency-domain) can be shown [8] to be

U opt(jω) = −Z?(jω)V (jω), (2)

where ? : C → C denotes the complex-conjugate operator,
and U opt and V denote the Fourier transform of uopt and v, re-
spectively. An immediate problem with (2) is that, as a direct
consequence of the fact that the transfer function G is strictly
proper, Z? exhibits non-causal behaviour. In general, !OB
control strategies attempt to find a realisable controller such
that condition (2) holds, which is often obtained in terms
of an approximating linear dynamical system. Another clear
disadvantage of OB! strategies is that (2) does not observe
any state nor input constraints, so that a different mechanism
is required in the control loop to respect physical limitations
associated with device and actuator dynamics. Despite such
issues, !OB control techniques are popular within the wave
energy community (particularly the industrial community),
due to their computational efficiency, straightforward im-
plementation and intuitive appeal. Examples of !OB can be
found in [9], [10] and [11].

1The reader is referred to [1] for a comprehensive review of optimisation-
based energy-maximising strategies.
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This study aims to provide a critical comparison between
two different strategies, each one representing the OB and
!OB categories, both in terms of energy-maximising per-
formance and applicability to realistic scenarios. The OB
representative is a moment-based energy-maximising optimal
control recently published in [6], [7]. This controller has the
capabilities to effectively solve (1), guaranteeing existence
and uniqueness of the optimal solution uopt, with real-time
performance. Within the !OB case, we select the linear time-
invariant (LTI) controller presented in [11], which approxi-
mates condition (2) whilst providing a reliable (suboptimal)
mechanism to handle motion constraints, making it suitable
for realistic scenarios.

The remainder of this paper is organised as follows.
Section II briefly recalls fundamentals behind modelling
of WECs. Section III describes the moment-based OB
control strategy, whilst Section IV discusses the LTI !OB
controller. Section V presents a case study for a state-of-
the-art CorPower-like device, where we provide a critical
comparison between OB and !OB techniques in terms of
performance and applicability to real scenarios. Finally,
Section VI encompasses the main conclusions of this study.

A. Notation

Standard notation is used throughout this study with any
exception detailed in this section. R+ (R−) denotes the set of
non-negative (non-positive) real numbers. C0 denotes the set
of pure-imaginary complex numbers. The symbol 0 stands
for any zero element, dimensioned according to the context.
The symbol In denotes the identity matrix of Cn×n. The
spectrum of a matrix A ∈ Rn×n, i.e. the set of its eigenval-
ues, is denoted as λ(A). The symbol

⊕
denotes the direct

sum of n matrices, i.e.
⊕n

i=1Ai = diag(A1, A2, . . . , An).
The notation <{z}, with z ∈ C, stands for the real-part
operator. The Kronecker product between two matrices M1 ∈
Rn×m and M2 ∈ Rp×q is denoted by M1⊗M2 ∈ Rnp×mq .
The Kronecker sum between two matrices P1 and P2, with
P1 ∈ Rn×n and P2 ∈ Rk×k, is denoted as P1⊕̂P2. The
Fourier transform of a function f is denoted as F . Finally,
the convolution between two functions f and g over R+ i.e.∫
R+ f(τ)g(t− τ)dτ , is denoted as f ∗ g.

II. WEC MODELLING FUNDAMENTALS

The (linear) equation of motion for a 1 degree-of-freedom
WEC can be expressed [8] as follows2:

mẍ = fr + fh + fe − u, (3)

where m is the mass of the buoy, x the device excursion, fe
the wave excitation force (external input), fh the hydrostatic
restoring force, fr the radiation force, and u the control
(PTO) force. The linearised hydrostatic force can be written
as fh(t) = −shx(t), where sh ≥ 0 denotes the hydrostatic
stiffness. The radiation force fr is modelled based on lin-
ear potential theory and, using the well-known Cummins’

2From now on, we drop the dependence on t ∈ R+ when it is clear from
the context.

equation [12], can be written as

fr(t) = −µ∞ẍ(t)−
∫
R+

k(τ)ẋ(t− τ)dτ, (4)

where µ∞ = limω→+∞ Ã(ω), µ∞ > 0, with Ã(ω) the
radiation added mass3, represents the added-mass at infinite
frequency, and k is the (causal) radiation impulse response
function. Finally, the equation of motion is given by

(m+ µ∞)ẍ+ k∗ ẋ+ shx = fe − u. (5)

Given that the LTI controller considered in Section IV
intrinsically depends on the frequency-domain equivalent of
(5), we note that the frequency-response mapping G : C0 →
C characterising the WEC dynamics, i.e. the operator G such

V (jω) = G(jω) [Fe(jω)− U(jω)] , (6)

can be written as

G(jω) =
jω

sh − ω2(m+ µ∞) + jωK(jω)
. (7)

Before discussing each particular control strategy, we note
that the wave excitation force fe is virtually always a non-
measurable quantity. Consequently, estimation and forecast-
ing strategies are usually required to effectively implement
most of the energy-maximising controllers reported in the
literature [13]. Though we explicitly declare the estimation/-
forecasting requirements of the OB and !OB strategies (and
we use this as a comparative argument), we assume perfect
knowledge of fe in the case study of Section V, highlight
the control performance differences, and rely on the spirit of
the separation principle of control theory4.

III. OB: MOMENT-BASED OPTIMAL CONTROLLER

The moment-based energy-maximising control strategy
presented in [6], [7] provides an efficient and convenient
way to parameterise the input and state variables in terms of
the system-theoretic concept of moment (see [14]). Moments
are intrinsically connected to the steady-state response char-
acteristics of the system (WEC) under analysis, allowing for
a parameterisation of problem (1) in terms of the steady-state
response of a suitably defined interconnected system. Given
the harmonic nature of ocean waves, [6], [7] the excitation
force fe and control input u are expressed as the solution of
the signal generator

ξ̇ = Sξ, fe = Leξ, u = Luξ, (8)

where the dynamic matrix S ∈ Rν×ν is such that λ(S) =

{±pω0}ν/2p=1, with ν integer and even, and where ω0 is the
so-called fundamental frequency associated with the input
variables fe and u, i.e. ω0 = 2π/T . With the parameterisa-
tion of equation (8), and definining the following matrices

3See [8] for the definition of Ã(ω).
4The effect of fe estimation and forecasting errors has been documented

elsewhere (e.g. [15]).
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associated with the equation of motion (5):

A =

 0 1

− sh
m+ µ∞

0

 , B =

 0

1

m+ µ∞

 , Cᵀ =

[
0
1

]
,

(9)

the optimal control problem (1) can be mapped into a
quadratic program (QP), i.e. the energy-maximising control
input uopt

OB = Lopt
u ξ can be computed as the unique global

solution of the inequality-constrained concave quadratic op-
timisation problem

Lopt
u = arg max

Lu

−1

2
LuΦRLᵀ

u +
1

2
LeΦ

RLᵀ
u,

subject to:

AxLᵀ
u ≤ Bx, AvLᵀ

u ≤ Bv, AuLᵀ
u ≤ Bu,

(10)

where ΦR ∈ Rν×ν explicitly contains both the WEC
dynamics and input description as

ΦR = (Iν ⊗ C)Φ−1(Iν ⊗−B),

Φ = S ⊕̂A+ Rᵀ ⊗−BC.
(11)

We note that the matrix R ∈ Rν×ν characterises the non-
parametric impulse response function k associated with radi-
ation forces using moment-based theory, without the need to
pre-compute a parametric approximation (which is the case
for most of the OB methods reported in the literature [1]).
The reader is referred to [6], [7] for the explicit definition of
the operator R, and the pairs of matrices (Ax,Bx), (Av,Bv),
(Au,Bu), which characterise displacement, velocity and
control input constraints, respectively. Fig. 1 shows a block-
diagram of the OB control architecture associated with (10).

Fig. 1. Moment-based OB control structure. The physical limits are directly
mapped into the moment-domain and added as inequality constraints to the
optimisation problem. Note that perfect knowledge of fe is assumed.

Given the concave nature of the QP expressed in (10),
the optimal control force uopt

OB can be effectively computed
in real-time, i.e. in less than one second (being consistent
with the typical sampling rate of a full-scale WEC [6]).
Nevertheless, we note that this optimal control formulation
requires past, present and future knowledge of the wave
excitation force fe to compute the control law, and the
associated estimation and prediction techniques naturally
increase the overall computational demand.

IV. !OB: LTI CONTROLLER

As discussed in Section I, the !OB controller presented
in [11] is based on the impedance-matching condition (2).
Note that this controller is of an output feedback nature,
which intrinsically complicates handling of motion con-
straints. Moreover, as analytically and numerical proven in
[15], the closed-loop dynamics arising from (2) are extremely
sensitive to variations in the (nominal) WEC dynamics
G. Motivated by these issues, [11] presents an equivalent
feedforward formulation of equation (2) expressed as

U opt(jω) = Hff(jω)Fe(jω), (12)

where the optimal frequency-response function Hff : C0 →
C is given by

Hff(jω) =
G(jω)

2<{G(jω)}
. (13)

This frequency-response mapping is approximated by a
strictly proper and stable LTI system H̃ff : C → C, using
frequency-domain system identification techniques. We note
that, as discussed in [11], Hff does not correspond with any
implementable transfer function, so that it is first necessary
to define a frequency bandwidth in which to “focus” the
identification technique. This frequency range is typically a
function of the spectral characteristics of fe.

Once the approximating LTI system H̃ff is computed, the
control structure (12) is modified to (suboptimally) observe
constraints in the device motion:

U opt
!OB(jω) =

[
κH̃ff(jω) + (1− κ)

]
Fe(jω), (14)

where κ ∈ [0, 1]. Fig. 2 illustrates the control structure de-
fined in equation (14). The gain κ can be tuned adaptatively,
using displacement and velocity measurements, or exploiting
future knowledge of the wave excitation force (if available).
We note that, in contrast to the OB controller, this strategy
only requires wave excitation force estimation, obviating the
need for a forecasting algorithm. This, however, has direct
impact on the performance of the controller, as discussed in
Section V.

Fig. 2. LTI !OB control structure. The gain κ ∈ [0 1] is used to handle
motion constraints. Note that perfect knowledge of fe is assumed.

V. CASE STUDY: A CORPOWER-LIKE DEVICE

This section presents a case study where we consider
both OB and !OB control strategies applied to a state-of-
the-art full-scale CorPower-like device oscillating in heave
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(translational motion). This type of device is often considered
as a case study due to its intrinsic geometric complexity
(see, for example, [16]), and is illustrated in Fig. 3, with its
corresponding physical dimensions specified in metres.

Fig. 3. Full-scale CorPower-like device considered in this case study.
Dimensions are in metres. The acronym SWL stands for still water level
and the letter G is used to denote the center of gravity of the device.

In the remainder of this section, we consider waves
generated stochastically from a JONSWAP spectrum [17],
with a fixed significant wave height Hs of 2 [m], peak
period Tp ∈ [5, 12] [s], peak shape parameter γ = 3.3,
and time-length of 120 [s]. To be statistically consistent,
the results presented in the following paragraphs are always
averaged over 20 realisations of each sea-state considered.
Finally, we note that the controller normalised run-time, i.e.
the ratio between the time required to compute the optimal
control input for the duration of the simulation, and the
length of the simulation itself, is used as a comparison metric
for the computational effort required by each strategy. The
computations are performed using MATLAB 2018b, running
on a PC composed of an Intel Xeon CPU E5-1620 processor
with 16 GB of RAM.

As discussed in Section IV, the !OB controller requires a
linear system H̃ff approximating condition (12). To compute
such a system, we utilise the moment-based identification
strategy presented in [18]. Fig. 4 illustrates the optimal
frequency-response Hff (dashed-black), computed directly
from the hydrodynamic response of the CorPower-like de-
vice, and the frequency-response of the approximating model
H̃ff (solid-green). The white area in Fig. 4 indicates the fre-
quency range selected (containing all possible peak periods
of the generated waves) to perform the identification process,
i.e. [0.3, 3] [rad/s]. The order (dimension) of H̃ff, for this
case study, is set to 14, corresponding to seven interpolation
frequencies (see [18]).

A. Unconstrained control

As a preliminary step, we start the comparison between
OB and !OB controllers by analysing the unconstrained con-
trol problem, i.e. energy-maximisation without considering
any physical limitations. For the OB controller, this is equiv-
alent to solving (10) ignoring state and input constraints,
while, for the !OB controller, the gain κ is set to 1.
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Fig. 4. Optimal frequency-response Hff (dashed-black) computed directly
from the hydrodynamic response of the CorPower-like device, and the
frequency-response of the approximating model H̃ff (solid-green). The white
area indicates the frequency range selected for identification, covering wave
peak periods in the range [2, 20].

Fig. 5 presents absorbed power results for each of the sea-
states considered. It can be appreciated that the impedance-
matching condition of the !OB controller captures almost
the same power as the OB controller for peak periods < 10
[s]. The drop in performance after Tp = 10 [s], i.e. when
ωp < 0.62 [rad/s], can be attributed to the decrease in
approximation quality of H̃ff in such a frequency region. We
also highlight that the computational effort required by both
strategies is similar, as can be appreciated in Table I.
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Fig. 5. Unconstrained power absorption for OB (◦) and !OB (�) controllers.
The dashed -blue and -green lines indicate the average power extracted for
the totality of the sea-states considered, for OB and !OB cases, respectively.

B. Constrained control

We now analyse a more realistic scenario, where we
constrain the displacement of the device to the operational
space [−2, 2] [m]. We note that the LTI !OB controller does
not handle constraints in an independent manner, but rather
utilises a single gain to tune displacement, velocity and
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TABLE I
COMPARISON BETWEEN OB AND !OB CONTROLLERS

Controller
Average power

over Tp ∈ [5, 12]

Average max. control
input over Tp ∈ [5, 12]

Normalised run-time

Unconstrained
OB 0.11× 106 [W] 3.6× 106 [N] 30.5× 10−6 [s]
!OB 0.07× 106 [W] 2.4× 106 [N] 28.1× 10−6 [s]

Constrained in x
OB 0.06× 106 [W] 1.1× 106 [N] 2.1× 10−4 [s]
!OB 0.02× 106 [W] 0.8× 106 [N] 28.1× 10−6 [s]

maximum control input simultaneously. However, in turn, the
OB controller solves a constrained optimisation problem.

Fig. 6 presents results for the constrained scenario, for
each of the sea-states considered. In the case of the !OB
controller, the gain κ is optimally (iteratively) tuned for
each wave, using perfect knowledge of the excitation force,
guaranteeing that the displacement of the WEC is contained
within the maximum limits during the complete simulation.
Unlike the unconstrained case of Section V-A, the drop in
performance experienced by the !OB controller is now more
evident: This can be strictly attributed to the suboptimal
constraint handling mechanism, i.e. the constant gain κ,
which, for sea-states with Tp > 7 [s], cannot fully capture
the energy-maximising optimality condition. This is not
the case for the moment-based OB controller, which can
incorporate displacement constraints in a straightforward
manner, using the pair of matrices (Ax,Bx) in equation
(10). The difference in constraint handling between OB and
!OB controllers can be fully appreciated in Fig. 7, where
time-traces of displacement for irregular waves of Tp = 6
[s] (top) and Tp = 10 [s] (bottom) are explicitly shown.
When Tp = 6 [s], the motion of the device is similar for
both OB and !OB controllers, which corresponds with the
similarity in extracted power for that particular wave peak
period, as can be appreciated from Fig. 6. On the contrary,
when Tp = 10 [s], the motion of the device under optimal
control conditions is much more likely to hit the maximum
displacement limit, and the suboptimal constraint handling
of the !OB controller compromises performance. This can
be appreciated in Fig. 7 (bottom) where, in constrast to
the !OB controller, the moment-based OB control strategy
fully exploits the operational space [−2, 2] [m], resulting in
considerably higher power extraction.

However, the superior energy-capturing performance of
the OB controller comes with (potential) drawbacks. Firstly,
even though achieving real-time performance in the test PC,
the normalised run-time required by the OB controller is
two orders of magnitude greater than that for the !OB case
(see Table I), which can be limiting for realistic applications,
where its successful implementation depends upon available
software/hardware. Secondly, as can be appreciated from
Fig. 8 and Table I, the (average) maximum control force
required by the OB controller is ≈ 70% larger than for the
!OB LTI strategy, which has a direct impact on the design
of the PTO system [19]. In addition, the high-frequency
content of the OB control signal may have an adverse effect
on device/component lifetime. Note that the maximum PTO
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Fig. 6. Constrained power absorption for OB (◦) and !OB (�) controllers.
The dashed -blue and -green lines indicate the average power extracted for
the totality of the sea-states considered, for OB and !OB cases, respectively.
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Fig. 7. Time-traces of device displacement, for irregular waves of Tp = 6
[s] (top) and Tp = 10 [s] (bottom). The dotted-red lines indicate the physical
limits considered in metres.

force required directly influences the size of the PTO system,
regardless of the technology selected: a larger maximum PTO
force requires larger hydraulic pistons or higher pressure in
hydraulic PTO system [20], while greater maximum PTO
forces require larger machines in linear generators [21].
Though beyond the scope of this study, maximum PTO force
constraints can be incorporated in the OB case using the pair
of matrices (Au,Bu), to mitigate large control forces.

Even if computational power and large PTO forces are
available in the actual control implementation, there is one
clear recommendation that arises naturally from this section:
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if this CorPower-like WEC is located in a particular geo-
graphic area characterised by peak periods between 5 and 7
seconds, the !OB controller represents a wiser choice, being
able to extract similar power figures as the OB controller,
with mild computational requirements and smaller control
forces. If peak periods are greater than 7 seconds, the OB
controller becomes a more suitable alternative, starting to
outperform the !OB strategy significantly, hence representing
a major improvement in terms of power absorption.
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Fig. 8. Maximum control force required by OB (◦) and !OB (�) controllers
for the constrained case. The dashed -blue and -green lines indicate the
average max. control force for the totality of the sea-states considered, for
OB and !OB cases, respectively.

VI. CONCLUSIONS

This study compares two different energy-maximising
control strategies, representing optimisation-based and non-
optimisation-based control solutions, and provides a set of
recommendations on whether to consider OB or !OB strate-
gies depending on PTO characteristics and hardware/soft-
ware available for real-time control implementation.

Though suboptimal in terms of power performance, the
!OB controller studied is synthesised as an LTI system, which
is simple to implement, with mild computational require-
ments, and offering some intuitive appeal. The constraint
mechanism is composed of a constant gain, which can be
easily tuned to respect physical limits associated with a
real device. Unsurprisingly, the more sophisticated moment-
based OB controller outperforms the !OB strategy in terms
of power absorption, especially in the constrained scenario.
Nevertheless, this increase in performance comes with higher
PTO forces and computational requirements, which could be
potentially limiting in real scenarios.

We conclude that OB control strategies are suitable when
specialised hardware is available to solve constrained opti-
misation in real-time, and when high control forces can be
handled by the PTO system utilised. If the control imple-
mentation is limited in terms of computational power and/or
the PTO system cannot deal with high control forces, !OB
control strategies are a more suitable candidate, providing
acceptable power extraction with mild requirements. Finally,
in the case where both computational power and high PTO
forces are available, a wise controller selection can be
achieved as a function of the location where the device is

intended to be deployed: some sea-states, until reaching a
(device-dependent) critical peak period, can be effectively
handled almost optimally with an !OB controller, whilst a
considerable gain in power absorption can be achieved with
OB control after this critical point.
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