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Abstract: Wave energy has a significant part to play in providing a carbon-free solution to
the world’s increasing appetite for energy. In many countries, there is sufficient wave energy
to cater for the entire national demand, and wave energy also has some attractive features in
being relatively uncorrelated with wind, solar and tidal energy, easing the renewable energy
dispatch problem. However, wave energy has not yet reached commercial viability, despite the
first device designs being proposed in 1898. Control technology can play a major part in the
drive for economic viability of wave energy and this paper charts the progress made since the
first wave energy control systems were suggested in the 1970s, and examines current outstanding
challenges for the control community.
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1. INTRODUCTION

The first patented wave energy converter appeared in
1898 (McCormick, 2013), yet wave energy has still to
make a commercial impact. A cursory comparison with
wind energy (Ringwood and Simani, 2015), which has
achieved considerable commercial success, both onshore
and offshore, is revealing:

(1) In wind energy, the energy flux is unidirectional, but
bi-directional in wave energy.

(2) In wind energy, there is a single primary resource
variable, wind speed, while waves are described by
both amplitude and period.

(3) Energy can be relatively easily spilled by pitch/yaw
control in wind turbines, while it is difficult to spill
energy for most wave energy converters (WECs),
and therefore retain power below the rated value for
the power take-off system. This difficulty leads to
typically poor capacity factor values for wave devices.

(4) The energy density is considerably greater in the
sea than in the air, leading to greater survivability
demands, with associated large capital costs.

Item (3) above is very much a function of the device
design, but difficult to achieve with WECs. Some WECs
can be partially or completely submerged (Rafiee and
Fiévez, 2015), while others can significantly alter their
hydrodynamic gain through the use of movable flaps (Pa-
pillon et al., 2019), and air valve throttling is also possible
for oscillating waver column (OWC) devices (Henriques
et al., 2016). However, many WECs must enter a survival
mode, where no power is produced, beyond a certain
level of wave excitation. Of course, the addition of such
adaptive device features enriches the control problem by
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providing the control engineer with something similar to
the pitch/torque control for wind turbines. An example,
where a WEC was controlled to have a power curve similar
to that of a pitch-controlled wind turbine, was shown by
Papillon et al. (2019).

In general, however, the control problem for WECs con-
sists of manipulation of the load force/torque on the power
take-off (PTO) system, with the following objectives:

(a) Maximise captured power
(b) Ensure that physical device constraints (e.g. force,

displacement) are not violated

Item (a) above is, in fact, suboptimal in the sense that
maximising captured power alone may not maximise the
economic return. Since the wave energy itself is free,
maximising conversion ‘efficiency’ is not the aim, but
rather to minimise the cost of converted energy. However,
most control engineers focus on (a) due to the difficulty
of articulating the effect of control actions on operational
costs, though some studies, e.g. Nielsen et al. (2017),
have taken a step in this direction. The manipulation of
device torque/force to maximise captured power is also
characteristic of a wind turbine in Region 2 (between cut-
in speed and rated wind speed) (Ringwood and Simani,
2015).

Regarding (b) above, this represents a fairly standard
constraint in many control application fields. However, it
should be noted that, in the WEC case, once the wave
excitation exceeds a certain level, there may be no control
solution (for the PTO force) that simultaneously satisfies
force and displacement constraints. This is demonstrated
geometrically by Bacelli and Ringwood (2013) (see Fig.6)
and may be intuitively understood by the fact that, given
sufficient force, the displacement can be constrained, while
the displacement must be extended if the constraining
force available is small. If no viable control solution is



available, the PTO must be locked, or the device must
enter some form of survival mode, if structural damage is
to be avoided.

Finally, the achievement of (a) above needs to be con-
sidered across the entire drive train, as shown in Fig.1,
taking into account the various changes in energy form
and any non-ideal efficiencies in components. Furthermore,
the system may contain significant nonlinearity in either
the hydrodynamic model, or the PTO sections, and we
note that both the incident sea state (and instantaneous
free surface elevation) are largely unknown, along with the
condition of any grid connection, if the system is producing
electrical power. One alternative use for wave energy is
the production of potable water, possibly through reverse
osmosis, since pressurised fluid is naturally produced in
many WEC PTO systems (Bacelli et al., 2009).

2. MATHEMATICAL MODELS

A fundamental component of any model-based control sys-
tem is an accurate, validated, mathematical model. This
model, or a simplified version of it, provides a founda-
tion upon which to develop the energy-maximising control
algorithm, and also provides a simulation platform upon
which to evaluate the performance of the controlled sys-
tem. However, care should be taken to use the highest
available model fidelity for simulation, since the use of
the exact same model for control design and performance
evaluation is likely to lead to very predictable, but poten-
tially misleading, results. In general, wave energy control
systems do not enjoy the same intuitive appeal as tuning
a setpoint-following PID feedback loop by hand, though
some model-free approaches have emerged, both at the sea
state level (Anderlini et al., 2016) and wave-by-wave level
(Davidson et al., 2018). Ultimately, for most WECs, the
performance achievable by a model-based WEC controller
is heavily dependent on the fidelity, and computational
performance, of the model upon which the controller is
based. Therefore, considerable attention is given, in this
section, to the development of mathematical WEC models.

2.1 Hydrodynamic models

A wide variety of hydrodynamic modelling approaches are
available to the wave energy researcher (Penalba et al.,
2017a; Davidson and Costello, 2020). At the top end of
the fidelity spectrum are hydrodynamic models based on
computational fluid dynamics (CFD) (Windt et al., 2018)
and smoothed particle hydrodynamics (SPH) (Omidvar
et al., 2012). These are computationally intensive models,
implementing the Navier-Stokes equations, where the full
fluid domain is discretised and, despite the application
of parallel processing, can typically take around 103 s to
compute 1 s of simulated time. In general, the application
of SPH (which caters well for separated multi-phase flow)
for wave energy applications is mainly focussed on extreme
sea states and device survival, and is generally even more
computationally demanding than CFD, though recent
implementation on graphics accelerator cards can give
computational performance rivaling that of CFD (Gotoh
and Khayyer, 2018).

A more computationally economical hydrodynamic mod-
elling solution is to focus on the wave/device interaction

by modelling hydrodynamic effects only on the WEC hull
surface, resulting in boundary element methods (BEMs),
based on potential flow (Papillon et al., 2020). In general,
in the consideration of devices of arbitrary shape and
multiple degrees of freedom, such methods are inherently
numerical, though some analytic or semi-analytic solutions
for particular shapes have been derived (Havelock, 1954;
Yeung, 1981).

One of the drawbacks is that there are the implicit as-
sumptions of irrotational and inviscid flow, obviating the
possibility of inclusion of viscous forces, which generally
increase with relative device/fluid velocity. Typically, a
Morison-like drag term:

Fv =
1

2
ρCdAv|v| (1)

is added to potential flow models to cater for viscous drag,
with ρ being the fluid density, A a reference (e.g. cross-
sectional) area, and v the device relative velocity. However,
the determination of Cd, the drag coefficient, is far from
straightforward (Giorgi and Ringwood, 2017b).

Nevertheless, BEMs have proven very popular in wave
energy applications, for a range of functions, including sim-
ulation, power production assessment and control design.
BEMs offer a range of levels of modelling complexity , from
linear hydrodynamics to ‘fully nonlinear’ approaches (Pa-
pillon et al., 2020). The assumptions of an incompressible
and inviscid fluid lead to a set of equations for potential
flow theory, which, for a velocity potential φ and a free-
surface elevation η, lead to the Laplace equation

∇2φ = 0, (2)

along with a variety of boundary conditions relating to the
free surface, the seabed, the boundary of the device itself,
and a far-field radiation condition. Additionally, applying
the assumption of irrotational flow, Euler’s equation leads
to Bernoulli’s equation, giving access, knowing the velocity
potential, to the pressure

p = −ρgz − ρ∂φ
∂t
− 1

2
ρ|∇φ|2, (3)

with z the vertical displacement. Eq. (3), via integration
of the pressure, gives the resulting hydrodynamic forces
F hydro acting on a surface (S) of normal n

F hydro = −
∫∫

S

pnds. (4)

Applying Newton’s second law, the equation of motion for
a floating body can be expressed as

MẌ = F hydro −mg + F exter, (5)

with m the mass of the body, M its mass matrix, g the
gravity, F exter represents additional external forces (due
to mooring, PTO, etc.). Assuming a decomposition of the
total potential into a linear superposition of the incident
potential φ0, a diffracted potential φD, and a radiated
potential φR:

φ = φ0 + φD + φR, (6)

leads to the venerated Cummins equation:

(M +m∞)v̇(t) +

∫ +∞

0

hr(τ)v(t− τ)dτ +Kbx(t) =∫ t

−∞
hex(τ)η(t− τ)dτ.

(7)



Fig. 1. Complete drive train for electricity production

wherem∞ is the added mass at infinite frequency,Kb is the
restoring force stiffness, η is the free surface elevation, and
v(t) = ẋ(t). Typically, the non-parametric hydrodynamic
quantities hex(t) and hr(t), representing the excitation
force and radiation damping dynamics respectively, are
calculated numerically using linear boundary-element po-
tential methods such as WAMIT (Lee, 1995) or NEMOH
(Babarit and Delhommeau, 2015) (a comparative study
was carried out by Penalba et al. (2017b)) which perform
the calculations in the frequency domain, or ACHIL3D
(Clément, 1999), where time-domain calculations are used.

A variety of nonlinear extensions to potential flow models
have been documented by Papillon et al. (2020). These can
be broadly classified as body-exact, weak-scatterer, or fully
nonlinear. In the body-exact representation, the instan-
taneous wetted surface is computed, allowing nonlinear
Froude-Krylov (NLFK) forces to be represented, while the
representation of radiation forces can be linear (Gilloteaux,
2007) or nonlinear (Letournel et al., 2018). A compu-
tationally attractive solution, using an analytic solution
route, is provided by Giorgi and Ringwood (2017a), but is
restricted to axisymmetric devices. One advantage of these
body-exact models is their ability to capture parametric
resonance (Giorgi and Ringwood, 2018), which is a known
phenomenon in spar-type heaving WECs.

The next level of nonlinear complexity, the weak scatterer
approach (Kim et al., 2011), in addition to using the exact
wetted surface, avoids the use of purely linear free surface
boundary conditions. Instead, the free-surface boundary
condition is linearised around the instantaneous incident
wave elevation. Finally, fully nonlinear methods make no
assumptions about the body motion and wave steepness,
so large amplitude motion and extreme sea-states can be
considered. The development of fully nonlinear models is
based on the work of Longuet-Higgins and Cokelet (1976),
who introduced the so-called Mixed Eulerian Lagrange
(MEL) method.

Hydrodynamic models which have some nonlinear rep-
resentational capability, but also a frequency domain
flavour, include those of Folley and Whittaker (2010) and
Mérigaud and Ringwood (2017a); their respective ‘spec-
tral’ and ‘harmonic balance’ models are not unrelated.
These models, being essentially frequency domain based,
are computationally efficient, and provide a platform for
simulation, power production assessment, and possibly
model-based control design (for more, see Section 2.3).

One alternative to using physics-based hydrodynamic
models is to determine parametric models from measured
data. This can be done from both experimental data
(Giorgi et al., 2019), or data generated from hi-fidelity
numerical (e.g. CFD) models (Giorgi et al., 2016). Both
approaches have their advantages and drawbacks; data
from numerical models are only as good as the model

used to generate them, while physical wave tanks have
their own problems, including reflections and measurement
errors. Both linear and nonlinear parametric models can be
determined from data, with the data-based linear models
perhaps more representative of the real operating regime
(Davidson et al., 2015) than physical models based on
small variations around the equilibrium point (see Section
2.4 for more on linearisation).

2.2 Power take-off and wave-to-wire models

Given the wide diversity in PTO and PTO component
types, no attempt is made here to cover the plethora
of PTO models. One might argue that PTOs are more
straightforward to model, since they can be decomposed
into component parts, and WEC PTOs usually contain
components found in other application areas, which have
well-established mathematical models. Nevertheless, it is
essential that PTO aspects which are important to the
control performance are modelled and that a fidelity
balance is achieved between the hydrodynamic and PTO
models, in a wave-to-wire perspective.

In general, a crucial aspect in PTO modelling is to consider
non-ideal PTO efficiency. This has been studied in some
depth by Hansen (2013) and one of the consequences of
ignoring non-ideal efficiency at the control design stage
is that average negative power production (i.e. power
consumption) can result (Bacelli et al., 2015). It must also
be considered that PTO efficiency ratings may differ in the
forward and reverse (reactive power) directions (Hansen,
2013).

A major challenge in modelling PTO dynamics is to de-
cide on what frequency range to consider. Compared to
the hydrodynamic and mechanical dynamics, with typi-
cal time constants in the region of 0.1-15 s, some PTO
dynamics corresponding to the hydraulic, electrical and
electronic systems can be considerably faster, encouraging
the modeller to ignore the high-frequency effects. However,
ignoring fluid compressibility in hydraulic circuits can lead
to the unwelcome presence of water-hammer effects, while
the electrical dynamics of generators and their electronic
control (power converter) circuitry are orders of magnitude
faster than the mechanical/hydrodynamic WEC compo-
nents. Some studies exist which have looked at the poten-
tial effects of model simplification at the control design
stage, including that by Penalba and Ringwood (2018).

A number of studies have developed complete wave-to-
wire models, including those by Bailey et al. (2016),
Forehand et al. (2015) and Josset et al. (2007), for a
range of devices. A review of wave-to-wire models is
provided in (Penalba and Ringwood, 2016). One issue,
characteristic of the wave energy area, and no doubt
related to the wide disparity of domain knowledge needed
to develop wave-to-wire WEC models, is that many studies



overemphasise the fidelity of the electrical subsystem,
to the detriment of the hydrodynamics, or vice versa.
This imbalance no doubt reflects the principal expertise
of those performing the study. Some efforts have been
made to extend both hydrodynamic and PTO aspects to
high fidelity, though the computational cost is significant
Penalba and Ringwood (2019); Penalba et al. (2018).

2.3 Models for model-based control design

The suitability of various WEC models for control design
inevitably depends, to a large extent, on the control design
method. This is addressed in some detail in Section 3
but, for the moment, we can observe two broad categories
of controller: (a) those based on an analytical design
philosophy, and (b) those employing on-line numerical
optimisation. The WEC models for (a) should ideally
have a relatively simple parametric structure, while those
for (b) must be computationally efficient. Clearly, CFD-
based WEC hydrodynamic models cannot satisfy either
of these requirements (though CFD models provide hi-
fidelity evaluation capability). In their raw form, BEM-
based hydrodynamic models can also be difficult to handle,
since even the linear (7) represents an integro-differential
equation and the quantities hr(t) ↔ Hr(ω) and hex(t) ↔
Hex(ω) are given in nonparametric form. For nonlinear
BEM codes, the complexity naturally increases.

A common simplification is to replace the convolution in-
tegrals in (7) with finite-order parametric models. Approx-
imations can be determined in either the time or frequency
domain, depending on the manner in which hr(t) ↔
Hr(ω) is determined, and the intended (time/frequency
domain) use of the finite-order approximation. For ex-
ample, WAMIT (Lee, 1995) and NEMOH (Babarit and
Delhommeau, 2015) use frequency-domain analysis to de-
termine Hr(ω) directly and approximations based on such
data are usually based on frequency-domain error criteria.
In such a case, state-space forms (Perez and Fossen, 2007)
or transfer function forms (McCabe et al., 2005) may be
determined using frequency-domain identification (Levy,
1959). Alternatively, if hr(t) is directly produced, for ex-
ample from the time-domain code ACHIL3D (Clément,
1999), time-domain impulse-response fitting can be em-
ployed, typically using the method by Prony (1795).

A recent alternative to the above approaches is presented
in (Faedo et al., 2018a). Some advantages of the moment-
matching method are that the user can choose to match
the frequency response exactly at a specific number of
frequencies, the approximation is guaranteed to be passive,
there is a significant complexity reduction for the case
of multi-body/arrays (Y. Peña-Sanchez and Ringwood,
2019), and the loss function decreases monotonically.

For the case of nonlinear WEC models, the situation is
less clear, since bespoke control solutions are necessary,
though a reasonable variety of nonlinear models can be
catered for within the class of MPC-like WEC controllers
(Faedo et al., 2017) which employ numerical optimisation,
and don’t have a strong dependence on the WEC model
structure. However, in such cases, the model must be
computationally compact, and certain nonlinear model
structures may lead to non-convex optimisation problems,

Fig. 2. Operational space covered by an uncontrolled and
(latching) controlled spherical heaving buoy

with resulting uncertainty in achieving an optimal control
solution.

2.4 Validity of linearised models

While linear WEC models are attractive for their relative
simplicity, intuitive appeal and computational efficacy,
considerable care needs to be taken in ensuring that lin-
earising assumptions are valid. For traditional setpoint-
tracking control systems, the control system ensures that
the system operation is around the setpoint and actively
tries to reduce the variance around the setpoint. In con-
trast, energy-maximising WEC controllers tend to exag-
gerate device motion, defying any assumptions of small
motion around an equilibrium point. Fig.2 demonstrates
the significant increase in operational envelope for a spheri-
cal heaving WEC under latching control, in regular waves.
In particular, care must be taken if validating a model
under uncontrolled conditions and then attempting to
utilise such a model as a platform for control design.
Fig.3, taken from (Giorgi et al., 2017), shows the relative
fidelity (compared to a CFD ‘gold standard’) of a range of
linear and nonlinear WEC hydrodynamic models, under
both uncontrolled and controlled conditions. Perhaps un-
surprisingly, all models validate well under uncontrolled
conditions (blue circles), but the increase in potential
NLFK forces (from increased displacement excursions)
and viscous drag (due to increased relative device/fluid
velocity) cause a significant fall off in fidelity, for most
models, under controlled conditions (red crosses).

3. WEC CONTROL

In this paper, no attempt will be made to perform a
comprehensive review of all WEC control strategies; the
interested reader is referred to (Ringwood et al., 2014) and
(Faedo et al., 2017) for such details. Rather, this section
attempts to chart the major milestones in the development
of WEC control technology and to focus on some recent
developments in the area.



Fig. 3. Model validation under controlled and uncontrolled
conditions. For explanation of the model identifiers,
see (Giorgi et al., 2017)

3.1 The Classical era

The Classical era in the development of wave energy con-
trol systems began with the pioneering work of Budal
and Falnes (1975), and collected in the widely read ref-
erence of Falnes (2002). The work was characterised by
linear WEC models, monochromatic analysis and control
methods based on complex-conjugate impedance match-
ing, and latching. It set the stage for further developments
in latching (Babarit and Clément, 2006) and freewheel-
ing/declutching (Wright et al., 2003; Babarit et al., 2009).

The essence of these methods originates from the consid-
eration of the force-to-velocity model of a WEC, which is
obtained from (7) in the frequency domain (Falnes, 2002)
as:

V (ω)

Fex(ω) + Fu(ω)
=

1

Zi(ω)
, (8)

where Zi(ω) is termed the intrinsic impedance of the
system:

Zi(ω) = Br(ω) + ω

[
M +Ma(ω)− Kb

ω2

]
, (9)

and Br(ω) is the radiation resistance and Ma is added
mass. The model in (8) allows the derivation of conditions
for optimal energy absorption in the frequency domain
(Falnes, 2002) as:

ZPTO(ω) = Z∗i (ω) (10)

where ( )∗ denotes the complex conjugate and FPTO =
ZPTOV (ω). The result in (10) has a number of important
implications:

• It is frequency dependent, implying that there is
a different optimal impedance for each frequency -
how to specify a single frequency for irregular seas
containing a mixture of frequencies?
• Since hr(t) is causal, hc(t) = F−1(ZPTO(ω)) is anti-

causal, requiring future knowledge of the excitation
force.
• Since force and velocity can have opposite signs,

the PTO may supply power for some parts of the

Fig. 4. ACC controller structure, where G(s) represents
1/Zi and H(s) represents ZPTO = Z∗i

Fig. 5. AVT controller structure, which calculates the
optimal velocity profile, prior to the use of a tracking
control loop to achieve that velocity profile

sinusoidal cycle. This is akin to reactive power in
power systems. Such a phenomenon places particular
demands on PTO systems, not only in terms of the
need to facilitate bi-directional power flow, but also
that the peak reactive power can be significantly
greater than active power peak (Shek et al., 2007).
The optimal passive PTO is provided by RPTO =
|Zi(ω)|, which avoids the need for the PTO to supply
power, but results in suboptimal control.

• The optimal control in (10) takes no account of
physical constraints in the WEC/PTO, where there
are likely to be limitations on displacement or relative
displacement, PTO force and there may be external
constraints imposed by electrical grid regulations.

The condition in (10) can alternatively be expressed in
terms of an optimal velocity profile as:

V ref (ω) = Fex(ω)/(2Br(ω)) (11)

where Br = 1/2(Zi + Z∗i ) is the real part of Zi. The con-
dition in (11) is a condition on the amplitude of V opt(ω),
with the restriction that vopt(t) be in phase with fex(t).
This phase condition, considered separately, forms the ba-
sis for latching and declutching control. While latching and
declutching are suboptimal in only satisfying the phase
matching condition, they are passive, with no requirement
for reactive power. From (10) and (11), two corresponding
control structures, denoted as approximate complex con-
jugate (ACC) and approximate velocity tracking (AVT),
can be identified, shown in Figs. 4 and 5, respectively.
In particular, the ACC control structure is appealing,

since no knowledge of fex is required. Furthermore, Hansen
(2013) demonstrates that by parameterising ZPTO as

ZPTO(s) = Mcs
2 +Bcs+Kc (12)

there is some redundancy in the choice of Mc, Bc and
Kc, with only one of Mc or Kc required to achieve the



complex conjugate. However, the three options of [Mc, Bc],
[Bc,Kc], and [Mc, Bc,Kc] have different characteristics in
how FPTO is manipulated. Ultimately, however, the AVT
structure, though requiring knowledge of Fex, provides
more flexibility for panchromatic operation (see Section
3.2).

One of the critical limitations of basic complex conjugate
(CC) control is the focus on a single frequency at which
optimum power transfer is achieved. For the more realistic
panchromatic case, users are forced to pick a single char-
acteristic frequency, such as the device resonant period,
or the sea spectrum energy period (TE), though attempts
have been made to extend the basic CC control to multiple
frequencies (Song et al., 2016).

3.2 The Numerical era

This era saw the application of numerical optimisation
techniques, typically employed in traditional control, such
as model predictive control (MPC), to wave energy sys-
tems, led by Hals et al. (2011), who combined energy
maximisation and forecasting, Bacelli et al. (2011), who
introduced a parameterisation of the system variables us-
ing harmonic basis functions, Cretel et al. (2011), who used
a first-order hold in the system model, and Li et al. (2012),
who used dynamic programming to solve the WEC MPC
problem. Each method uses constrained optimisation to
solve for the optimal control, therefore recognising physical
constraints on displacement and control force. Also, since
the control problem is formulated in the time domain,
panchromatic capability was easily included. All of these
control solutions are based on the AVT control structure
of Fig.5, so require a forecast of the free surface or the exci-
tation force, which may diminish the control effectiveness.
Some consideration to the impact of non-exact forecasts is
given by Fusco and Ringwood (2011a).

Around the same time, Scruggs (2011) developed a causal
solution to the WEC control problem, using a variant of
linear quadratic Gaussian (LQG) control. In the original
formulation of (Scruggs, 2011), constraints were not con-
sidered, but were introduced, in a statistical framework,
in a subsequent study (Scruggs, 2017).

One other potential difficulty with the optimal numerical
methods is that, unlike the traditional quadratic LQG
problems of tracking control, the energy maximisation
problem, involving the product of velocity and force, is
not guaranteed to be convex. In some cases, an extra
(quadratic) term is added to the performance function,
which has the added bonus of providing a soft constraint
on control energy, but may bias the optimal answer. A
further complication, to achieving a globally optimum
solution, or indeed any viable control solution, can relate
to constraints. In Paparella and Ringwood (2016), an
extra constraint, to limit the flow of reactive power, is
applied, but with significant adverse effects on the real-
time computational capability, while the geometric for-
mulation of Bacelli and Ringwood (2013) shows, in dia-
grammatic form, the interrelationship between the energy
performance surface, displacement and force constraints,
and the wave excitation force, see Fig.6.

Fig. 6. Geometric representation of constraints on para-
metric space of PTO force. Note that the control
solution space vanishes as the excitation force, Fe, in-
creases. Adapted from (Bacelli and Ringwood, 2013)

This geometric representation allows the PTO constraints
to be optimised in the knowledge of the optimal control
solution, suggesting the possibility of co-design of the
device and control. Indeed, given the family of numerically
optimised controllers under current consideration, it makes
perfect sense to also consider other aspects of the WEC
within an optimisation framework, especially when they
impact the control problem, and vice-versa. Besides the
study of Bacelli and Ringwood (2013), concerning PTO
constraints, Garcia-Rosa and Ringwood (2015) considered
the interplay between the control problem and that of
WEC geometry optimisation, while the interaction be-
tween optimal WEC array layout and WEC control was
considered in Garcia-Rosa et al. (2015). The co-design
of the WEC control, along with the parameters of a
permanent magnet linear generator, was considered by
O’Sullivan and Lightbody (2017).

Finally, numerical control solutions have been extended to
arrays of WECs, demonstrating a significant performance
improvement with global array control (using a fully
interactive system model), as demonstrated in (Bacelli
et al., 2013; Li and Belmont, 2014). A more complete
review of numerical WEC control methods is given in
(Faedo et al., 2017).

Parameterisations Following the initial work of Bacelli
et al. (2011), a range of parameterisation options for
various system variables have been considered. This is
motivated by the fact that signals in WEC systems are
generally smooth, and relatively poorly parameterised
by the default zero-order hold (ZOH) rectangular basis
functions, see Fig.7, though the first-order hold of Cretel
et al. (2011) does provide a significant improvement,
albeit with the introduction of a 1-step delay. Indeed,
a comparative study by Genest and Ringwood (2016a)
suggests that a pseudospectral parameterisation reduces
the control computation by a factor of 3, while providing
at least the same level of control performance.

A variety of parameterisation options have been con-
sidered, considering various basis functions and sys-
tem variables, including the differential flatness approach



Fig. 7. Basis function approximations (a) Form, and (b)
Relative approximation error. Taken from (Genest
and Ringwood, 2016b)

of Li (2017) (employing Laguerre basis functions), the
‘shape-based’ approach of Abdelkhalik et al. (2016), and
Mérigaud and Ringwood (2017a). One advantage that tra-
ditional (ZOH) MPC has is that it naturally lends itself to
receding-horizon operation, while spectral/pseudospectral
approaches employing periodic basis functions are prob-
lematic over a short duration prediction window. A num-
ber of solutions to this are available, including the modified
(half-range Chebychev-Fourier) aperiodic basis functions
of Genest and Ringwood (2016b), or the use of window-
ing functions (Auger et al., 2018). The use of moment-
matching (Faedo et al., 2018b) also shows considerable
promise in the computation/performance tradeoff, com-
pared to standard MPC, and can be shown to encompass
pseudospectral techniques as a special case. One particu-
lar advantage of the moment-matching framework is the
ability to generalise, reasonably smoothly, to nonlinear
systems.

Nonlinear models A variety of WEC controllers have
been adapted to deal with various aspects of nonlinearity.
Most of these controllers come from the MPC/pseudo-
spectral domains, focussing on specific nonlinearities in-
cluding mooring force (Richter et al., 2012), viscous drag
(Bacelli et al., 2015), or nonlinear restoring force (Li,

2015). Mérigaud and Ringwood (2017b) highlight the im-
portance of correctly articulating velocity-dependent non-
linearity (e.g viscous drag), and the role that various
constraints (displacement, force, passivity) play in exag-
gerating, or attenuating, various nonlinear effects.

Also, some approaches to control of WEC systems, while
recognising non-ideal PTO efficiency, has been considered
(Bacelli et al., 2015; Genest et al., 2014; Tona et al., 2015).
One of the strong messages here is that, if non-ideal PTO
efficiency is ignored, the resulting incorrect control may,
in fact, produce negative net energy.

Despite these ventures into the nonlinear world, there is
still no option to address the more general nonlinear model
structures of Sections 2.1 and 2.2 within WEC controller
structures. The difficulty centres around bridging the
gap between the nonlinear model parameterisations (CFD
models being the ultimate example) and the nonlinear
parameterisation that can be tolerated within nonlinear
WEC control structures. One attempt to build such a
bridge may come in the form of nonlinear model reduction
methods, where some application to the wave energy space
has recently taken place (Faedo et al., 2020).

One reasonably straightforward method to bridge the
divide between nonlinear (including CFD) WEC models
is to use the nonlinear model to generate data, from
which a particular nonlinear parameterisation (suitable for
control) can be fitted (Giorgi et al., 2019). This concept
can, of course, be extended to recorded tank data (Giorgi
et al., 2019). However, as previously mentioned, care must
be taken in the design of experiment used to elicit the data
(Davidson et al., 2016).

3.3 The new generation

This is a somewhat diverse grouping, but hopefully reflects
the main current and new directions in wave energy
control. One significant emerging area is robust WEC
control, specifically targetting uncertainty in the model,
for model-based control design. However, this control area
is dealt with separately in Section 5.

Apart from the incremental improvements in MPC and
MPC-like control strategies, several important new direc-
tions are being explored. An interesting aspect is that,
in many cases, rather than adding complexity, there is
a drive to reduce complexity. This complexity reduction
is associated with ways of trying to avoid some of the
particular problems that make wave energy control so
challenging. These include:

(a) Avoiding the need for excitation force estimation
(b) Avoiding the need for excitation force forecasting
(c) Avoiding the need for numerical optimisation, which

has the consequent difficulties of convexity and con-
vergence.

One particular advantage of the feedback configuration of
the ACC controller (see Fig.4) is that no measurement,
either current or future, of Fex is required. However, in
its original form, the ACC controller can only cater for
monochromatic waves. With some small compromise on
full optimality (achieved only for monochromatic waves),
the controller of Nielsen et al. (2013) deals with stochastic



wave climates, while also naturally providing a causal con-
trol solution. One small issue is that the control problem is
solved over an infinite time horizon, which might present
a challenge for real-time implementation.

The last decade has also seen the application of machine
learning techniques to wave energy modelling and control.
However, the first application of neural networks to wave
energy control was documented by Beirao et al. (2007),
who used an internal model control (IMC) structure,
implementing phase and amplitude control, to incorporate
a neural network model of the Archimedes Wave Swing.
More recent applications include the use of a neural
network model by Anderlini et al. (2017), though the use
of a simple (single frequency) CC controller seems to be a
little at odds with the model complexity.

The causal approach of Scruggs et al. (2013) avoids the
need for forecasting, and has been progressively refined to
include nonlinear dynamics and PTO losses (Nie et al.,
2016), and finite stroke constraints (Scruggs, 2017). The
causal WEC controller of Shi et al. (2019) is also notewor-
thy in the innovative use of Bayesian learning.

Finally, a recent control design by Garcia-Violini et al.
(2020) attempts to initially articulate the panchromatic
CC problem in nonparametric form, and then to use the
FOAMM toolbox (Faedo et al., 2018a) to determine a
parametric LTI model. With such a configuration, the
implementation of constraints is suboptimal, but the con-
troller returns performance comparable with MPC and
better than the ‘simple and effective’ (SE) controller of
Fusco and Ringwood (2012), which also targets simplicity
by using an instantaneous frequency tracker to implement
constrained CC control, as shown in Fig.8. A somewhat
similar approach, with a more traditional controller iden-
tification, without considering constraints, is shown in
Bacelli et al. (2020).

Fig. 8. Performance of a LiTe-Con controller (dashed
red), compared to a high performance moment-based
controller (solid blue) and an SE controller (orange
dash-dot). Taken from (Garcia-Violini et al., 2020)

4. ESTIMATION AND FORECASTING

In this section, pertinent and recent developments in exci-
tation force (and/or wave) estimation and forecasting are
profiled. In general, since the excitation force is essentially
a low-pass filtered version of the incident free surface

elevation (FSE), it is an easier quantity both to estimate
and forecast. However, dealing first with wave forecasting,
there are some key points:

• If an ideal low-pass (LP) filtered version of the FSE
is available, then the forecasting fidelity can be ex-
tended (Fusco and Ringwood, 2010). With a realistic
LP filter phase delay, the forecasting challenge is
effectively extended, somewhat nullifying the value of
the filtering.

• It’s difficult to justify the use of nonlinear wave
forecasting models (Fusco and Ringwood, 2010), par-
ticularly for WEC devices operating in the power
production region.

• Up-wave measurements have the potential to improve
wave forecasts (Mérigaud et al., 2018; Blenkinsopp
et al., 2012), although this is not always the case
(Paparella et al., 2014). The capital cost and mainte-
nance of data buoys or measurement systems must be
considered against their potential benefit over time-
series only techniques.

• It’s difficult to beat a simple autoregressive (AR)
model for wave forecasting (Peña-Sanchez et al.,
2020a)! A recent data-based method, employing
Gaussian process (GP) models (Shi et al., 2018),
has shown promise and has the added advantage of
producing reliable error bounds.

In relation to excitation force forecasting, there is an ad-
ditional device dependence, which determines the severity
of the non-causal control problem (Fusco and Ringwood,
2011b). For example, if the radiation impulse response
is of long duration, the control problem is significantly
non-causal, but this is alleviated somewhat by the fact
that slow (large) devices are designed to operate in longer
waves, easing the forecasting problem.

Regarding the estimation of excitation force, this repre-
sents a somewhat unusual estimation problem, in that the
unknown quantity is an input, rather than a state. The
survey of Peña-Sanchez et al. (2020b) examines the relative
performance of a set of excitation force estimators, under a
range of measurement noise conditions. The use of a CFD-
based numerical wave tank for simulation avoids tuning
the simulation to any particular input signal model in the
estimators.

Finally, the arrangement of WECs in an array presents
a more complex estimation/forecasting problem, due to
the added presence of radiated waves, but also allows
the motion of each WEC to be used as a measurement
point, providing more information for estimation and
forecasting of excitation force on each individual WEC.
The study of Peña-Sanchez et al. (2018) (using a Kalman
filter estimator and AR forecaster) demonstrates that,
broadly speaking, the added complexity of the wave field
is compensated by the extra information available. The
array estimator of Zou and Abdelkhalik (2018) also uses
information from the complete WEC array to estimate
the Fex on individual devices, but prioritises the motion
information from the device on which the estimation is
currently focussed.



5. SENSITIVITY AND ROBUSTNESS

One aspect of WEC control that is receiving increasing
attention is the area of control sensitivity to modelling er-
rors. Recently (Ringwood et al., 2020), the two main WEC
control structures, ACC and AVT, shown in Figs.4 and 5
respectively, were examined in terms of their comparative
sensitivity and robustness properties. Some of the analysis
gives cause for alarm, for example the system sensitivity
function for the ACC controller, copied here in Fig.9. From

Fig. 9. Sensitivity functions for an ACC controller for a
cylindrical point absorber. The vertical blue line rep-
resents the resonant frequency ωr =

√
K/(M +m∞).

Individual sensitivity to mass (M), damping (B),
and spring term (K) are shown, as well as overall
sensitivity, ST

G. Taken from (Ringwood et al., 2020)
.

Fig.9, it can be seen that quite alarming levels of closed-
loop sensitivity to modelling errors are achieved away from
the device resonance. At the device resonant frequency,
sensitivity is quite good (= 1/2), but the controller is, in
fact, inactive at this frequency. Despite this high closed-
loop sensitivity, there may be mitigating issues:

• The sensitivity of power production is usually lower
(Ringwood et al., 2020).
• If the WEC has a broad bandwidth (e.g. a flap), the

requirement for, and sensitivity of, the control system
may be lower, since the controller is required to do less
work (Folley et al., 2015).

Nevertheless, there are reasons for concern and the use of
(particularly linear) models, validated under uncontrolled
conditions, for model-based control design, is likely to
lead to an unacceptable mismatch between system and
controller. One solution is to adapt the controller, keeping
it sensitive to WEC model variations (Davidson et al.,
2018; Zhan et al., 2018), though robust control approaches
are also now also emerging (Garcia-Violini and Ringwood,
2019). Applying robust control to the velocity tracking
loop of an AVT control can draw on tradition robust
control techniques e.g. (Wahyudie et al., 2015).

6. WHERE TO NOW ?

Considerable progress has been made in WEC control over
the past 3 decades. However, challenges still remain in
accurately addressing WEC system (hydrodynamic and
PTO) nonlinearity in its true form. There is significant
challenge in the accurate representation of WEC hydro-
dynamics, in a form suitable for model-based control,
given the degree to which WEC controllers themselves
increase the operational space, and consequently the con-
trol challenge, of WECs. Finally, while the numerical AVT
optimisation methods give a concise facility to implement
hard physical constraints, they must include estimators
and forecasters to deal with the inherent non-causal na-
ture of the control problem. Feedback controller config-
urations are attractive, in eliminating the need for an
estimator/forecaster, but struggle with hard constraints
and pan-chromatic operation, while the sub-optimality of
causal controllers must be balanced with the inevitable
forecasting errors of their non-causal counterparts. A rich
control problem indeed!
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