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Power Allocation in Spectrum Sharing
Cognitive Radio Networks with
Quantized Channel Information

YuanYuan He, Student Member, IEEE, and Subhrakanti Dey, Senior Member, IEEE

Abstract—We consider a wideband spectrum sharing system
where a secondary user can access a number of orthogonal
frequency bands each licensed to a distinct primary user. We
address the problem of optimum secondary transmit power
allocation for its ergodic capacity maximization subject to an
average sum (across the bands) transmit power constraint
and individual average interference constraints on the primary
users. The major contribution of our work lies in considering
quantized channel state information (CSI)(for the vector channel
space consisting of all secondary-to-secondary and secondary-to-
primary channels) at the secondary transmitter as opposed to
the prevalent assumption of full CSI in most existing work.
It is assumed that a central entity called a cognitive radio
network manager has access to the full CSI information from
the secondary and primary receivers and designs (offline) an
optimal power codebook based on the statistical information
(channel distributions) of the channels and feeds back the index
of the codebook to the secondary transmitter for every channel
realization in real-time, via a delay-free noiseless limited feedback
channel. A modified Generalized Lloyds-type algorithm (GLA)
is designed for deriving the optimal power codebook, which is
proved to be globally convergent and empirically consistent. An
approximate quantized power allocation (AQPA) algorithm is
presented, that performs very close to its GLA based counterpart
for large number of feedback bits and is significantly faster. We
also present an extension of the modified GLA based quantized
power codebook design algorithm for the case when the feedback
channel is noisy. Numerical studies illustrate that with only 3-4
bits of feedback per band, the modified GLA based algorithms
provide secondary ergodic capacity very close to that achieved
by full CSI and with only as little as 4 bits of feedback per band,
AQPA provides a comparable performance, thus making it an
attractive choice for practical implementation.

Index Terms—Cognitive radio, spectrum sharing, fading chan-
nels, ergodic capacity, finite-rate feedback.

I. INTRODUCTION

RADIO spectrum is a limited and precious natural re-
source, which, traditionally, is licensed to users by reg-

ulatory authorities in a very rigid manner where in order to
avoid interference, the licensed owner has an exclusive right
to access the allocated frequency band [1]. Consequently, as
the number of wireless communication systems and services
grows, the availability of vacant spectrum becomes severely
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scarce. However, recent measurements by the Federal Commu-
nications Commission reveal that many portions of spectrum
are mostly under utilized or even unoccupied. This led to the
idea of cognitive radio (CR) technology, originally introduced
by J. Mitola [2], which holds tremendous promise to dramat-
ically improve the efficiency of spectral utilization. The key
idea behind CR is that an unlicensed/secondary user (SU) is
allowed to communicate over the frequency band originally
licensed to a primary user (PU), as long as the transmission
of SU does not generate unfavorable impact on the operation
of PU. Effectively, three categories of CR network paradigms
have been proposed: interweave, overlay, and underlay [3]. In
the underlay systems, which is the focus of this paper, the SU
can transmit even when the PU is present, but the transmitted
power of SU should be controlled properly so as to ensure that
the resulting interference does not degrade the received signal
quality of PU to an undesirable level [4] by imposing the so
called interference temperature [1] constraints at PU (average
or peak interference power (AIP/PIP) constraint). This type of
CR is also known as the ’spectrum sharing’ [1] model.

The behavior of capacities of various types of additive
white Gaussian noise (AWGN) channels under received-power
constraints at the PU receiver (PU-RX) was first studied in [6],
which showed that for point-to-point non-fading AWGN chan-
nels, the capacity performances with transmit and received
power constraints are essentially similar. The ergodic capacity
of narrow band spectrum sharing model with one SU and one
or more PU under either AIP or PIP constraint at PU-RX in
various fading environments was studied by [1], illustrating
that in a fading environment, spectrum access opportunity
for the SU significantly increases compared to the AWGN
case. In [7], the authors studied optimum power allocation
for three different capacity notions under both AIP and PIP
constraints. The optimal power allocation strategies for maxi-
mizing secondary ergodic capacity and outage capacity under
various combinations of secondary transmit power constraints
and interference constraints were derived in [4].

Most of the above results assume perfect knowledge of full
CSI including the SU-TX to PU-RX channels, which is hard
to realize in practice. A few recent papers have emerged that
address this concern by investigating capacity analysis with
imperfect CSI. The effect of imperfect channel information for
the secondary to primary channels has been investigated in [8]
by considering the channel information as a noisy estimate of
the true CSI, and [9] has proposed a practical design paradigm
for cognitive beamforming based on finite-rate cooperative
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feedback from the PU-RX to the SU-TX. Another recent work
[10] also considers imperfect CSI for the SU-TX to PU-RX
channel in the form of noisy channel estimate and quantized
channel information and investigates the effect of such im-
perfect CSI on the capacity performance of the secondary
user, while assuming that the SU-TX has full knowledge
of the SU-TX to SU-RX channel. Finally, [11] studies the
issue of channel quantization for resource allocation via the
framework of utility maximization in OFDMA based cognitive
radio networks, but does not investigate the joint channel
partitioning and rate/power codebook design problem. Indeed,
the lack of a rigorous and systematic design methodology
for quantized resource allocation algorithms in the context of
cognitive radio networks forms the key motivation for our
work.

In this paper, we consider the uplink of an infrastructure-
based wideband spectrum sharing system where one SU
shares 𝑀 different frequency bands with 𝑀 PU’s, each PU
using a separate band. We address the problem of ergodic
capacity maximization of the secondary user subject to an
average sum (across the bands) transmit power constraint
on the secondary user and individual average interference
constraints on the primary users, using quantized channel
information about the vector channel space consisting of all
SU-TX to SU-RX (contained in the SU Base station (SU-BS))
channels and all SU-TX to PU-RX (contained in the primary
base station (PU-BS)) channels. To this end, we assume the
availability of an entity called CR network manager who has
access to the full CSI including all secondary-to-secondary
and secondary-to-primary channels via (possibly fibre-optic)
links with the primary and secondary base stations, which
in turn are assumed to have receiver side full CSI of the
secondary-to-primary and secondary-to-secondary channels,
respectively. The CR network manager designs (offline) an
optimal power codebook based on the statistical information
(channel distributions) of the channels and in real-time, feeds
back the index of the codebook to the secondary transmitter
for every channel realization, via a 𝐵-bits per band finite-
rate feedback link. The secondary transmitter then uses the
corresponding power code vector for its transmission.

We make the following key contributions: (1) First and
foremost, we present a modified Generalized Lloyd’s type
algorithm (GLA) for designing the optimal power codebook
using quantized channel information. For easier exposition,
we focus on the narrowband case first and present the quan-
tized power allocation algorithm, where we prove that the
modified GLA based power codebook design algorithm is
globally convergent and empirically consistent. We provide
a number of useful and interesting properties of the quantized
powers. Then we present a complete description of the optimal
power codebook design algorithm for the wideband spectrum
sharing case under the average transmit power and average
interference constraints. We believe this paper is the first to
provide a systematic quantized power allocation algorithm
with limited feedback for the spectrum sharing scenario in
cognitive radio. (2) Although an offline algorithm, GLA based
quantizer designs usually require a large number of training
samples and can be computationally expensive. We therefore
design an approximate quantized power allocation algorithm

SU

…

Spectrum sharing for Licensed Bandd

SU-BS

SU-TX CR network 
manager

PU-BS

PU-RXX

Fig. 1. System model for wideband spectrum-sharing scenario.

based on the derived properties of the power codebook, which
is computationally significantly faster and is seen to have
a far superior performance compared to other suboptimal
algorithms. (3) We then generalize the modified GLA based
algorithm for quantized power allocation algorithm to the case
where the limited feedback channel is noisy but memoryless.
(4) We present a comprehensive set of numerical results which
illustrate that (i) the modified GLA-based power codebook can
achieve a secondary ergodic capacity with only 3-4 bits of
feedback at each band, that is very close to the capacity with
full CSI, (ii) the performance of the approximate quantized
power allocation algorithm is almost indistinguishable from
that of the GLA-based algorithm with 𝐵 ≥ 4 bits per band
of feedback and (iii) how the performance of the quantized
power allocation degrades when the noisy feedback channel
error probability increases.

The rest of the paper is organized as follows. Section II
presents the system model and assumptions about the spectrum
sharing problem with limited feedback. In Section III, we
present the modified GLA based quantized power codebook
design algorithms along with associated convergence results
and some useful properties of the quantized power code
vectors. The approximate quantized power allocation algo-
rithm (AQPA) and two other suboptimal algorithms are also
presented. In Section IV, we extend the modified GLA based
power codebook design algorithm to a noisy limited feedback
channel model. Numerical results are presented in Section V
and finally, concluding remarks and possible extensions are
presented in Section VI. All proofs are relegated to the
Appendix unless otherwise mentioned.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider the uplink of a wideband spectrum sharing
scenario in an infrastructure-based cognitive radio network
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with one SU and Multiple PUs, as shown in Fig. 1, where
a SU is allowed to use M parallel orthogonal frequency
bands (𝐵𝑎𝑛𝑑1 to 𝐵𝑎𝑛𝑑𝑀 ) which are individually licensed
to 𝑃𝑈1, . . . , 𝑃𝑈𝑀 respectively. Regardless of the ON/OFF
status of 𝑃𝑈𝑖, SU uses the 𝑖-th channel as long as the
impact of the secondary transmission does not substantially
degrade the received signal quality of 𝑃𝑈𝑖. It is assumed that
the channels between the secondary transmitter (SU-TX) and
secondary receiver (SU-RX) and those between the secondary
transmitter and the each primary receiver are all block fading
channels. Let 𝑔𝑖0 ∈ IR+ and 𝑔𝑖1 ∈ IR+ denote the real-valued
instantaneous channel power gains for the link between the
SU-TX and the receiver of 𝑃𝑈𝑖 (at the PU-BS) and 𝑖-th
channel between the SU-TX and SU-RX (at the SU-BS) 1,
respectively, where IR+ denotes the set of nonnegative real
numbers. These channels are assumed to be stationary ergodic
with absolutely continuous probability density functions (pdf)
𝑓0(𝑔

𝑖
0) and 𝑓1(𝑔𝑖1). For analytical simplicity, the interference

from 𝑃𝑈𝑖-TX to SU-RX is neglected (similarly as in [1],
[4]). In the case where the interference caused by the primary
transmitter at the secondary receiver is significant, the SU
ergodic capacity results derived in this paper can be taken as
upper bounds on the actual capacity under primary-induced
interference. All 𝑔𝑖0 and 𝑔𝑖1 (𝑖 = 1, . . . ,𝑀 ) are statistically
mutually independent, and without loss of generality 2 (w.l.o.g)
are assumed to have unity mean. Similarly, additive noises
for each channel are independent Gaussian random variables
with zero mean and unit variance w.l.o.g. When 𝑀 = 1, this
system becomes a typical narrowband spectrum sharing model
considered in [1][12][4].

Given a channel realization g0
△
= {𝑔10 , . . . , 𝑔𝑀0 } and g1

△
=

{𝑔11, . . . , 𝑔𝑀1 }, we assume that a channel state information
(CSI) 𝜂(g0,g1) is available at the SU-TX. The power allocated
at the SU-TX on the M parallel SU links is represented by the
vector p(𝜂(g0, g1)) = {𝑝1(𝜂(g0, g1)), . . . , 𝑝𝑀 (𝜂(g0, g1))},
the ergodic capacity of the SU for this wideband spectrum
sharing system can be expressed as

𝐶 =
1

𝑀

𝑀∑
𝑖=1

𝐸
[
log
(
1 + 𝑔𝑖1𝑝𝑖(𝜂(g0, g1))

)]
(1)

where, for simplicity, we have ignored the factor 1
2 at the

front of the capacity expression and log represents the natural
logarithm. Note also that the factor 1/𝑀 in front of the ca-
pacity formula above is not strictly necessary for the problem
formulation and since𝑀 is fixed for the problem, inclusion or
exclusion of it does not change the solution techniques and the
results (except for a scaling factor). However, channel capacity
is usually expressed in terms of per degree of freedom and in
order to have a fair comparison of capacities for various values

1Fig. 1) also shows that the PU-BS and SU-BS are connected (possibly via
fibre-optic links) to a central controller called the CR network manager, the
existence of which is crucial in designing the power allocation algorithms in
the quantized feedback case (see Section III for further details).

2Note that here the secondary-to-primary and secondary-to-secondary fad-
ing channel power gains are modelled as 𝑔𝑖𝑝 = 𝑚𝑖

0𝑔
𝑖
0 and 𝑔𝑖𝑠 = 𝑚𝑖

1𝑔
𝑖
1,

respectively where 𝑚𝑖
0,𝑚

𝑖
1 are the corresponding means, and 𝑔𝑖0, 𝑔𝑖1 have

unity mean. It can be easily seen from (2) that any non-unity mean 𝑚𝑖
0 can

be absorbed into the average interference threshold 𝑄𝑖
𝑎𝑣𝑔 and any non-unity

mean 𝑚𝑖
1 can be absorbed into 𝑝𝑖(.), the secondary transmission power on

the 𝑖-th band.

of 𝑀 , it is common practice to normalize it by the number
of degrees of freedom, in this case, 𝑀 . A similar formulation
can be found in the paper [5].

A common way to protect PU’s received signal quality is
by imposing either an average or a peak interference power
(AIP/PIP) constraint at PU-RX [1][12][4], although there are
other forms of PU quality of service constraints such as PU’s
capacity loss and PU’s outage probability [13]. It was shown
in [12] that an AIP constraint is more favorable than a peak
constraint especially in the context of transmission over fading
channels, since the AIP constraint is more flexible and can
achieve a larger SU capacity with less PU capacity loss than
that achieved by PIP.

Motivated by this observation, we consider the following
optimal power allocation problem that maximizes the ergodic
capacity of SU in a wideband spectrum sharing scenario,
under an AIP constraint at each 𝑃𝑈𝑖-RX and an average sum
transmit power constraint (ATP) for the SU, given by,

max
𝑝𝑖(𝜂(g0,g1))≥0,∀𝑖

1

𝑀

𝑀∑
𝑖=1

𝐸
[
log
(
1 + 𝑔𝑖1𝑝𝑖(𝜂(g0, g1))

)]

𝑠.𝑡. 𝐸
[
𝑔𝑖0𝑝𝑖(𝜂(g0, g1))

]
≤ 𝑄𝑖

𝑎𝑣𝑔, ∀𝑖,
1

𝑀

𝑀∑
𝑖=1

𝐸 [𝑝𝑖(𝜂(g0, g1))] ≤ 𝑃𝑎𝑣𝑔. (2)

When full CSI is available at the SU-Tx (i.e, 𝜂(g0, g1) =
(g0, g1)), the optimization problem is convex and the cor-
responding optimal secondary transmitter power allocation
policy is given by the following Theorem.

Theorem 1: With perfect channel information 𝜂(g0, g1) =
(g0, g1) at the SU-TX, the optimal power allocation for
problem (2) is given by the equation at the top of the next page,
where (𝑥)+ = 𝑚𝑎𝑥(𝑥, 0) and 𝜆𝑓 , 𝜇𝑓𝑖 are the nonnegative La-
grange multipliers associated with the ATP constraint and the
AIP constraint of 𝑃𝑈𝑖 respectively, and condition (a) corre-
sponds to the case 𝜆𝑓 = 0, 𝜇𝑓𝑖 > 0, ∀𝑖 and 𝜇𝑓𝑖 is determined by

solving 𝐸

[
𝑔𝑖0

(
1

𝜇𝑓
𝑖 𝑔

𝑖
0

− 1
𝑔𝑖
1

)+]
= 𝑄𝑖

𝑎𝑣𝑔 , condition (b) corre-

sponds to the case 𝜆𝑓 > 0, 𝜇𝑓𝑖 = 0 where 𝜆𝑓 is determined by

solving 1
𝑀

∑𝑀
𝑖=1 𝐸

[(
1
𝜆𝑓 − 1

𝑔𝑖
1

)+]
= 𝑃𝑎𝑣𝑔 , and condition (c)

corresponds to the case 𝜆𝑓 > 0, 𝜇𝑓𝑖 > 0 such that 𝜆𝑓 and 𝜇𝑓𝑖

are determined by solving 1
𝑀

∑𝑀
𝑖=1 𝐸

[(
1

𝜆𝑓+𝜇𝑓
𝑖 𝑔

𝑖
0

− 1
𝑔𝑖
1

)+]
=

𝑃𝑎𝑣𝑔 and 𝐸

[
𝑔𝑖0

(
1

𝜆𝑓+𝜇𝑓
𝑖 𝑔

𝑖
0

− 1
𝑔𝑖
1

)+]
= 𝑄𝑖

𝑎𝑣𝑔 .

This result is a minor extension of the corresponding
narrowband result in [4] and follows using the necessary
and sufficient Karush-Kuhn-Tucker (KKT) conditions for the
convex optimization problem. For a proof of this result, and
associated special cases and numerical studies, see an extended
online version of this paper [14].

III. OPTIMUM QUANTIZED POWER CONTROL WITH

FINITE-RATE FEEDBACK

The assumption of full CSI at the SU-TX (especially that of
g0) is usually unrealistic in practical systems. In this section,
we are therefore interested in designing power allocation
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𝑝∗𝑖 (g0, g1) =⎧⎨
⎩

(
1

𝜇𝑓
𝑖 𝑔

𝑖
0

− 1
𝑔𝑖
1

)+
iff 𝑃𝑎𝑣𝑔 ≥ 1

𝑀

∑𝑀
𝑖=1 𝐸

[(
1

𝜇𝑓
𝑖 𝑔

𝑖
0

− 1
𝑔𝑖
1

)+]
(𝑎)⎧⎨

⎩

(
1
𝜆𝑓 − 1

𝑔𝑖
1

)+
iff 𝐸

[(
1
𝜆𝑓 − 1

𝑔𝑖
1

)+]
≤ 𝑄𝑖

𝑎𝑣𝑔 (𝑏)

otherwise(
1

𝜆𝑓+𝜇𝑓
𝑖 𝑔

𝑖
0

− 1
𝑔𝑖
1

)+
otherwise (𝑐)

schemes based on quantized (g0, g1) information acquired
via a no-delay and error-free feedback link with limited
rate. As shown in Fig. 1, here we assume that there is a
central controller termed as the CR network manager who
can obtain perfect information on g1 from SU-RX at the
SU base station and perfect information on g0 from the PU
base station, possibly over fibre-optic links and then forward
some appropriately quantized CSI to SU-TX (and SU-RX
for decoding purposes) through a finite-rate feedback link.
Note that existence of such central controllers is also assumed
quite commonly in literature on multi-cell MIMO or macro-
diversity based systems with cooperative base stations in a
primary network, where several base stations are assumed to
be connected to a central controller via a backhaul link so
that information about out-of-cell interference can be obtained
resulting in higher capacity [15], [16]. If cognitive radio
networks are to be successful, it is imperative that the primary
users cooperate with the CR service provider at some level.
In our model, we assume this cooperation in terms of primary
channel information sharing with the CR network manager
via the PU-BS. Any cost incurred by the CR service provider
as a result of obtaining this information from the PU-BS
can be recovered by charging the secondary users a nominal
price. This assumption is further (and perhaps more crucially)
justified by the fact that having full CSI about the joint channel
space g0, g1 allows the CR network manager to design a
joint channel quantizer and power codebook that has a far
superior performance than quantizing g0 and g1 separately
in the absence of this central controller, which is clearly
suboptimal (see Section V on Numerical Results for further
details).

In order to formulate the optimal power allocation with
quantized channel feedback, we first make the observation that
due to convexity of the original problem (2), it can be solved
by the Lagrange duality method, namely, by solving the dual
problem of (2): min𝜆𝑓≥0, 𝜇𝑓

𝑖 ≥0,∀𝑖 𝑔(𝜆
𝑓 , {𝜇𝑓𝑖 }) + 𝜆𝑓𝑃𝑎𝑣𝑔 +∑𝑀

𝑖=1 𝜇
𝑓
𝑖𝑄

𝑖
𝑎𝑣𝑔 , where the Lagrange dual function 𝑔(𝜆𝑓 , {𝜇𝑓𝑖 })

is given by

max
𝑝𝑖(𝜂(g0,g1))≥0,∀𝑖

1

𝑀

𝑀∑
𝑖=1

𝐸[log
(
1 + 𝑔𝑖1𝑝𝑖(𝜂(g0, g1))

)
− 𝜆𝑓𝑝𝑖(𝜂(g0, g1))−𝑀𝜇𝑓𝑖 𝑔𝑖0𝑝𝑖(𝜂(g0, g1))]. (3)

Here 𝑔(𝜆𝑓 , {𝜇𝑓𝑖 }) can be decomposed into M parallel sub-
problems, which for band 𝑖, 𝑖 = 1, . . . ,𝑀 is given by (4)
at the top of the next page, which implies given 𝜆𝑓 and
𝜇𝑓𝑖 , 𝑖 = 1, 2, . . . ,𝑀 , we can solve the above problem individu-

ally for each band. This observation motivates us to formulate
Problem (2) with quantization channel feedback individually
for each band as described below.

Under the network modelling assumptions described above,
given a 𝐵-bit per band limited feedback link between the CR
network manager and the the SU-TX, the power codebook
for 𝑖-th band (𝑖 = 1, . . . ,𝑀 ) given by 𝒫𝑖 = {𝑝𝑖1, . . . , 𝑝𝑖𝐿} of
cardinality 𝐿 = 2𝐵 , is designed by the CR network manager
off-line purely on the basis of the statistics of 𝑔𝑖0, 𝑔

𝑖
1. These

codebooks 𝒫1, . . . ,𝒫𝑀 are known a priori by both SU-TX
and CR network manager. For the 𝑖-th band, the vector space
of (𝑔𝑖0, 𝑔

𝑖
1) is thus partitioned into 𝐿 regions ℛ𝑖

1, . . . ,ℛ𝑖
𝐿 using

a quantizer 𝒬𝑖 (such that the codebook element 𝑝𝑖𝑗 represents
the power level used in ℛ𝑖

𝑗 ). For the 𝑖-th band, the CR network
manager maps the current instantaneous (𝑔𝑖0, 𝑔

𝑖
1) information

into one of 𝐿 integer indices and sends the corresponding
index to the SU-TX via the feedback link of rate 𝐵 = log2 𝐿
(e.g., if the current (𝑔𝑖0, 𝑔

𝑖
1) falls in ℛ𝑖

𝑗 , then index 𝑗 for 𝑖-th
band will be conveyed back to SU-TX). The SU-TX will use
the associated power codebook element 𝑝𝑖𝑗 as the transmission
power to adapt its transmission strategy for the band 𝑖.

Remark 1: Note that it is possible to consider different
feedback bit rates for different bands and our analysis can
be adapted to this scenario, but for simplicity and also due to
the fact that all bands are assumed to be statistically i.i.d., we
use identical 𝐵 bits of feedback for each band.

Let 𝑃𝑟(ℛ𝑖
𝑗), 𝐸[∙∣ℛ𝑖

𝑗 ] denote 𝑃𝑟((𝑔𝑖0, 𝑔
𝑖
1) ∈ ℛ𝑖

𝑗) (the prob-
ability that (𝑔𝑖0, 𝑔

𝑖
1) falls in the region ℛ𝑖

𝑗 ) and 𝐸[∙∣(𝑔𝑖0, 𝑔𝑖1) ∈
ℛ𝑖

𝑗 ], respectively. Then the secondary ergodic capacity maxi-
mization problem (2) with limited feedback can be formulated
as

max
𝑝𝑖𝑗≥0,∀𝑖,𝑗

1

𝑀

𝑀∑
𝑖=1

(
𝐿∑

𝑗=1

𝐸
[
log(1 + 𝑔𝑖1𝑝𝑖𝑗)∣ℛ𝑖

𝑗

]
𝑃𝑟(ℛ𝑖

𝑗)

)

𝑠.𝑡.

𝐿∑
𝑗=1

𝐸[𝑔𝑖0𝑝𝑖𝑗 ∣ℛ𝑖
𝑗 ]𝑃𝑟(ℛ𝑖

𝑗) ≤ 𝑄𝑖
𝑎𝑣𝑔, ∀𝑖,

1

𝑀

𝑀∑
𝑖=1

(
𝐿∑

𝑗=1

𝐸[𝑝𝑖𝑗 ∣ℛ𝑖
𝑗 ]𝑃𝑟(ℛ𝑖

𝑗)

)
≤ 𝑃𝑎𝑣𝑔. (5)

Our objective is thus the joint optimization of the channel
partition regions and the power codebooks such that the
ergodic capacity of SU is maximized under the above average
transmit power and average interference constraints.
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max
𝑝𝑖(𝜂(g0,g1))≥0,∀𝑖

𝐸[log
(
1 + 𝑔𝑖1𝑝𝑖(𝜂(g0, g1))

)− 𝜆𝑓𝑝𝑖(𝜂(g0, g1))−𝑀𝜇𝑓𝑖 𝑔𝑖0𝑝𝑖(𝜂(g0, g1))] (4)

A. Narrowband Spectrum-Sharing Case

For ease of exposition, we first look at the relatively simpler
case of𝑀 = 1 (where SU shares a narrowband spectrum with
only one PU). For simplicity (with some abuse of notation),
let 𝑝𝑗 , 𝑔1, 𝑔0, 𝑄𝑎𝑣𝑔,ℛ𝑗 represent 𝑝1𝑗 , 𝑔11 , 𝑔

1
0 , 𝑄

1
𝑎𝑣𝑔,ℛ1

𝑗 respec-
tively. Thus problem (5) with 𝑀 = 1 becomes,

max
𝑝𝑗≥0,∀𝑗

𝐿∑
𝑗=1

𝐸 [log(1 + 𝑔1𝑝𝑗)∣ℛ𝑗 ]𝑃𝑟(ℛ𝑗)

𝑠.𝑡.

𝐿∑
𝑗=1

𝐸[𝑔0𝑝𝑗 ∣ℛ𝑗 ]𝑃𝑟(ℛ𝑗) ≤ 𝑄𝑎𝑣𝑔,

𝐿∑
𝑗=1

𝑝𝑗𝑃𝑟(ℛ𝑗) ≤ 𝑃𝑎𝑣𝑔 (6)

We solve the problem (6) based on the Lagrange dual-
ity method. First we write the Lagrangian of above prob-
lem as 𝐿(𝑃, 𝜆, 𝜇) =

∑𝐿
𝑗=1 𝐸[log(1 + 𝑔1𝑝𝑗) − 𝜆𝑝𝑗 −

𝜇𝑔0𝑝𝑗 ∣ℛ𝑗 ]𝑃𝑟(ℛ𝑗) + 𝜆𝑃𝑎𝑣𝑔 + 𝜇𝑄𝑎𝑣𝑔 where 𝜆 and 𝜇 are the
nonnegative Lagrange multipliers associated with the ATP
constraint and AIP constraint respectively. The Lagrange dual
function 𝑔(𝜆, 𝜇) is defined as

max
𝑝𝑗≥0 ∀𝑗

𝐿∑
𝑗=1

𝐸[log(1 + 𝑔1𝑝𝑗)− 𝜆𝑝𝑗 − 𝜇𝑔0𝑝𝑗∣ℛ𝑗 ]𝑃𝑟(ℛ𝑗) (7)

and the corresponding dual problem is min𝜆≥0, 𝜇≥0 𝑔(𝜆, 𝜇)+
𝜆𝑃𝑎𝑣𝑔 + 𝜇𝑄𝑎𝑣𝑔 .

We first consider solving the above primal optimization
problem with fixed 𝜆 and 𝜇. To this end, we employ an
algorithm similar to a Generalized Lloyd Algorithm (GLA)
[17], [18] to design an optimal power codebook for (7), which
is based on two optimality conditions : 1) optimum channel
partitioning for a given codebook, also called the nearest
neighbor condition (NNC) in the context of traditional vector
quantization (VQ), and 2) optimum codebook design for a
given partition, also known as the centroid condition (CC)
(in the context of VQ) [18]. GLA is usually initialized with a
random choice of codebook, and then the above two conditions
are iterated until some pre-specified convergence criterion is
met. The same procedure is used here for designing an optimal
quantizer 𝒬, but the design criterion for our case is minimizing
the difference between the capacity with perfect CSI and
the capacity with quantized power allocation under the given
constraints. This amounts to designing an optimal power code-
book 𝒬 that maximizes the Lagrangian function for quantized
CSI,

∑𝐿
𝑗=1 𝐸[log(1 + 𝑔1𝑝𝑗) − 𝜆𝑝𝑗 − 𝜇𝑔0𝑝𝑗 ∣ℛ𝑗 ]𝑃𝑟(ℛ𝑗). We

call the corresponding quantized power allocation algorithm
for a given 𝜆, 𝜇 as a modified GLA.

In practice, this modified GLA is implemented using a suffi-
ciently large number of training samples (channel realizations
for 𝑔0, 𝑔1). Beginning with a random initial codebook, one can
design the optimal partitions using the fact that the optimal

partitions satisfy ℛ𝑗 = {(𝑔0, 𝑔1) : (log(1 + 𝑔1𝑝𝑗) − 𝜆𝑝𝑗 −
𝜇𝑔0𝑝𝑗) ≥ (log(1 + 𝑔1𝑝𝑛) − 𝜆𝑝𝑛 − 𝜇𝑔0𝑝𝑛), ∀𝑛 ∕= 𝑗} where
ℛ𝑗 is the corresponding partition region for power level 𝑝𝑗
in the codebook, and ties are broken arbitrarily. Once the
optimal partitions are designed, the new optimal power code-
book is found by solving for argmax𝑝𝑗≥0𝐸[log(1 + 𝑔1𝑝𝑗) −
𝜆𝑝𝑗 −𝜇𝑔0𝑝𝑗 ∣ℛ𝑗 ]𝑃𝑟(ℛ𝑗), ∀𝑗 = 1, 2, . . . , 𝐿. Given a partition,
this optimization problem is convex and by using the KKT
conditions, one can obtain the optimal power as max(𝑝∗𝑗 , 0),
where 𝑝∗𝑗 is the solution to the equation 𝐸[ 𝑔1

1+𝑔1𝑝𝑗
− (𝜆 +

𝜇𝑔0)∣ℛ𝑗 ] = 0. These two steps are repeated until the resulting
ergodic capacity converges within a pre-specified accuracy.
One needs to note that GLA cannot in general guarantee
global optimality, since the two optimality conditions (NNC
and CC) mentioned above are just necessary conditions [18].
Thus it is very likely that the our resulting quantizer is only
locally optimal. While convergence (to a local optimum) of
our modified GLA follows immediately by noting that the
Lagrangian

∑𝐿
𝑗=1𝐸[log(1+𝑔1𝑝𝑗)−𝜆𝑝𝑗−𝜇𝑔0𝑝𝑗 ∣ℛ𝑗 ]𝑃𝑟(ℛ𝑗)

is non-decreasing at each iteration and is upper bounded (due
to the finite average transmit power and average interference
constraints), it is important and instructive to state a more
formal result along the lines of [19]. Since GLA is initialized
with a random codebook and the optimal partitions and
codevectors are found using training samples drawn from
empirical distributions, it is crucial that GLA is globally
convergent with respect to the choice of initial codebooks and
empirically consistent. For more formal definitions of these
two properties, see [19]. Under the assumption of absolutely
continuous fading distributions for 𝑔0, 𝑔1 and mild regularity
assumptions satisfied by these distributions, one can show
that the modified GLA satisfies the conditions for global
convergence and empirical consistency stated in [19] and thus
we have the following result:

Theorem 2: The modified GLA that solves the optimization
problem (7) satisfies the global convergence and empirical
consistency properties of [19].

Next, we present some useful properties of the optimal
power solutions obtained via the modified GLA. We use the
partitions ℛ1, . . . ,ℛ𝐿 and the corresponding power levels
𝑝1, . . . , 𝑝𝐿 to denote the optimal solutions after convergence.
First, we state the following Lemma without proof (the proof
is straightforward and can be found in [14].

Lemma 1: Given partitions ℛ1, . . . ,ℛ𝐿 and the corre-
sponding power level 𝑝1, . . . , 𝑝𝐿, (where ℛ𝑗 and ℛ𝑗+1, ∀𝑗 ∈
{1, . . . , 𝐿 − 1} are adjacent regions and 𝑝𝑗 ∕= 𝑝𝑗+1), the
boundary between any two adjacent regions ℛ𝑗 and ℛ𝑗+1

is given by, 𝑔1 = 𝑒(𝜆+𝜇𝑔0)(𝑝𝑗−𝑝𝑗+1)−1

𝑝𝑗−𝑝𝑗+1𝑒
(𝜆+𝜇𝑔0)(𝑝𝑗−𝑝𝑗+1) . When 𝜇 ∕= 0, 𝑔1

is a monotonically increasing convex function of 𝑔0 and as

𝑔1 → ∞, 𝑔0 → 1
𝜇

(
log(

𝑝𝑗
𝑝𝑗+1

)

𝑝𝑗−𝑝𝑗+1
− 𝜆
)

.

Remark 2: In case 𝜆 > 0, 𝜇 = 0, the AIP constraint is
inactive and the ATP constraint is satisfied with equality. In
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Fig. 2. The structure of optimum partition regions with 𝐵 = 2 bits of
feedback given 𝜆 = 𝜇 = 0.1, 𝑃𝑎𝑣 = 5.6336 dB, 𝑄𝑎𝑣 = 3.4492 dB.
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Fig. 3. The structure of optimum partition regions with 𝐵 = 2 bits of
feedback given 𝜆 = 1, 𝜇 = 0, 𝑃𝑎𝑣 = −8.3298 dB.

this case, the boundary between any two adjacent regions ℛ𝑗

and ℛ𝑗+1 becomes 𝑔1 = 𝑒𝜆(𝑝𝑗−𝑝𝑗+1)−1

𝑝𝑗−𝑝𝑗+1𝑒
𝜆(𝑝𝑗−𝑝𝑗+1) . Clearly, Problem

(5) reduces to an ergodic capacity maximization problem with
quantized channel information. For the narrowband case, it
becomes a scalar quantization problem involving quantizing 𝑔1
only. Note that while for the narrowband case, this no longer
pertains to a cognitive radio problem, these properties of the
optimal quantized power allocation scheme are still important
for the wideband case (𝑀 > 1). This is due to the fact that
in the wideband case, it is possible that for a specific (say the
𝑖-th) channel, the AIP constraint is inactive (𝜇𝑖 > 0) while
𝜆 > 0. See Section III-B for further details.

We now give an example to illustrate what the optimum
partition regions actually look like. For this example, 𝑔0 and
𝑔1 are both exponentially distributed (Rayleigh fading) with
unit mean and 𝐿 = 4 (2 bits of feedback). The optimum
partition regions are as shown in Fig. 2 for 𝜆 > 0, 𝜇 > 0, and
Fig. 3 for 𝜆 > 0, 𝜇 = 0.

We obtain the following properties for the optimal quantized

power levels where (as illustrated in Fig. 2) the regions
ℛ1,ℛ2, . . . etc. are sequentially numbered, with ℛ1 being the
region closest to the 𝑔1 axis and ℛ𝐿 being the region closest
to the 𝑔0 axis. Note that these properties apply regardless of
whether 𝜇 > 0 or 𝜇 = 0.

Theorem 3: i). 𝑝1 > ⋅ ⋅ ⋅ > 𝑝𝐿
ii). All boundaries between any two adjacent partitions

satisfy 𝑔1 > 𝜆+ 𝜇𝑔0.
iii). Given 𝐵 bits of feedback (or 𝐿 = 2𝐵 regions), for

the first L-1 regions, we always have strictly positive
power, i.e. 𝑝1 > ⋅ ⋅ ⋅ > 𝑝𝐿−1 > 0, whereas 𝑝𝐿 is simply
nonnegative, i.e. 𝑝𝐿 ≥ 0.

iv). When 𝜆 + 𝜇 ≥ 1 (note that if 𝜆 = 0, 𝜇 ≥ 1 implies
𝑄𝑎𝑣𝑔 < 1, and if 𝜇 = 0, 𝜆 ≥ 1 corresponds to
𝑃𝑎𝑣𝑔 < 1), we always have 𝑝𝐿 = 0. In addition, when 𝐿
(the number of quantized regions) is sufficiently large,
no matter what 𝜆, 𝜇 are, 𝑝𝐿 must be 0. Additionally,
as 𝐿 → ∞ the boundary between ℛ𝐿−1 and ℛ𝐿

approaches 𝑔1 = 𝜆+ 𝜇𝑔0 and lim𝐿→∞ 𝑝𝐿−1 = 0.
Proof: See Proof in Appendices B-E.
Remark 3: The above properties of optimal quantized

power values are interesting for two reasons. From property
ii), it is clear that (𝑔0, 𝑔1) ∈ ℛ𝑗 for 𝑗 = 1, 2, . . . , 𝐿 − 1
satisfy the property 𝑔1 > 𝜆 + 𝜇𝑔0 whereas for the region
ℛ𝐿, this property may or may not be satisfied. Since the
quantized power values in the first 𝐿 − 1 regions are strictly
positive, it is easy to relate this property to the corresponding
property of the full CSI based optimal power value which is
strictly positive if and only if when 𝑔1 > 𝜆𝑓 +𝜇𝑓𝑔0. Also, as
𝐿 → ∞, the boundary between ℛ𝐿−1 and ℛ𝐿 approaches
𝑔1 = 𝜆 + 𝜇𝑔0, thus making this relationship between the
quantized power allocation scheme and the full CSI power
allocation scheme stronger. Finally, property iv) allows one
to obtain an approximate quantized power allocation scheme
(AQPA) for large 𝐿 by setting 𝑝𝐿 = 0 and taking the limit as
𝑝𝐿−1 → 0. This is particularly useful as the modified GLA
becomes computationally intensive for large 𝐿, whereas AQPA
provides a performance that is extremely close to that of the
modified GLA, while requiring very little computation time. A
detailed description of the AQPA is provided in Section III-C
followed by illustrative numerical simulations in Section V.

Based on Lemma 1 and Theorem 3, one can also obtain the
optimal quantized power values for Problem (7) by solving the
following set of nonlinear equations for 𝑝1, 𝑝2, 𝑝3, . . . , 𝑝𝐿:

𝐸

[
𝑔1

1 + 𝑔1𝑝𝑗
− (𝜆+ 𝜇𝑔0)∣ℛ𝑗

]
= 0, 𝑗 = 1, . . . , 𝐿, (8)

where 𝑝𝐿 = max(0, 𝑝𝐿), and if 𝜇 ∕= 0,

𝐸
[

𝑔1
1+𝑔1𝑝𝑗

− (𝜆+ 𝜇𝑔0)∣ℛ𝑗

]
=

∫∞
𝑐𝑗

∫ 𝑟𝑗
𝑟𝑗−1

( 𝑔1
1+𝑔1𝑝𝑗

− (𝜆 +

𝜇𝑔0))𝑓(𝑔0)𝑓(𝑔1)𝑑𝑔0𝑑𝑔1, with 𝑐𝑗 = 𝑒𝜆(𝑝𝑗−𝑝𝑗+1)−1

𝑝𝑗−𝑝𝑗+1𝑒
𝜆(𝑝𝑗−𝑝𝑗+1) , 𝑗 =

1, . . . , 𝐿 − 1, 𝑐𝐿 = 0 and 𝑟𝑗 = 1
𝜇

(
log

𝑝𝑗∗𝑔1+1

𝑝𝑗+1∗𝑔1+1

𝑝𝑗−𝑝𝑗+1
− 𝜆
)
, 𝑗 =

1, . . . , 𝐿 − 1, 𝑟0 = 0, 𝑟𝐿 = ∞. When 𝜇 = 0,
𝐸
[

𝑔1
1+𝑔1𝑝𝑗

− (𝜆+ 𝜇𝑔0)∣ℛ𝑗

]
=
∫ 𝑐𝑗−1

𝑐𝑗
( 𝑔1
1+𝑔1𝑝𝑗

− 𝜆)𝑓(𝑔1)𝑑𝑔1,
with 𝑐0 = ∞. Note that (8) can be solved efficiently by a
suitable nonlinear equation solver. This particular solution
methodology will be very useful in the case of AQPA (see
Section III.C for further details).
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We now solve the dual problem for finding the optimal
values 𝜆 and 𝜇. Since the dual function (7) is convex in 𝜆, 𝜇,
we can find their optimal values by using an iterative sub-
gradient based method [20], where 𝜆 and 𝜇 are updated until
convergence using 𝜆𝑙+1 = [𝜆𝑙−𝛼𝑙(𝑃𝑎𝑣𝑔−

∑𝐿
𝑗=1 𝑝𝑗𝑃𝑟(ℛ𝑗))]

+

and 𝜇𝑙+1 = [𝜇𝑙 − 𝛽𝑙(𝑄𝑎𝑣𝑔 − ∑𝐿
𝑗=1 𝐸[𝑔0𝑝𝑗 ∣ℛ𝑗 ]𝑃𝑟(ℛ𝑗))]

+

respectively, where 𝑙 is the iteration number, 𝛼𝑙, 𝛽𝑙 are positive
scalar step sizes for the 𝑙-th iteration and satisfy

∑∞
𝑙=1 𝛼𝑙 =

∞,
∑∞

𝑙=1 𝛽𝑙 = ∞,
∑∞

𝑙=1 𝛼
2
𝑙 < ∞ and

∑∞
𝑙=1 𝛽

2
𝑙 < ∞, and

[𝑥]+
△
= max(𝑥, 0). Note that this method is guaranteed to

converge to the global optimum of the dual function even
though the primal problem is non-convex [20]. One can
then repeat the modified GLA based algorithm for finding
a locally optimum quantized power values for fixed 𝜆, 𝜇 and
the sub-gradient based method for updating 𝜆, 𝜇 as described
above until an overall convergence criterion is met. Note that
since the primal problem is non-convex, the resultant power
allocation and codebook design can only be guaranteed to be
locally optimal. An algorithmic format for this procedure is
provided for the more general wideband (𝑀 > 1) case in the
next subsection.

Remark 4: Note that the idea of using a Lagrangian based
cost function as a modified distortion measure for optimizing
via GLA is not new. It has been used for combined adaptive
power control and beamforming for MIMO link capacity op-
timization with limited feedback in [21] and more recently for
optimal power and rate allocation and scheduling in TDMA
based wireless sensor networks with limited feedback in [22].
However, these papers do not consider average interference
constraints and therefore their results cannot be applied to
the problem of power allocation in cognitive radio networks
with limited feedback. Generic convergence results for the
specific GLA used in [21], [22] are also presented in these
papers. However, what is unique in our paper (apart from the
novel application to quantized power allocation for secondary
throughput maximization in cognitive radio) is that the detailed
global convergence and empirical consistency result presented
in Theorem 2 and more importantly the properties of the
quantized power allocation scheme detailed in Theorem 3,
which are specific to the case of the cognitive radio problem.
Finally, these properties are used to derive a novel approximate
power allocation algorithm (AQPA), which is significantly
faster than the GLA based algorithm and as will be seen later,
performs very close to it with more than 4 bits of feedback.

B. Wideband Spectrum-Sharing Case

The above algorithm for the narrowband case can be easily
extended to the wideband case corresponding to the problem
(5). For this scenario, the Lagrangian function becomes,

𝐿(𝑃, 𝜆, u) =
1

𝑀

𝑀∑
𝑖=1

(
𝐿∑

𝑗=1

𝐸
[
log(1 + 𝑔𝑖1𝑝𝑖𝑗)∣ℛ𝑖

𝑗

]
𝑃𝑟(ℛ𝑖

𝑗)

)

− 𝜆

(
1

𝑀

𝑀∑
𝑖=1

(
𝐿∑

𝑗=1

𝐸[𝑝𝑖𝑗 ∣ℛ𝑖
𝑗 ]𝑃𝑟(ℛ𝑖

𝑗)

)
− 𝑃𝑎𝑣𝑔

)

−
𝑀∑
𝑖=1

𝜇𝑖

(
𝐿∑

𝑗=1

𝐸[𝑔𝑖0𝑝𝑖𝑗 ∣ℛ𝑖
𝑗 ]𝑃𝑟(ℛ𝑖

𝑗)−𝑄𝑖
𝑎𝑣𝑔

)
(9)

where 𝜆 and 𝜇𝑖 are the nonnegative Lagrange multipliers
associated with the ATP constraint and 𝑖th AIP constraint
respectively. The Lagrange dual function 𝑔(𝜆, {𝜇′𝑖}) is defined
as

max
𝑝𝑖𝑗≥0 ∀𝑖,𝑗

1

𝑀

𝑀∑
𝑖=1

𝐿∑
𝑗=1

𝐸[log(1 + 𝑔𝑖1𝑝𝑖𝑗)− 𝜆𝑝𝑖𝑗

−𝜇′𝑖𝑔𝑖0𝑝𝑖𝑗 ∣ℛ𝑖
𝑗 ]𝑃𝑟(ℛ𝑖

𝑗) (10)

where 𝜇′𝑖 = 𝑀𝜇𝑖, ∀𝑖, and the dual problem is
min𝜆≥0, 𝜇′

𝑖≥0,∀𝑖 𝑔(𝜆, {𝜇′𝑖}) + 𝜆𝑃𝑎𝑣𝑔 +
∑𝑀

𝑖=1
𝜇′
𝑖

𝑀𝑄
𝑖
𝑎𝑣𝑔.

Similar to the narrowband case, we first consider the
problem (10) to obtain 𝑔(𝜆, {𝜇′𝑖}) with given 𝜆 and {𝜇′𝑖}.
As discussed before, problem (10) can be decomposed into M
parallel subproblems, where for each band 𝑖, 𝑖 = 1, . . . ,𝑀

max
𝑝𝑖𝑗≥0 ∀𝑗

𝐿∑
𝑗=1

𝐸[log(1 + 𝑔𝑖1𝑝𝑖𝑗)− 𝜆𝑝𝑖𝑗

−𝜇′𝑖𝑔𝑖0𝑝𝑖𝑗 ∣ℛ𝑖
𝑗 ]𝑃𝑟(ℛ𝑖

𝑗) (11)

is defined as the sub-dual function 𝑔𝑖(𝜆, 𝜇′𝑖) and 𝑔(𝜆, {𝜇′𝑖}) =
1
𝑀

∑𝑀
𝑖=1𝑔𝑖(𝜆, 𝜇

′
𝑖). This kind of duality method is also known

as the ’dual decomposition algorithm’ [23]. Since each sub-
problem (11) is similar to the problem (7) for the narrowband
case and can be similarly solved by using a modified GLA.
𝜆 and {𝜇′𝑖} can be also obtained in a manner similar to the
narrowband case. These two steps are then repeated until a
satisfactory convergence criterion is met. Due to the increased
complexity resulting from the presence of multiple bands,
we provide below a description of the overall optimization
algorithm (Algorithm 1) for solving (5).

Algorithm 1:

1) Let 𝜆 = 0, then all 𝜇′𝑖, 𝑖 = 1, . . . ,𝑀 must sat-
isfy 𝜇′𝑖 > 0. For each band𝑖, starting with a ran-
dom initial value for 𝜇′𝑖, obtain the corresponding
optimal power codebook 𝒫𝑖 = {𝑝𝑖1, . . . , 𝑝𝑖𝐿} us-
ing a modified GLA, then update 𝜇′𝑖 by using an
iterative subgradient method 𝜇′𝑖(𝑙 + 1) = [𝜇′𝑖(𝑙) −
𝛽𝑙𝑖(𝑄

𝑖
𝑎𝑣𝑔 −∑𝐿

𝑗=1 𝐸[𝑔
𝑖
0𝑝𝑖𝑗 ∣ℛ𝑖

𝑗 ]𝑃𝑟(ℛ𝑖
𝑗))]

+, where 𝑙 de-
notes the iteration number, 𝛽𝑙𝑖 > 0 is scalar step
size for 𝑙-th iteration satisfying

∑∞
𝑙=1 𝛽

𝑙
𝑖 = ∞ and∑∞

𝑙=1(𝛽
𝑙
𝑖)

2 < ∞ ∀𝑖 = 1, 2, . . . ,𝑀 . Repeat these two
steps until convergence resulting in M power codebooks
{𝒫1, . . . ,𝒫𝑀} (one for each band). With these code-

books, if 1
𝑀

∑𝑀
𝑖=1

(∑𝐿
𝑗=1 𝐸[𝑝𝑖𝑗 ∣ℛ𝑖

𝑗 ]𝑃𝑟(ℛ𝑖
𝑗)
)
≤ 𝑃𝑎𝑣𝑔 ,

it is an optimal power codebook and stop; otherwise go
to step 2).

2) If 1) is not satisfied, we must have 𝜆 > 0. Starting with
a random initial value for 𝜆: for each 𝑖, use the modified
GLA to find an optimal power codebook first with
𝜇′𝑖 = 0. If

∑𝐿
𝑗=1 𝐸[𝑔

𝑖
0𝑝𝑖𝑗 ∣ℛ𝑖

𝑗 ]𝑃𝑟(ℛ𝑖
𝑗) ≤ 𝑄𝑖

𝑎𝑣𝑔 , then the
corresponding optimal codebook 𝒫𝑖 = {𝑝𝑖1, . . . , 𝑝𝑖𝐿}
is a locally optimal solution for this 𝑖-th subproblem,
otherwise, we must have 𝜇′𝑖 > 0, the optimal value of
which can be found by using an iterative subgradient
method as described in step 1). The optimal value of 𝜆
can be obtained by a similar iterative subgradient based
method given by the equation at the top of the next page,
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𝜆𝑙+1 = [𝜆𝑙 − 𝛼𝑙

⎛
⎝𝑃𝑎𝑣𝑔 − 1

𝑀

𝑀∑
𝑖=1

⎛
⎝ 𝐿∑

𝑗=1

𝐸[𝑝𝑖𝑗 ∣ℛ𝑖
𝑗 ]𝑃𝑟(ℛ𝑖

𝑗)

⎞
⎠
⎞
⎠]+

where again 𝑙 is the iteration number, 𝛼𝑙 > 0 is a scalar
step size for the 𝑙-th iteration satisfying

∑∞
𝑙=1 𝛼

𝑙 = ∞
and

∑∞
𝑙=1(𝛼

𝑙)2 < ∞. Repeat the modified GLA based
step for finding a local optimum for the quantized
powers and the subgradient based updates for 𝜆 and
𝜇′𝑖, 𝑖 = 1, 2, . . . ,𝑀 until convergence and the final
codebook will be a locally optimal codebook for the
wideband spectrum sharing Problem (5).

Remark 5: Convergence of Algorithm 1: Note that it is
straightforward to extend the global convergence and empirical
consistency results of Theorem 2 to the wideband case for
fixed values of 𝜆 and 𝜇′𝑖, 𝑖 = 1, 2, . . . ,𝑀 . As noted in
Section III.A for the narrowband case, the iterative subgradient
based methods for updating 𝜆 and 𝜇′𝑖 converge to the globally
optimal values corresponding to the dual function due to the
convexity of the dual function with respect to the Lagrange
multipliers [20]. Thus, Algorithm 1 converges to a local
optimum (since convergence of the modified GLA can be
guaranteed to a local optimum only) of the quantized power
values {𝑝𝑖1, . . . , 𝑝𝑖𝐿}, 𝑖 = 1, 2, . . . ,𝑀 .

Remark 6: Theorem 3 also holds for the wideband case
in the sense that the properties i)-iv) hold for each
{𝑝𝑖1, 𝑝𝑖2, . . . 𝑝𝑖𝐿}, ∀𝑖 = 1, 2, . . . ,𝑀 with 𝜇 replaced by
𝜇𝑖, 𝑖 = 1, 2, . . . ,𝑀 and 𝜆 representing the Lagrange multiplier
associated with the average sum power constraint in (5).

C. Approximate Quantized Power Allocation Algorithm
(AQPA)

Although an offline algorithm, the complexity of modified
GLA for determining the optimal quantized power is very high
for even a moderately large value of 𝐿. This is due to the fact
that the optimal channel partitions and the corresponding op-
timal power codebook are obtained via empirically generating
a large number of channel realizations as training samples. As
𝐿 increases, the number of training samples required will also
increase. Thus motivated, we use part iv) of Theorem 3 to
derive a low-complexity suboptimal scheme for implementing
the modified GLA for large 𝐿 values. Below we describe this
scheme for the narrowband case. A similar scheme for the
wideband case can be designed accordingly.

Note that part iv) of Theorem 3 states that as 𝐿 → ∞,
𝑝𝐿 = 0 and 𝑝𝐿−1 → 0. Applying these approximations to
(8) allows us to obtain an approximate but computationally
efficient algorithm (called approximate quantized power al-
location algorithm (AQPA)) for large 𝐿. AQPA first solves
𝐸[ 𝑔1

1+𝑔1𝑝𝐿−1
− (𝜆 + 𝜇𝑔0)∣ℛ𝐿−1] = 0 for 𝑝𝐿−2 by substi-

tuting 𝑝𝐿 = 0 and taking the limit 𝑝𝐿−1 → 0, which, if

𝜇 > 0, is equivalent to solving
∫∞
𝜆

∫ 𝑔1−𝜆
𝜇

1
𝜇

(
log(1+𝑔1𝑝𝐿−2)

𝑝𝐿−2
−𝜆

)(𝑔1 −
(𝜆 + 𝜇𝑔0))𝑓(𝑔0)𝑓(𝑔1)𝑑𝑔0𝑑𝑔1 = 0 for 𝑝𝐿−2. When 𝜇 = 0,

it is equivalent to solving for 𝑝𝐿−2 from
∫ 𝑒

𝜆𝑝𝐿−2−1
𝑝𝐿−2

𝜆 (𝑔1 −
𝜆)𝑓(𝑔1)𝑑𝑔1 = 0. Note that the above equations (for both

𝜇 > 0 and 𝜇 = 0) involve only one variable: 𝑝𝐿−2 and are thus
straightforward to solve. One can then recursively compute
𝑝𝐿−3, 𝑝𝐿−4, . . . , by using the optimality condition (8) for the
regions ℛ𝐿−2,ℛ𝐿−3, . . . , respectively, in the reverse direc-
tion. These equations can be solved by appropriate nonlinear
equation solvers and do not require the use of large number of
training samples. Thus AQPA is significantly faster than GLA
and is applicable to the case of large number of feedback
bits. Note however, as this is an approximate algorithm only,
the performance of this algorithm becomes comparable to
modified GLA only for large values of 𝐿. Numerical re-
sults presented in Section V illustrate that AQPA performs
extremely well for 𝐿 ≥ 16. Note also that AQPA will be a
suitable algorithm to use if any of the system specifications
(such as channel statistics or 𝑃𝑎𝑣𝑔 , 𝑄

𝑖
𝑎𝑣𝑔 etc.) changed and the

quantized power values needed to be recalculated.
Other suboptimal algorithms: For comparison purposes, we

also propose two other suboptimal methods for finding quan-
tized power allocation in the narrowband case (extension to the
wideband case is obvious). (1) In the first method, we quan-
tize 𝑔0 and 𝑔1 separately (i.e. separate scalar quantizations)
by minimizing their corresponding distortion

∑𝐿1

𝑛=1𝐸[(𝑔0 −
𝑔′0𝑛)

2∣𝑅𝑛]𝑃𝑟(𝑅𝑛) and
∑𝐿2

𝑘=1𝐸[(𝑔1 − 𝑔′1𝑘)2∣𝑅′
𝑘]𝑃𝑟(𝑅

′
𝑘) re-

spectively, with the Lloyd Algorithm, where 𝑔′0𝑛, 𝑔
′
1𝑘 are the

reconstruction points for 𝑔0 and 𝑔1 respectively, and 𝐿1×𝐿2 =
𝐿. We then use the resulting (locally) optimal channel quan-
tization regions to solve 𝐸[ 𝑔1

1+𝑔1𝑝𝑛𝑘
− (𝜆+ 𝜇𝑔0)∣𝑅𝑛, 𝑅

′
𝑘] = 0

for finding the optimal power allocation 𝑝𝑛𝑘 for the region
where 𝑔0 ∈ 𝑅𝑛, 𝑔1 ∈ 𝑅′

𝑘. We call this method as “sepa-
rate channel quantization" (SCQ). (2) In the second method,
we jointly quantize 𝑔0 and 𝑔1 by minimizing the distortion∑𝐿

𝑚=1𝐸[(𝑔0−𝑔′0𝑚)2+(𝑔1−𝑔′1𝑚)2∣𝑅𝑚]𝑃𝑟(𝑅𝑚) with Lloyd
Algorithm, and then use the resultant optimal channel quan-
tization regions to solve 𝐸[ 𝑔1

1+𝑔1𝑝𝑚
− (𝜆 + 𝜇𝑔0)∣𝑅𝑚] = 0

for finding the optimal power allocation 𝑝𝑚. We call it
“joint channel quantization" (JCQ). Numerical results illustrate
that AQPA significantly outperforms these two suboptimal
methods.

IV. OPTIMUM QUANTIZED POWER ALLOCATION WITH

NOISY LIMITED FEEDBACK

In the previous section, we assumed ideal error-free feed-
back in the limited feedback model. However, feedback chan-
nel noise can result in unavoidable erroneous feedback, which
can cause the SU-TX to select an incorrect quantized power
vector, resulting in an inferior ergodic capacity performance
compared to the case of noise-free feedback. In this section,
we allow noise in the limited feedback channel model and
study the ergodic capacity maximization problem (5) with
noisy limited feedback. Note that in general modelling of
feedback errors in a quantized CSI feedback system is a
challenging problem. In the analysis to follow, we make
some simplifying assumptions regarding the feedback errors
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and operating conditions in order to formulate a tractable
problem. The noisy feedback link, assumed to be memo-
ryless, is characterized by the index transition probabilities
𝜌𝑘𝑗 , (𝑘, 𝑗 = 1, . . . , 𝐿), which is defined as the probability of
receiving index 𝑘 at the SU-TX, given index 𝑗 was sent from
the CR network manager. For each band, given 𝐵 = log2 𝐿
bits feedback, denote binary representation of index 𝑘 and 𝑗 as
𝑘1𝑘2 . . . 𝑘𝐵 and 𝑗1𝑗2 . . . 𝑗𝐵 respectively, where 𝑘𝑛, 𝑗𝑛 ∈ {0, 1}
for 𝑛 = 1, . . . 𝐵, and 𝑘1, 𝑗1 represent the most significant
bit. For each band with 𝐵 bits feedback, we model the
noisy feedback channel as 𝐵 independent uses of a binary
symmetric channel with crossover probability 𝑞𝑓 for every
feedback bit. Since bit errors are assumed to be independent,
𝜌𝑘𝑗 =

∏𝐵
𝑛=1 𝜌𝑘𝑛𝑗𝑛 = 𝑞

𝑑𝑘,𝑗

𝑓 (1 − 𝑞𝑓 )𝐵−𝑑𝑘,𝑗 , where 𝑑𝑘,𝑗 is the
Hamming distance between the binary representations of 𝑘
and 𝑗 [24].

Thus problem (5) with noisy limited feedback can be
reformulated as (12) at the top of the next page.

Note that for each band the binary codewords representing
the feedback indices for a power codebook of size 𝐿 can be
designed in 𝐿! different ways. In general, finding the optimal
index assignment scheme is computationally prohibitive and
sub-optimal or randomized schemes are preferred. However,
it was shown in [25] in the context of capacity optimization
for MIMO links with noisy limited feedback that when the
channel quantizers and the precoder adaptation are jointly
optimized for a given index assignment, all index assignment
schemes are equally good (see Lemma 2 in [25]). The proof
of Lemma 2 in [25] is directly applicable to our scenario due
to the specific discrete memoryless nature of the feedback
channel and hence all index assignment schemes are equally
good for our noisy feedback model as well. Due to space
restrictions, we do not go into further details regarding this.
Instead, we simply concentrate on finding the optimum CSI
partitions ℛ𝑖

𝑗 , ∀𝑗 and power codebook 𝒫𝑖 for the 𝑖-th band,
𝑖 = 1, . . . ,𝑀 that jointly optimize the ergodic capacity of
SU under the long term average transmit power constraint
and average interference constraint given by (12), for a fixed
index assignment scheme (which can be arbitrarily chosen).
Again, to keep things simple, we look at the narrowband
spectrum-sharing case (M=1). Using the simplified notations
ℛ𝑗 , 𝑝𝑗 , 𝑗 = 1, 2, . . . , 𝐿, and 𝑔1, 𝑔0, 𝑄𝑎𝑣𝑔, we write the
Lagrangian for Problem (12) with 𝑀 = 1 as 𝐿(𝑃, 𝜆, 𝜇) =∑𝐿

𝑗=1

∑𝐿
𝑘=1 𝐸[log(1+𝑔1𝑝𝑘)−𝜆𝑝𝑘−𝜇𝑔0𝑝𝑘∣ℛ𝑗 ]𝜌𝑘𝑗𝑃𝑟(ℛ𝑗)+

𝜆𝑃𝑎𝑣𝑔 +𝜇𝑄𝑎𝑣𝑔, where 𝜆 and 𝜇 are the nonnegative Lagrange
multipliers associated with the ATP constraint and AIP con-
straint respectively. The Lagrange dual function 𝑔(𝜆, 𝜇) is
defined as max𝑝𝑘≥0, ∀𝑘,ℛ𝑗 , ∀𝑗

∑𝐿
𝑗=1

∑𝐿
𝑘=1𝐸[log(1+𝑔1𝑝𝑘)−

𝜆𝑝𝑘−𝜇𝑔0𝑝𝑘∣ℛ𝑗 ]𝜌𝑘𝑗𝑃𝑟(ℛ𝑗) and the corresponding dual prob-
lem is min𝜆≥0, 𝜇≥0 𝑔(𝜆, 𝜇) + 𝜆𝑃𝑎𝑣𝑔 + 𝜇𝑄𝑎𝑣𝑔 . It is obvi-
ous that this optimization problem with fixed 𝜆 and 𝜇 can
be easily solved using another modified GLA, (termed as
modified GLA-2 to distinguish it from the noise free case)
resulting in a locally optimum power codebook. For this power
codebook, the optimal values 𝜆 and 𝜇 can then be obtained via
subgradient based methods similar to the ones for the noise
free case. These two steps are then repeated until a satisfactory
convergence criterion is met. Further details and the extension
to the wideband case are omitted due to space restrictions.
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Fig. 4. SU Ergodic capacity with quantized power allocation (using GLA)
with one PU for 𝑄𝑎𝑣 = −5 dB and 𝑄𝑎𝑣 = 0 dB.

V. NUMERICAL RESULTS

In this section, we will evaluate the performance of the
designed power allocation strategies via numerical simula-
tions. We implement a wideband spectrum sharing system with
one SU and 𝑀 independent frequency bands (each band is
originally licensed to a PU), where all the channels involved
are assumed to undergo Rayleigh fading, namely all g0 and
g1 are exponentially distributed with unit mean. For each
simulation, 100,000 randomly generated channel realizations
for each g0 or g1 are used. Any reference to the number of
feedback bits should be interpreted in a per band sense.

Fig. 4 shows the capacity performance of SU sharing a
narrowband spectrum with one PU with limited feedback
for 𝑄𝑎𝑣 = −5 dB and 𝑄𝑎𝑣 = 0 dB respectively, and
illustrates the effect of increasing the number of feedback bits
on the capacity performance. For comparison, we also plot
the corresponding capacity performance with full CSI. The
striking observation from Fig. 4 is that introducing one extra
bit of feedback substantially reduces the gap with capacity
based on perfect CSI. This property is not very obvious when
𝑃𝑎𝑣 is small, for example when 𝑃𝑎𝑣 ≤ −5 dB (𝑃𝑎𝑣 ≤ 0 dB)
for 𝑄𝑎𝑣 = −5 dB (𝑄𝑎𝑣 = 0 dB). But with increasing 𝑃𝑎𝑣 , it
becomes more pronounced. To be specific, for 𝑄𝑎𝑣 = −5 dB
case, at 𝑃𝑎𝑣 = 10 dB, with 1 bit, 2 bits and 3 bits of feedback,
the percentage capacity loss is approximately 21.23%, 6.21%
and 1.62% respectively, and for both 𝑄𝑎𝑣 = −5 dB and
𝑄𝑎𝑣 = 0 dB cases, only 3 bits feedback can result in
secondary ergodic capacity very close to that with full CSI.
This is very encouraging since only a small number of bits of
feedback are required to achieve close performance to the full
CSI case. It can be also seen that the capacity performance
with a higher AIP threshold (𝑄𝑎𝑣 = 0 dB) outperforms that
with a lower AIP threshold (𝑄𝑎𝑣 = −5 dB), as expected.
A similar behaviour can be also observed in Fig. 5 for a
𝑀 = 4 wideband spectrum sharing case with 1, 2, 3 bits
of feedback and full CSI performance respectively, where
(𝑄𝑎𝑣1, 𝑄𝑎𝑣2, 𝑄𝑎𝑣3, 𝑄𝑎𝑣4) = (−10 dB, −5 dB, 0 dB, 5 dB).

In Fig. 6 we compare the performance of AQPA with modi-
fied GLA, where SU shares the spectrum with four PUs (𝑀 =
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max
𝑝𝑖𝑘≥0,ℛ𝑖

𝑗

1

𝑀

𝑀∑
𝑖=1

⎛
⎝ 𝐿∑

𝑗=1

𝐿∑
𝑘=1

𝐸[log(1 + 𝑔𝑖1𝑝𝑖𝑘)∣ℛ𝑖
𝑗 ]𝜌𝑘𝑗𝑃𝑟(ℛ𝑖

𝑗)

⎞
⎠

𝑠.𝑡.
𝐿∑

𝑗=1

𝐿∑
𝑘=1

𝐸[𝑔𝑖0𝑝𝑖𝑘∣ℛ𝑖
𝑗 ]𝜌𝑘𝑗𝑃𝑟(ℛ𝑖

𝑗) ≤ 𝑄𝑖
𝑎𝑣𝑔, ∀𝑖,

1

𝑀

𝑀∑
𝑖=1

⎛
⎝ 𝐿∑

𝑗=1

𝐿∑
𝑘=1

𝐸[𝑝𝑖𝑘∣ℛ𝑖
𝑗 ]𝜌𝑘𝑗𝑃𝑟(ℛ𝑖

𝑗)

⎞
⎠ ≤ 𝑃𝑎𝑣𝑔 (12)
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Fig. 5. SU Ergodic capacity performance with quantized power allocation
(GLA) for four PUs (𝑀 = 4) under various number of feedback bits per
band.
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Fig. 6. Capacity performance of AQPA with four PUs (𝑀 = 4, feedback
bits here refer to bits per band).

4) and the AIP constraint thresholds (𝑄𝑎𝑣1, 𝑄𝑎𝑣2, 𝑄𝑎𝑣3, 𝑄𝑎𝑣4)
= (−10 dB, −5 dB, 0 dB, 5 dB). It is illustrated that with the
same number of bits of feedback per band, the gap between
AQPA and modified GLA becomes smaller as 𝐿 increases. For
example, when 𝑃𝑎𝑣 = 15 dB, the capacity loss by using AQPA
instead of GLA is about 8.38%, 3.12% and 1.42% for 2 bits, 3
bits and 4 bits of feedback respectively. It is clearly seen that
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Fig. 7. Comparison of capacity performance of AQPA with two other
suboptimal methods (𝑀 = 1).
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Fig. 8. Capacity performance of noisy limited feedback with four PUs (M=4)
and different BSC crossover probabilities (number of feedback regions 𝐿 here
refers to 𝐿 regions per band).

AQPA with 4 bits of feedback can almost approach the full
CSI performance. In order to determine the speedup factor of
AQPA compared to GLA for a fixed 𝜆 and 𝜇 with 𝑀 = 4
and 4 bits of feedback, AQPA and GLA were implemented
in MATLAB (version 7.10.0.499 (R2010a)) on an Intel Core
2 Duo processor (CPU T9600 with a clock speed of 2.80
GHz and a memory of 4 GB). It was seen that GLA (with
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100,000 training samples) took approximately 7395 seconds
or just over 2 hours whereas AQPA took only 5.44 seconds to
achieve comparable levels of accuracy. Furthermore, as shown
in Fig. 7, we also compare capacity performance of AQPA
with the two other proposed possible suboptimal methods
(SCQ and JCQ) for the narrowband case with 𝑄𝑎𝑣 = −5
dB. For the SCQ case, various combinations of 𝐿1, 𝐿2 such
that 𝐿1 × 𝐿2 = 𝐿 are investigated and the one with the best
performance is reported for every value of 𝑃𝑎𝑣 . We can easily
observe that even with 4 bits feedback, the performance of
both JCQ and SCQ are worse than AQPA with only 2 bits of
feedback, which further confirms the efficiency of AQPA.

Finally, we investigate the SU ergodic capacity performance
with noisy limited feedback in Fig. 8, with 𝑀 = 4 and
(𝑄𝑎𝑣1, 𝑄𝑎𝑣2, 𝑄𝑎𝑣3, 𝑄𝑎𝑣4) = (−10 dB, −5 dB, 0 dB, 5 dB).
It can be observed that as the feedback becomes less reliable
(the crossover probability 𝑞𝑓 increases), significant capacity
performance degradation occurs, especially in high 𝑃𝑎𝑣𝑔 . For
example, when 𝑃𝑎𝑣𝑔 = 10 dB, for 3 (2) bits feedback, a noisy
feedback channel with 𝑞𝑓 = 0.01 and 𝑞𝑓 = 0.1 can result
in approximately 3.843% (4.769%) and 17.394% (18.783%)
capacity loss respectively, compared to the noise-free case.
This clearly illustrates that as the quality of feedback link
degrades, the benefit of designing an optimal power codebook
diminishes rapidly.

VI. CONCLUSIONS AND EXTENSIONS

We have derived quantized power allocation algorithms for
a wideband spectrum sharing system with one secondary user
and multiple primary users, each licensed to use a separate
frequency band, each band modelled as independent block
fading channels. The objective has been to maximize the
SU ergodic capacity under an average sum transmit power
constraint and individual average interference constraints at
the PU receivers. Modified Generalized Lloyd-type algorithms
(GLA) have been derived and various properties of the quan-
tized power allocation laws have been presented, along with
a rigorous convergence and consistency proof of the modi-
fied GLA based algorithm. By appropriately exploiting the
properties of the quantized power values for large number of
bits of feedback, we have also derived approximate quantized
power allocation algorithms that perform very close to the
modified GLA based algorithms but are significantly faster.
Finally, we have presented an extension of the modified GLA
based quantized power allocation algorithm to the case of
noisy feedback channels. Future work will include deriving
expressions for asymptotic (as the number of feedback bits
goes to infinity) capacity loss with quantized power allocation,
consideration of primary interference at the secondary receiver
and quantized power allocation with other types of interference
constraints at the primary receiver.

APPENDIX

A. Proof of Theorem 2

For the modified GLA, one can define a distortion measure
𝑑((𝑔0, 𝑔1), 𝑝) = −(log(1 + 𝑔1𝑝)− 𝜆𝑝− 𝜇𝑔0𝑝). For such non-
difference distortion measures, following [26], one can ensure

nonnegativity of the distortion measure by introducing a mod-
ified distortion measure as 𝑑((𝑔0, 𝑔1), 𝑝) = 𝑑((𝑔0, 𝑔1), 𝑝) −
min𝑝 𝑑((𝑔0, 𝑔1), 𝑝). Since 𝑑((𝑔0, 𝑔1), 𝑝) is a convex function
of 𝑝 for fixed (𝑔0, 𝑔1), we get the unique minimum 𝑝∗ =
( 1
𝜆+𝜇𝑔0

− 1
𝑔1
)+, thus min𝑝 𝑑((𝑔0, 𝑔1), 𝑝) = 𝑑((𝑔0, 𝑔1), 𝑝

∗).
Therefore we have 𝑑((𝑔0, 𝑔1), 𝑝) ≥ 0. Since 𝑑((𝑔0, 𝑔1), 𝑝∗) is
constant for a given (𝑔0, 𝑔1), thus using the distortion measure
𝑑((𝑔0, 𝑔1), 𝑝) instead of 𝑑((𝑔0, 𝑔1), 𝑝) does not affect the
results of modified GLA. One can easily show that 𝑑 satisfies
the following properties: (1) 𝑑 is continuous and 𝑑 ∈ [0,∞),
(2) 𝑑((𝑔0, 𝑔1), 𝑝) is a convex function of 𝑝 for each fixed

(𝑔0, 𝑔1), (3) for each (𝑔0, 𝑔1) and some ˜(𝑔0, 𝑔1) not identically

equal to (𝑔0, 𝑔1), 𝑑( ˜(𝑔0, 𝑔1), 𝑝) → ∞, as ˜(𝑔0, 𝑔1) → (𝑔0, 𝑔1)
and ∥ 𝑝 ∥→ ∞, and (4) the partition boundaries in the channel
space (𝑔0, 𝑔1) have zero probability.

Properties 1), 2) and 3) are easy to show and the proofs
here are omitted. Property 4) holds due to the assumption
of continuous fading channels in this work. Note that this
is also a necessary condition for a codebook to be optimal
for a given partition [18]. Note also that the popular fading
distributions such as Rayleigh, Rician and Nakagami and Log-
normal etc. all satisfy the absolutely continuity assumption. It
is then easy to show that for these types of fading scenarios,
the cumulative distribution function (cdf) of (𝑔0, 𝑔1), denoted
by 𝐹 , satisfies the following properties [19]: (5) F contains no
singular-continuous part and (6)

∫
𝑑((𝑔0, 𝑔1), 𝑝)𝑑𝐹 (𝑔0, 𝑔1) <

∞ for each 𝑝 (implying a finite average distortion).
Next, let g denote (𝑔0, 𝑔1). Noting that {g(𝜔)} is a station-

ary ergodic sequence with a cdf 𝐹 , and letting 𝐹𝑛,𝜔 be the
empirical distribution function of the first n members of the
sequence [19], one can show that for almost every 𝜔, {𝐹𝑛,𝜔}
and 𝐹 satisfy (see Lemma 4 of [19]) (7) {𝐹𝑛} converges
weakly to the 𝐹 and (8) lim𝑛

∫
𝑑((𝑔0, 𝑔1), 𝑝)𝑑𝐹𝑛(𝑔0, 𝑔1) =∫

𝑑((𝑔0, 𝑔1), 𝑝)𝑑𝐹 (𝑔0, 𝑔1), for every 𝑝.
Hence, from [19], we can conclude that the modified GLA

satisfies properties 1) to 8). Therefore, Lemmas 1-3 of [19]
are applicable to the modified GLA designed in this paper
and so the modified GLA satisfies the global convergence and
empirical consistency properties as defined in [19].

B. Proof of Theorem 3 i)

We need to prove that for any two adjacent regions ℛ𝑗

and ℛ𝑗+1, 𝑗 = 1, . . . , 𝐿 − 1, 𝑝𝑗 > 𝑝𝑗+1. Given an arbi-

trary 𝑔0 satisfying 0 ≤ 𝑔0 <
1
𝜇 (

log(
𝑝𝑗

𝑝𝑗+1
)

𝑝𝑗−𝑝𝑗+1
− 𝜆) (assuming

𝜇 > 0), suppose there is a point (𝑔0, 𝑔
𝑎
1 ) ∈ ℛ𝑗 and

a point (𝑔0, 𝑔
𝑐
1) ∈ ℛ𝑗+1 (neither of these two points is

on the boundary), and let (𝑔0, 𝑔
𝑏
1) denote the point on the

boundary corresponding to the same 𝑔0, which from Lemma
1, is given by 𝑔𝑏1 = 𝑒(𝜆+𝜇𝑔0)(𝑝𝑗−𝑝𝑗+1)−1

𝑝𝑗−𝑝𝑗+1𝑒
(𝜆+𝜇𝑔0)(𝑝𝑗−𝑝𝑗+1) Then, we have

𝑔𝑎1 > 𝑔
𝑏
1 > 𝑔

𝑐
1. Now suppose 𝑝𝑗 < 𝑝𝑗+1. Since (𝑔0, 𝑔

𝑎
1) ∈ ℛ𝑗 ,

we have log(1 + 𝑔𝑎1𝑝𝑗) − 𝜆𝑝𝑗 − 𝜇𝑔0𝑝𝑗 ≥ log(1 + 𝑔𝑎1𝑝𝑗+1) −
𝜆𝑝𝑗+1 − 𝜇𝑔0𝑝𝑗+1 As 𝑝𝑗 < 𝑝𝑗+1, we have (𝜆 + 𝜇𝑔0)(𝑝𝑗+1 −
𝑝𝑗) ≥ log(

1+𝑔𝑎
1 𝑝𝑗+1

1+𝑔𝑎
1 𝑝𝑗

) which implies 𝑒(𝜆+𝜇𝑔0)(𝑝𝑗+1−𝑝𝑗) −
1 ≥ 𝑔𝑎1 (𝑝𝑗+1 − 𝑝𝑗𝑒

(𝜆+𝜇𝑔0)(𝑝𝑗+1−𝑝𝑗)). We also have 𝑔𝑏1 =
𝑒(𝜆+𝜇𝑔0)(𝑝𝑗−𝑝𝑗+1)−1

𝑝𝑗−𝑝𝑗+1𝑒
(𝜆+𝜇𝑔0)(𝑝𝑗−𝑝𝑗+1) = 𝑒(𝜆+𝜇𝑔0)(𝑝𝑗+1−𝑝𝑗)−1

𝑝𝑗+1−𝑝𝑗𝑒
(𝜆+𝜇𝑔0)(𝑝𝑗+1−𝑝𝑗)

. Note that

𝑝𝑗+1 > 𝑝𝑗 implies 𝑒(𝜆+𝜇𝑔0)(𝑝𝑗+1−𝑝𝑗) − 1 > 0. Since 𝑔𝑏1 > 0,
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we have 𝑝𝑗+1−𝑝𝑗𝑒(𝜆+𝜇𝑔0)(𝑝𝑗+1−𝑝𝑗) > 0. Combining the above

two results, we obtain 𝑔𝑎1 ≤ 𝑒(𝜆+𝜇𝑔0)(𝑝𝑗+1−𝑝𝑗)−1

𝑝𝑗+1−𝑝𝑗𝑒
(𝜆+𝜇𝑔0)(𝑝𝑗+1−𝑝𝑗)

= 𝑔𝑏1

which is a contradiction to 𝑔𝑎1 > 𝑔𝑏1. Similarly, we can also
prove that if 𝑝𝑗 < 𝑝𝑗+1, we have 𝑔𝑐1 ≥ 𝑔𝑏1 which is a
contradiction to 𝑔𝑐1 < 𝑔

𝑏
1. Thus we must have 𝑝𝑗 > 𝑝𝑗+1.

C. Proof for Theorem 3 ii)

From Lemma 1, the boundary between any two adjacent
regions ℛ𝑗 and ℛ𝑗+1 is given by

𝑔1 =
𝑒(𝜆+𝜇𝑔0)(𝑝𝑗−𝑝𝑗+1) − 1

𝑝𝑗 − 𝑝𝑗+1𝑒(𝜆+𝜇𝑔0)(𝑝𝑗−𝑝𝑗+1)

=
𝑒(𝜆+𝜇𝑔0)𝑝𝑗 − 𝑒(𝜆+𝜇𝑔0)𝑝𝑗+1

𝑝𝑗𝑒(𝜆+𝜇𝑔0)𝑝𝑗+1 − 𝑝𝑗+1𝑒(𝜆+𝜇𝑔0)𝑝𝑗

= (𝜆+ 𝜇𝑔0)
𝑒(𝜆+𝜇𝑔0)𝑝𝜖(𝑝𝑗 − 𝑝𝑗+1)

𝑝𝑗𝑒(𝜆+𝜇𝑔0)𝑝𝑗+1 − 𝑝𝑗+1𝑒(𝜆+𝜇𝑔0)𝑝𝑗

> 𝜆+ 𝜇𝑔0 (13)

where the last equality follows from the mean value the-
orem for some 𝑝𝜖 ∈ (𝑝𝑗+1, 𝑝𝑗). The last inequality
holds since we have 𝑝𝑗𝑒(𝜆+𝜇𝑔0)𝑝𝜖 > 𝑝𝑗𝑒

(𝜆+𝜇𝑔0)𝑝𝑗+1 and
−𝑝𝑗+1𝑒

(𝜆+𝜇𝑔0)𝑝𝜖 > −𝑝𝑗+1𝑒
(𝜆+𝜇𝑔0)𝑝𝑗 . By rearranging, we get

𝑒(𝜆+𝜇𝑔0)𝑝𝜖 (𝑝𝑗−𝑝𝑗+1)

𝑝𝑗𝑒
(𝜆+𝜇𝑔0)𝑝𝑗+1−𝑝𝑗+1𝑒

(𝜆+𝜇𝑔0)𝑝𝑗
> 1.

D. Proof of Theorem 3 iii)

Given a fixed channel partitioning scheme, the optimal
quantized power for ℛ𝑗 is obtained as 𝑝𝑗 = max(𝑝∗𝑗 , 0), ∀𝑗,
where 𝑝∗𝑗 is determined by solving the equation 𝐸[ 𝑔1

1+𝑔1𝑝𝑗
−

(𝜆 + 𝜇𝑔0)∣ℛ𝑗 ] = 0. We can see that if 𝐸[𝑔1∣ℛ𝑗 ] ≤ 𝐸[(𝜆 +
𝜇𝑔0)∣ℛ𝑗 ], then to satisfy the equation, 𝑝∗𝑗 < 0, implying
𝑝𝑗 = max(𝑝∗𝑗 , 0) = 0. On the other hand, if 𝐸[𝑔1∣ℛ𝑗 ] >
𝐸[(𝜆 + 𝜇𝑔0)∣ℛ𝑗 ], 𝑝∗𝑗 has to be strictly positive in order to
satisfy the optimality equation, implying max(𝑝∗𝑗 , 0) = 𝑝

∗
𝑗 . We

know from Theorem 3 ii) that all boundaries between any two
adjacent regions have a lower bound given by 𝑔1 > 𝜆+ 𝜇𝑔0,
i.e. for any given (𝑔0, 𝑔1) belonging to any of the first 𝐿− 1
regions, 𝑔1 > 𝜆 + 𝜇𝑔0. Thus for the first 𝐿 − 1 regions,
𝐸[𝑔1∣ℛ𝑗 ]𝑃𝑟{ℛ𝑗} > 𝐸[(𝜆+𝜇𝑔0)∣ℛ𝑗 ]𝑃𝑟{ℛ𝑗}. Therefore the
optimal quantized power in the first 𝐿 − 1 regions is strictly
positive. This cannot be said however for 𝑝𝐿 as for ℛ𝐿, we
cannot guarantee 𝑔1 > 𝜆+ 𝜇𝑔0 for any given (𝑔0, 𝑔1) pair in
that region. It is thus possible to have 𝑝𝐿 to be 0. The next
result shows under what circumstances one can have 𝑝𝐿 to be
exactly 0.

E. Proof for Theorem 3 iv)

Step 1: We know from Theorem 3 iii) that we always have
𝐸[ 𝑔1

1+𝑔1𝑝𝑗
− (𝜆 + 𝜇𝑔0)∣ℛ𝑗 ] = 0, 𝑗 = 1, . . . , 𝐿 − 1,

and for the region ℛ𝐿, this equation may not be
satisfied when 𝑝𝐿 = 0. Let us assume that 𝑝𝐿 > 0.
Then we have

∑𝐿
𝑗=1 𝐸[𝜆 + 𝜇𝑔0∣ℛ𝑗 ]𝑃𝑟{ℛ𝑗} =∑𝐿

𝑗=1 𝐸[
𝑔1

1+𝑔1𝑝𝑗
∣ℛ𝑗 ]𝑃𝑟{ℛ𝑗}, implying 𝜆 + 𝜇 =∑𝐿

𝑗=1 𝐸[
𝑔1

1+𝑔1𝑝𝑗
∣ℛ𝑗 ]𝑃𝑟{ℛ𝑗} <

∑𝐿
𝑗=1 𝐸[𝑔1∣ℛ𝑗 ]𝑃𝑟{ℛ𝑗} = 1

since
∑𝐿

𝑗=1 𝐸[𝑔𝑖∣ℛ𝑗 ]𝑃𝑟{ℛ𝑗} = 𝐸[𝑔𝑖] = 1, for 𝑖 = 0, 1.
Hence if 𝜆+ 𝜇 ≥ 1, we must have 𝑝𝐿 = 0.

From the optimality equation, one can write 𝑝𝑖 =
𝐸[

𝑔1𝑝𝑖
1+𝑔1𝑝𝑖

∣ℛ𝑖]

𝜆+𝜇𝐸[𝑔0∣ℛ𝑖]
when 𝑝𝑖 > 0, it is obvious that 𝑝𝑖 <

1
𝜆+𝜇𝐸[𝑔0∣ℛ𝑖]

, 𝑖 = 1, 2, . . . , 𝐿 − 1. Since 𝑝𝐿 ≥ 0, this is
also true for region ℛ𝐿. Therefore when 𝜇 ∕= 0, 𝜇𝑄𝑎𝑣𝑔 =

𝜇
∑𝐿

𝑖=1 𝑝𝑖𝐸[𝑔0∣ℛ𝑖]𝑃𝑟(ℛ𝑖) <
∑𝐿

𝑖=1
𝜇𝐸[𝑔0∣ℛ𝑖]

𝜆+𝜇𝐸[𝑔0∣ℛ𝑖]
𝑃𝑟(ℛ𝑖) <∑𝐿

𝑖=1 𝑃𝑟(ℛ𝑖) = 1. Similarly, if 𝜆 ∕= 0, 𝜆𝑃𝑎𝑣𝑔 < 1. Thus
𝜇 > 1 implies 𝑄𝑎𝑣 < 1 and 𝜆 > 1 implies 𝑃𝑎𝑣 < 1.

Step 2: Next, we will show that no matter what 𝜆, 𝜇 is, 𝑝𝐿
must be zero for a sufficiently large 𝐿 and lim𝐿→∞ 𝑝𝐿−1 = 0
. First, we will prove that as 𝐿 → ∞, the boundary
between ℛ𝐿−1 and ℛ𝐿 approaches its limiting boundary
𝑔1 = 𝜆+𝜇𝑔0

1−(𝜆+𝜇𝑔0)𝛿∗ , where 𝛿∗ = lim𝐿→∞ 𝑝𝐿. Given
𝑝1 > ⋅ ⋅ ⋅ > 𝑝𝐿 ≥ 0, it is clear that the sequence
{𝑝𝑖}, 𝑖 = 1, 2, . . . , 𝐿 is a monotonically decreasing sequence
bounded below, therefore it must converge to its greatest-
lower bound 𝛿∗ (𝛿∗ = lim𝐿→∞ 𝑝𝐿 ≥ 0 ) as 𝐿 → ∞.
Therefore, it can be easily shown that for an arbitrarily small
𝜖 > 0, we can always find a sufficiently large 𝐿 such that
𝑝𝐿−1 − 𝑝𝐿 < 𝜖. Thus, as 𝐿 → ∞, (𝑝𝐿−1 − 𝑝𝐿) → 0.
Using this result, we can show that the boundary
between ℛ𝐿−1 and ℛ𝐿 approaches the limiting boundary
𝑔1 = 𝜆+𝜇𝑔0

1−(𝜆+𝜇𝑔0)𝛿∗
(or 𝜆 + 𝜇𝑔0 = 𝑔1

1+𝑔1𝛿∗
) as 𝐿 → ∞, (since

this boundary can be written as 𝜆 + 𝜇𝑔0 =
log(

1+𝑔1𝑝𝐿−1
1+𝑔1𝑝𝐿

)

𝑝𝐿−1−𝑝𝐿
,

and lim𝐿→∞(lim(𝑝𝐿−1−𝑝𝐿)→0

log(
1+𝑔1𝑝𝐿−1
1+𝑔1𝑝𝐿

)

𝑝𝐿−1−𝑝𝐿
) =

lim𝐿→∞ 𝑔1
1+𝑔1𝑝𝐿

= 𝑔1
1+𝑔1𝛿∗ ). Now, suppose there exists

a pair (𝜆, 𝜇) such that 𝑝𝐿 > 0 for any arbitrarily large
𝐿 (implying 𝛿∗ > 0). Thus for any 𝐿, 𝑝𝐿 satisfies
𝐸[ 𝑔1

1+𝑔1𝑝𝐿
− (𝜆 + 𝜇𝑔0)∣ℛ𝐿] = 0. From (1), we have

as 𝐿 → ∞, the boundary between ℛ𝐿−1 and ℛ𝐿

approaches its limit 𝜆 + 𝜇𝑔0 = 𝑔1
1+𝑔1𝛿∗ . Note that for

a finite value of 𝐿, the region ℛ𝐿 can be divided into
two parts ℛ𝐿1 and ℛ𝐿2 where ℛ𝐿1 corresponds to
log(

1+𝑔1𝑝𝐿−1
1+𝑔1𝑝𝐿

)

𝑝𝐿−1−𝑝𝐿
≤ 𝜆 + 𝜇𝑔0 <

𝑔1
1+𝑔1𝛿∗

and ℛ𝐿2 corresponds to
𝑔1

1+𝑔1𝛿∗
≤ 𝜆 + 𝜇𝑔0 < ∞. As 𝐿 becomes arbitrarily large,

the region ℛ𝐿1 becomes vanishingly small, and one obtains
𝐸(𝜆 + 𝜇𝑔0∣ℛ𝐿) > 𝐸( 𝑔1

1+𝑔1𝛿∗
∣ℛ𝐿) ≥ 𝐸( 𝑔1

1+𝑔1𝑝𝐿
∣ℛ𝐿) for a

sufficiently large 𝐿, which is a contradiction to the KKT
optimality condition for 𝑝𝐿 > 0. Hence no matter what
𝜆, 𝜇 are, 𝑝𝐿 must be zero for a sufficiently large 𝐿. And
𝛿∗ = lim𝐿→∞ 𝑝𝐿 = 0. Finally, 𝛿∗ = 0 implies the boundary
between ℛ𝐿−1 and ℛ𝐿 approaches 𝑔1 = 𝜆+𝜇𝑔0 as 𝐿→ ∞,
and since as 𝐿→ ∞, (𝑝𝐿−1− 𝑝𝐿) → 0 and 𝑝𝐿 = 0, we have
lim𝐿→∞ 𝑝𝐿−1 = 0.
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