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Abstract. Data analysis is expected to provide accurate descriptions of
the data. However, this is in opposition to privacy requirements when
working with sensitive data. In this case, there is a need to ensure that
no disclosure of sensitive information takes place by releasing the data
analysis results. Therefore, privacy-preserving data analysis has become
significant. Enforcing strict privacy guarantees can significantly distort
data or the results of the data analysis, thus limiting their analytical
utility (i.e., differential privacy). In an attempt to address this issue, in
this paper we discuss how “integral privacy”; a re-sampling based pri-
vacy model; can be used to compute descriptive statistics of a given
dataset with high utility. In integral privacy, privacy is achieved through
the notion of stability, which leads to release of the least susceptible
data analysis result towards the changes in the input dataset. Here,
stability is explained by the relative frequency of different generators
(re-samples of data) that lead to the same data analysis results. In this
work, we compare the results of integrally private statistics with respect
to different theoretical data distributions and real world data with dif-
fering parameters. Moreover, the results are compared with statistics
obtained through differential privacy. Finally, through empirical analy-
sis, it is shown that the integral privacy based approach has high utility
and robustness compared to differential privacy. Due to the computa-
tional complexity of the method we propose that integral privacy to be
more suitable towards small datasets where differential privacy performs
poorly. However, adopting an efficient re-sampling mechanism can fur-
ther improve the computational efficiency in terms of integral privacy.

Keywords: Privacy-preserving statistics ·
Privacy-preseving data analysis · Descriptive statistics

1 Introduction

Privacy preserving data analysis has become a strong requirement with the use
of sensitive data in data analysis. The privacy requirement remains such that
no analysis done on sensitive data should lead to any disclosure of sensitive
information. Several definitions of what privacy means have been introduced
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in the literature. They are computational definitions that permit us to build
algorithms to provide solutions satisfying these privacy guarantees. Examples of
such definitions include k-anonymity and differential privacy.

In [1], the concept of integral privacy (IP) was introduced with respect to
machine and statistical learning models, which focuses on how the models are
affected as the underlying data changes. In a real world scenario, the collected
data we use for analysis may update over time. And this brings up the require-
ment to regenerate the data analysis results. An adversary who has access to
previous and new (regenerated) data analysis results should not be able to infer
any sensitive information despite of having access to auxiliary information. The
privacy model suggests achieving privacy through releasing stable/robust results
that are less likely to change due to small perturbation done to training data. The
stability of the results are defined in terms of how many different combinations
of data (generators) can be used to construct the same result.

In this paper, we study how to apply IP in order to compute descriptive
statistics. In particular, we will consider mean, median, IQR, standard deviation,
variance, count, sum, min and max. We have proposed a method based on data
discretization and re-sampling to compute integrally private statistics. Also, we
compare the differentially private statistics with the ones obtained with our
approach for their robustness (variability) and accuracy.

The structure of the paper is as follows. In Sect. 2 we review the related work
followed by Sect. 3 which explains the preliminary concepts. Section 4 describes
the methodology. Evaluation and results are presented in Sect. 5. Section 6 con-
tains the discussion and the paper finishes with a section on conclusions and
lines for future work.

2 Related Work

Over the years, many different privacy models have been introduced to attain
privacy preserving data analysis. Among them differential privacy [2] stands out
due to its mathematical rigour. Differential privacy is considered in the context
of statistics, mainly with respect to statistical database systems [3]. In an inter-
active setting, the data curators want to ensure answering queries submitted
by the users does not lead to any form of disclosure. Dwork et al. discuss dif-
ferentially private statistical estimators and how they can be applied to obtain
privacy preserving statistics [4]. Also, in another work Dwork et al. explore the
relationship between robust statistics and differential privacy [5]. Even though
differential privacy provides a very strong, theoretically sound privacy guaran-
tee, there are some practical limitations [6]. Intuitively, differential privacy states
that any possible result of an analysis should be almost equally likely regardless
of the presence or absence of specific data records. This goal is achieved through
controlled random noise addition. This diminishes the utility of the final out-
puts greatly. Also, differential privacy is being criticized for its complexity in
implementing differentially private mechanisms, the difficulty of adopting such
mechanisms into other algorithms, deciding on privacy parameter ε, difficulty in
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estimating the sensitivity of an arbitrary function etc. Therefore, a solution is
required that is compliant with the “indistinguishability” principle while capable
of providing results with high utility. With that goal in mind in this work, we
implement integral privacy [1] in the context of statistics in order to compute
descriptive statistics. In some previous works, it is shown that the concept of
IP can also be applied in the context of machine learning model section where
stable models can be selected to achieve privacy [7,8].

3 Preliminaries

Differential privacy (DP) is the most commonly used privacy model in statistical
and machine learning domains. The privacy guarantee of DP is such that the
existence of any individual record can not be determined by examining the results
of a function that was executed on two neighbouring datasets, which are differing
from each other based on a single record. In other words, the result of a function
does not change too much as a response to an addition or deletion of one record.
This is achieved by introducing some uncertainty to the final result. Formally
DP is defined as below.

Definition 1. A randomized algorithm A is said to be ε-differentially private,
if for all neighbouring data sets X and X ′, and for all events E ⊆ Range(A),

Pr[A(X) ∈ E] ≤ eε Pr[A(X ′) ∈ E]

Laplacian noise addition is one of the most commonly used mechanisms to
implement DP in the case of numerical data. The noise is calibrated based on
the “sensitivity” or the maximum variation a function can take [2].

Definition 2. Let A be a real valued function; then, the global sensitivity of A
is defined by

ΔA = max
d(X,X′)=1

||A(X) − A(X ′)||1.

At the end, the noisy result is computed as A(X)+Lap(ΔA
ε ) for ε > 0. Here,

ε is the privacy parameter.
The concept of integral privacy (IP) was first introduced in [1] with respect

to machine and statistical learning models, that focuses on how the privacy of
the models are affected by the changes done to the underlying dataset. It states
that by observing the regenerated results (due to the dataset modification),
an adversary with some auxiliary information can infer the modifications done
to the input data (data addition and deletion) as it is being reflected by the
final results. In [7], an adversarial model is explained with respect to machine
learning model selection known as “model comparison attacks”, that can be
avoided by adhering to IP conditions. The idea is that, when the adversary
has information on the previous ML model and the new ML model (trained
after the changes applied to the input data) along with full/partial access to
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the training data used to generate the previous ML model; they can be used
together in order to determine which input data have specifically resulted in the
given ML model, or to derive an idea on how input data have been changed.
Therefore, generating robust/stable results that are less likely to be affected by
the input data modification is significant for privacy. The goal of IP is to protect
from intruders learning about the database and about the set of modifications
applied. DP achieves the above mentioned privacy requirement through random
noise addition whereas, IP achieves it by releasing the least susceptible result
for input modification.

IP is based on the concept of “generators of an output”. Let P be the pop-
ulation (or an estimation of this population) in a given domain D. Let A be
an algorithm or a function that given a data set S ⊆ P computes an output
A(S) that belongs to another domain G. Then for any G ∈ G and some previous
knowledge S on the generators, the set of possible generators of G is the set
defined by Gen(G,S) = {S′|S ⊆ S′ ⊆ P,A(S′) = G}.

The following definition formalizes integral privacy. It is to protect inferences
by an intruder who (i) has some partial knowledge S on the original database
and on S′ the database obtained after modification, (ii) has knowledge on the
algorithm/function A applied to both databases, and (iii) on the output of this
algorithm when applied to the original database (say, G) and the one obtained
when applied to the modified database (say G′).

Definition 3. Let G,G′ ∈ G, let A be the algorithm to compute the function,
let S, S′ ⊆ P be some background knowledge on the data sets used to compute G
and G′, and let

M = ∪g∈Gen(G,S),g′∈Gen(G′,S′){g′ � g}.

Then integral privacy is satisfied when the set M is large and

∩m∈Mm = ∅.

The null intersection is to avoid that all generators share record/s. This would
imply that there is a minimum set of modifications that can be inferred from G
and G′.

4 Methodology

Inferential analysis of aggregated statistics can be used to obtain a variety of
sensitive information about the underlying dataset. Compared to DP, IP looks at
privacy preservation from a slightly different angle. As explained in the previous
section, the main goal here is to select a statistical or a machine learning model
that can be represented by multiple generators. In other words, these are different
combinations of input data samples with no shared records among them. In this
case, it is infeasible to determine exactly what input data has resulted the specific
output even though the adversary has access to crucial auxiliary information.
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The implementation of IP achieves this through re-sampling and discretization of
outputs. When deriving the answer for a given statistical query (e.g., mean), the
proposed integral privacy based method selects the most recurrent result which
can be generated by unique input data samples with no intersection among them.

In order to implement the above, it is required to construct the distribution
of the outputs of a given function A() considering all possible combinations of
the input dataset. As generating all possible combinations are computationally
expensive, a re-sampling based approximation method is used to build a sampling
distribution of the outputs. A t number of re-samples (Si) are drawn from the
original dataset P and then a specific function A() is computed for each of the
re-sample as mi = A(Si). In the end, the distribution of function outputs (mi)
is built based on the relative frequency of occurrence of each output. Here, t is
a user defined parameter.

A user defined parameter k, is used to define the level of recurrence (fre-
quency). In this context, k works as a frequency threshold. All the responses
with the frequency of occurrence greater than k are selected as a candidate
response. Then the responses (mi) with no intersection among its generators are
filtered out, and the one with the highest frequency of occurrence or the least
error can be selected as the final answer. Parameter k can take any value ≥2.

However, it becomes challenging when IP needs to be applied on statistical
databases, due to the fact that the range of a function A could be such that
A(Si) ∈ R. This does not guarantee recurrence in output values as most of the
outputs can be unique. Our solution to this problem is applying rounding based
data discretization on input data as well as to the final result before determining
the relative frequencies. By using data discretization, a continuous data set can
be mapped to a finite, discrete set. We discuss our solutions for input and output
discretization below.

1. Input discretization - We apply microaggregation (MA) a masking technique
where the input data are divided into micro-clusters, and then they are
replaced by the cluster representatives. Parameter y defines the number of
minimum data points required to form a micro-cluster. As the cluster cen-
troid is used to replace the original values that fall into the particular cluster,
the uniqueness of data records is concealed, thus preserving the privacy of
the released data. The basic idea is to generate homogeneous clusters over
the original data in a way the distance between clusters are maximized. As
the value of y increases, more distortion is applied to data and vice versa.
Application of microaggregation on a numerical dataset transforms the data
into a discrete space.

2. Output discretization - The output values of a given function are rounded off
in order to limit the number of unique responses. This improves the frequency
of occurrence of a given response value with respect to different data re-
samples. In this case, the final answer is rounded-off to a decimal number
with fewer digits, r (E.g., 2 decimal points).

As explained above, in order to implement IP, it is required to obtain re-
samples of data from the original dataset. In this work bootstrapping is used as
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Data: P : Data set;
n: number of re-samples;
A: function;
k: minimum frequency threshold for generators;
Result: Integrally private function results

1 P D := MA(P,y) � Input discretization using microaggregation (MA)
2 for i = 1 to n do
3 Si := bootstrapSample(P D)
4 mi := A(Si) � Compute function A() for given Si

5 mdi := round(mi, r) � Output discretization with r number of decimals
6 EM := add (mdi, Si) � Add the results to the re-sample function space

7 end
8 for each unique mdi ∈ EM do
9 Frequencyi := frequency(mdi) � Derive the distribution of function results

from EM

10 DistributionOfResults :=
add (EM , F requencyi, generatorList = append(concat(Si))) �
generatorList is upadted by concatenating all items in re-samples Si

11 end
12 for each mdi ∈ DistributionOfResults do
13 if frequency(mdi) ≥ k ∧ intersection(generatorListi) == ∅ then
14 CandidateResultList := add (mdi)
15 end

16 end
17 return CandidateResultList ;

Algorithm 1. Integrally private statistics computation.

the re-sampling technique [9]. It consists of drawing s observations with replace-
ment from the original data. Here s denotes the size of the original data. Sam-
pling with replacement causes the replication of some observations while the
exclusion of the others. On average, in a bootstrap sample, there are 0.632 ∗ s
unique observations. In this case, bootstrapping is selected as it draws sam-
ples that match the size of the original dataset (due to sampling with replace-
ment). In this way, when IP is used to compute counting queries, it leads to
the correct answer. Initially, we also experimented with sub-sampling technique
that generates samples without replacement. Results observed in both cases are
very similar (bootstrap results are marginally better than sub-sampling), except
for the counting queries. Hence, we opted bootstrapping as the re-sampling
technique.

To build each sample Si
∗, s instances are selected with replacement from the

original data set (P ). The samples are same in size as s = |P |. This process is
repeated n times to generate the bootstrap distribution.

Algorithm 1 summarizes our method. The algorithm returns an empty list
when there are no integrally private results for the function A, given the dataset
and other user defined parameters. In that case, the discretization parameters
(y in microaggregation, r rounding), number of re-samples (n) or the frequency
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threshold (k) can be adjusted to generate IP results. However, this can result
in high computational cost (when increasing n) or high distortion of the results
(when increasing y, r).

The above mentioned method is applied to compute IP solutions for some
descriptive statistics. We focus our work in the following ones; mean, median,
IQR, standard deviation, variance, count, sum, min and max. The experiments
obtained using Algorithm 1 are described in the next section.

In IP, privacy is defined by the notion of stability, which leads to release
of the least susceptible data analysis results towards the changes in the input
data. Here, stability is explained by the relative frequency of different generators
(re-samples of data) that lead to the same data analysis results. Highly stable
results are recurring with respect to different data re-samples obtained from the
original dataset. Integrally private output f(x) can be considered as stable on
the dataset x, if the same result appears more than a given frequency threshold
k with respect to unique data re-samples drawn from x which does not share
any common data instances among them.

5 Results and Evaluation

This section is focused on evaluating the effectiveness of our approach when
computing a set of descriptive statistics. Here, we describe the experimental
setting (data in Sect. 5.1, evaluation in Sect. 5.3), analysis of the results and
comparison with differential privacy (Sect. 5.4) respectively.

5.1 Data

Six synthetic datasets (1-dimensional) and two real world datasets are used
to evaluate the results. The parameters used for creating the synthetic data
distributions are described along with the dataset dimension in Table 1. Abalone
and breast cancer datasets are downloaded from the UCI data repository.

Table 1. Dataset descriptions.

Dataset Instances × Columns Description

Norm I 1000 × 1 Normally distributed with μ = 1, σ = 1

Norm II 1000 × 1 Normally distributed with μ = 1, σ = 5

Exp I 1000 × 1 Exponentially distributed with λ = 1

Exp II 1000 × 1 Exponentially distributed with λ = 0.2

Unif I 1000 × 1 Uniformly distributed in range (min=0,max=100)

Unif II 1000 × 1 Uniformly distributed in range (min=0,max=1000)

Abalone Dataset 4177 × 8 UCI data repository

Breast Cancer 683 × 7 UCI data repository
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5.2 Experimental Setup

Algorithm 1 is implemented for calculating the descriptive statistics compliant
with IP. Nine basic descriptive statistics have been considered. They are mean,
median, standard deviation, min, max, interquartile range (IQR), sum and vari-
ance. Algorithm 1 is used to calculate the descriptive statistics compliant with
IP. In this case, the number of re-samples (n) extracted from the original dataset
is set to 1000 for synthetic datasets, 5000 for the Abalone dataset and 700 for
the breast cancer dataset which is roughly closer to the number of instances (i).
For both IP and DP, before reporting the final statistics, 10 iterations are carried
out per each statistic and then the mean values are reported with their standard
deviation and mean absolute relative error (ARE) for evaluation purpose.

For calculating DP statistics Laplacian mechanism is used. As explained in
the preliminaries section, to calibrate the noise for DP, we need to derive the
sensitivity of the functions. To compute the maximum variation a function can
take (global sensitivity), it is essential to know the lower and upper bounds for
the domain of a given dataset.

The global sensitivity of a function can be very large, causing high distortion
to the computed results. Because of that local sensitivity derived from the dataset
is used for some functions (i.e., median, max, min, IQR). For normally and expo-
nentially distributed data the minimum and maximum bounds for the datasets
lies between (−20, 20) whereas, for the unif I the values range from (0, 100) and
for Unif II from (0, 1000). Given that the Abalone and Breast cancer datasets
are biological datasets, no strict domain bounds are introduced to pre-process
the data as it presents very limited chances of being boundless. Therefore, when
computing function’s sensitivity min and max values of the respective datasets
are used.

When computing differential privacy statistics mechanisms introduced in the
literature are used to estimate the global/local sensitivity of the statistical func-
tions as mentioned below. For median, max and min functions techniques intro-
duced in [10] are used with local sensitivity. For mean calculation noisy average
clamping down algorithm introduced in [11] is used whereas, for sum queries
maximum value in the domain (i.e., in this case the max value of the specific
dataset) is used. For IQR calculation Scale algorithm proposed in [12] is used.
For variance and standard deviation the min and max values computed using
the above techniques are used to estimate the function’s sensitivity. For counting
queries the global sensitivity is set to 1.

For IP, 18 different dataset instances are evaluated based on the data distri-
bution type and discretization parameters. Two discretization phases are used as
output discretization (Out Dis:), and both input and output discretization (in/out
Dis:) combined with input discretization levels, low (L) and high (H). In low dis-
cretization level parameter y for microaggregation is set to 2 whereas for high
discretization parameter y is set to 20. In all the cases, rounding parameter is
set to 2 at the output discretization phase. For DP different data distributions
are used with differing ε values which indicates the amount of privacy.
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5.3 Evaluation Criteria

For the evaluation purposes three measures are used as mentioned below. Here,
A() indicates the statistic value to be computed (e.g., mean(), median()), P indi-
cates the original dataset, Si indicates the re-samples, IP{} indicates integrally
private value selection, true value indicates the real statistic value computed
on the original dataset and private value indicate the mean IP or DP compli-
ant statistic value. When computing absolute relative error (ARE) the distance
between the true value and the private value is divided by maximum among 1 or
true value to avoid division by zero. A lower ARE indicate less distorted IP/DP
results.

IP Mean Statistic V alue With SD =

10∑

j=1

IP{A(S1) . . . A(Si)}

10
± SD (1)

DP MeanStatistic V alue With SD =

10∑

j=1

{A(P ) + Lap(ΔA
ε )}

10
± SD (2)

Absolute Relative Error(ARE) =
|True V alue − Private V alue|

max{1, T rue V alue} (3)

5.4 Results and Discussion

Variability/Robustness of the Results. Tables 2 and 3 respectively show IP
statistics and DP statistics computed on the synthetic dataset. In this case, we
wanted to check the variation of the final results among different iterations. The
same is illustrated by Fig. 1. By observing the results, few interesting facts can be
noted. Relative to DP in IP the variability of the results is low in many instances.
This is indicated by the ±SD values. Further, this indicates that as opposed
to adding Laplacian noise to achieve DP, re-sampling based IP provides more
stable/robust answers with less variability despite different iterations. However,
DP performs better than IP when calculating sum() and mean(). This behaviour
is expected as re-sampling does not provide a correct approximation of the total
values. Also, in the case of mean() computation DP results have low variability
compared to IP.

In the case of uniformly distributed data IP reports many “NA” values. This
indicates that at least there has been one iteration where an IP result was not
available with respect to the provided set of parameters. Uniformly distributed
data contains integers as opposed to the other two distributions. This might
require us to increase the discretization level or the number of re-samples and
recheck for IP results. For example, in output discretization we have limited the
number of decimal points to 2. In the case of integer data, rounding to the nearest
integer or a multiple of some value can be used to avoid “no response (NA)”
issue. Moreover, it is noted that robustness of the answers and the discretization
level in IP or ε in DP has no prominent relationship.
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Accuracy of the Results. Variability of the results does not indicate the
quality of the computed statistics alone. To measure how accurate the results
are absolute relative error (ARE) can be used. Tables 4 and 5 contain a detailed
picture of the ARE rate for different data instances. Generally speaking, IP
reports a lower error rate compared to DP. However, as discussed earlier with
respect to uniformly distributed data sum() and variance() functions fails to find
IP compliant solutions within the defined set of parameters. Table 6 shows the
summation of ARE rate after excluding the sum() and the variance(). As it can
be seen clearly, DP reports a very high ARE rate compared to IP in all the cases.
Thus, IP can be seen as the preferable solution in both robustness and accuracy
wise.

Different Discretization Methods for IP. When computing IP compliant
statistics, three discretization methods are used as, (a) output discretization,
(b) output discretization with minimum input discretization and (c) output dis-
cretization with high input discretization. Based on the results from Table 4, it
can be seen that the output discretization is enough to produce IP results with
minimum ARE rate. Sum of ARE is reported as 16.47, 22.28 and 38.74 under
the discretization scenario (a), (b) and (c) respectively. However, by using both
input and output discretization the frequency of occurrence (k) in a given result
can be increased. In other words, this provides a high degree of privacy as having
a higher number of generators increase the uncertainty of exactly figuring out
the set of generators of a given result. When IP is used with integer data, output
discretization required to be more carefully selected to avoid “no response (NA)”
scenarios. Usually, increasing the rounding base or the number of re-samples can
be seen as an answer to this.

Comparison of IP with DP on Real World Datasets. Here, we carried
out the same experiment on the Abalone dataset where IP and DP are used
to compute the descriptive statistics. As depicted by Fig. 2, IP reports a much
less ARE rate compared to DP. Further, for statistics like count, mean, median,
SD, and IQR, the ARE rates are negligible. The highest amount of the errors
in IP are reported by the variable “V8” (number of rings) which is an integer
attribute. As mentioned earlier, by adjusting the rounding parameters or the
number of re-samples the error rate can be further reduced. DP statistics are
calculated with ε = 4 which should provide a very high data utility. However,
compared to the IP solution, in the DP case the error is much higher for all the
statistics except the count and the sum values.

Moreover, with respect to IP we collected the frequency of occurrence (k) of
the selected IP results for descriptive statistics computed over the 8 variables
of the Abalone dataset. In other words, out of 5,000 re-samples what was the
average rate of occurrence (ARO) of the selected IP statistic over the 8 variables
(number of generators). It is respectively, 5000 for count, 3994 for mean, 3793 for
median, 4251 for SD, 4652 for min, 4446 for max, 3891 for IQR, 4245 for variance
and 9 for sum. For a total of 5,000 re-samples (approximately the size of the
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Fig. 1. Standard deviation of IP and DP statistics over multiple iterations. Each syn-
thetic data distribution is tagged as L, M and H which indicate Low, Medium and
High privacy levels. For IP, L indicates output discretization, M indicates low input
discretization combined with output discretization and H indicates high input dis-
cretization with output discretization. For DP L, M and H respectively indicate ε
values 0.01,2 and 4.
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Table 4. Absolute Relative Error (ARE) of IP statistics computed on synthetic
datasets with different discretization methods.

Dataset Count Mean Median SD Min Max IQR Sum Variance

Norm I Out Dis: 0.00 0.00 0.01 0.00 0.05 0.00 0.00 0.35 0.01

Norm I in/out Dis:(L) 0.00 0.00 0.01 0.01 0.05 0.01 0.01 0.35 0.01

Norm I in/out Dis:(H) 0.00 0.00 0.00 0.00 0.28 0.15 0.02 0.35 0.01

Norm II Out Dis: 0.00 0.01 0.03 0.01 1.09 0.01 0.00 0.30 0.04

Norm II in/out Dis:(L) 0.00 0.00 0.04 0.01 1.71 0.01 0.02 0.32 0.10

Norm II in/out Dis:(H) 0.00 0.00 0.09 0.03 3.82 0.97 0.04 0.27 0.21

Exp I Out Dis: 0.00 0.00 0.01 0.01 0.00 0.08 0.00 0.36 0.02

Exp I in/out Dis:(L) 0.00 0.00 0.01 0.01 0.00 0.20 0.00 0.37 0.02

Exp I in/out Dis:(H) 0.00 0.00 0.00 0.01 0.01 0.92 0.02 0.37 0.04

Exp II Out Dis: 0.00 0.01 0.07 0.01 0.00 1.61 0.01 1.79 0.14

Exp II in/out Dis:(L) 0.00 0.01 0.04 0.01 0.00 1.01 0.01 1.79 0.32

Exp II in/out Dis:(H) 0.00 0.02 0.09 0.00 0.03 3.48 0.12 1.82 0.00

Unif I Out Dis: 0.00 0.06 0.05 0.03 0.03 0.01 0.09 NA 5.54

Unif I in/out Dis:(L) 0.00 0.06 0.17 0.09 0.03 0.01 0.15 NA 4.50

Unif I in/out Dis:(H) 0.00 0.12 0.41 0.07 0.86 0.22 0.38 NA 1.79

Unif II Out Dis: 0.00 0.94 3.22 0.18 0.03 0.03 0.23 NA NA

Unif II in/out Dis:(L) 0.00 2.63 3.11 0.40 0.01 0.12 4.54 NA NA

Unif II in/out Dis:(H) 0.00 0.89 10.22 0.50 2.58 2.39 5.14 NA NA

Table 5. Absolute Relative Error (ARE) of DP statistics computed on synthetic
datasets with different ε values.

Dataset Count Mean Median SD Min Max IQR Sum Variance

Norm I (ε = 0.01) 0.10 0.43 0.44 19.03 5.56 0.97 4.89 0.39 4.76

Norm I (ε = 2) 0.00 1.00 0.38 0.20 0.33 0.02 1.94 0.00 1.00

Norm I (ε = 4) 0.00 1.00 0.63 0.90 0.01 0.23 2.68 0.00 1.48

Norm II (ε = 0.01) 0.10 2.42 0.58 112.32 272.23 48.09 151.27 1.60 126.32

Norm II (ε = 2) 0.00 0.94 0.53 0.54 0.82 0.23 8.26 0.01 0.99

Norm II (ε = 4) 0.00 0.95 0.33 0.59 0.85 0.10 7.88 0.00 0.89

Exp I (ε = 0.01) 0.10 0.16 0.10 29.73 0.04 39.72 124.53 0.87 7.28

Exp I (ε = 2) 0.00 1.02 0.57 0.24 0.32 0.09 6.12 0.00 1.47

Exp I (ε = 4) 0.00 1.03 0.66 0.14 0.10 0.02 5.79 0.00 0.68

Exp II (ε = 0.01) 0.10 1.34 0.18 123.70 0.53 201.52 627.16 3.79 158.97

Exp II (ε = 2) 0.00 5.11 0.01 0.19 0.52 1.00 27.97 0.02 0.54

Exp II (ε = 4) 0.00 5.12 0.78 0.99 0.35 0.68 27.00 0.01 1.65

Unif I (ε = 0.01) 0.10 39.13 6.38 320.44 4.15 1.85 41.60 9.64 1024.67

Unif I (ε = 2) 0.00 48.73 0.57 2.11 0.01 0.03 36.15 0.05 4.32

Unif I (ε = 4) 0.00 48.75 0.04 1.20 0.21 0.11 35.74 0.02 3.41

Unif II (ε = 0.01) 0.10 373.32 111.39 3193.41 6.62 27.34 420.31 96.24 101990.65

Unif II (ε = 2) 0.00 469.02 0.05 16.21 0.31 0.46 339.99 0.48 510.80

Unif II (ε = 4) 0.00 469.26 2.77 9.35 0.11 0.05 338.46 0.24 256.13
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dataset) following input and output discretization number of generators seems
to be very high showing that the chances to distinguish the exact data records
used to compute a given statistic are minimal. However, it is being repeatedly
shown that the for summation queries IP might not be an ideal solution.

(a) IP with output discretization and
minimum input discretization (MA
y=2), 4177 re-samples are used to
compute the IP statistics.

(b) DP with ε = 4

Fig. 2. Absolute relative error (ARE) for descriptive statistics computed over the
numerical variables of the Abalone dataset.

(a) IP with output discretization and
minimum input discretization (MA
y=2), 700 re-samples are used to
compute the IP statistics.

(b) DP with ε = 4

Fig. 3. Absolute relative error (ARE) for descriptive statistics computed over the
numerical variables of the Breast Cancer dataset.
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Figure 3 depicts the computation of IP and DP statistics on UCI breast cancer
dataset. To comparatively evaluate the results ARE rates are computed per
variable. The results show the same pattern as the Abalone dataset. Compared
to DP the ARE rates are low for IP except for calculating the sum. The poor
performance of the IP with respect to summation can be attributed to use of
re-sampling.

These results shows us that IP results have a high utility value compared
to DP in most of the cases. Therefore, this method can be used for releasing
aggregated statistics without compromising the privacy of the sensitive data.
However, in order to use this in terms of large scale databases, it is required to
improve the computational efficiency of the process further.

Table 6. Summation of absolute relative error for different statistics computed using
IP and DP

Privacy model Count Mean Median SD Min Max IQR

IP 0 4.75 17.58 1.38 10.58 11.23 10.78

DP 0.6 1468.73 126.39 3831.29 293.07 322.51 2207.74

6 Conclusion

In this paper, we have discussed how to provide integral privacy for descriptive
statistics computation while maintaining the robustness and the utility of the
final results. We have proposed a re-sampling and discretization based approach
to achieve integral privacy and empirically shown that integral privacy based
solution works better than the differential privacy based solution in most of the
cases. Especially, it is noted that the proposed solution can easily be used with
small datasets where differential privacy usually fails in terms of utility. However,
further work is required to minimize the computational cost and to introduce a
formal method to derive the minimum number of re-samples required to achieve
integral privacy for a given dataset. And also, we hope to develop an inference
attack to assess the effectiveness of integral privacy in our future work.
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