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COSET GEOMETRIES WITH TRIALITIES AND

THEIR REDUCED INCIDENCE GRAPHS

D. LEEMANS and K. STOKES

Abstract. In this article we explore combinatorial trialities of incidence geome-

tries. We give a construction that uses coset geometries to construct examples of
incidence geometries with trialities and prescribed automorphism group. We define

the reduced incidence graph of the geometry to be the oriented graph obtained as the
quotient of the geometry under the triality. Our chosen examples exhibit interesting

features relating the automorphism group of the geometry and the automorphism

group of the reduced incidence graphs.

1. Introduction

The projective space of dimension n over a field F is an incidence geometry
PG(n, F ). It has n types of elements; the projective subspaces: the points, the
lines, the planes, and so on. The elements are related by incidence, defined by
inclusion.

A collinearity of PG(n, F ) is an automorphism preserving incidence and type.
According to the Fundamental theorem of projective geometry, every collinearity
is composed by a homography and a field automorphism. A duality of PG(n, F ) is
an automorphism preserving incidence that maps elements of type k to elements
of type n− k− 1. Dualities are also called correlations or reciprocities. Geometric
dualities, that is, dualities in projective spaces, correspond to sesquilinear forms.
Therefore the classification of the sesquilinear forms also give a classification of
the geometric dualities. A polarity is a duality δ that is an involution, that is,
δ2 = Id. A duality can always be expressed as a composition of a polarity and a
collinearity.

A projective configuration of points and lines is self-dual if it is preserved by
a projective duality. More generally, a combinatorial configuration is self-dual if
there is an incidence-preserving bijection between the points and the lines. Self-
dual configurations were for example studied by Coxeter for their connection with
interesting graphs [4].

The incidence graph of a combinatorial configuration is a bipartite graph with
the points in one vertex set and the lines in the other, and an edge between a
point and a line if they are incident. Artzy observed that the incidence graph of a
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self-dual configuration contained redundant information, and introduced a reduced
incidence graph [1]. He also used the reduced incidence graph for finding planar
realizations of self-dual combinatorial configurations over finite fields. Polarity
graphs of finite projective planes and generalized quadrangles are examples of
reduced incidence graphs. Polarity graphs have recently been used for finding
vertex-transitive graphs of diameter two approaching the Moore bound [2].

Triality is a more obscure phenomenon than is duality, for several reasons. The
history of triality goes back to Cartan [3]. Tits classified the geometric triali-
ties with at least one absolute point [9]. Classic geometric triality occurs in a
6-dimensional hyperbolic quadric in PG(7,F), as a cyclic permutation of an inci-
dence geometry consisting of three types: points, 3-solids of type I and 3-solids of
type II. Another way to see it is as a cyclic (non-linear) permutation between the
three irreducible representations of Spin(8). This triality occurs as a consequence
of the fact that the Dynkin diagram of D4 has symmetry group S3. The sym-
metries of the diagram give rise to outer automorphisms of the symmetry group
of the projective quadric. The dualities in projective geometry also come from
symmetries of the Dynkin diagram, but in that case the diagram is An and the
symmetry is an involution.

Just as dualities and polarities can occur in incidence geometries combinatori-
ally, without specifying a realization in projective geometry, so can trialities. We
show how to construct incidence geometries with a given automorphism group G
and a triality which is induced by an outer automorphism of G. Our examples
use outer automorphisms induced by field automorphisms. They were also studied
by Tits [9], but the geometries that we obtain appear to be new. Also, we use a
generalization of Artzy’s reduced incidence graph to represent the geometries, and
discover an interesting relation between this graph and the field extension.

2. Constructing coset geometries with trialities

An incidence pregeometry is a quadruple Γ = (X, ∗, t, I) where X is a set of
elements, I is a set of types, t is a surjective type function t : X � I and ∗ is a
binary relation on the set X, such that elements of the same type are not related.
The cardinality |I| is called the rank of Γ. The relation ∗ is called the incidence
relation of Γ. As any symmetric binary relation, it can be represented using a
symmetric matrix or an undirected graph. The graph representing the incidence
relation is called the incidence graph of the incidence geometry. It is an n-partite
graph, with the elements of each type in each partition.

A flag of a pregeometry is a set of pairwise incident elements. The rank of a
flag is the number of types in the flag. Since all elements in a flag have different
type, this coincides with the number of elements in the flag. The type of a flag
F is the set t(F ). A chamber is a flag of type I. A pregeometry is a geometry
(incidence geometry) if every flag is contained in a chamber.

The residue of a flag F in a geometry Γ is the set of elements in Γ that are
not in F but that are incident with all elements of F . The residue of a flag in a
geometry is a geometry. The rank of a residue of a flag is the number of types in
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the residue. Since Γ is a geometry, every flag is contained in a chamber, therefore
the rank of the residue of a flag of rank k in a geometry of rank n is n− k.

A geometry is connected if its incidence graph is connected. It is residually
connected if all residues of rank at least two are connected, as a geometry. Clearly
any residually connected geometry of rank at least two is connected, being the
connected residue of the empty flag.

If Γ is an incidence geometry of rank at least r, then an r-ality of Γ is an
incidence-preserving automorphism of order r of Γ, permuting r types cyclically.

A coset pregeometry is an incidence pregeometry Γ constructed from a group G
and a set of subgroups {H1, . . . ,Hn} of G (called maximal parabolic subgroups),
so that

• the type set is I = {1, . . . , n},
• the elements are the right cosets of Hi,
• the type function maps every coset Hig to i and
• two elements are incident if their intersection is not empty.

A coset pregeometry that is a geometry is called a coset geometry. We are inter-
ested in geometries with trialities, but in principle, a pregeometry can also have a
triality. Lemma 1 suggests a method for finding coset geometries with trialities.

Lemma 1. A coset geometry Γ = (G, {H1, H2, H3}) has a triality if G has an
automorphism σ such that σ(H1) = H2, σ(H2) = H3 and σ(H3) = H1.

Proof. Let G be a group and H1, H2, H3 three subgroups of G. Assume that
σ is as above stated, then σ maps cosets of Hi to cosets of Hi+1 (mod 3). Also, if
x and y are two cosets, then x ∩ y = ∅ if and only if σ(x) ∩ σ(y) = ∅. Therefore
σ induces an incidence-preserving automorphism τ of Γ, permuting the types H1,
H2 and H3 cyclically, a triality. �

Method 1. Given a group G, choose a subgroup H1 < G and a group automor-
phism σ ofG as in Lemma 1. If the coset pregeometry Γ=

(
G, {H1, σ(H1), σ2(H1)}

)
is a geometry, then it is a geometry with a triality.

A similar approach can be used to construct coset geometries with r-alities. This
will be explored in later work.

3. The reduced incidence graph of a geometry with an r-ality

The reduced incidence graph GRδ of an incidence geometry Γ of rank 2 with types
{1, 2} and a duality δ, is the graph constructed from the incidence graph G of Γ
in the following way:

• Vertices of GRδ are ordered pairs of vertices of G of the form [x] = (x, δ(x)),
where t(x) = 1.
• There is an edge from [x] to [y] if x ∗ δ(y). If x ∗ δ(x), then there is a

half-edge at [x].

The reduced incidence graph of a rank two geometry was first defined by Artzy
in 1956 [1]. His definition was different from ours, in that it used loops instead
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of half-edges. Later the concept was interpreted in terms of voltage graphs by
Pisanski.

Every edge of the reduced incidence graph represents two incidences: x ∗ δ(y)
and δ(x) ∗ δ2(y). A half-edge represents only one incidence, the incidence between
x and δ(x).

Lemma 2 ([1]). The reduced incidence graph of an incidence geometry Γ of
rank 2 with a duality δ is a lossless representation of Γ. However, the same geom-
etry can have many different reduced incidence graphs, while the incidence graph
is always uniquely determined.

We now extend the notion of reduced incidence graph to an incidence geometry
Γ of rank r with an incidence-preserving automorphism of Γ permuting r types
cyclically (an r-ality).

Definition 3. The reduced incidence graph GRσ of a pregeometry Γ of rank r,
with incidence graph G, and an incidence-preserving automorphism σ permuting
the r types I = {1, . . . , r} cyclically, is the labeled oriented graph defined as
follows:

• Vertices are the ordered tuples of vertices from the incidence graph G of the
form [x] = (x, σ(x), . . . , σr−1(x)), with t(x) = 1.

• There is an oriented edge labeled σi from [x] to [y], with x 6= y, if x ∗ σi(y)
for some i ∈ {1, . . . , r − 1}. If x ∗ σi(x) for some i ∈ {1, . . . , r − 1}, then
there is a half-edge (a dart) at the vertex [x], labeled σi.

The edges in the incidence graph are given by the incidence of Γ, and we see
that a reduced incidence graph has 1/r the number of vertices and 1/r the amount
of edges compared to the incidence graph. More precisely, the following lemma is
easily proven.

Lemma 4. The incidence graph G is a graph cover of degree r of the reduced
incidence graph GRσ . If the r-ality σ has order r, that is, if σr = Id, then GRσ is
the quotient graph under the action of σ on G.

For a background on graph covers, graph quotients and voltage graphs, see for
example [7]. Note that the latter statement of Lemma 4 is not true for a duality δ
which is not a polarity, because then there will be some orbit of an edge that has
cardinality different from r = 2.

An r-ality σ for r = 2 is a duality. In that case, all edges have the same label:
σ. The labels therefore do not carry any information and can be removed. Also,
the orientations on the edges can be removed. When σ is a polarity, this is clear,
since a ∗ σ(b) implies σ(a) ∗ σ2(b), which is the same as σ(a) ∗ b. When σ is
not a polarity, orientation can still be removed, because GRσ can be considered to
represent the polarity obtained from σ by setting σ(x) := σ−1(x) for all x of type
2. By removing the labels and orientations, Artzy’s original definition of a reduced
incidence graph of a rank two geometry is recovered.

If r = 3, then σ is a triality. The labels are σ and σ2, and if σ3 = Id, then
a ∗ σ(b) implies σ2(a) ∗ b. So edge orientation suffices to recover G from GRσ . If
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σ3 6= Id, GRσ represents the triality obtained from σ by setting σ3 = (σ2 ◦ σ)−1.
Therefore, for trialities, GRσ is an oriented graph with half-edges (no labels).

An absolute point of a duality δ is a point p such that p ∈ δ(p). Similarly,
we define an absolute element of an r-ality σ to be an element x such that x
and σ(x) are incident. By definition, absolute points of σ correspond to half-
edges in GRσ . The study of absolute points of dualities and trialities has lead to
many interesting results in incidence geometry, including the polar spaces and the
generalized polygons [6, 9].

4. Examples

4.1. The Suzuki groups

The Suzuki groups can be constructed as matrix groups in four dimensions over
a finite field Fq with q = 22n+1. Several constructions exist, for example [8,
11]. Tits gave a construction as automorphism groups of a non-classical ovoid in
PG(3,F)[10] now commonly called the Suzuki-Tits ovoid. The order of Sz(q) is
q2(q2+1)(q−1). The outer automorphism group is the cyclic group C2n+1, induced
by the field automorphisms acting on the coefficients of the matrices. Therefore,
there will be outer automorphisms of order 3 if and only if 2n+ 1 is a multiple of
3. There are maximal subgroups of order q2(q− 1), 2(q− 1) and 4(q±

√
2q+ 1) as

well as subfield subgroups Sz(q′) where q′ = 2m for every divisor m of 2n+ 1 [11].
We want to construct a residually connected geometry with a triality. Therefore

we want to pick a maximal subgroup H with the property that the cosets of σ(H)
and σ2(H) that have non-empty intersection with H should form a connected rank
two coset geometry, where σ is the outer automorphism of the group of order 3.

For n = 1, so that q = 8, the construction gives a residually connected coset
geometry Γ of rank 3 with 2080 elements of each type and a triality τ induced by
the field automorphism. The type-preserving automorphism group of the geometry
is Sz(8), as expected. The incidence graph is 3-partite and has 3 · 2080 = 6240
vertices. The reduced incidence graph GRτ is an oriented graph on 2080 vertices.
The automorphism group of this oriented graph is Sz(2), a group of order 20. The
triality τ has 20 absolute points, giving 20 half-edges in GRτ . The 20 vertices with
half-edges form a single orbit under the action of Sz(2). The triples of elements
in Γ represented by these 20 vertices form a subgeometry, on which Sz(2) acts.

4.2. The projective special linear group of the line

Just as the Suzuki groups, the projective special linear group PSL(2, q) has outer
automorphisms induced by the field automorphisms of the field extension. By
choosing q to be the cube of a power of a prime, we ensure that the automorphism
group of PSL(2, q) contains an automorphism σ of order 3.

For q ∈ {8, 27, 64, 125, 512} we constructed a coset geometry that is thin, resid-
ually connected and flag-transitive, with a triality and type-preserving automor-
phism group PSL(2, q) using Method 1. The automorphism in the case q = 8 is
inner while in the other cases, it is outer. Following the pattern of the previous
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experiment, we calculated the reduced incidence graph of these geometries, using
the triality. In all our examples, except for q = 8, the automorphism group of
the reduced incidence graph of the coset geometry constructed using q = pn, p a
power of a prime, is PSL(2, p).

4.3. An example from the smallest Mathieu group

Let G be the permutation representation of degree 12 of the Mathieu group M11

acting on the 12 cosets of one of its PSL(2, 11) subgroups. Write the points
{1, . . . , 12}. Let Gi be the stabilizer of point I. Since G is 3-primitive (hence
3-transitive), the coset geometry Γ(G, {G1, G2, G3}) is firm, residually connected
and flag-transitive. Moreover, the type preserving automorphism group of Γ is
S12 and the full automorphism group (including type-permuting automorphisms)
is S12×S3, meaning that this geometry has trialities. However, the automorphism
group of G is M11. The automorphism of G giving the triality is inner for M11.
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