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SUMMARY

In this paper, we develop new results concerning the risk-sensitive dual control problem for output feedback
nonlinear systems, with unknown time-varying parameters. These results are not merely immediate special-
izations of known risk-sensitive control theory for nonlinear systems, but rather, are new formulations which
are of interest in their own right. A dynamic programming equation solution is given to an optimal
risk-sensitive dual control problem penalizing outputs, rather than the states, for a reasonably general class
of nonlinear signal models. This equation, in contrast to earlier formulations in the literature, clearly shows
the dual aspects of the risk-sensitive controller regarding control and estimation. The computational task to
solve this equation, as has been seen for the risk-neutral dual control problem, suffers from the so-called
‘curse of dimensionality’. This motivates our study of the risk-sensitive version for a suboptimal risk-
sensitive dual controller. Explicit controllers are derived for a minimum phase single-input, single-output
auto-regressive model with exogenous input and unknown time-varying parameters. Also, simulation
studies are carried out for an integrator with a time-varying gain. They show that the risk-sensitive
suboptimal dual controller is more robust to uncertain noise environments compared with its risk-neutral
counterpart. © 1997 by John Wiley & Sons, Ltd.
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1. INTRODUCTION

The concept of dual control is generally attributed to Fel’dbaum.! In the case of a partially
observable system, it has been shown?*? that the dynamic programming equation solution to the
optimal control problem is computationally more difficult than for the complete information
case. The additional computational effort is attributed to the dual aspects of the control; the
controller must first obtain reasonable information about the states of the system before having
a chance to achieve control objectives. In the case of a system with unknown (possibly time-
varying) parameters, the task of the control actions is therefore twofold, probing for achieving
information concerning the states, and feedback of this information to achieve control objectives.
Probing for state estimation needs more aggressive control than for the case when the states are
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known, and hence good control and good estimation are conflicting objectives. The optimal
control in the case of partially observable systems achicves a trade-off between these two
conflicting demands.

The computational effort in so-called dual control is quite formidable and it has been found?
that the optimal solution to this control problem can be obtained only for a handful of very
simple systems, and sometimes not even analytically but numerically.*"7 To avoid the computa-
tional burden of the dynamic programming equations, researchers have considered a single-step
horizon cost function instead of a multi-step cost function and have termed the optimizing
control as cautious control? since it decreases the feedback gain when the parameter estimates are
uncertain. Unfortunately, the solution to this one-step horizon control problem does not
introduce any probing feature and thus, does not have the desired dual aspects. Various
suboptimal strategies have been studied therefore to obtain an algorithm where the control would
achieve a good balance between control and estimation. 8”14

The control strategies so far studied in detail, aim at optimizing costs which are quadratic,
involving the control and/or estimation energy. These problems have been termed risk-neutral
control problems'> as opposed to risk-sensitive control problems which optimize an exponential
of a quadratic criteria weighted by a risk-sensitive parameter (usually > 0). The risk-sensitive
control problem for discrete-time partially observed systems has been solved in Reference 15.
A related control and tracking problem for linear discrete-time systems has been solved in
Reference 16. Also, risk-sensitive filtering and smoothing problems have been solved for a class of
general nonlinear systems in Reference 17 and for hidden Markov models with finite-discrete
states.'® It has been seen that risk-sensitive controllers and filters are more robust in the presence
of plant and noise uncertainties than their risk-neutral counterparts. Also, they make connection
to worst case control and estimation problems in a deterministic noise scenario (H,, control and
filtering problems for linear systems).'>-1° Risk-sensitive problems also specialize to risk-neutral
problems as the risk-sensitive parameter tends to zero. These facts establish the general nature of
the risk-sensitive problems.

In this paper, we study the risk-sensitive version of the dual control problem. Although
Reference 15 actually addresses the risk-sensitive optimal control problem for partially observ-
able systems and achieves a dynamic programming equation by applying change of probability
measure technique, it is difficult to interpret the dual aspects of risk-sensitive control from these
results. Therefore, by considering a cost function which penalizes the system output, we achieve
a dynamic programming equation which achieves the same objectives, without resorting to
the measure change technique of Reference 15. This result is of interest in its own right (see
Remark 2.1). In addition, we present a suboptimal risk-sensitive dual controller, the risk-neutral
version of which has been considered in Reference 14. We also present some simulation studies
illustrating the robustness of the risk-sensitive suboptimal dual controller to uncertain noise
environments. The risk-sensitive version of the cautious control problem with a single-step cost
criterion has been addressed in Reference 20.

We present the optimal risk-sensitive dual control problem and the dynamic programming
equation solution to it for a certain class of nonlinear systems in Section 2. General nonlinear
systems can be addressed without much difficulty using the same techniques, but are not
discussed in this paper. In Section 3, we consider a particular extension of the one-step horizon
control cost to obtain a suboptimal risk-sensitive dual controller. This controller is obtained
for a single input single output (SISO) auto-regressive with exogenous input (ARX) model
with time-varying unknown parameters and simulation studies are carried out to show the
superiority of this controller to its risk-neutral counterpart. Section 4 presents some concluding
remarks.
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2. RISK-SENSITIVE DUAL CONTROL

In this section we introduce the risk-sensitive dual control problem for a certain class of non-
linear systems. We describe the signal model, introduce the cost criterion and give a dynamic
programming equation solution to the optimal control problem assuming separability between
estimation and control.

2.1. Signal model

We consider the following discrete-time stochastic nonlinear state space model defined on
a probability space (Q, Z, P):

Xetr1 = Ae(Xi) + Bi(ug) + Wi 44
Vi = Cilx) + vk (1)

where x;, w, € R", y, v, € R?, u, € R™. Here, x; denotes the augmented state of the system includ-
ing the unknown system parameters, 1, denotes the control input, y, denotes the measurement, wy,
and v, are the process noise and the measurement noise respectively. The vectors 4,, B, and C,
are nonlinear functions in general. We assume that wy, k € N has a density function i, and v,
k € N has a strictly positive density function ¢,. The initial state x, or its density is assumed to be
known and wy is independent of v.

2.2. Cost criterion

Define Y2 (o, V1, ..., Vi), the o-field generated by Y, as %2 and the corresponding complete
filtration by %,. Also define U, , to be the set of the admissible controls u, in the interval
m < k < n, where u, i1s %, measurable. The risk-sensitive cost criterion for the dual control
problem is given as, for ue Uy_; r_1,

J(u) = E[GXP{9<§, L(yi, ui—1, V:))}:| 2)

The problem objective is to find u* € U,_; y—; such that

T
u* = argmin E[exp{@( L(yi,uil,ri)>}} 3)
ueUi_y 11 i=k

Here, r; € R?,i e N is the reference output that is supposed to be tracked by y;. We also assume
that L € C(R? x R™ x RP) is non-negative, bounded and uniformly continuous. 6( >0) is the
risk-sensitive parameter.

Using a fundamental result of stochastic control, the problem objective is to find u* such that

T
u* = argmin E[exp{@( > L(yi i1, Vi)>}

ueUg_y 1 i=k

Y- } @

Remark 2.1

The cost criterion could have been expressed in terms of the state x;, rather than the output y;,

as
J(u) = E[exp{@(Til L(x;, u;—1) + @(xﬁ)}] (5)

i=k
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where L € C(R" x R™) is non-negative, bounded and uniformly continuous in (x, u) and ® € C(R")
is non-negative, bounded, and uniformly continuous. This risk-sensitive control problem has
been solved in References 15 and 16 using change of probability measure techniques. But the dual
aspects of the control are not so evident from the dynamic programming equation obtained in
References 15 and 16 and so this case is not studied further here.

2.3. Dynamic programming

We have separability between estimation and control as in Reference 15. The estimation
problem is solved by evaluating the information state, which in this case is a conditional
probability density function of the state given the observations.

Definition 2.1

Define the information state o, -1 (x) such that

O<k|k—1(x)dx = E[I(x; € dx)|¥; 1] (6)
Definition 2.2
Let us define the value function V(o — 1, k) such that

V(ak\k—lak) = inf E|:9Xp{9<ET:L(J’i,“i—bVi))H@kﬂ] (7)

uelUp 1 7-1

Remark 2.2
We assume here that exp {0(Y/_, L(y;, ui— 1, 1;))} is integrable.

We state the following theorem without proof.

Theorem 2.1

The value function V(o,—1, k) satisfies the following recursive dynamic programming
equation

V(ak\k—hk) = infE[eXP{Q(L(Ykauk—1:"k))} V(ak+1\kaK + D% -1] (8)

Up—1

V(er)r-1,T) = inf J f exp{H(L(cT(x) + 0, ur—1q, VT))} arir-1(X)@r(v)dxdo )

Ur—1

Remark 2.3

Note that considering the cost criterion (2) instead of (5) results in the dynamic programming
equation (8) (without applying change of probability measure techniques) which involves compu-
ting the expectation of the product of two terms. The first term denotes the immediate risk-
sensitive control cost. The second term is a function of oy 4, (x) which itself is a function of Y,
and w4, ...,uo. This implies therefore, that u,_; not only affects the immediate risk-sensitive
control cost but also influences the future information state. This clearly shows the dual nature of
the risk-sensitive control. Unfortunately, just like the optimal solution to the risk-neutral dual
control problem,? the optimal risk-sensitive dual control cannot be computed analytically.

Int. J. Robust Nonlinear Control, 7, 1047-1055 (1997) © 1997 by John Wiley & Sons, Ltd.



RISK-SENSITIVE DUAL CONTROL 1051

Numerical solutions are probable in a few cases, but are computationally expensive because
the computational complexity increases exponentially with the dimension of the information
state.

3. ROBUST (RISK-SENSITIVE) SUBOPTIMAL DUAL CONTROLLER

In Section 2, we found that the optimal risk-sensitive dual control cannot be achieved analyti-
cally. Owing to similar difficulties encountered in the risk-neutral optimal dual control problem,
researchers have considered other suboptimal strategies which could substantially simplify the
computational procedure. Since the cautious controller (which optimizes a single-step cost
criterion), is not a dual controller, adding perturbation signals to the cautious controller has been
considered in References 8 and 9. In References 10 and 11, constrained one step minimization
techniques have been considered, the constraint being on the minimum value of the control signal
or on the variance of the parameter estimates. Several works!?!3 have considered different
extensions of the single-step cost criterion (i.e., the cost criterion for the cautious control problem)
in the risk-neutral case.

In this section, we consider a similar extension of the single-step risk-sensitive cost criterion.?°
The corresponding extension in the risk-neutral case has been studied in Reference 14. We first
present a generalized extended cost-criterion for a risk-sensitive suboptimal dual controller,
followed by a specific cost-criterion for a SISO minimum phase ARX model. We then present an
analytical solution for the control that optimizes this specific cost-criterion. This controller is
suboptimal in the sense that it does not achieve the optimal risk-sensitive dual control but, by
optimizing a cost that includes an extra term penalizing the estimation error, it tries to achicve
a reasonable balance between control and estimation. We also present some simulation studies
which illustrate that in the presence of uncertainties in the model dynamics, the risk-sensitive
suboptimal dual controller incurs less cost than its corresponding risk-neutral counterpart and is
thus robust to uncertainties in the noise dynamics.

3.1. Cost criterion

Consider a generalized cost-criterion for a risk-sensitive suboptimal dual controller for the
system (1) given by

Jouv (U —1) = E[exp {01 (L(yi, ux—1, 1) + 02 f (x> K= 1))} P -1 (10)

where 64, 0, are risk-sensitive parameters and f: R"x R" - R is a convex function reflecting
a measure of the estimation error energy (X ;- being an estimate of x; given %, _,), so that both
the control and estimation costs are penalized.

3.2. Risk-sensitive suboptimal dual controller for a SISO ARX model
Consider the discrete-time minimum phase SISO ARX model
Vi @Y1+ A AR Yk—w = bith— 1 + o+ b, + vy (11)

where yy, uy, v, are output, input and measurement noise respectively at the kth time instant. The
noise sequence {v,}, k € N is assumed to be Gaussian distributed with a density ¢, ~ N(0, 67).
v, is also assumed to be independent of y;, ie{l,2,....,k—1} and ai, bi,
ie{1,2,...,k},je {1,2,...,n}. It is further assumed that b} # 0 Vk.

© 1997 by John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control, 7, 1047-1055 (1997)
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The state of the system is denoted by x; = [b; bi --- b} a; --- aj] and the state dynamics is given
by
Xe+1 = AeXi + Wi (12)
where A, is a known matrix and {w,} is a sequence of i.i.d random vectors distributed with
a density function ¢,, ~ N(0, Z,,), Vk e N.
With this state description, the output dynamics are given by
Vi = Wk-1Xk + g (13)
where
Wi—1 = [U—1 +* Ug—n — Yi—1 """ V-]

The initial state x, or its distribution is assumed to be known.

Cost criterion. Let us consider the following cost criterion for the SISO ARX model described
above, given by
Joun. (- 1) = E[exp{0:((yx — n)® + ;“eI%)H@kfl] (14)
where ey =Yk — lﬁ;{_lﬁk‘k,l and A = 02/01 .
Therefore, the problem objective is to find uf_; such that
ui-1 = argmin I (- 1) (15)

U1 €Uk 1,1

Remark 3.1

It should be noted that the minimum phase assumption on (11) is not restrictive. Non-
minimum phase systems can be treated by including a term penalizing the control cost in the cost
index described above. This, of course, would result in a more complicated stability criterion.

Separability of estimation and control applies as before and the estimation is carried out by
a Kalman filter. Details can be found in Reference [20]. The following theorem gives the result for
the risk-sensitive suboptimal dual controller for the SISO ARX model (11).

Theorem 3.1
The risk-sensitive suboptimal dual control that optimizes the cost criterion (14) is given by

91(1 — /1910'5;()
21 = 0,(1 + Aop)

uy_y = argmin ﬂkeXP[ (‘//fc—lfukﬂ - Vk)2:| (16)

U1 €Uk 1 k-1

where ff, = l/ﬂl — 01 (1 + A)a}). Also, oy is the variance of the process y, given %, _, and
Xie—1 18 the mean of the conditional Gaussian density oy, — 1 (x).

Remark 3.2

(16) has to be solved numerically.

Remark 3.3

We assume 0; < 1/(1 + /l)ofk, Vk € N. The choice of 0, and 4 is dependent on the trade-off
between good control and good estimation.

Int. J. Robust Nonlinear Control, 7, 1047-1055 (1997) © 1997 by John Wiley & Sons, Ltd.
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3.3. Simulation studies

Here, we present a brief simulation study to show how risk-sensitive suboptimal dual control
can perform better than the risk-neutral suboptimal dual control in uncertain noise environ-
ments. Consider an integrator in discrete-time with a time-varying gain given by

bi+1 = Axby + wy
(17
Vi =Yi-1 + bi—1 + vp
We assume wy ~ N (0, 62), vy ~ N(0, 62). Choose Ay = A =095, Vke N 62 = 1-0, 62 = 0-49.
Also, let r, = r = 1:0, Vk € N. We implement the risk-neutral suboptimal dual controller given in
Reference 14 and our risk-sensitive suboptimal dual controller given by Theorem 3.1. The
performance measure used to compare the two schemes is 4Y1_, Vi .
We consider two types of uncertainties.

Coloured process noise. In realistic environments, the process noise is often coloured. Let us
take a particular case where the dynamics of the gain parameter b, is given by
bk+1 = 095bk + w, — 0'4Wk_1 + 0.7Wk—2

The risk-neutral suboptimal dual controller studied in Reference 14 is given by

bu(rk — yi—
u, , = Azk( k _ Yi—1) (18)
bi + a5, (1 4+ 2)
We run the risk-neutral controller with 4 = — 0-5 and the risk-sensitive controller (16) with
0; =4x10"* and 4 = — 0-5 assuming the process noise is white. Figure 1 shows the cost
6 T T T T T T T T T
5f 4
at _
D risk—neutral i
g3t |i
!
| - -
21 : ’ risk—sensitive - B )
N
]
4 i
% 700 200 300 400 500 600 700 _ 800 _ 900 1000

time k

0, =4x10~4, A= —05

Figure 1. Robustness of risk-sensitive dual controller against coloured noise
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time k
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Figure 2. Robustness of risk-sensitive dual controller against high noise

accumulated over 1000 time points using simulated data. It is clear that the risk-sensitive
controller yields a lower cost.

Unexpectedly high process noise. In this case, we take the actual o2 = 4 whereas both the
controllers run assuming o2 = 1. For this example, we take 0; =4x10"% and 2= — 05.
Figure 2 shows the cost incurred by the risk-neutral and the risk-sensitive dual controllers. It is
seen that even in such hostile noise environments, the risk-sensitive controller performs better.

To conclude, it would be fair to say that the risk-sensitive suboptimal dual controller is
expected to perform better than its risk-neutral counterpart in uncertain noise situations. But
there is no general rule so far as to how to choose a suitable value or a suitable range of values of
0., for which the risk-sensitive controller will perform better.

4. CONCLUSIONS

Dual aspects of the risk-sensitive control have been studied in this paper. A dynamic program-
ming equation solution to the optimal risk-sensitive dual control problem has been given. For the
case of cost indices in terms of outputs rather than states, this dynamic programming equation
shows the control and probing aspects of the risk-sensitive controller in a conveniently separated
form. The difficulty involved in solving this equation even numerically calls for suboptimal
risk-sensitive dual control strategies. One such strategy has been considered by extending the
single-step risk-sensitive dual control cost criterion. Also, risk-sensitive cautious control has been
studied for a SISO, minimum phase, ARX model. The suboptimal dual controller has been
derived for the same model. Simulation studies carried out for the special case of an integrator

Int. J. Robust Nonlinear Control, 7, 1047-1055 (1997) © 1997 by John Wiley & Sons, Ltd.
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with a time-varying gain show that the suboptimal risk-sensitive dual controller is more robust to
uncertain noise environments than its risk-neutral counterpart.
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