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The risk-sensitive filtering problem has been addressed for linear
Gauss—Markov signal models in [2]. The optimizing estimate is
derived from a linear filter. In fact, it is afl .., filter. Off-line Riccati
equations are solved to achieve the filter gain which becomes the
so-called Kalman gain when the risk-sensitive parameter approaches
Subhrakanti Dey and John B. Moore zero. Risk-sensitive control problems are relatively more abundant in
the literature [5], [7], [8]. A solution to the output feedback problem
Abstract—in this paper, we address the risk-sensitive filtering problem for Im_ear and nonlinear dlscrete_-tlme systems using mfo_rmatlon state
which is minimizing the expectation of the exponential of the squared technigues has been proposed in [9] and [4]. Also, tracking problems
estimation error multiplied by a risk-sensitive parameter. Such filtering  for the linear, exponential, quadratic index case have been solved in
can be more robust to plant and noise uncertainty than minimum 4] The feedback and feedforward gains for the information state
error variance filtering. Although optimizing a differently formulated in thi ire th uti f a backward Riccati and f d
performance index to that of the so-calledH ., filtering, risk-sensitive '_n 1S (.:ase require _e solution or a backwar 'Cca_' and torwar ]
filtering leads to a worst case deterministic noise estimation problem given linear difference equation, analogous to the standard Linear Quadratic
from the differential game associated withH. filtering. We consider a ~ Gaussian (LQG) tracking problem solution. The derivation techniques
class of discrete-time stochastic nonlinear state-space models. We preseniy e hased on a reference probability method. The risk-sensitive filter-
linear recursions in the information state and the result for the filtered ina broblem is similar in nature to its control counteroart. and it makes
estimate that minimizes the risk-sensitive cost index. We also present ap - P N )
fixed-interval smoothing results for each of these signal models. In Sense to ask whether there are corresponding nonlinear stochastic
addition, a brief discussion is included on relations of the risk-sensitive risk-sensitive filtering results, perhaps dualizing the risk-sensitive
estimation problem to minimum variance estimation and a worst case control results. Instead of solving a backward dynamic programming
Siggﬁ?ggg&'em In a deterministic noise scenario related to minimax - oo\ \rsjon to obtain a sequence of admissible controls, we can, at each
The technique used in this paper is the so-called reference probability time point, calculate the filtered estimates recursively in the forward
method which defines a new probability measure where the observations direction based on the observations available to that point. This is
are independent and translates the problem to the new measure. The 3 more natural approach than the backward dynamic programming
optimization problem is solved using simple estimation theory in the 0000k taken in [2]. Risk-sensitive control problems are closely
new measure, and the results are interpreted as solutions in the original . . .
measure. connected to minimax dynamic games. Such relations have been
explored in [6] and [9] in the small noise limit case. Similarly,
risk-sensitive filtering problems are closely connected with ihe-
filtering theory developed in [11] and [12]. This relationship has been
I. INTRODUCTION explored for general nonlinear signal models in a follow-up paper to
Optimal linear stochastic estimation theory, which is known d§e present one [15]. It has been shown that in the small noise limit,
Kalman filtering theory, has been dominant for the past two decadésk-sensitive filters have an interpretation in terms of a deterministic
In application to Gauss—Markov systems, it achieves the conditiovgdrst case noise estimation problem given from a differential game.
mean estimate, being at the same time the minimum variance estimat this paper, we consider a class of stochastic nonlinear state-
and indeed also the maximume-likelihood estimate [1]. The terspace signal models, involving information states, and derive, in the
minimum variance estimate implies the minimization of the energyrst instance, information state filters based on the risk-sensitive
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The derivation techniques used in this paper are different th&n Problem Definition
the ones used for earlier filtering results in [2], but similar to those Define X, 2 (2o, 01, a1}, Vi A {0, y1,-- -y}, theo-field

used for the control results in [9] and [10]. They are based Ogﬂenerated by, as)? and theo-field generated byX, andYi_,

a dlscrete-tlrr?e_ versuk)]_n horf\ th(; weII-kngv_vn cha}nge Of_pmbab'll_'%y GY. The corresponding complete filtrations are denotedVas
measure technigue which has been used in continuous-time nonli Gr. respectively. We defing,, as the estimate of the state

filtering,.a good .expo.sition of which can be found in [18]. Deyelope iven ), and work with recursive estimates which update from
in [3], this technique is based on_adlscrete-tlme version qf Girsano Sowledge Ofi1jpinhe = 1,2, 1.
theorem, Kolmogorov's Extension theorem, and Fubini’s theorem. i, recall that the minimum variance estimate is defined by
The preliminary task is to define a new probability measure where
the observations are independently identically distributed (i.i.d) and &4 =argmin E[L(z — €)' Qe — )| 4] 2
also independent of the state process. Then, one can reformulate the ger™
optimization problem in the new measure to obtain the recursions
in the information state, the expression for the optimizing filtered
estimate, and also density functions of the smoothed estimates by
using and exploiting the independence of the observations. Solvin / ,
the groblem ir? the r?ew measSre is equivalent to solving the problen? + <ml — O QL - E)}Dl} ®)
in the old measure as long as a restriction is set on a certain
Radon—Nikodym derivative described. Moreover, it is shown th¥here > 0. The equivalence of these two optimization tasks is well
known risk-neutral filtering results can be recovered from the risknown and follows from the linearity property of the expectation
sensitive results as a special case when the risk-sensitive param@éfrator. One risk-sensitive generalization of this problem that is
tends to zero. perhaps very apparent is to firid); such that
In Section Il, we describe a nonlinear stochastic state-space model, R ‘ 9 .
formally define the risk-sensitive filtering problem, and then deal with Ty € arg Euelg}l E {EXP{§($L - Qzr = O}
the change of measure and reformulation of the problem in the new
probability measure to achieve the filtering and smoothing resultgheref > 0 is the risk-sensitive parameter. This generalizes the first
Section Il briefly discusses the connection of the risk-sensitiveptimization task of (2) to the risk-sensitive case. This problem
estimation problem to risk-neutral (minimum variance) filtering and as been solved for continuous-time and discrete-time nonlinear and
worst case noise estimation problem given from a differential gamelinear signal models in [15]. It has been shown there that for the linear
the small noise limit. Section IV presents some concluding remarksaussian signal model, this is identical to the minimum variance
estimate or the Kalman filter.
We concentrate on a related risk-sensitive estimation problem

=argmin F
£ER™

t—1
%{Z(M — &) Qar = Eipe)

k=1

y} (4)

Il. FILTERING AND SMOOTHING FOR NONLINEAR which has been solved for the linear Gaussian signal model in [2].
DisCRETETIME STATE-SPACE MODELS The problem objective is to determine an estimate of «; such that

In this section, we consider a nonlinear stochastic state-space . o _
model. We first introduce the measure change technique and refor- Ve € argmin J(0). vi=0,L,---, T ®)
mulate the problem in the new probability measure. Next, we preseg}%

o X . . . ! . where
an infinite-dimensional linear recursion for the information state an
express the optimizing state estimate in terms of an integral involving Ji(¢) = E[exp(8%4 ()| V4] (6)

this information state. Finally, smoothing results are presented.
is the risk-sensitive cost function. Here

A. Signal Model o,e(¢) = Tom1 4+ Sae — O Qelar — ) (7)
We consider the following discrete-time state-space model define

o where
on a probability spacé(?, F, P): ’
‘i!m,n = 1 (lk - ik\k)/Qk(l«k - .f‘]\|k)
Tpgp1 = A(Tk) + wip ’ ,;
yr = Clwr) + vk 1) Assume Q. > 0. This risk-sensitive index generalizes the second
optimization task of (3) to the risk-sensitive case.
where w;, € R",vi, € RP,ar, € R", andyr € RP. Here, x;, Remark 2.2: Note that a more general convex cost function

denotes the state of the system, denotes the measurememi;; — L(x, %)) can be considered in the index of exponential in (6),
and v are the process noise and measurement noise, respectivielgtead of the usual quadratic cost as given in (7), as long as
The vectorsA(xz,) and C(xzx) have entries which, in general, areL(x, #1)z) iS quadratically upper bounded. Similar techniques as
nonlinear functions ofz; and ¥ € {0,1,---,7}. We assume presented in this paper can be applied to obtain risk-sensitive filtering
A: R" — R",C: R* — RP are measurable functions. We alscand smoothing results for such a cost index. Such a cost index can
assume thatv,,k € N has a density function’), andv,,k € N  be useful when the noise distributions are non-Gaussian or we want
has a strictly positive density functiop. The initial statezo or its to obtain finite-dimensional risk-sensitive filters for discrete-time
density is assumed to be known, and is independent of,. nonlinear systems (see [23)).

Remark 2.1: Note that one can consider a more general class ofRemark 2.3: Note also that the above optimization task given by
nonlinear systems (i.e., with nonlinearities in the noise variables @ and (7) bases the minimization over the required risk-sensitive
well). We would just like to comment here that under some condéstimatei, |, at only one time poink, assuming knowledge of all
tions, we can obtain risk-sensitive filtering and smoothing results ftire previous estimates. This is preferred over (4) because it results
such generalized nonlinear signal models using the techniques of thisin H. filter for a linear system and a worst case noise estimation
paper. problem given from a differential game in general nonlinear cases.
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One could, of course, define the risk-sensitive estimation problem Proof: Supposef: R” — R is any Borel test function. Then,
more like an optimal risk-sensitive control problem and use backwaunding Definition 2.1, we have
dynamic programming to solve for all the risk-sensitive filtered B4/, N PR
estimates up until timé, based on observations up until tinke In [f(”“_)‘ ik exp(%o.1) 4]

that case, the estimation problem becomes a combined smoothing and = [ F(&ouq(§) d€

filtering problem and is no longer a pure filtering problem. Therefore, JRT -~ . . )

we base the analysis of this paper on the optimization problem as = E[f(xr+1) M exp(0W g 1) Ag—1 exp(6Wo ;1) V]
given by (6) and (7), posing it as a forward dynamic programming Loy — Clag))

problem. - {f(A(“) Tk o(yr)

1 5 ! . 5
C. Change of Measure - exp <§9(T’k = k) Quloe — lk\k))

Defi A ]
erine N A CXp(e\PD,kfl )D/k:|
b Plyx = Clan))

" &(yr) _ F{ ' Alx Ok = Clar))
Ay :Hf:oxl. R™ FlAlee) +w) o(Yr)
- exp <%9(Tk — &) Qrlag — i‘k\k))

A new probability measuré® can be defined wherg;, ! € N are

independent with density functiors and the dynamics of are as _ .
under P. “Ap_1exp(0Wo 1)U (w) d7”|yk71}

By setting the restriction on the Radon-Nikodym derivative 1 - ; ,
(dP/dP)|g, = Ax, the measureP can be defined starting witF. = ﬁ/ FIA(R) + w))d(ys — C(2))
The existence of? follows from Kolmogorov’s Extension theorem OLk ) R
[3]. N . 3 exp <§0(z—:Z’k‘k)/Qk(:—i’k‘kO

Lemma 2.1: Under P, the {v;}, I € N, are i.i.d. having densities
®. “P(w)ag -1 (2) dw dz

Proof: The proof is easy and can be achieved by similar

techniques as in [3]. O

1 o )
= _ Sye — C( 2
o5 L[ s —cen
1 . R
D. Reformulated Cost Criteria FEP <§9(/' — ) Q= = 'rk))
In this section, we will work under measuré wherey;, k& € N “(D(, z))agpp—(z) d§ dz (12)
is a sequence of independent real random variables with densitieﬁ/hereg — A(2) + w, such thatw = D(£,2) = € — A(2),z = =

anquﬂ = _A(:ck) —|—_1{)k,rwherewk,k € N are independent random anddw d= = [J(€, =) dé d=. Here
variables with densities).

From a version of Bayes’ theorem, our cost-index becomes B %w (?%
E[A exp(0%0.(0))) V1] T )l =|det | 55 5% || =1.
|1 €X - -
Elexp(6%0(O))Vi] = == %[W |°y"]' R (8) o€ 0=
At| e
Since this identity holds for every Borel test functignwe have
whereE' denotes expectation und&: Hence, our problem objective 1 :
becomes to determine ah; such that A [ () = o0 o(yr — C(2))
) .
By = arg;ninf[xt exp(8%o.+(C))|Ve]- 9) - exp <%(7’(: — ) Qu(z — ’»f“'k|k)>
“U(D(x, 2))ag—1(z) dz. (13)

E. Recursive Estimates 0

is the density function ofro, so
for any Borel set4 € R", we have P(zq € A) = P(ao €
rfor () da o exp(e\i,o_’k_] VM (zx € de)|Veor].  (10) A) = [4 mo(z) dz. Thenag—y(2) = mo(z), and all the subsequent
estimates follow from Lemma 2.2.
Remark 2.4: Note thatay,_,(«) can also be interpreted as an Remark 2.6: It should be noted here that the recursive information
information state [26]. It can be considered as the information st&te filter, givingay ;. («), in terms of aj_yjx—s(x) is linear
of an augmented plant where the state includes the actual state of@fg infinite dimensional. It is well known from the literature that
system and part of the risk-sensitive cost. For details and the ouﬂfﬁ@te-dimensional filters for general nonlinear stochastic discrete-time

Definition 2.1: Define ajz—1(x) as the unnormalized density Remark 2.5: Supposingro(=)
function such that -9 ;

of an alternative treatment of our problem, see [15]. signal models are yet to be found. However, finite-dimensional filters
Lemma 2.2: The information staten(z) obeys the following do exist for a class of discrete-time nonlinear systems [24]. Similar
recursion: finite dimensionality conditions for risk-sensitive filters have been
1 . derived in [22]. Also, in [23], it has been shown how one can obtain

Qpg)(®) = —— oy — C(z)) finite-dimensional risk-sensitive filters and smoothers for discrete-
oY) Jan time nonlinear systems by considering a generalized risk-sensitive

Cexp <l9(2 _ fikm)'Qk(Z _ i’k|k)> cost index WhiCh, when sui_tal.)Iy c_hgsen_, absqrbs the contribution

from the nonlinear terms. Similar finite-dimensional control results

(D2, z)) g p—1(2) dz. (11) are obtained in [25].
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Theorem 2.1: The optimali,; can be expressed as where
o — (= b —C(x 6 . ' - .
2, € al‘gmm/ am_l(z)w /37,7’(.’17):MOXp <—(.’l7—.171"T) C)T(,r—mT‘T)>.
¢ n o(yt) o(yr) 2

- exXp <%0(; O/ Qu(z - C)) . (14) Proof:
_ Beir(w) = E[Rer exp(6e1)lax = 2, V]
=FE: exp(ﬁ\ilk,k)KkJrl,T exp(e‘i/;wlj)

Proof:
E[Avexp(0%0,.(¢))| V1]

) e = 2, V7]
_ oy —Ce)) (1 o o = .
- B2 e (o0~ a0 —p|dnocn)
_ . o(yx)
<A eXp(H\IIO,tfl)|J’7t71:| 9 .
- exXp <§(l'k - ik|k) Qk(lk - .f‘]\|k)>
‘ ¢y = C(2)) 1 o S <
= /71 -1 (2) = té(m)_exp 59(4”—(,) Qu(z— ) ) d= CE[A g1z exp(8W iy ) |wk = 2, 2pp1, V1)
(15) ek = ‘,L,’yT:|
(using the definition ofvy,—;(x)). Using (9), we have (14) which
completes the proof. O :F[é(yk - C(zk))
Remark 2.7: The integrability of the integrands in Lemma 2.2 and o(yr)

Theorem 2.1 has been assumed. A necessary condition for this is that
# should be sufficiently small. Of course, in the risk-neutral case,

% ' .
- exp <5($k — @) Qr(zr — -’ﬁk|k)>

the optimal estimate becomes the conditional mean estimate, and its
density becomes the conditional probability density. For the linear B, (et |aw = :Lwyz}
Gauss—Markov signal model case, the integrability condition simpli-
fies to requiring the existence of the solution of a Riccati equation, :F{é(y‘(ﬁ_(qijc)(“))
P\YE

which is guaranteed fat sufficiently small. See [16] for details.
1 . N
- exp <5($k — Ep) Qr ek — -’ﬁk|k)>

F. Smoothing
In this section we obtain the density function of the smoothed - Brr,r(Alwr) + wigr) | = «l'.y’z}
state estimates from a fixed set of observatibas= (yo, - - -ZyT)’. )
We assume knowledge of the optimal filtered estimales = — ‘b(’yk_—c(l’))exp <Q(I — i) Qr(x — nw)
(o]0 ++»4¢r). Using this density, we will then evaluate the o(yr) 2 '

smoothed state estimate which optimizes a certain risk-sensitive cost
function to be described shortly. This smoothing is essentially an off-
line processing and technically known as fixed-interval smoothing.
We will also defineX?, = (& jm» -+ &njn) AN m 0 = Ti_,, Ar.

Now, we will define the unnormalized density of the smoothe
estimateyx,7(«) and the backward filtered unnormalized density (or Yo, 7 () = agp—1 (2)fr,7(x). (29)
backward information state or reverse likelihood ratio [27])r ()
as follows. We also define the risk-sensitive smoothed estitrjgie

. /‘71 »(§ — A(x))Bryr,7(€) dE. (18)

Theorem 2.2: The unnormalized density function of the smoothed
tastimatewk,r(m) can be expressed as

Proof: Supposef: R" — R is a Borel test function. Then we

Definition 2.2: can write
Ve (2) dw = E[Kr exp(§Wo 1)1 (4 € dx)| V7] E[Ar exp(6Fo,7) f(x4)[ V7]
Br(x) = B[Arr exp(#Ws,r)|ar = @, V] = [ f@)yr(x)de
: . 2 R™
Ty € argsmmE _EXP(H\I’UJ’) =E[Ac 1 CXP(H@O,k—l)f($k>Kk,T CXP(‘)‘i’/@,I)WT]
[ , = E[Kk_1 eXp(VH\i/oy}.»_1 )f(;l']‘»)F[XkyT eXp(e\i/k’T‘)
. — — — Y N
exp {2 (k= &) Qrlxy E)}DT} s Vel ]
€argminF | Ao v exp(@‘ifo ) = E[A— xp(0Wo, k1) f(2i) Br1 (2)| V7]
¢t , = | f)oupo (@)Ber(x) do (20)
- exp {5(;10;» - &) Qulay - 5)} yT} v
(by using Definition 2.1 and the conditional independence property

(16) arising from the fact thay, } is a sequence of i.i.d. random variables

where Q. > 0. underP). Sincef is an arbitrary Borel test function, we have
Lemma 2.3: The procesg,. () satisfies the following backward
recursion: P P () g T, 7(%) = agp—1()Bk,r(x).
Slye — Cla)) (0 -
Be,r(x) = /’”— exp <—(:L’ - .i'm,)'Qk(.r — i'klk)) Remark 2.8: A similar representation of the conditional distribu-
_"’(y“) 2 tion of the smoothed estimate for continuous-time systems (in the
. / O(€ — A())Brgr,r(€) dE (17) Minimum variance or risk-neutral context) in terms of a product of
R™ ‘ two processes can be found in [19].
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Theorem 2.3: The risk-sensitive smoothed estimatg,. is given

b
d (1]

Y,7(2) exp(56(z — €)' Qr(z — €)) d=. [2l

7

Epp € arg min/ (21)
3

(3]

Proof: The proof is similar to that of Theorem 2.1. O

[4]

M.

In this section, we briefly discuss the relation of risk-sensitive[5]
estimation to minimum variance or risk-neutral estimation and a
worst case noise estimation problem given from a differential gamgs]
connected toH ., estimation theory. Before proceeding further, we [7]
need to restate the optimization problem defined by (5)—(7) in terms
of the following equivalent formulation: (8]

L IMITING RESULTS

(22)

& o Trin , " ,
Zy0 € albcmlnﬂ logE[exp (€ ‘I’O,L(C))D/L]. [9]

We also assume that the noise variables vy in (1) are scaled by [10]
Ve. Note that here# has been replaced hy/e.

Following a similar treatment in [6] for a risk-sensitive contro
problem, it can be easily shown that as— 0, the cost defined by
(22) approaches the corresponding risk-neutral cost. It is also obviqug]
from (11) that a¥ — 0, the recursion approaches the corresponding
recursion for a conditional density prediction filter for the signaﬂlgl
model (1).

The other interesting case is when— 0, which is known as [14]
the small noise limit. It has been shown in [15] that in the small
noise limit, the risk-sensitive estimation problem approaches a wols®l
case estimation problem in a deterministic noise scenario given
from a differential game. These results have been obtained for beil
continuous-time and discrete-time systems. Indeed, it is true that for
a discrete-time linear Gauss—Markov system, the risk-sensitive filter
is an H filter (see [2] or [16] for details). Similar results exist forlt
risk-sensitive control problems [9], [6]. 18]

(14

[19]
IV. CONCLUSION

The problem of discrete-time filtering and smoothing with afto!
exponential quadratic error cost-criteria, termed risk-sensitive ﬁﬂzl
tering and smoothing, has been addressed in this paper using a
reference probability method and information state techniques. A
new probability measure has been defined where observations 8rd
i.i.d., and the reformulated cost-criterion has been minimized to
give filtering and smoothing results for a class of discrete-timgg)
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