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A comparison of (64) and (65) leads to

Ek(�
0

j) =
gk+1

gk

Ek+1(�
0

j)

k + 1

1

� 0

j � 1
h+ o(h): (66)

Finally, taking (10), (42), and�j � � 0

i ! � 0

j � � 0

i 6= 0 for i 6= j

into account yields (26) with (27) which proves item 3) of the
Theorem 3.

VI. CONCLUSION

In the paper, a theorem has been proved that, for small sampling
periods, characterizes the accuracy of all limiting zeros of the pulse
transfer function of a system composed of a zero-order hold followed
by a continuous-time plant.

The main result has a form of a correction to the asymptotic result
of Åström et al. [3] in the form of a power term ofh, whose degree
depends on the relative order of the continuous-time counterpart, and
its contribution is expressed in terms of Bernoulli numbers and the
poles and zeros of the continuous-time transfer function.

The discussion is based on two fundamental lemmas. The first one
yields two terms of the Taylor series expansion of the pulse transfer
function aroundh = 0 and the second characterizes the magnitude
of the difference between the exact pulse transfer function and the
principal term of its Poisson representation as a function ofh.

Similar methods can be applied to study limiting zeros for pulse
transfer functions of systems with a first-order hold.

One of possible applications of the result is investigation of the
accuracy of approximate pulse-transfer functions [7].
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Finite-Dimensional Risk-Sensitive Filters and
Smoothers for Discrete-Time Nonlinear Systems

Subhrakanti Dey and John B. Moore

Abstract— Finite-dimensional optimal risk-sensitive filters and
smoothers are obtained for discrete-time nonlinear systems by adjusting
the standard exponential of a quadratic risk-sensitive cost index to one
involving the plant nonlinearity. It is seen that these filters and smoothers
are the same as those for a fictitious linear plant with the exponential of
squared estimation error as the corresponding risk-sensitive cost index.
Such finite-dimensional filters do not exist for nonlinear systems in the
case of minimum variance filtering and control.

Index Terms—Finite-dimensional, information state, minimum vari-
ance control, minimum variance estimation, risk-sensitive estimation,
smoothing.

I. INTRODUCTION

Risk-sensitive filtering for linear or nonlinear stochastic signal
models involves minimization of the expectation of an exponential
in quadratic cost criteria. The filters for linear signal models are
finite-dimensional but for nonlinear models are infinite-dimensional
in general. As opposed toL2 filtering, (termed asrisk-neutral filtering
in [3]), which achieves the minimization of a quadratic error criteria,
risk-sensitive filtering robustifies the filter against plant and noise
uncertainties by penalizing all the higher order moments of the
estimation error energy. It also allows a tradeoff between optimal
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filtering for the nominal model case and the average noise situation
and robustness to worst case noise and model uncertainty by weight-
ing the index of the exponential by a risk-sensitive parameter. For
example, it has been shown in [4] that risk-sensitive filters for hidden
Markov models (HMM) with finite-discrete states perform better than
standard HMM filters in situations involving uncertainties in the noise
statistics. Also, in the small noise limit, risk-sensitive problems have
been shown to be closely related to estimation/control problems in a
deterministic worst case noise scenario given from a differential game
(H1 estimation/control problems for linear discrete-time systems)
[5], [7], [8].

Risk-sensitive control problems are relatively more abundant in
the literature [10]–[12]. Recently, a solution to the output feedback
risk-sensitive control problem for linear and nonlinear discrete-
time stochastic systems has been proposed in [7] and [13] using
a change of probability measure and information state techniques.
The problem of risk-sensitive filtering has been studied in [2] for
linear Gauss–Markov models. The techniques applied in [2] are not
readily generalizable for nonlinear filtering. More general nonlinear
problems have been studied in [3] which tackles the risk-sensitive
estimation problem using the reference probability methods of [1].
The cost index considered in [3] consists of the sum of quadratic
estimation errors to the present and so parallels closely risk-sensitive
control/tracking problems considered in [7], [13], and [14].

Although optimal nonlinear filters are known to be infinite-
dimensional in general, there are examples of finite-dimensional
optimal filters in special cases [15], [16]. Optimal nonlinear risk-
sensitive filters studied in [3] are no exceptions. However, recently
in controller design, the risk-sensitive cost index has been exploited
to cancel the nonlinearities for a class of nonlinear systems so
that we can have a finite-dimensional information state and thus
finite-dimensional controllers [17], [18]. In [18], finite-dimensional
risk-sensitive controllers with finite-dimensional information states
are obtained by adjusting the risk-sensitive cost index for a class of
discrete-time nonlinear systems.

In this paper, we use similar techniques as in [18] to obtain finite-
dimensional risk-sensitive optimal filters for a class of discrete-time
nonlinear systems. It is of interest that in the nonlinear context there
is no duality between filtering and control problems, yet similar
techniques can be used for the solutions of filtering and control
problems. In Section II, we present the nonlinear signal model,
formulate the risk-sensitive filtering problem, and reformulate it in
the new probability measure using reference probability methods. We
obtain results for recursive information states and the optimal risk-
sensitive filter. In Section III, we show how an appropriate choice of
the risk-sensitive cost index can allow us to have a finite-dimensional
information state and a finite-dimensional optimal risk-sensitive filter
which happens to be the same as that for a linearized version of the
nonlinear signal model with a standard exponential of a quadratic cost
index. We also provide motivation behind using such a cost index and
discuss the robustness issues. Discussions on small noise limits and
risk-neutral results are also included.

II. RISK-SENSITIVE ESTIMATION FOR NONLINEAR SYSTEMS

In this section, we consider a class of discrete-time nonlinear state-
space signal models. We introduce a risk-sensitive cost index, the
justification of which will be clear when we derive the filtering
equations. Next, we apply the change of measure technique and
reformulate the cost in the new probability measure. Linear recursions
in the information state are obtained and the risk-sensitive filter is
obtained as the minimizing argument of an integral as a nonlinear (in
general) function of the information state.

Signal Model: We consider the following discrete-time nonlinear
state-space model defined on a probability space(
; F ; P ):

xk+1 =Akxk + ak(xk) + wk+1

yk =Ckxk + ck(xk) + vk (1)

wherewk 2 IRn, vk 2 IRp, xk 2 IRn, and yk 2 IRp. Here,xk
denotes the state of the system,yk denotes the measurement, andwk

and vk are the process noise and measurement noise, respectively.
The vectorsak(xk) andck(xk) have entries which are time-varying
nonlinear functions ofxk and k 2 f0; 1; � � � ; Tg. We assume that
wk; k 2 IN is i.i.d. and has a density function andvk, andk 2 IN
is i.i.d. and has a strictly positive density function�. The initial state
x0 or its density is assumed to be known andwk is independent ofvk.

A. Problem Definition

DefineXk
�
= fx0; x1; � � � ; xkg, Yk

�
= fy0; y1; � � � ; ykg, the�-

field generated byYk asY0k and the�-field generated byXk and
Yk�1 by G0k. The corresponding complete filtrations are denoted as
Yk andGk, respectively. We definêxtjt as the estimate of the statext
givenYt and work with recursive estimates which updatex̂tjt from
knowledge ofx̂k�1jk�1, k = 1; 2; � � � ; t.

In [3], we considered the following estimation task: Determine an
estimatex̂tjt of xt such that

x̂tjt 2 argmin
�

Jt(�); 8 t = 0; 1; � � � ; T (2)

where

Jt(�) = E[exp(�	0; t(�))jYt] (3)

is the risk-sensitive cost function. Here

	0; t(�) = 	̂0; t�1 +
1

2
(xt � �)0Qt(xt � �) (4)

where

	̂m;n = 1

2

n

k=m

(xk � x̂kjk)
0
Qk(xk � x̂kjk):

AssumeQk > 0.
In this paper, we mildly generalize the above cost index so that

the estimation task is to obtain̂xtjt such that

x̂tjt 2 argmin
�

E[exp(�	0; t(�))jYt] (5)

where, for someLk(:; :; :) andLt(:; :)

	0; t(�) =

t�1

k=0

Lk(xk+1; xk; x̂kjk) + Lt(xt; �): (6)

Here, Lk(:; :; :) and Lt(:; :), are assumed to be continuous and
bounded by a quadratic in the norms of their arguments. This
assumption is necessary for the small noise limit results.

B. Change of Measure and Reformulated Cost Index

Define

�k =
�(yk � Ckxk � ck(xk))

�(yk)

�k =

k

l=0

�l:

A new probability measureP can be defined whereyl, l 2 IN are
independent with density functions� and the dynamics ofx are as
underP .
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By setting the restriction on the Radon–Nikodym derivative
dP=dP jG = �k, the measureP can be defined starting withP .
The existence ofP follows from Kolmogorov’s Extension theorem
[1]. Also, underP , thefvlg, l 2 IN, are independent and identically
distributed.

Now, we work under measureP , whereyk, k 2 IN is a sequence
of independent real random variables with densities� andxk+1 =
Akxk + ak(xk) + wk wherewk, k 2 IN are independent random
variables with densities . Note thatyk is also independent ofxk
under P .

From a version of Bayes’ theorem, our cost index becomes

E[exp (�	0; t(�))jYt] =
E[�t exp(�	0; t(�))jYt]

E[�tjYt]
(7)

whereE denotes expectation underP . Hence, our problem objective
becomes to determine an̂xtjt such that

x̂tjt = argmin
�

E[�t exp(�	0; t(�))jYt]: (8)

C. Recursive Estimates

Definition II.1: Define�kjk�1(x) as the unnormalized conditional
measure such that

�kjk�1(x)dx =E �k�1 exp �

k�1

l=0

Ll(xl+1; xl; x̂ljl)

� I(xk 2 dx)jYk�1 : (9)

Remark II.1: It has been shown in [5] that�kjk�1(x) can be
interpreted as an information state of an augmented plant where
the state includes the actual state of the system and part of the
risk-sensitive cost. In fact, an alternative method for solving this
risk-sensitive optimal filtering problem can be found in [5].

Lemma II.1: The unnormalized measure�kjk�1(x) obeys the
following recursion:

�k+1jk(x) =
1

�(yk) IR

�(yk � Ckz � ck(z))

� exp(�Lk(x; z; x̂kjk)) (x� Akz � ak(z))

� �kjk�1(z)dz: (10)

Proof: Supposef : IRn ! IR is any Borel test function. Then,
using Definition II.1, we have

E f(xk+1)�k exp �

k

l=0

Ll(xl+1; xl; x̂ljl) Yk

=
IR

f(�)�k+1jk(�)d�

= E f(xk+1)�k exp(�Lk(xk+1; xk; x̂kjk))�k�1

� exp �

k�1

l=0

Ll(xl+1; xl; x̂ljl) Yk

= E f(Akxk + ak(xk) + wk+1)
�(yk � Ckxk � ck(xk))

�(yk)

� exp(�Lk(Akxk + ak(xk) + wk+1; xk; x̂kjk))

� �k�1 exp �

k�1

l=0

Ll(xl+1; xl; x̂ljl) Yk

= E
IR

f(Akxk + ak(xk) + w)
�(yk�Ckxk�ck(xk))

�(yk)

� exp(�Lk(Akxk + ak(xk) + w; xk; x̂kjk))

� �k�1 exp �

k�1

l=0

Ll(xl+1; xl; x̂ljl)  (w)dw Yk�1

=
1

�(yk) IR IR

f(Akz + ak(z) + w))�(yk � Ckz � ckz)

� exp(�Lk(Akz + ak(z) + w; z; x̂kjk))

�  (w)�kjk�1(z)dw dz

=
1

�(yk) IR IR

f(�)�(yk � Ckz � ck(z))

� exp(�Lk(�; z; x̂kjk))

�  (D(�; z))�kjk�1(z)d� dz (11)

where� = Akz + ak(z) +w, such thatw = D(�; z) = � �Akz �
ak(z), z = z, anddw dz = d� dz.

Since this identity holds for every Borel test functionf , we have

�k+1jk(x) =
1

�(yk) IR

�(yk � Ckz � ck(z))

� exp(�Lk(x; z; x̂kjk)) (x� Akz � ak(z))

� �kjk�1(z)dz: (12)

Remark II.2: Supposing�0(z) is the density function ofx0, so
for any Borel setA 2 IRn, we haveP (x0 2 A) = P (x0 2
A) =

A
�0(z)dz. Then�0j�1(z) = �0(z) and all the subsequent

estimates follow from Lemma II.1.
Theorem II.1: The optimalx̂tjt can be expressed as

x̂tjt 2 argmin
� IR

�tjt�1(z)
�(yt � Ctz � ct(z))

�(yt)

� exp(�Lt(z; �))dz: (13)

Proof: The proof follows easily from (8) and (9).

D. Smoothing

In this section we obtain the density function of the smoothed
state estimates from a fixed set of observationsYT = (y0; � � � ; yT )

0.
We assume knowledge of the optimal filtered estimatesX̂T =
(x̂0j0; � � � ; x̂T jT )

0. This smoothing is essentially an off-line pro-
cessing and technically known as fixed-interval smoothing. We will
also defineX̂n

m = (x̂mjm; � � � ; x̂njn) and �m;n = �n
k=m�k.

Now, we will define the unnormalized density of the smoothed
estimate
k; T (x) and the backward filtered unnormalized density (or
backward information state)�k; T (x) as follows.

Definition II.2:


k; T (x)dx =E �T exp �

T�1

l=0

L(xl+1; xl; x̂ljl)

+ LT (xT ; x̂T jT ) I(xk 2 dx) YT

�k; T (x) =E �k;T exp �

T�1

l=k

L(xl+1; xl; x̂ljl)

+ LT (xT ; x̂T jT ) xk = x; YT : (14)

With these definitions, we present the following lemma and theorem.
We do not provide the proofs here because they closely follow the
proof of Lemma II.1. Also, similar proofs for risk-sensitive smoothers
for HMM’s can be found in [4].
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Lemma II.2: The process�k; T (x) satisfies the following back-
ward recursion:

�k; T (x) =
�(yk � Ckx� ck(x))

�(yk) IR

exp(�L(�; x; x̂kjk))

�  (� �Akx� ak(x))�k+1; T (�)d� (15)

where

�T; T (x) =
�(yT � CTx� cT (x))

�(yT )
exp(�LT (xT ; x̂T jT )):

Theorem II.2: The unnormalized density function of the smoothed
estimate
k; T (x) can be expressed as


k; T (x) = �kjk�1(x)�k;T (x): (16)

III. FINITE-DIMENSIONAL RISK-SENSITIVE FILTERS AND SMOOTHERS

In this section, we show how a suitable choice of the cost kernel
allows us to have finite-dimensional risk-sensitive filters. We consider
the nonlinear signal model (1) wherewk � N(0; Wk) and vk �
N(0; Vk). We show that our particular choice of the cost kernel
gives us the same finite-dimensional risk-sensitive filters as those
for a fictitious linear signal (to be introduced later) model with an
exponential of a quadratic cost index and Gaussian distributed noise.
We also assume that the distribution of the initial state for (1) is
Gaussian distributed. For the limiting case when the noise variances
approach zero, we need an additional assumption on the nonlinearities
in (1) such thatak(x) and ck(x), k 2 IN are uniformly continuous
in x and bounded by an affine function of the norm ofx. With these
assumptions, the following theorem holds.

Theorem III.1: The unnormalized information state given by Def-
inition II.1 and the optimal risk-sensitive filter given by (13) for
the nonlinear signal model (1) with the cost index (5), (6) are finite-
dimensional if in (6),Lk(xk+1, xk, x̂kjk) andLt(xt; �) are restricted
as follows:

Lk(xk+1; xk; x̂kjk)

=
1

2�
kyk � Ckxk � ck(xk)k

2

V

+ kxk+1 � Akxk � ak(xk)k
2

W
� kyk � Ckxkk

2
~V

� kxk+1 � Akxkk
2
~W

+ Lk(xk; x̂kjk)

Lt(xt; �)

=
1

2�
kyk � Ckxk � ck(xk)k

2

V
� kyk � Ckxkk

2
~V

+ Lt(xt; �) (17)

wherekxk2A = x0Ax andLk(x; y) = 1
2 (x� y)0Qk(x� y).

Proof: Consider Lemma II.1. Noting that�;  are Gaussian we
can see that the particular choice of our cost kernel as restricted in
Theorem III.1 lets us rewrite (10) as

�k+1jk(x) =Nk
IR

exp � 1
2

(yk � Ckz)
0 ~V �1
k (yk � Ckz)

+ (x� Akz)
0 ~W�1

k+1(x�Akz)

� �(z � x̂kjk)
0
Qk(z� x̂kjk)

� �kjk�1(z)dz (18)

(whereNk is a constant) and (13) as

x̂tjt 2 argmin
� IR

�tjt�1(z)

� exp � 1
2

(yt � Ctz)
0 ~V �1

t (yt � Ctz)

� �(z � �)0Qt(z � �) dz: (19)

Noting the quadratic nature of the index of the exponential in (18),
it is obvious that if the initial state distribution�0j�1(x) is Gaussian
distributed,�kjk�1(x), 8k 2 IN will be also. Hence,�kjk�1(x) is
finite-dimensional. An explicit Gaussian density for�kjk�1(x) can
be obtained by completion of square and subsequent integration. We
present this result in a subsequent corollary in this paper.

Again, it is easy to see from (19) by substituting the Gaussian
density of �tjt�1(x) that x̂tjt can be expressed in terms of the
parameters of�tjt�1(x) and hence is finite-dimensional. The exact
expression for̂xtjt is given in a subsequent corollary.

Corollary III.1: The information state�kjk�1(x) is an unnormal-
ized Gaussian density given by

�kjk�1(x) =�kjk�1(x; �k)

=Zk exp � 1
2 (x� �k)

0
R

�1
k (x� �k) (20)

where�k = (�k; Rk; Zk) andR�1
k �k; Rk; Zk are given by the

following algebraic recursions which do not involve integrations:

R
�1
k+1�k+1 = ~W�1

k+1Ak�k R
�1
k �k + C

0
k
~V �1
k yk � �Qkx̂kjk

(21)

Rk+1 = ~Wk+1 + Ak R
�1
k + C

0
k
~V �1
k Ck � �Qk

�1

A
0
k

(22)

Zk+1 =Zkj ~Wk+1j
�(1=2)j�kj

1=2
Mk R

�1
k �k; yk; x̂kjk

(23)

where

��1
k = A

0
k
~W�1
k+1Ak +R

�1
k + C

0
k
~V �1
k Ck � �Qk

and Mk(R
�1
k �k; yk; x̂kjk) is an exponential of a quadratic form

involving its arguments.
Proof: Consider (18). As mentioned in the proof of Lemma II.1,

the quadratic nature of the index of the exponential can be exploited
by completion of square and subsequent integration over the Gaussian
density if �kjk�1(x) Gaussian. Hence we take up the inductive
method. We assume�kjk�1(x) to be Gaussian as described by (20).
We evaluate�k+1jk(x) from (18) using the Gaussian expression for
�kjk�1(x) from (20). Equating this with the Gaussian form suggested
by (20), we obtain the algebraic recursions (21)–(23). Since, we
assume that�kjk�1(x) is Gaussian fork = 0, the proof is complete.

Remark III.1: It is assumed here that(R�1
k +C 0

k
~V �1
k Ck��Qk) >

0, 8 k, R0 > 0, which limits the range of acceptable�. An equivalent
condition is�k > 0; see [2].

We state the following corollary without proof.
Corollary III.2: The optimal estimatêxtjt can be expressed as

x̂tjt =�t + R
�1
t + C

0
t
~V �1
t Ct

�1

C
0
t
~V �1
t (yt � Ct�t) (24)

�t+1 =Atx̂tjt (25)

where (R�1
t + C 0

t
~V �1
t Ct � �Qt) > 0 8 t and Rt satisfies the

following Riccati equation:

Rt+1 = ~Wt+1 + At R
�1
t + C

0
t
~V �1
t Ct � �Qt

�1

A
0
t;

R0 > 0:

A. The Optimal Risk-Sensitive Filter in Relation
to a Linear Signal Model

In [2] and [3], results have been obtained for the risk-sensitive
information states and the optimizing risk-sensitive state estimate for
linear Gauss–Markov models with an exponential of a quadratic cost
criteria (3), (4). The information state given by Corollary III.1 and
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the risk-sensitive state estimate given by Corollary III.2 are optimal
for the nonlinear signal model (1) and the cost criteria given by (6),
(17). Compared with the results in [3], it is interesting to note that
the finite-dimensional information state and the risk-sensitive state
estimate (20), (24) are similar to those of a fictitious linear signal
model given by

~xk+1 =Ak~xk + ~wk+1

~yk =Ck~xk + ~vk (26)

with the cost criteria given by (3) and (4). Of course, we need to
assume~wk � N(0; ~Wk), ~vk � N(0; ~Vk). Also, ~wk; ~vk are i.i.d.
and mutually independent and the initial state~x0 is assumed to be
identically distributed asx0, i.e., the initial state of the nonlinear
model (1). Now, obviously,~yk cannot have the same statistics asyk
without relaxing the above assumptions on~wk, ~vk. However, for the
purpose of designing a finite-dimensional risk-sensitive filter driven
from yk, it is reasonable to work with a linear model as given by
(26). Also, we treat ~Wk, ~Vk as design parameters and are free to
choose them so that the filter is realizable. Note that considering a
linear signal model like (26) and designing the risk-sensitive filter for
it is, heuristically speaking, neglecting the nonlinear terms in (1) and
designing a filter for the linearized model. It is necessary therefore, to
consider high values for the noise variances~Wk, ~Vk to allow for the
nonlinearities. In the section where we are dealing with robustness
issues, we will see how choosing high values for~Wk, ~Vk actually ties
in with realizing a sensible cost functionL(:; :; :) which is convex
and acts as an upper bound for the quadratic in natureL(:; :).

1) Example: Here we give a simple example with a scalar non-
linear system given by

xk+1 =Axk � a
x2k

1 + x2k
+ wk+1

yk =Cxk + vk (27)

with jAj < 1. We assumexk, yk 2 IR, wk � N(0; �2w),
vk � N(0; �2v), 8 k 2 IN. Also, L(x; �) = (x � �)2. Substituting
these in (17) we obtain the expressions forLk(xk+1; xk; x̂kjk)
and Lt(xt; �). Substituting these expressions in Lemma II.1 and
Theorem II.1, we observe that

�k+1jk(x) =�k
IR

exp �
1

2

(yk � Cz)2

~�2v
+

(x� Az)2

~�2w

� �(z � x̂kjk)
2 �kjk�1(z)dz

x̂tjt 2 argmin
� IR

�tjt�1(z)

� exp �
1

2

(yk � Cz)2

~�2v
� �(z � �)2 dz: (28)

We assume that�0j�1 is Gaussian, and it is easy to see from (28)
that �kjk�1(x) will be Gaussian8 k 2 IN (by using the obvious
completion of square technique and performing the integration) and
it will be given by

�kjk�1(x) =�kjk�1(x; �k; �
2
� ; Zk)

=Zk exp �
(x� �k)

2

2�2�
(29)

where

�k+1
�2�

=

A
�k
�2�

+
Cyk
~�2v

� �x̂kjk

A2 +
~�2w
�2�

+
C2~�2w
~�2v

� �~�2w

Fig. 1. Finite-dimensional risk-sensitive estimates for a nonlinear system.

�2� = ~�2w +
A2

1

�2�
+
C2

~�2v
� �

: (30)

Also, using similar techniques, it is easy to see from Theorem II.1 that

x̂tjt =�t + ��2� +
C2

~�2v

�1

C~��2v (yt � C�t)

�t+1 =Ax̂tjt: (31)

We assume(��2� + (C2=~�2v)) > �, 8 k 2 IN, �2� > 0 in these
derivations.

In a simulation study based on the above analysis, we chose
A = 0:8, a = �0:9, C = 1:0, �w = �v = 0:1, and x0 = 0:8.
In designing the finite-dimensional risk-sensitive filter, we chose
~�w = 0:5, ~�v = 0:1, �0 = 0:6, �2� = 10:0, and � = 1=~�2v.
Fig. 1 shows the time evolution ofxk (solid), x̂kjk (dotted), and�k
(dash dotted) for a set of 200 time points.

B. Smoothing

In this section, we do not provide the details of how we can
obtain finite-dimensional smoothers with our special choice of the
risk-sensitive cost index because the reasoning is similar to that for
the finite-dimensional information state and the optimal risk-sensitive
filter. We just like to make an observation that using Lemma II.2 and
Theorem II.2 and the cost index restricted by (17) as in Theorem III.1,
it is easy to see that the backward recursive information state and the
density of the unnormalized smoothed estimate can be expressed as
Gaussian densities which are the same (except for a scaling factor)
as those for the linear model (26) with the cost index (3), (4), and~yk
replaced byyk. More details about these densities can be found in [3].

C. Robustness Issues

It is quite obvious that in order to have a finite-dimensional risk-
sensitive filter for a nonlinear plant, an appropriate cost index must
be found. This result can, therefore, be termed as an inverse optimal
estimation result. In this subsection, we discuss some robustness
issues involved with selecting such a cost index.
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Notice that the cost index given by (17) can be simplified and
alternatively written as

Lk(xk+1; xk; x̂kjk)

=
1

2�
kvkk2

V
+ kwk+1k2

W
� kvk + ck(xk)k2~V

� kwk+1 + ak(xk)k2~W Lk(xk; x̂kjk)

Lt(xt; �)
=

1

2�
kvkk2

V
� kvk + ck(xk)k2~V + Lt(xt; �): (32)

It is easy to see that for plants which are nearly linear (i.e., the
nonlinear termsa(:) and c(:) are small), we have

Lk(:) ' Lk(:); Lt(:) ' Lt(:):

Also, for plants where the nonlinear termsa(:); c(:) are exactly zero

~Wk �Wk; ~Vk � Vk; Lk(:) � Lk(:); Lt(:) � Lt(:):
(33)

Also, when the nonlinear terms are nonzero, choosing sufficiently
high ~Wk; ~Vk will ensure that

Lk(:) � Lk(:); Lt(:) � Lt(:):

Hence, the cost index for which the finite-dimensional risk-sensitive
filter is optimal for the nonlinear stochastic plant (1) is actually an
upper bound on the usual exponential of quadratic cost index for
which the same filter is optimal for the artificial linear plant (26).
Also, to incorporate any uncertainty in the plant or noise dynamics,
the assumption (33) is a reasonable one. It is clear that under such
circumstances, the risk-sensitive index given by (5) and (6) becomes
more conservative than the one given by (3) and (4) and hence
guarantees a more cautious and robust estimation policy which is the
real motivation behind adopting a risk-sensitive estimation scheme.

Remark III.2: It should be mentioned here that assumption (33)
justifies the choice of the risk-sensitive cost index given by (17),
which in turn allows us to obtain a finite-dimensional filter for
nonlinear systems. This also ties in with the robustness issues
associated with the objective of risk-sensitive estimation. Note,
however, that this robustness is with respect to uncertainties in the
plant model or noise dynamics. Although suboptimal Kalman filtering
techniques exist where noise covariance matrices are properly chosen
to compensate for the nonlinearities, such filters will not be able to
cope with uncertainties in the plant or noise dynamics. This is more
evident in the fact that the finite-dimensional optimal filter [given
by (20)–(25)] turns out to be the optimal risk-sensitive filter for a
fictitious linear system, which is anH1 filter rather than a Kalman
filter. This is rather expected because the optimal risk-sensitive filter
in the linear Gaussian case is indeed anH1 filter. Evidences of
robustness of risk-sensitive filters to uncertainties in the plant or noise
dynamics have been given in [4] and [6], and applications of risk-
sensitive filters to fault detection have been noted in [9]. While such
applications are still in their adolescence, it is very important that
we can obtain finite-dimensional risk-sensitive filters for nonlinear
systems. Choosing sufficiently high~Wk; ~Vk merely allows us to
justify the choice of the risk-sensitive cost kernel [given by (17)]
which is crucial for obtaining finite-dimensional filters.

D. Small Noise Limit

It has been observed that stochastic risk-sensitive
control/estimation can be interpreted in terms of a deterministic
control/estimation problem in a worst case noise scenario given from
a differential game as the risk-sensitive parameter� approaches the

small noise limit [5], [7], [8]. Also, for linear discrete-time systems,
the optimal risk-sensitive controller/filter is anH1 controller/filter
[2], [7]. Following the techniques of [5], we express� as�=� and
scale the noise variances by

p
� so that the limit as� ! 0 can be

regarded as the small noise limit. Obviously, using results from [5],
the finite-dimensional risk-sensitive optimal filter for the nonlinear
system (1) becomes anH1 filter which is also the optimalH1

filter for an artificial linear model (26). Hence, an appropriate choice
of the cost kernel allows us to have a finite-dimensional optimal
filter for a class of nonlinear discrete-time systems in a deterministic
worst case noise scenario.

E. Risk-Neutral Results

Risk-neutral results are derived from risk-sensitive results by taking
the limit as � ! 0. It is fairly obvious from Lemma II.1 and
Theorem II.1 that as� ! 0, it is not possible to absorb the nonlinear
terms anymore and hence, a finite-dimensional optimal filter cannot
be obtained.
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