1234
A comparison of (64) and (65) leads to [18]
g1 Sepr(G) 1

g k+1 (-1

Finally, taking (10), (42), and; — ¢/ — (; — ¢/ # 0 fori # j
into account yields (26) with (27) which proves item 3) of thd21]
Theorem 3. [ ] 22]

[19]

Ew(()) = b+ o(h).

(66)

200 —.,

VI.

In the paper, a theorem has been proved that, for small sampll%al
periods, characterizes the accuracy of all limiting zeros of the pulgey]
transfer function of a system composed of a zero-order hold followed
by a continuous-time plant.

The main result has a form of a correction to the asymptotic reSl[ﬁtS]
of Astrom et al. [3] in the form of a power term ok, whose degree [26]
depends on the relative order of the continuous-time counterpart, and
its contribution is expressed in terms of Bernoulli numbers and the
poles and zeros of the continuous-time transfer function. (27

The discussion is based on two fundamental lemmas. The first one
yields two terms of the Taylor series expansion of the pulse transfer
function aroundh = 0 and the second characterizes the magnitude
of the difference between the exact pulse transfer function and the
principal term of its Poisson representation as a functioh.of

Similar methods can be applied to study limiting zeros for pulse
transfer functions of systems with a first-order hold.

One of possible applications of the result is investigation of the
accuracy of approximate pulse-transfer functions [7].

CONCLUSION
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filtering for the nominal model case and the average noise situatiorSignal Model: We consider the following discrete-time nonlinear
and robustness to worst case noise and model uncertainty by weigi#ate-space model defined on a probability spazer, P):

ing the index of the exponential by a risk-sensitive parameter. For
example, it has been shown in [4] that risk-sensitive filters for hidden
Markov models (HMM) with finite-discrete states perform better than yr = Crig + cp(ar) + v 1)

standard HMM filters in situations involving uncertainties in the noise
9 wherew, € R", v, € IRP, 2 € IR", andy. € IRP. Here, zy

statistics. Also, in the small noise limit, risk-sensitive problems hav(fenotes the state of the system,denates the measurement, angd

been shown to be closely related to estimation/control problems in a . . .
and v are the process noise and measurement noise, respectively.

deterministic worst case noise scenario given from a differential gale vectorsiy () andex () have entries which are time-varying

Es] [7(]est[|g;at|on/control problems for linear discrete-time SySIem%)onllnear functions of, andk € {0, 1, ---, T}. We assume that

Risk-sensitive control problems are relatively more abundant i’ k € Nisiid. and has a density functiop andvy, andk € N

the literature [10]-[12]. Recently, a solution to the output feedback "i'd.' and hgs a strictly positive density fun(.:ti?nThe initial state
. . . . : 2o or its density is assumed to be known anglis independent of;..
risk-sensitive control problem for linear and nonlinear discreté-
time stochastic systems has been proposed in [7] and [13] using o

a change of probability measure and information state techniqués.Problem Definition

The problem of risk-sensitive filtering has been studied in [2] for Define X; 2 {20, z1, -+, 21}, Y3 a {yo. y1, -+, y}, theo-
linear Gauss—Markov models. The techniques applied in [2] are rifld generated by, as)y and thecs-field generated byX, and
readily generalizable for nonlinear filtering. More general nonlinear, _;, by G¢. The corresponding complete filtrations are denoted as
problems have been studied in [3] which tackles the risk-sensitiye. andG, respectively. We defing,, as the estimate of the state

estimation problem using the reference probability methods of [iiven ), and work with recursive estimates which updaig from

Tpp1 = Apr 4 an(2r) + Whp

The cost index considered in [3] consists of the sum of quadrati@owledge Offp_ijhmrs k= 1,2, -+, t.
estimation errors to the present and so parallels closely risk-sensitivén [3], we considered the following estimation task: Determine an
control/tracking problems considered in [7], [13], and [14]. estimate,, of x; such that

Although optimal nonlinear filters are known to be infinite-
dimensional in general, there are examples of finite-dimensional
optimal filters in special cases [15], [16]. Optimal nonlinear risk-
sensitive filters studied in [3] are no exceptions. However, recentyhere
in controller deS|gn,' the rl_sk-sensmve cost index has been exploited Ji(¢) = Elexp(8%0. (O] 3)
to cancel the nonlinearities for a class of nonlinear systems so
that we can have a finite-dimensional information state and thigsthe risk-sensitive cost function. Here
finite-dimensional controllers [17], [18]. In [18], finite-dimensional , . | ,
risk-sensitive controllers with finite-dimensional information states Yo,4(¢) = Wo. 11+ 3w = Q) Qulwe =€) )
are obtained by adjusting the risk-sensitive cost index for a class,pfiere
discrete-time nonlinear systems. N

_In this paper, we use similar techniques as in [18] to obtain finite- B, =1 Z (k= F) Qu (k= B ).
dimensional risk-sensitive optimal filters for a class of discrete-time —
nonlinear systems. It is of interest that in the nonlinear context there
is no duality between filtering and control problems, yet simila@ssum?Q"’ > 0. . . .
techniques can be used for the solutions of filtering and contr IIn th|_s paper, we_mlldly ge_nerahze the above cost index so that
problems. In Section I, we present the nonlinear signal modé%e estimation task is to obtaity, such that
formulate the risk-sensitive filtering problem, and reformulate it in ¢ € argmin Elexp(8%o, ¢({))|Vi] (5)
the new probability measure using reference probability methods. We ¢
obtain results for recursive information states and the optimal risk- —
sensitive filter. In Section Ill, we show how an appropriate choice g¥here, for somely (., ., .) and Le(., .)
the risk-sensitive cost index can allow us to have a finite-dimensional _ =
information state and a finite-dimensional optimal risk-sensitive filter o, () = Z Li(@itr, an, Bepp) + Lo, Q). (6)
which happens to be the same as that for a linearized version of the k=0
nonlinear signal model with a standard exponential of a quadratic cefdre, T,(., ., .) and £,(., .), are assumed to be continuous and
index. We also provide motivation behind using such a cost index aggunded by a quadratic in the norms of their arguments. This
discuss the robustness issues. Discussions on small noise limits ag86imption is necessary for the small noise limit results.
risk-neutral results are also included.

&y € argmin Ji((), Vt=0,1,---, T 2)
¢

B. Change of Measure and Reformulated Cost Index

Il. RISK-SENSITIVE ESTIMATION FOR NONLINEAR SYSTEMS Define ’ .

In this section, we consider a class of discrete-time nonlinear state- e = oy = o’;"fk — crlk))
space signal models. We introduce a risk-sensitive cost index, the . O(yk)
justification of which will be clear when we derive the filtering 1 - HX
equations. Next, we apply the change of measure technique and Sk = o l-

reformulate the cost in the new probability measure. Linear recursions

in the information state are obtained and the risk-sensitive filter A new probability measurd® can be defined wherg, I € IN are
obtained as the minimizing argument of an integral as a nonlinear (irdependent with density functiors and the dynamics of are as
general) function of the information state. under P.
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By;setting ihe restriction on the Radon—Nikodym derilative X exp(0 Ly (Arxy, + ag(zr) + w, x4, Fhe))
dP/dP|g, = A, the measure’ can be defined starting witl®. k—1
The existence of” follows from Kolmogorov's Extension theorem X Ap_1exp (6’ Z Li(xis1, 21, ;i»l,)>¢;(w)dw yk_l}
[1]. Also, underP, the {v;}, I € IN, are independent and identically =0
distributed. 1 " " ,

Now, we work under measur®, wherey,, ¥ € IN is a sequence T o(y) S S flArz 4+ ar(2) + w))o(yr — Crz — cxz)
of independent real random variables with densitieand zx11 = X exp(0Ti(Axz + ar(2) +w, 2, &)

Arxr + ax(xr) + wi wherewy, & € IN are independent random

variables with densities’. Note thaty, is also independent of; x p(w)ag)y—1(2) dw dz

= 1 -,
underP. | = o [ 1@t - G - el
From a version of Bayes’ theorem, our cost index becomes o(uk) Jre S
ETA N g ) ef (51 z, j}k lw',))
= 1 _ BIA exp(6F0,1(C)) V1] X exp(6 L |
Ele A\ = = / . . .

[exp (6Wo,+(())|V1] E[A 1] @) X P(D(&, 2))agp—1(z)d{dz (11)
whereE denotes expectation und&r. Hence, our problem objective whereé = Ayz + ax(2) + w, such thate = D(, 2) = £ — Agz —
becomes to determine ah,, such that ap(z), z = z, anddwdz = déd=.

i1y = argmin (X, exp(6To, ((C)|V]. ®) Since this identity holds for every Borel test functignwe have
¢

1 - )
appk(e) = o0 / O(yr — Crz — cr(2))
C. Recursive Estimates i

x exp(0Li(x, 2, )0 (x — Apz — ar(z
Definition 11.1: Defineay,—: () as the unnormalized conditional P(6Li(x, 2, &rje))¥( g e(2))
measure such that X o1 (2) dz. 12)
[ Ll ]
apjp—1 (@) de = E | Ax—1 exp (9 Z Li(err, @, ‘”’”) Remark 11.2: Supposingro (=) is the density function ofty, so
=0 for any Borel setA ¢ R", we haveP(xg € A) = P(xy €
, NS A) = [, mo(z)dz. Thenag_1(z) = mo(z) and all the subsequent
x I € dx)l}k”} ©) estimates follow from Lemma II.1.

Theorem II.1: The optimali,|, can be expressed as

Remark II.1: It has been shown in [5] that,—:(z) can be
O(ye — Ciz — ci(2))

interpreted as an information state of an augmented plant where

2y € argmin / et (2)
¢

the state includes the actual state of the system and part of the n o(ye)
risk-sensitive cost. In fact, an alternative method for solving this x exp(0L4(z, €))dz. (13)
risk-sensitive optimal filtering problem can be found in [5]. .

Lemma Il.1: The unnormalized measure; ;—; () obeys the Proof: The proof follows easily from (8) and (9). u

following recursion:

1 : D. Smoothing
Qg1 k(2) = Yo / O(yr — Crz — cp(2))

o(y In this section we obtain the density function of the smoothed
X exp(6Tk (2, 2, dxp)) (2 — Apz — ax(2)) state estimates from a fixed set of observatibns= (yo, - -, y7)".
, We assume knowledge of the optimal filtered estimales =
X agle—r(2) dz. (10) (Zojo» - ++» &7)7)'. This smoothing is essentially an off-line pro-
Proof: Supposef: IR" — IR is any Borel test function. Then, cessing and technically known as fixed-interval smoothing. We will
using Definition 1.1, we have also defineXy, = (2., +, &,») and Aown = T7_, M.

. Now, we will define the unnormalized density of the smoothed
E|f(xrg)Ag exp | 6 Z Li(wier, o1, ) || estimatey,, + () and the backward filtered unnormalized density (or
=0 backward information statejs, r(«) as follows.
i Definition 11.2:
— [ HOm) i
R™
T—1
= E|f(art) Ak exp(@ Ly (ersr, 2, Exp)) A Y, r(x)dv =E | A7 exp <9 > Tlwiga, @, @)
=0
k—1
X exp <9 Z Li(x141, w1, fnu)) yk:| + Lr(xr, f“T|T)>[(-Tk € dx) }’T}
=0
é C T—1
=FE|f(Arar + ar(ae) + Wht1) - e = (Z(r; )_ck(ﬂ/k)) Bk, r(x) =FE|Ag 1 exp ((-) Z Lz, 20, 3p)
t k =k
x exp(ALy (Arzr + ar(zr) + Wipt, Tk, Tple) X .
) k( ) 171 k( k- h § kI ) + LT(.I'T, ;L’TI'T) T =@, yT . (14)
X Kk_l exp <i9 Z I[(.’L‘[.H, €y, :i'[l)> yk:|
=0 With these definitions, we present the following lemma and theorem.

(yr—Crn—cn(an)) We do not provide the proofs here because they closely follow the

flAper + ar(zr) + w) e proof of Lemma 1l.1. Also, similar proofs for risk-sensitive smoothers

=F
L o) for HMM'’s can be found in [4].
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Lemma I1.2: The processi:, r(z) satisfies the following back- Noting the quadratic nature of the index of the exponential in (18),

ward recursion: it is obvious that if the initial state distributiomy|_; (x) is Gaussian
p _ O(ye — Crx — e () - R distributed, v, —1 (%), V& € IN will be also. Hencepvyp— () is
Bk, v(x) = o) / _exp(PL(E. ) finite-dimensional. An explicit Gaussian density for,_,(z) can
X (& = Apx — ar(x))Bregr, 7(€) dE (15) be obtained by completion of square and subsequent integration. We
present this result in a subsequent corollary in this paper.
where ; Again, it is easy to see from (19) by substituting the Gaussian
Br 7 (x) = o(yr — C/’lr — cr(x)) exp(8Lr(zr. Frpr))- density of a;—q () that 2 can _be _e_xpre_ssed _in terms of the
o(yr) parameters ofy,,_; («) and hence is finite-dimensional. The exact
Theorem I1.2: The unnormalized density function of the smoothe@Xpression fot#, |, is given in a subsequent corollary. u
estimatey. () can be expressed as Corollary lll.1: The information statev;— () is an unnormal-
ized Gaussian density given by
Yo, 7 () = agpp—1(2)Br, 7 (). (16)

O‘lc\lcfl("l") = ak\k—1($~ X*)

lll. FINITE-DIMENSIONAL RISK-SENSITIVE FILTERS AND SMOOTHERS =Zi exp(—%(x — ) Ry o — pr)) (20)

In this section, we show how a suitable choice of the cost kerr\ﬁhereXk — (jury Re, Z1) and R, Ri, Zs are given by the
¢ oy LlEy 4 k cy LVEy Lk

allows us to have finite-dimensional risk-sensitive filters. We ConSid%llowing algebraic recursions which do not involve integrations:
the nonlinear signal model (1) wheke, ~ N(0, W) and v, ~ '

N(0, Vi.). We show that our particular choice of the cost kernel H@llﬂkﬁ :WﬁlAkgk (R]:lllk 4 Oi,f’k’lyk — 9Qk€i’k\k>
gives us the same finite-dimensional risk-sensitive filters as those

for a fictitious linear signal (to be introduced later) model with an . N . (21)
exponential of a quadratic cost index and Gaussian distributed noise. Riv1 = Wiy + Ag (R,j1 + C,’J/}j1 Cr — HQk) Al
We also assume that the distribution of the initial state for (1) is 22)

Gaussian distributed. For the limiting case when the noise variances o~ (12 (=l

approach zero, we need an additional assumption on the nonlinearities Ziet1 = Ze[Wie | 2k M (Rk Bk Yk "”klk)

in (1) such thati,(x) andc,(x), k¥ € IN are uniformly continuous (23)

in  and bounded by an affine function of the normxofWith these

assumptions, the following theorem holds. where
Theorem Ill.1: The unnormalized information state given by Def- S = AW A+ B 4 GV Ce - 0Qk

inition 1.1 and the optimal risk-sensitive filter given by (13) for . . ) ) )

the nonlinear signal model (1) with the cost index (5), (6) are finite.'i-nd My (B ik yxs (k) is an exponential of a quadratic form

dimensional if in (6) L (w41, 7k, #4(x) andL: (2. ¢) are restricted INVOIViNg its arguments. _ _
as follows: Proof: Consider (18). As mentioned in the proof of Lemma ll.1,

— . the quadratic nature of the index of the exponential can be exploited
Li(wrras e, Epp) by completion of square and subsequent integration over the Gaussian
density if a,—1(2) Gaussian. Hence we take up the inductive
method. We assumey,.— (#) to be Gaussian as described by (20).
We evaluatev, 1, () from (18) using the Gaussian expression for
agx—1(x) from (20). Equating this with the Gaussian form suggested
by (20), we obtain the algebraic recursions (21)-(23). Since, we
assume thad |, (z) is Gaussian fok = 0, the proof is complete.

1 2
= % <||7/k — Ok-Tlc — ck(:rk)HV;l

+ |wksr — Arwg — (Lk(;l,’k)”;zyk—l — lyr — Ok«'l’k”%kal
1 :

_ ||.Uk,+1 — A;“Lka;Lk_Jrll) + Lk(;L’k, .f’k‘)\»)

ﬁ[(l’[./ <) . | |
1 ) ) Remark II1.1: Itis assumed here thaR, "+C}.V; ' Ch—6Qxk) >
Y (”y’“ — Crk = C"‘(‘”k)||v,j1 = Ilye = C”’C”ﬁ",j‘) 0,V %, Ro > 0, which limits the range of acceptatle An equivalent
+ L¢(ae, €) (17) condition is¥,; > 0; see [2].

We state the following corollary without proof.

2 _ 1 ’
where|z[|’s = 2" Ax and Ly (z, y) = 3(x — y)'Qr(x — y). Corollary I1l.2: The optimal estimate; can be expressed as

Proof: Consider Lemma Il.1. Noting that, «' are Gaussian we
can see that the particular_ choice of our cost kernel as restricted in Foje =+ (Rt—l n C,ﬁﬁ}_lcl)_]cﬁfl(yt —Cp) (24
Theorem Ill.1 lets us rewrite (10) as

. - Hi+1 :A[;ﬁt“ (25)
el () :N‘T/ P [_5{(“ = Ce2) Vi (s = Ciz) where (R;' + C{V,”'C. — Q) > 0 Vt and R, satisfies the
+ (x — Akz)’ﬁ",;:l(.r — Apz) following Riccati equation:
— 8z = ) Q= = due) Risn =Weer + Ao (B + GV G- th)*lAz,
X -1 (2) dz (18) Ry > 0.

(where N;, is a constant) and (13) as
- A. The Optimal Risk-Sensitive Filter in Relation

By € arg(ltuin/ aye—1(2) to a Linear Signal Model

n

. 1 In [2] and [3], results have been obtained for the risk-sensitive
X exp [—5{(% = Cez) Vi (ye = Cez) information states and the optimizing risk-sensitive state estimate for
Y _ . linear Gauss—Markov models with an exponential of a quadratic cost

6z = O @iz C)Hd”' (19) criteria (3), (4). The information state given by Corollary Ill.1 and
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the risk-sensitive state estimate given by Corollary 11.2 are optimal Risk-sensilive estimates
for the nonlinear signal model (1) and the cost criteria given by (6), 5 g - - T

(17). Compared with the results in [3], it is interesting to note that , | §
the finite-dimensional information state and the risk-sensitive state
estimate (20), (24) are similar to those of a fictitious linear signal
model given by a5t

4+

W
T

Tpy1 = ApTp + Whyr
Ik = CrZp + Uk (26)

g
[al
T

ale estimates

with the cost criteria given by (3) and (4). Of course, we need tos 2f !
assumei ~ N (0, W), i ~ N(0, V). Also, i, i are i.i.d. 15t} solid line —x 1
and mutually independent and the initial stateis assumed to be #i dotted ine . xhat
identically distributed asco, i.e., the initial state of the nonlinear 1 i 1
model (1). Now, obviouslyj; cannot have the same statisticsyas sk dashdot -~ mu )
without relaxing the above assumptions®p, . However, for the

purpose of designing a finite-dimensional risk-sensitive filter driven % 20 40 60 80 100 120 140 160 180 200
from yy, it is reasonable to work with a linear model as given by fime

(26). Also, we treatiV;, Vi as design parameters and are free tpig. 1. Finite-dimensional risk-sensitive estimates for a nonlinear system.
choose them so that the filter is realizable. Note that considering a

linear signal model like (26) and designing the risk-sensitive filter for

it is, heuristically speaking, neglecting the nonlinear terms in (1) and ) o A2
designing a filter for the linearized model. It is necessary therefore, to Topyr = 0w T 1 o2 (30)
consider high values for the noise varian¢&s, V. to allow for the 2 T — —f

Qg v

nonlinearities. In the section where we are dealing with robustness
issues, we will see how choosing high valuesTfiog, V. actually ties

in with realizing a sensible cost functiab(., ., .) which is convex Also, using similar techniques, it is easy to see from Theorem I1.1 that
and acts as an upper bound for the quadratic in nalyre.).

1) Example: Here we give a simple example with a scalar non- R AN\,
linear system given by Tyt = po + <a@; + J—2> Co, “(ye — Cpuy)
x2 = AZy. 31
vri1 = Az —a 1:|1_—er ¥ Wi M1 t[t (31)
Yk
yr = Czr + vp (27) We assumeo’ + (C*/53)) > 8, Vk € N, oo, > 0 in these
) derivations.
with |4] < 1. We assumezi, yx € R, wpx ~ N(0,00), In a simulation study based on the above analysis, we chose

v ~ N(0,¢2), VE € N. Also, L(z, £) = (z = €)%, Substituting 4 = 08, a =-09 C =1.0,0, = 0, = 0.1, andzo = 0.8.
these in (17) we obtain the expressions k(xx+1, 24, 4%x) In designing the finite-dimensional risk-sensitive filter, we chose
and £;(x+, ¢). Substituting these expressions in Lemma Il.1 ang, = 0.5, 5, = 0.1, po = 0.6, g'io = 10.0, and§ = 1/52.

Theorem II.1, we observe that Fig. 1 shows the time evolution of; (solid), ¢, (dotted), andus
7 1((yr—C2)?  (x— Az)? (dash dotted) for a set of 200 time points.
Qg1 (2) = Ri exp|—35 o 5
- 9(2—4ik\k)2H aglp—1(z)dz B. Smoothing
. o In this section, we do not provide the details of how we can
Ty € afggmn/ ae-1(2) obtain finite-dimensional smoothers with our special choice of the

1( (g — C2)? . risk-_se_nsiti_ve cost indc_ex becagse the reasoning is_ simil_ar to the_tt. for

X exp {__{+ —0(z— ()’ H dz. (28) the finite-dimensional information state and the optimal risk-sensitive

2 Tv filter. We just like to make an observation that using Lemma I1.2 and

We assume thaﬁ'o\—l is Gaussian, and it is easy to see from (2g'j'he0rem 11.2 and the cost index restricted by (17) as in Theorem IIl.1,
that o e— () will be Gaussianvk € IN (by using the obvious it is easy to see that the backward recursive information state and the

completion of square technique and performing the integration) afieinsity of the unnormalized smoothed estimate can be expressed as

it will be given by Gaussian densities which are the same (except for a scaling factor)
) as those for the linear model (26) with the cost index (3), (4),@and
Qppp—1(@) = app—1 (@, fik, 0oy, Zi) replaced byy.. More details about these densities can be found in [3].
2
=7 exp <— (&= ) ‘Nk) ) (29)
202,
where C. Robustness Issues
[ Cyn ) It is quite obvious that in order to have a finite-dimensional risk-
4(7 + = - 9wk|k> sensitive filter for a nonlinear plant, an appropriate cost index must
‘u;’“ = 0“52 7o — be found. This result can, therefore, be termed as an inverse optimal
Torpr gy Tw Cf)’w — 952, estimation result. In this subsection, we discuss some robustness
oy, Ty issues involved with selecting such a cost index.
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Notice that the cost index given by (17) can be simplified ansimall noise limit [5], [7], [8]. Also, for linear discrete-time systems,

alternatively written as
Ly (hqrs ks Bxpk)
1 , , )
= 2% <||7)lc||kal + ||11)k+1||wk111 — |lve + ck(;rk)”‘?;l
— |Jlwk+1 + ak(wkv)||€¢1,,;+11>Lk(.1'k, Err)

EL(J"L,‘ C)
= L onl2 o = flox + ex(ell2 o) + Li(en O (32)
29 k ke

the optimal risk-sensitive controllerffilter is al.. controller/filter

[2], [7]- Following the techniques of [5], we expreésas ;./¢ and
scale the noise variances Rye so that the limit ag — 0 can be
regarded as the small noise limit. Obviously, using results from [5],
the finite-dimensional risk-sensitive optimal filter for the nonlinear
system (1) becomes aH.. filter which is also the optimaH ..
filter for an artificial linear model (26). Hence, an appropriate choice
of the cost kernel allows us to have a finite-dimensional optimal
filter for a class of nonlinear discrete-time systems in a deterministic
worst case noise scenario.

It is easy to see that for plants which are nearly linear (i.e., the
nonlinear termsi(.) and¢(.) are small), we have

E. Risk-Neutral Results

Risk-neutral results are derived from risk-sensitive results by taking

Li() = Li()), L.() = L(.).
Also, for plants where the nonlinear term&), ¢(.) are exactly zero

We>Wi,  Vi>Ve.  Li() > Le(l),  Le() > Li().

(33)
Also, when the nonlinear terms are nonzero, choosing sufficiently
high W, Vi will ensure that

Te() > Li(L), [1

Li() > Li(.).
Hence, the cost index for which the finite-dimensional risk-sensitivgy
filter is optimal for the nonlinear stochastic plant (1) is actually an
upper bound on the usual exponential of quadratic cost index for
which the same filter is optimal for the artificial linear plant (26). [3]
Also, to incorporate any uncertainty in the plant or noise dynamics,
the assumption (33) is a reasonable one. It is clear that under su
circumstances, the risk-sensitive index given by (5) and (6) becomes
more conservative than the one given by (3) and (4) and hends]
guarantees a more cautious and robust estimation policy which is the
real motivation behind adopting a risk-sensitive estimation scheme,
Remark 111.2: 1t should be mentioned here that assumption (33)[6]
justifies the choice of the risk-sensitive cost index given by (17),
which in turn allows us to obtain a finite-dimensional filter for [7]
nonlinear systems. This also ties in with the robustness issues
associated with the objective of risk-sensitive estimation. Note,
however, that this robustness is with respect to uncertainties in tHé!
plant model or noise dynamics. Although suboptimal Kalman filtering

the limit as# — 0. It is fairly obvious from Lemma Il.1 and
Theorem II.1 that a8 — 0, it is not possible to absorb the nonlinear
terms anymore and hence, a finite-dimensional optimal filter cannot
be obtained.
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