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Abstract—Combined compression and classification problems  There is yet another significant advantage in investigating
are becoming increasingly important in many applications with  the problem of combined compression and classification. If
large amounts of sensory data and large sets of classes. Thes%uch a framework is developed, we can then analyze progres-

applications range from automatic target recognition (ATR) to . - . L
medical diagnosis, speech recognition, and fault detection and SIV€ classification schemes, which offer significant advantages

identification in manufacturing systems. In this paper, we de- for both memory savings and for speeding up searching
velop and analyze a learning vector quantization (LVQ) based and matching. Progressive classification uses very compressed

algorithm for combined compression and classification. We show signal representations at first to perform many simple (and,
convergence of the algorithm using the ODE method from Sto- w0 af0re  fast) matching tests, and then progressively performs
chastic approximation. We illustrate the performance of our .
algorithm with some examples. fewer but more complex_(_and_, therefore, slower)_ matching
tests, as needed for classification. Thus compression becomes
an indispensable component in such schemes, and in particular
variable-rate (and, therefore, resolution) compression. In the
last four years, we have analyzed such progressive classi-
I. INTRODUCTION fication schemes on a variety of problems with substantial

QUlTE often in applications, we are faced with the probsuccess. The structure of the algorithms we have developed

Index Terms—Classification, compression, learning vector
guantization, nonparametric, stochastic approximation.

|em Of Classifying Signals (Or objects) from vast amounllgas remained fall’ly Stable, regardless Of the particular app”ca-
of noisy data. The number of different distinct signal§on. This structure consists of a multiresolution preprocessor
(dasses) may be quite |arge_ Compressing each observaﬂah)wed by a tree-structured classifier as the pOStprocessor.

(observed signal) while retaining significant signal featurézometimes a nonlinear feature extraction component needs to

presents two significant advantages. be placed between these two components. Often the postpro-
i) We can reduce significantly the memory required fof€SSOr incorporates learning. , _
storing both the on-line and class model data: To date, we have utilized wavelets as the multiresolution

i) We can increase significantly the speed of searching aREEProcessor and tree-structured vector quantization (TSVQ)
matching that is essential in any classification probleriS the clustering postprocessor. We have applied the resulting
WTSVQ algorithm to various ATR problems based on radar

Furthermore, performing classification on compressed d .
. e —[6], ISAR, and face recognition problems [7]. We have
n result in r classification he f h mpr [. - .
can resuilt in better classification, due to the fact that co pis ablished similar results on ATR based on FLIR using

sion (done correctly) can reduce the noise more than the Slg%%iygonization of object silhouettes [8], [9] as the multires-

[1]. For all these reasons, it is important to develop metho " | i f ion into th
and algorithms to perform classification of compressed data,o\’I lon preprocessor. Incorporation ot compression Into these
gorithms is part of our current research.

to analyze jointly the problem of compression and classificd" X : . e
tion. This area has attracted recently more interest due to th s afirst step toward developing a progressive classification

increased number of applications requiring such algorithm%cf eme with compression, we nee@ to Qevelop an aIgonthmfor
In [2] and [3], vector quantization methods have been us&]mbmed compression and classification at a fixed resolution.

for minimizing both the distortion of compressed images arﬁ%s opposed to the algorithm described in [3] that achieves this
errors in classifying their pixel blocks with a posterioriestimation of the probability models under-

lying the different classes of signals, our goal is to develop
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linear combination of the compression error (measured Barning iterations, it can be shown, as sketched in [13], that
average distortion) and classification error (measured by Bayhs classification error in LVQ converges to the optimal Bayes
risk), using a variation of LVQ based on a stochastic approgfror as long as the volume of the Voronoi cells goes to zero
imation scheme. The convergence analysis of this algorittas Ky — oo, provided we have thaimy .., Ky —
essentially follows similar techniques as presented in [12] amdhile limy .. (Knx/N) — 0. More complete results on
used in [13]. However, our treatment is considerably simpléne weak and strong consistency of the error of classification
since to start with, we recognize that the algorithm is a specrales based on partitions (including data-dependent clustering
class of the Robbins—Monro algorithm. partitions) can be found in [14, Theorem 21.2, p. 368] and [14,

In Section IlI, we describe the LVQ-based algorithm fofheorem 21.5, p. 379]. We will discuss the second theorem
combined compression and classification. In Sections II-A aimd Section II-A a little more. These results hold for general
[I-B, we provide analysis and convergence of the algorithdistributions for(X,d) (i.e., pairs of data and class labels)
using stochastic approximation techniques and the so-calleith compact support and general functions measuring data
ODE method. In Section Ill, we provide simulation results gbroximity, satisfying the typical conditions given here and in
the performance of the algorithm for some typical problemglL3].

Section IV presents some concluding remarks. Although its primary goal is to classify the data into
different patterns, the LVQ algorithm compresses the data in
the process into a codebook of size equal to the number of
Voronoi cells, where each Voronoi vector is the codeword
representing all the vectors belonging to that cell.

Learning vector quantization (LVQ) introduced in [11] is @ |n what follows, we present a simple variation of the
nonparametric method of pattern classification. As opposed|}¢Q algorithm in [13], that achieves the task of combined
parametric methods, this method does not attempt to obtgémpression and classification. We present a convergence
a posterioriestimates of the underlying probability models ofnalysis of this algorithm much along the lines of [13].
the different patterns that generate the data to be classifisidwever, we present a simpler analysis by recognizing that the
As noted in [14, p. 266], classification is easier than densifiygorithm is a special case of the Robbins—Monro algorithm.
estimation. So an algorithm such as ours offers consideralligo, simulation results show that as a certain parameter is
advantages over algorithms that use Bayes rules basedjfiteased, the compression error gradually decreases compared
estimated class densities. LVQ simply uses a set of traifgrthe error achieved by the standard LVQ (represented by the
ing data for which the classes are known in a supervis@giue zero of this parameter).
learning algorithm to divide the data space into a number|n the next subsection, we introduce our notation and
of Voronoi cells represented by the corresponding Vorongescribe the algorithm.
vectors and their associated class decisions. Using the training
vectors, these Voronoi vectors are updated iteratively until the){ ) ) ) L
converge. The algorithm involves three main steps. Algorithm for Combined Compression and Classification

1) Find out which Voronoi cell a given training vector Consider a complete probability spadg:, 7, P). Let

belongs to by the nearest neighbor rule. X; € R, 1 = 1,2,---, N, represent the training vectors

2) If the decision of the training vector coincides with thaglefined on this space, generated by either of the two patterns

of the Voronoi vector of this particular cell, move thel Or 2. The a priori probabilities of the two patterns are
\Voronoi vector toward the training vector, else, movand w2, respectively, and the corresponding pattern densities
it away from the training vector. All the other Voronoiare pi(z) andpz(x), respectively, such that
vectors are not changed.
3) ;)tztam the next training vector and perform the first two P(X, € B) = 7r1/ pi(@) da + 7r2/ po(a)dz (1)
ps. B B
This process is usually carried out in multiple passes of

the finite set of training vectors. A detailed description oy any B c F. We also assume that; is independent of
this algorithm with a preliminary analysis of its convergencg, ; £ |,

properties using stochastic approximation techniques of [12]]The \Voronoi vectors are represented fiye R%, ¢ = 1,

has been given in [13]. A sketch of a proof for the convergenge. .. i and the corresponding Voronoi cells are represented
of the classification error achieved by the LVQ algorithm wagy, V.. Let the decision associated with the training vectar
described in [13]. If we haveV training pairs{(X;,dx,), be represented byy, and that of the celVs, by dp,, where

¢ = 1,---,N}, we denote byKy the number of Voronoi dx,, ds, € {1,2}.

vectors (or the number of sets in the corresponding partitionsconsider a nonincreasing sequence of positive real numbers
in RY). It was noted in [13] that a&(y — oo, if the Voronoi ., — 1 2 ... such that

vectors are initialized according to a uniform partitionRsf, ’ T oo

then the LVQ algorithm does not move the vectors from Assumption 2.1: > ¢, = co.

their initial values. As a result, the error associated with n=1

initial conditions dominates the overall classification error. Consider also a proximity metric functiop(é,z) which

By considering the LVQ algorithm for largédy without satisfies the following assumptions.

Il. CoMBINED COMPRESSION ANDCLASSIFICATION
WITH LEARNING VECTOR QUANTIZATION
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Assumption 2.2:p(8, z) is a twice continuously differen- 6. n «— n + 1.
tiable function off and and is convex irf for every fixed 7 |f ,, < N, repeat Steps 3-6. I = N, repeat Steps 3

x € RY and 4.
Assumption 2.3For any fixedz, if |6(k)|—oc, ask—oo, The above algorithm can be executed for multiple passes over
then p(6(k),z) — oo. the same training set (in case the size of the training set is
Assumption 2.4:For every compact s€? ¢ R?, there exist small) by_using the valueg (V) from themth pass to initialize
constants?; and ¢ such that for alld € Q the algorithm for them + 1)th pass, untiln = M where M

is the maximum number of passes.
[Vop(8, )] < Cr(1+ |2|*). ) _ . : )
Remark 2.2:Note that Step 5, i.e., updating of the Voronoi

vectors, can be written in the following simplified manner:

. P . L
In Assumptions 2.2-2.4,- | is the Euclidean norm iR If Xo41 € Von), then

(whenever the quantity inside is a vector, and this should be
obvious from the context). An example of a proximity function ¢, (n+1)

that satisfies the properties abovep{¥, z) = |6 — z|2. In our 9, A1V Xy

implementation of the algorithm, we use this function although () + ena if dy ) :epg( (O(n ) )|" =0i(n)>

for the sake of generality in the analysis, we would refer to it = 0:(n) + enpr (—\ +711+)1V0p(29 Xust)locs,

in its general formp(6, ). Z i dx, . 7 9i(O( J)r N). "
nt1 T

Define further the following quantities.

Definition 2.1:
Forj 75 i, QJ(TL + 1) = 91(71)

Y an 7d07' n 7Xn 176 n .
(dX, 41 _1( ) 7 + (1( ) » @ Remark 2.3:Note that forA = 0, the above algorithm
T R Ve W g =deiy T S g Fdei ) becomes the modified LVQ algorithm resulting in better con-

(6)

where©(n) = (61(n),---,0x(n)) andb;(n) is thenth iterate Vergence properties as reported in [13].
of 8;, n > 0. Also 1, is the indicator function that takes the
valuel if A is true and0 otherwise. A. Analysis of the Combined Compression
Definition 2.2: and Classification Algorithm
N In this subsection, we present the analysis of the above
1if _Zl 1 algorithm using the “mean ODE” method of [12].
’ =t Xi€Vo;(my ~ddx; =1 Denote the vectors
O = > izlx.ev lag 2 “ hO(n)) = (hi(O(n)), -+, hi (O(n))
N i€V (n) TUX ;=
J=1 and
2, otherwise.
H(O(n), Xni1)
Remark 2.1:Note thatg;(©(n); N) above denotes the de- = (Hy(0(n), Xnt1), -, Hg (0(n), Xpy1))
cision associated with théh Voronoi cell according to the
majority vote rule. where

With the above definitions and assumptions, we can na@y(O(n), X,11) = (—Alxnﬁeve_(n)
write the following multipass combined compression and F(dx . gi(On); N), X1, O( )))
n41 I n+1l,

classification algorithm for (scalaf) > 0.
o T _ *Vep(8, Xnt1)|o=6;(n) (7)
1. Initialization: The algorithm is initialized witf®(0) usu-

ally found by running a vector quantization algorithmand h;(©(n)), ¢ = 1,2,---, K is defined in Definition 2.4.
e.g., the LBG [15] algorithm over the set of trainingNote that one can write the above algorithm (5) in the
vectors. following manner:

2.m =0 O(n+1) = O(n) + €01 H(OM), Xops),  n20. (8)
3. Assigning the training vectors to their respective cells:
Find i; = argmin,, |6,,(n) — X;|?,1 =1,2,---, N, then Note that this is a special case of the general stochastic

X; belongs toVy, () approximation algorithm of [12], quoted in [13, Sec. 2].
4. Cell decisionsCalculateg;(©@(n); N), i =1,2,--- K. Define
5. Updating the Voronoi vectorsror i € {1,2,---, K} p(z) =p1(x)m + po(x)mo
0i(n+1) =6:(n) + enp1(—Alx, eV ) q(z) = p2(x)m2 — p1(z)m1. ©)
+9(dx, 1, 9i(O(n); N), Xny1,0(n))) Due to the assumption thafX;}, [ = 1,2,---, is a
“Vop(0, Xnt1)|o=o,(n)- (5) sequence of independent and identically distributed (i.i.d.)
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random vectors and that are distributed independent®y(df, domain of attraction is given by* [12]. If @ is a compact

the transition probability function subset of D* and ©(0) = a € ), one can show that for any
/ 6>0
H@(n)(Aa Xn) é P(Xn-l-l € A|~7:n)
P{max [|0(n) — ©(a,t,)|| > 6} <C(, Q) Y e (16)
is given by " n
u(A) :/ ple) de, wheret, = >, ei.and ©(a,t,) is the solution to (14) for
A t =t,, andC(«, Q) is a constant dependent enand () (see

[12, Theorem 4, p. 45]). Here, we have used Assumption 2.1.
A One could also derive the following corollary (see [12,
Fn = o{6(0), Xo,---,0(n), X, } Corollary 6, p. 46]) which states that under the assumptions
16) is true, for the set of trajectorie@(n)} that visit @
’iib?initely often, we have

where

(the o-algebra generated by these random variables). T
makes the above algorithm a special case of the Ro

bins—Monro algorithm with the transition probability function O(n) — ©*, P, —as. a7
being independent ob(n). P{limsup ||©(n) — O(a, t,)|| >} = 0. (18)
Now, we introduce the following definitions. n—0o0
Definition 2.3:

However, there is no general theory which gives conditions
7:(8(n); N) under whichP(©(n) € @ infinitely often) = 1 is satisfied

N [12].
= sign % Z 1)(3_6,97_(71)(1(1)(3_:2 — 1dxj=1) . (10) Note f[hat for'a complete theory, it is es.sential to prove that
the desired points of convergen€é¥ are indeed the stable
equilibrium points of (14). One way to do this is to find

Remark 2.4:Note thaty;(©(n); N)=1if g;(6(n); N)=2, @& potential function/(©), if it exists, such thath;(©) =
and —1 otherwise. —Vy,J(©). Then one can apply results from Lyapunov stabil-

j=1

Definition 2.4 ity to establish results for stable equilibrium by studying the
local minima ofJ(-) and their domains of attraction. Although
hi(©) = _/ [7:(0; Ng(z) + Ap(z)] we refrain from such pursuits for the time being, we do notice
Ve, that (see [13]) agdV — oo, 7,(©; N) — sign (fvgi q(x) dz).
-Vop(8,2)9=0, d, 1=1,2,---,K. (11) Using the mean value theorem when the size of each Voronoi

. cell is small, one can write
One can now prove the following Lemma.

hi(@©) = — | Vep(6,2),,_, (la(x)| + Ap(x)) de (19)

Lemma 2.1:
Vfgz.

H;(0(n), Xpy1) = hi(B(n)) + &i(n), =12 K \which is the negative gradient of the cost function
(12)

K
where {&(n)} is an F,-adapted martingale difference se-  /(©) :Z/ p(0i, z)([q(2)| + Ap(x)) dz. (20)
guence such that i=17Ve;
For those readers who are more oriented toward intuitive

hi(©(n)) = EalHi(O(n), Xn41)| Fn], Vi (13) reasoning, we comment here that this was indeed the inspira-
Here, E, denotes expectation undé?,, where P, denotes tion for obtaining the combined compression and classification
the probability distribution for{X,,,©0(n)},n > 0, where algorithm given abpye. The reason for this int_uition is that
©(0) = a. Note that sincg X,, } is a sequence of i.i.d. randomunder general conditions, it can be shown following the sketch

vectors, P, is functionally independent akj. of the proof given in [13], and the methods and results in
We write the mean ODE associated with (8) as Devroyeet al [14, Ch. 21], that for the LVQ algorithm the

. first part of (20) converges to the Bayes classification error

©="n0), O(0)=a (14)  when the number of Voronoi vectors tends to infinity. Details

of this analysis are outside the scope of the present paper. The

where second part of (20) is clearly the average distortion.
hi(©) = lim E,[H;(0, X,41)|Fx] The proof sketched in [13] can be used and extended to
o establish such a convergence as longgas — oo, N — oo,
= /Hi(@,x)p(x) dz (15) with Ky /N — 0, as already mentioned in the introduction to

Section Il. The convergence of the algorithm is concerned with
since in this cas¢X,, } is a sequence of i.i.d. random variables sequence of partitions &¢, or of a compact subset &,
where P(X,,+1 € A|F,) is independent 0B(k), k < n. The strongest convergence results can be obtained for general

It is hard to establish a convergence result for genlef@l). probability distributions for(X,d) pairs ((data, class label)
Often it is assumed that (14) has an attrac®t, whose pairs) which have compact supportif. Let D denote the
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sequence ofV training pairs of datd (X;,d;);i = 1,---,N}. Notation 2.1:
We generate a sequence of partitiqf&( K y)} each partition 1) D is an open subset . () is a compact subset db.
utilizing Ky Voronoi vectors, and the associated cells using 2) ¢ is a C? function fromR? to R with bounded second

the general proximity functiorp. We iteratively pass the derivatives, where

training data through the algorithm (6) which updates the

Voronoi vectors®(n, Kx), wheren is the iteration index. Mo(Q) = g‘%g [#(©)]

The limit of this sequence a8 — oo, ©*(Ky), provides _ © ,

one member of our family of partitions. We then increase the My (Q) = glég |#'(©)]

number of Voronoi sectors t& - + 1 and repeat the process, Ma(Q) = sup |¢"(©)]

etc. The general convergence problem for our algorithm refers ecQ

to limits of (20), and of@(n,KAr) asn — oo, Ky — oo, M, = sup |¢".(©)]. (22)
N — oo. The most appropriate framework to investigate OcRd

this general convergence with respect Ky, N, is the 3) There existsR(¢, 0, ©') such that
convergence of classification error (in our case it would be T

combined classification and compression errors) based on  R(¢,0,0) =¢(0") — ¢(©) — (€' — ©),¢'(©))
\Voronoi-type partitions, using as starting methods those of |R($,0,0")| < M,|0' — 0%, vO,0' e RY. (23)
Devroye et al. [14, Ch. 21] (Vapnik—Chervonenkis ideas);

see, for example, [14, Theorem 21.5, p. 378]. In the latter 4)

theorem it is shown that for distributions ef with compact en(®) =pO(n+1)) = $O(n)) — ensr (¢ (O(n)), h(O(n))).
support inR¢, and a majority rule classification based on a ’

Voronoi-type partition withK 5 cells and Euclidean proximity (24)
function, the classification error converges to the Bayes errors) For ¢ >0
with probability one, whenKy — oc in such a way that ]
K21logN/N — 0 asN — oo. 7(Q) = inf (n; ©(n) € Q)
Similar results can be obtained for our algorithm, but o(e) =1inl (n > 1;|0(n) — O(n — 1)| > ¢)
they are beyond the scope of the present paper and will v(e,Q) = inf (7(Q), o(e)). (25)
be pursued elsewhere. There is also a rich set of related N
problems regarding general proximity metrics, empirical er- 6) With ¢, = 0,¢, = Z ¢;, we define

rors, and computational complexity reductions that could be =1
investigated. k

Here we concentrate on the convergence &ifn, K ) m(n,T) 2 inf {k: k> ”72 €in1 > T}.
as a function ofn, for fixed Ku; this being the first step

in the general convergence analysis outlined above. TR, n,5e Assumption 2.1 holds. Also, let us make the following

cogvergt;'ence with respect to is the subject of the next ,qgitional assumptions that will be sufficient for our analysis:
subsection.

i=n

Assumption 2.5:For any compact subséd of D, there

B. Convergence Analysis of the Combined exist constants”y, 7, such that

Compression and Classification Algorithm |H(©,7)| < C1(1+ |z[™). (26)

The convergence analysis for a class of learning vector
guantization algorithm was presented in [13] following the Remark 2.5: Note that for our choice off (©, ) described
analysis in [12, (see Pt. II—Ch. 1)]. However, as we notdd the previous section, (26) is satisfied if Assumption 2.3 is
before, since the algorithm under investigation is a specitisfied.
case of.the Ropbin;—l\/!onro algorithm, where the transitionAssumption 2.6:h(@)§(h1(®),---,hk(®))’ whereh,(©)
probability function is independent o®, we can greatly iven by (13) is locally Lipschitz
simplify the set of assumptions needed. In particular, e y y HP '
assumptions described as A.4 in [12, p. 216], become trivialRemark 2.6: Note that this assumption itself is enough for
and follow from the single assumption thaf®) is locally our analysis and we do not need the assumptions made in
Lipschitz. In this subsection, we obtain an upper bound on thE3] following [12] ([12, Assumption A.4, p. 216]) since they
L, estimate of a “fluctuation” term to be introduced shortlytrivially follow from Assumption 2.6.
for ¢ > 2. We will provide a simpler local bound later on for
q = 2.

Consider again the algorithm sup E{| X, | <o) ) < M. (27)

Assumption 2.7:For anyq > 1, 3 M < oo such that

O(n+1)=0(n) + 61 H(O(n), Xpny1), 720 (21)  Remark 2.7:Since {X,,} is a sequence of i.id. random

i . vectors, one can simply write (27) as
Before we introduce the set of assumptions needed for

the analysis of our algorithm, let us introduce the following / || p(d) < M. (28)
notation: R -
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Remark 2.8:0One can, in fact, deduce from Assumptions Remark 2.9:Note that if there is such a poi®* in D
2.5 and 2.7 that under certain other restrictions on the dishich is a point of asymptotic stability for the mean ODE
tribution functionp(dz), that Assumption 2.6 holds, since in(14) with domain of attractiotD, this means that any solution
this caseu(dz) is independent 08 (see [12, Sec. II-B.6, pp. of (14) for a € D indefinitely remains inD and converges to

264-265]). O* ast — oco. It can then be shown that (see [16, Theorem
We can now present the following theorem, whose proof &3, p. 31]) there exists a functiori(®) which satisfies the
given in the Appendix. conditions mentioned in Assumption 2.9.

Theorem 2.1:Consider the update equation (21). Consider Notation 2.2:
also (24) and (25). Suppose Assumptions 2.1, 2.5-2.7 hold.

Then, for any regular functiop with bounded second deriva- K(c)={6;U(®) < c}
tives satisfying (22), any compact subsgtof D, and for all 7(c) = inf (n; O(n) & K(c))
¢ > 2 there exist constant8(q), My, e, > 0 such that for all qo(er) = sup (2, 2(« — 1)). (32)
e<eg, T>0,a € D, we have

k=1 ! With these notations and assumptions, we can present the

E, <kiuP( - Licoi=@)| Y €i(9) following theorem (for a proof see [12, pp. 301-304]).
B m(n,T) Theorem 2.3:Consider (21). Suppose Assumptions 2.1,
< B(q)My(Q)T(@/9-1 Z ng_rl(q/?) 2.5-2.9 hold and suppose th&tis a compact set such that
winz) F = {0:U(0) < co} > {6:1/(0) - h(©) = 0}
—1 1+q
+ My()1* Z Cit1- (29) for somecy < C whereC' is defined in Assumption 2.9. Then,
i=n—+1

for any compact subsep of D, andg > go(«), there exists

a constantB such that for all
Next, we present a theorem that gives an upper bound on 2(0) @ cQ

the L, norm of the distance between the actual itei@te) P,(6(n) converges &) > 1 — Ba(q) ZCHW?)' (33)
and @(a,tn) which is the solution to (14) fot = t,. In ¢ = ‘
other words, this result gives an upper bound on the quality of
apprommatl_on by the mean trajectory represented by (14). Weln the next subsection, we provide a simpler local bound for
do not provide the proof since the result holds under the same

2, following the analysis given in [12, Pt. I, Sec, V-A].
set of assumptions as the previous theorem, and the proof dan

be found in [12, p. 301]. )
C. A Simpler Local Bound fo§ = 2
Theorem 2.2:Consider the update equation (21) and (14).

Suppose Assumptions 2.1, 2.5-2.7 hold. Suppgse Q) are
compact subsets ab, andq > 2. Then there exist constants O(n +1) = O(n) + enp1 HO(n), Xni1), n>0. (34)
Bi(q), L2 (L2 is the Lipschitz constant fdt in (J3), such that -

forall 7>0 (that Satisfy the condition that for all € @4, all SinceXr“ n > 0 are distributed independent]y @(n) and

i>1

Consider again the algorithm

t < T, d(0(a,t),Q5) 2 60> 0), all 6 <ép, all a € Q1 also {X,}, n > 0 is a sequence of i.i.d. random variables,
we have the main or so-called Robbins—Monro assumption
pa{ sup  |©(n) — O(a,t,)|? 2 5} satisfied, namely,
n<m(0,7)
mO.1) Elo(©(n), X, )| 7] = [ o@(n).)pla)do. (35)
B ’ ’
< (15( )(1 + 1) exp (qLT) Y. oYY (30) R
i=1 Note that we have already observed before in Lemma 2.1 that
We now present an asymptotic result without proof that R(O(n)) = H(@( ) n+1)|]:]
states tha®(n) asymptotically converges to a compact subset
of D, based on the assumption that the mean ODE has a point / H(© (z)de. (36)

of asymptotic stability®* in D with domain of attractionD.
We make more precise statements later. First, we introduce Mext, we introduce the two main assumptions of this section.
following additional assumptions and notations. Assumption 2.10:For all ©(0) = a € R¢

Assumption 2.8:There existsy such thaty_ €% < oo. ) N )
E,[|[H(O(n), Xny)P|Fa] < C11+[O())  (37)

Assumption 2.9:There exists a positive functidil of class
C? on D such that/(©) - C < o if ® = 3D or |8] — oo for some suitable constar{t’l_

andU(®) < C for ©® € D satisfyin ) )
©) fying Remark 2.10:Note that this assumption guarantees the

(U'(©),h(©)) <0, VO € D. (31) existence ofh(O(n)).
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Assumption 2.11:30©* (which is a point of asymptotic A. Bimodal Gaussian Data
stability of (14)) such that for al®, 3 a constan® > 0 such

that This part of the simulation study is carried out with
a

computer-generated random numbers distributed according
(© - O0"Yh(O) < -6 -7 (38) to either of two two-dimensional bimodal Gaussian mixture
distributions. The first pattern is generated from the bimodal

with, for somef < 1, Gaussian mixture density

8 8
. n ‘nt1 T
liminf 26 + 5
n—oo €pgl €41

38
€n

> 0. (39) 0.5N([1.0 1.0]', I) + 0.5N([—1.0 —1.0]', I)

. where N([m1 m2]’,%) is the two-dimensional normal distri-
Remark 2.11:Note that ife,, = (A1 /n%+43),0 << 1, pution function with the mean vectén, m.]’ and covariance
then (39) holds for all3 < 1. It is also true for3 = 1 if matrix ©. The second pattern is generated from the density
26 > (CY/Al)

We can now present the following theorem which gives a
simple local bound for the expected distance betw&¢n) The training set was formed by 500 vectors from each pattern
and 9*. (meaningwm; = w2 = 0.5). This set was used to train the
] . . ‘oronoi vectors in multiple passes, the total number of passes
anghg()lrfrﬂjfgﬂgilder (34). Suppose Assumptions 2.1 eing 20. The number of Voronoi vectors that would result
' : in a good classification performance was found by increasing
E,(|®(n) — ©*)?) < Bs(a)é? (40) the number of Voronoi vectors by one until the classification
performance (for a given size of test data set) reached a
floor. Thus 16 Voronoi cells were chosen and their centroids
initialized by the output of an LBG algorithm processing the
training data. Each test data set had a size of 1000 each
E,(|6(n) — ©°*) < Bs(a,ng)ch. (41) containing vectors from patterns 1 and 2 such thagtpeiori
. A . probabilities were satisfied. The learning ratg was kept
writing J,, = ©(n) — ©%, we have fixed over one pass such thgt = (¢1/,/p) wherep denotes
E, (| Jns12|Fn) = |In|* + 26011 {Jn, R(O(n)) the number of the pass, and = 0.01. The compression
+62+1Ea[|H(®(n)7Xn+1)|2|Fn]~ (42) performance avgraggd over Fen test data sets for a range
of A € [0.0,5.0] is given in Fig. 1. The compression error
Suppose that is sufficiently large such that > 2¢,116.  was measured by the minimum mean-square error, that is,
Then, by taking expectations, we have the average of the squared distances between the test vectors
EolJng1]? <(1 = 26,416 + 0163+I)Ea|,]n|2 + 016721-1—1 and their representative \/oronoi vectors and normalized with
(43) respect to the compression error achieved by the pure LVQ
algorithm (A = 0.0). More explicitly, if (65(A),---, 85 (A\))
where C; is a constant such that are the centroids after the combined algorithm has converged
C‘l(l 4] < él(l 410 —0%). (44) for a §pecific value of\, then the unnormalized compression
error is expressed as
Now, one can use the following result which can be proved

0.4N([0.0 0.0]',4I) 4+ 0.6 N([0.5 0.5]', 4I).

for some suitable constai®;(a).
Proof: It is sufficient to show that for some suitabig,
there exists aB;(a,ng) such that for alln > ng

Nr
directly from (39). There exisf3° and ny such that for all a 1 . - T
o Ey = — X, =65\
Bs; > BY andn > ng, the sequence,, = B¢’ satisfies g Np ; 12K ] el
N2 N2
Untr 2 (1= 260416 + O, g Jun + Cl6 4 (45)  whereas the normalized compression error is givelRyE.
ChooseB;(a,no) > B such that Obviously, Ey is the unnormalized compression error for the
pure LVQ algorithm(A = 0). Here, Ny is the number of test
EolJno|* < Bs(a, no)ey, - vectors.

It follows immediately by induction om that the sequence It is seen that as increases up t6.0, there is a reduction
u, = Bsla,ng)e?, n > ny satisfiesE,|J,|> < u, from of approximately 3.5% in the normalized compression error.
which (40) follows. O The classification performance measured by the percentage of
misclassified data did not change very much with increasing
[ll. SIMULATION STUDIES value of A and tended to hover around 30% in the range of

In this section, we present some simulation results iIIuFlS mentioned above. Hence we do not include a separate plot

trating the compression performance of our algorithm whi
a tradeoff is obtained with respect to its classification per- .

formance. We consider two examples, one with computés: Mel-Cepstral Coefficients of Two Speakers

simulated data distributed according to either of two bimodal This example is based on “mel-cepstrum” coefficients of two
Gaussian densities and the other with “mel-cepstral” coeffemale speakers. “Mel-cepstrum” features based on the non-
cients of two female speakers obtained from their speech. linear human perception of the frequency of sounds have been

o the classification performance.
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Fig. 1. Compression error perfomance of the combined LVQ algorithm for bimodal Gaussian patterns.
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Fig. 2. Compression error performance of the combined LVQ algorithm for “mel-cepstrum” features of female speakers.

well studied and successfully applied to speaker identificatiof training vectors per Voronoi cell, to achieve a tradeoff
problems. These studies have shown that the mel-cepstrwith the computational time required, the following parameters
can effectively extract the vocal tract shape information afere chosen. The training set was randomly chosen to have
the speakers and yield good distinguishing performance [13])0 data vectors from each speaker. The number of Voronoi
[18]. In our example, the labeled phonetic speech data of tbells was chosen to be 20. The training set was used to
two female speakers are extracted from the TIMIT databaspdate the Voronoi vectors in multiple passes, the total number
for dialect region 2. The speech waveform is segmentedl passes being 30. The learning rate was taken to be
into 16-ms frames overlapped by 8 ms and parameterizedcunstant over one pass whete= (¢1/,/p) wherep denotes
14-dimensional mel-cepstrum vectors to establish the featdihe number of passes with = 0.04. The Voronoi vectors
space. were initialized by passing the training set through an LBG
Since the performance of an LVQ-type algorithm dependdgorithm. Once the training was completed, five sets of
critically on the number of Voronoi vectors and the numbeest data, each containing 250 vectors taken randomly from
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Fig. 3. Classification error performance of the combined LVQ algorithm for “mel-cepstrum” features of female speakers.

the database for both speakers, were used to obtain the APPENDIX
compression and classification performances of our algorithm.p oo of Theorem 2.1:n this proof, C1(q), Ca(q), Cs(q)

Figs. 2 and 3 illustrate the results averaged over five te@i(q)’ B(q), and M,(q) denote constants dependent only on
data sets, for a range of € [0.0,5.0]. As expected, the q. From (24), (23), and (21), one can write

compression error (measured by the mean-square distance

between the data and its representative Voronoi vector), which ¢x(¢) = ex+1{¢' (O(k)), (H(O(k), Xi11) — h(O(k))))

was normalized with respect to the error obtained by the pure + R(¢,0(k),0(k + 1))

LVQ algorithm (A = 0.0), decreases by approximately 7%, W, @ 46)

whereas the classification error goes up by 4.5%. We would =a e (

like to comment here that the classification error can be furth@here

reduced by choosing a larger number of Voronoi cells which

would obviously require a larger number of training vectors. Cgv : = a1 (@ (O(R)), (H(O(K), Xu41) — h(O(K))))
e = R(¢, O(k), O(k + 1)),

IV. CONCLUSIONS AND FUTURE RESEARCH Note that we have
We have developed an algorithm based on learning vector [*=! R L 1) kot @ !
guantization (LVQ) for combined compression and classifi- Z@i(¢) = Z@i +Zei

cation. We have shown convergence of the algorithm for a
fixed numer of Voronoi vectors, under reasonable conditions, o 1
using the ODE method of stochastic approximation. We have < Z i
also illustrated the performance of the algorithm with some = N
examples. The sensitivity of the performance of the algorithm <ot [ z_:l e
— ()
=n

+

k—1
>
7;71

+

‘| q
k—1
: . o ZC@
with respect to the weight parameter indicates that the £l
compression error decreases with increasingvhereas the =
increase in classification error is relatively insignificant. ~ From now on, we writen for m(n, 1) andv for v(e, @) for
The immediate future research problem is to establigiotational simplicity. We write

] . (47)

convergence of the algorithm &6 and KX y — oo, and related k1 q
performance evaluation problems as described at the end of A E{ sup lp<y Z CZ(1) }

Section II-A. Another important future research problem that n<k<m |

we are currently working on is the extension of the algorithm b1 q

when the VQ is replaced by TSVQ. In this extension, we — E{ sup Z U, }

use and extend the methods and analysis of [19]. This will n<k<m ;T

allow us to evaluate the performance of the WTSVQ algorithwh ere

of [4]-[7] analytically, including compression of the wavelet

coefficients. U; = ¢;41(¢'(©(1)), (H(O(1), Xi1) — M(O@)) Lit1<0-
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Denoting

Vi

= (¢/(©(1)), (H(O(i), Xiy1) — R(O()) Li1<w [1]
we haveU; = 6i+1Vi.
We notice that from (13)E(U;4+1]G;) = 0.
We also observe that from (22)
EV;|* <M (Q)C1(g)[E|H(O(1), Xiy1)|?
+ E[h(©(2))[%]
< M(Q)C2(g) E|H(O(8), Xit1)|.

(2]

(3]

(48)

. . . . [41

The last inequality follows from Jensen’s inequality and (13).
One can now use Assumptions 2.5 and 2.7 to obtain the

following upper bound: [5]

E|Vi|* < My(Q)Cs(q)- (49) -
One can now apply Burkholder’s inequality (see [12, Lemma
6, p. 294]) to obtain

q/2 [71

m—1

51 < Cu()E Z Vi

=n

(50)

For ¢ > 2, one can further apply a result based on Holder's]
inequality (see [12, Lemma 7, p. 294]) to obtain

m—1 (/D=1 [9]
S <] Y e S P B
=N . =" [10]
< B(g)My(QT W)= 3~ {4, (51)

i=n [11]
We prove the following bound on 12

m—1 q q

52 = E 652)‘ 1i 1<y
; ’ = [13]
using (23), (26), and Assumption 2.7

m—1 [14]
52 < M4(Q)T(I7l Z F}I{I (52) [15]
Combining (51) and (52), we obtain (29) from (47). 16]
[17]
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