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Abstract

In this paper, we consider the problem of risk-sensitive �ltering for continuous-time stochastic linear Gaussian time-invariant
systems. In particular, we address the problem of forgetting of initial conditions. Our results show that suboptimal risk-sensitive
�lters initialized with arbitrary Gaussian initial conditions asymptotically approach the optimal risk-sensitive �lter for a linear
Gaussian system with Gaussian but unknown initial conditions in the mean square sense at an exponential rate, provided
the arbitrary initial covariance matrix results in a stabilizing solution of the (H∞-like) Riccati equation associated with the
risk-sensitive problem. More importantly, in the case of non-Gaussian initial conditions, a suboptimal risk-sensitive �lter
asymptotically approaches the optimal risk-sensitive �lter in the mean square sense under a boundedness condition satis�ed
by the fourth order absolute moment of the initial non-Gaussian density and a slow growth condition satis�ed by a certain
Radon–Nikodym derivative. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Risk-sensitive �ltering optimizes an exponential of
quadratic (or more general convex) cost criterion. As
opposed to L2 �ltering, risk-sensitive �ltering penal-
izes the higher order moments of the estimation er-
ror energy, thus making the �lters useful in uncertain
plant and noise environments. It also allows a trade-o�
between optimal �ltering for the nominal model case
and the average noise situation, and robustness to
worst case noise and model uncertainty by weighting
the index of the exponential by a risk-sensitive pa-
rameter. For example, it has been shown in [12] that
discrete-time risk-sensitive �lters for hidden Markov
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models (HMM)with �nite-discrete states perform bet-
ter than standard HMM �lters in situations involv-
ing uncertainties in the noise statistics. A more recent
work [6] shows that such risk-sensitive �lters enjoy
an error bound which is the sum of two terms, the
�rst of which coincides with an upper bound on the
error one would obtain if one knew exactly the un-
derlying probability model, while the second term is
a measure of the distance between the true and de-
sign probability models. Although risk-sensitive �l-
tering was introduced for discrete-time linear systems
in [24], the term “risk-sensitive �ltering” was intro-
duced in [13] and more general discrete-time non-
linear systems were treated, using similar techniques
of [17] in the context of risk-sensitive control. Apart
from the potential usefulness of risk-sensitive �lters
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in uncertain environments, risk-sensitive problems, in
the small noise-limit, have been shown to be closely
related to estimation=control problems in a determin-
istic worst-case noise scenario given from a di�eren-
tial game (H∞ estimation=control problems for linear
systems) [25,26,17,19,8].
It is well known that the mean of the conditional

density of the state given the observations for a
stochastic state space-signal model achieves the min-
imum variance �lter. For a linear Gaussian system
with known or Gaussian distributed initial conditions,
the conditional density is Gaussian and given by its
mean and covariance (which can be calculated o�-line
from a Riccati di�erential equation). This is also pop-
ularly known as a Kalman �lter. On the other hand,
the optimal estimation problem becomes an essen-
tially non-linear problem if the initial condition is not
Gaussian distributed. However, for linear Gaussian
systems, it has been shown [18,21] that the optimal
�lter (or its density) can be given by a �nite number
of statistics, which constitute the optimal (in the min-
imum variance sense) �lter for an augmented linear
system. The initial condition is often not known and
it is often unrealistic to assume that the initial con-
dition has a Gaussian density. However, it has been
shown in [21] (continuous-time) [23] (discrete-time)
that the conditional density �lter forgets the initial
condition asymptotically at an exponential rate. In
other words, one can assume a Gaussian density for
the initial condition and use a suboptimal Kalman �l-
ter which asymptotically becomes optimal, provided
the actual density of the initial condition has �nite
�rst- and second-order moments. Exponential stabil-
ity results for discrete-time �lters have been shown
in [7] and for Benes �lters [3] in [22]. Also, stability
results for �lters based on Lyapunov exponents have
been explored in [14,1,2].
It is also well known that the optimal risk-sensitive

�lter for a continuous-time linear Gaussian system
with a Gaussian initial condition is an H∞ �lter
[9,11]. Analogous results for discrete-time linear sig-
nal models can be found in [24,13]. In the case of
a non-Gaussian initial condition, the risk-sensitive
estimation problem, as can be expected, becomes a
nonlinear problem in general.
In this paper, our objective is to address the prob-

lem of risk-sensitive estimation for non-Gaussian
initial conditions for continuous-time linear Gaussian
time-invariant systems. We also study the asymptotic
behaviour of the optimal risk-sensitive estimate with
respect to its initial conditions. This study is done in

two parts. First, we study the asymptotic e�ects of
arbitrary Gaussian initial conditions on the optimal
risk-sensitive estimate (i.e., di�erent values of the ini-
tial covariance, the mean is taken to be zero without
loss of generality) for linear Gaussian systems with
Gaussian initial conditions. The second part studies
the asymptotic e�ects of a non-Gaussian initial condi-
tion, and the behaviour of the distance of the optimal
risk-sensitive �lter from the suboptimal risk-sensitive
�lter (with a Gaussian initial condition assumption).
Our results show that we get mean square convergence
asymptotically in both the above studies under certain
conditions. In other words, one can compute a subop-
timal risk-sensitive �lter with arbitrary Gaussian ini-
tial conditions (provided the initial covariance results
in a stabilizing solution for the (H∞-like) algebraic
Riccati equation associated with the risk-sensitive
problem) and this �lter will asymptotically con-
verge to the optimal risk-sensitive �lter in the mean
square sense for unknown Gaussian initial condi-
tions and unknown non-Gaussian initial conditions
satisfying certain constraints.
In Section 2, we introduce the signal model, the

risk-sensitive estimation problem and reformulate it
under a new probability measure. In Section 3, we
brie
y present the optimal risk-sensitive �lter for
linear Gaussian systems with Gaussian initial condi-
tions and show the asymptotic stability of these �lters
with respect to arbitrary Gaussian initial conditions.
Section 4 deals with non-Gaussian initial conditions
where we �rst derive the optimal risk-sensitive �lter
using the information state approach and then we
show the asymptotic mean square convergence prop-
erties of such �lters with respect to their initial con-
ditions. Section 5 presents some concluding remarks.

2. Signal model

Consider a complete probability space (
;F;P)
on which we de�ne the following stochastic linear
time-invariant state space model:

dxt = Fxt dt + G dwt; x0∼�0(x0);
dyt = Hxt dt + dvt ; y0 = 0:

(1)

Here, xt ∈Rn; yt ∈Rp; x0 ∈Rn. The process noise
wt ∈Rn and the measurement noise vt ∈Rp areWiener
processes with covariance In and Ip, respectively.
Also, GG∗ = �w¿0. �0 is not necessarily Gaussian.
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We assume that x0; wt ; vt are mutually independent
and that (F;G) are stabilizable and (F;H) are de-
tectable.
Denote the complete �ltration generated by

the observation �-algebra, namely, �{ys; 06s6t}
as {Yt}, the complete �ltration generated by
�{x0}∨�{ws; 06s6t} as {Ft} and the complete �l-
tration generated by �{ys; 06s6t}∨ �{x0}∨ �{ws;
06s6t} as {Gt}.

2.1. Risk-sensitive estimation

We de�ne the risk-sensitive estimation problem for
the continuous-time stochastic linear system (1) as
to obtain a Yt-measurable stochastic process x̂t ∈Rn
(assumed to be well-de�ned) such that

x̂t ∈ argmin
�

E
[
exp�

{∫ t

0
l(xs; x̂s) ds

+l̃(xt ; �)
}

|Yt

]
: (2)

Here, E[:] denotes expectation under P; �¿ 0 and
l; l̃ : Rn×Rn → R is measurable in (x; x̂) and contin-
uous in x̂ and is of the following form

l(x; x̂) = 1
2 (x − x̂)∗(x − x̂);

l̃(y; z) = 1
2 (y − z)∗(y − z);

(3)

where the units of l(:; :) and l̃(:; :) are cost per unit
time and cost, respectively. At this point, let us in-
clude a brief explanation of the risk-sensitive cost (2)
as de�ned above. It should be noted that the above
optimization, in the most general setting, assumes that
the process x̂s; s ∈ [0; t) has been obtained and is
well-de�ned, and while optimizing to solve for x̂t ,
essentially we are optimizing at uncountably in�nite
number of time points. In speci�c cases however, as
we will see later on, one can obtain �nite-dimensional
representation of the risk-sensitive estimate which is
given by a stochastic di�erential equation (e.g., lin-
ear Gaussian systems). Also note that although the
term exp�(

∫ t
0 l(xs; x̂s) ds) is not a�ected (because it is

a Lebesgue integral) by the value of x̂t (which, in a
way, justi�es the existence of the terminal cost l̃(xt ; x̂t)
in (2)), it does a�ect the solution of the optimization
problem. In other words, optimizing the cost (2) and
optimizing a cost that is de�ned as

x̂t ∈ argmin
�

E[ exp[�l̃(xt ; �) |Yt] (4)

are completely di�erent optimization problems. In
the linear quadratic case (i.e., where the underlying
system is linear Gaussian and l(x; x̂) is a quadratic
function (like (3)), (2) is optimized by an H∞ �l-
ter whereas (4) is optimized by a Kalman �lter
(see [19]). These results have been derived in
discrete-time in [24,13] and the justi�cation of hav-
ing a cost like (2) in relation to the error bounds the
risk-sensitive �lters achieve and their signi�cance
with respect to robustness have been discussed in [6].
Next, we work under a probability measure �P such

that under �P; yt is Wiener process with covariance Ip
and independent of xt (and hence x0). Using Bayes’
Theorem, the risk-sensitive estimation problem is
re-formulated as

x̂t ∈ argmin
�

�E
[
�t exp�

{∫ t

0
l(xs; x̂s) ds

+l̃(xt ; �)
}

|Yt

]
; (5)

where �t = exp(
∫ t
0 (Hxs)

∗ dys − 1
2

∫ t
0 (Hxs)

∗(Hxs) ds).
For details on this particular application of change of
probability measure technique (see [15] (discrete-time)
and [4,11] (continuous-time)).

3. Risk-sensitive estimation with Gaussian initial
condition

In this section, we present the risk-sensitive estima-
tion results for linear Gaussian systems with Gaussian
initial conditions and study the asymptotic forgetting
property of the estimates with respect to initial condi-
tions. Without loss of generality (see [18]), we take
the mean of the initial density to be zero. It is with re-
spect to the covariance matrix of the initial state that
we study the asymptotic convergence properties.
The following theorem summarizes the risk-

sensitive estimation results for the linear Gaussian
systems with Gaussian initial condition (for similar
proofs, see [11,10]).

Theorem 3.1. Consider the signal model (1) and
the risk-sensitive cost given by (2) and (3). Suppose
x0∼N(0; �). The optimal risk-sensitive estimate x̂Gt
is then given by the following stochastic di�erential
equation (SDE):

dx̂Gt = Fx̂
G
t + QtH

∗(dyt − Hx̂Gt dt); x̂G0 = 0; (6)
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where Qt satis�es the following Riccati di�erential
equation (RDE):

Q̇t=FQt+QtF
∗+�w−Qt(H∗H −�I)Qt; Q0 =�:

(7)

Remark 3.1. Note that the above equations resemble
those of the continuous-time H∞ �lter, the obvious
di�erence with the Kalman �lter lying in the Riccati
di�erential equation (7) due to the presence of the
quadratic term with the opposite sign. Much of the
asymptotic stability results that are about to follow
are hinged on the stability results of the above H∞
Riccati di�erential equation.

3.1. Asymptotic optimality of risk-sensitive �lters
with arbitrary Gaussian initial conditions

Before proceeding to the case of non-Gaussian
initial conditions, we would like to show that the
risk-sensitive �lters forget the initial conditions when
the initial conditions are Gaussian. In other words,
we would like to show that no matter which value
of the covariance matrix for the initial state we start
with (provided it results in a stabilizing solution of
the RDE (7)), the risk-sensitive estimate asymptoti-
cally approaches the optimal risk-sensitive estimate
(the one initialized with the true initial covariance)
in the mean square sense. In the case of minimum
variance �ltering, similar results with mean square
and almost sure convergence already exist [21,23]
(discrete-time), the best reference (continuous-time)
being [21]. Our analysis closely follows theirs, how-
ever, unlike the case of the Kalman �ltering, the
estimation error does not become an innovations pro-
cess under P, and this is where our analysis becomes
di�erent. We leave the case of non-Gaussian initial
conditions until the next section.

De�nition 3.1. De�ne the stochastic process �t by the
following stochastic di�erential equation:

d�t = (F − �tH∗H)�t dt + �tH∗ dyt; �0 = 0; (8)

where �t satis�es the Riccati di�erential equation

�̇t=F�t + �tF∗+�w−�t(H∗H −�I)�t; �0 =0:
(9)

Remark 3.2. Note that in view of (6) and (7), �t is
a suboptimal risk-sensitive estimate where �t is ob-
tained by solving the same Riccati di�erential equa-
tion, only with a di�erent initial condition.

Remark 3.3. We have not made any statements
about the existence of a stabilizing solution to the
corresponding algebraic Riccati equation of (7) so
far. Although we will introduce the formal assump-
tions shortly, let us assume that such a solution exists
and � satis�es the constraint arising due to this.

Now, let us make the following assumptions:

Assumption 3.1. Assume that x̂t exists for all
t ∈ [0;∞) and that

lim sup
t→∞

1
t
logE

[
exp�

{∫ t

0
l(xs; x̂s) ds

+l̃(xt ; x̂t)
}

|Yt

]
= c1¡∞ for some c1¿ 0:

(10)

Remark 3.4. In order that this assumption is satis�ed,
a necessary condition is that � be su�ciently small. In
general, it is very hard to derive an upper bound on �,
except for some special cases (e.g. the scalar version
of (1)). Here, without making matters any more com-
plicated, we assume � to be su�ciently small, such
that (10) holds.

Assumption 3.2. There exists a bounded symmetric
matrix function �t¿0 for t ∈ [0;∞) that is absolutely
continuous, di�erentiable a.e., and satis�es (9) such
that the unforced linear time-varying system

�̇t = [F − �t(H∗H − �I)]�t; �0 = I (11)

is exponentially stable.

Remark 3.5. Note that the statement of this assump-
tion is taken following [20]. It can be also shown
following [20] that Assumption 3.2 implies the
following:
There exists a symmetric matrix Q¿0 that satis�es

the algebraic Riccati equation

FQ + QF∗ − Q(H∗H − �I)Q + �w = 0 (12)

and F−Q(H∗H−�I) is stable (i.e., has all eigenvalues
in the open left half plane), such that limt→∞Qt exists
and equals Q.

It has been implicitly assumed above (in (7)) that
06�6Q.

Remark 3.6. It has been shown in [20] that the solu-
tions of (7) and (9) asymptotically approach Q, where
Q is de�ned in Assumption 3.2.
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Remark 3.7. De�ne the set of eigenvalues of (F −
Q(H∗H − �I)) to be �L and ��1 = min{−Re � | � ∈
�L}. Following a similar result in [21], it follows from
(11) that for any 0¡�1¡ ��1, there exists a constant
M2 such that

‖�t‖6M2 exp(−�1t); ∀t¿0: (13)

De�nition 3.2. De�ne L to be the set of the eigen-
values of F − QH∗H . De�ne
��=min{−Re � | � ∈ L}: (14)

The following facts are the consequences of
Assumption 3.2.

1. For every 0¡�¡ ��, there exists an M� such that,
if 	t is the transition matrix associated with (F −
�tH∗H), then

‖	t	−1
s ‖6M� exp(−�(t − s)) for t ¿ s¿0;

(15)

2.

‖Qt − �t‖6M� exp(−�t); ∀t¿0: (16)

Note that the �rst consequence above is really a result
on the exponential stability of the transition matrix as-
sociated with (F−�tH∗H). For an outline of the proof
for an analogous result, see [21] where a theorem on
uniform asymptotic stability has been used from [16].
Similar conditions hold in our case and hence, we do
not detail the proof. The second consequence natu-
rally follows from the fact that the solutions of (7)
and (9) approach the steady state solution Q exponen-
tially fast. Again, analogous statements can be found
in [21]. Here, we assume that � 6= �1.

De�nition 3.3. De�ne

d�t = dyt − Hx̂Gt dt
=H (xt − x̂Gt ) dt + dvt : (17)

Note that unlike the case of minimum variance �l-
tering (or Kalman �ltering), �t (which is known as the
“innovations process” in the case of Kalman �ltering)
is not a Wiener process under P (or �P). However,
writing (xt − x̂Gt ) = ẽ t , one can derive the following
stochastic di�erential equation obeyed by ẽ t , using (1)
and (6):

dẽ t = (F − QtH∗H)ẽ t dt + G dwt − QtH∗ dvt ;

ẽ0 = x0: (18)

De�ning 	̃t as the transition matrix associated with
(F − QtH∗H) where 	̃0 = I , one can prove similar
stability properties like (15) for 	̃t from the stability
of the RDE (7). Using this fact and also the fact that
wt and vt are mutually independent Brownian motions
under P, and x0 is (which is independent of wt and
vt) distributed with a Gaussian distribution having �-
nite second-order moment, it is then straightforward
to prove the following lemma.

Lemma 3.1.

E|xt − x̂Gt |26Ke ¡∞; ∀t ∈ [0;∞) (19)

where Ke is a constant independent of t.

With the above results holding, we can now present
the main theorem of this section (the proof of which is
not provided since it is a minor variation of a similar
proof in [21] for Theorem 2.3).

Theorem 3.2. Suppose x0∼N(0; �). Consider (6)–
(9). Also suppose that Assumptions 3:1 and 3:2 hold.
Then

lim
t→∞E|x̂

G
t − �t |2 = 0 (20)

Remark 3.8. Note that the zero mean assumption for
the initial density is not restrictive, since with any other
value for the mean and an arbitrary value for �0 (other
than zero) one can show that the di�erence between
these two values is weighted by an exponentially de-
caying matrix and approaches 0 asymptotically. Sim-
ilar results can be found in [21].

Remark 3.9. One can show in an analogous manner,
that �t asymptotically converges in the mean square
sense to �Rt where �

R
t is given by the following equa-

tions:

d�Rt = (F − �Rt H∗H)�Rt dt + �
R
t H dyt; �R0 = 0;

(21)

where �Rt satis�es the Riccati di�erential equation

�̇
R
t = F�

R
t + �

R
t F

∗ + �w − �Rt (H∗H − �I)�Rt ;
�R0 = R:

(22)

Here implicitly, we assume that R¡Q. In other
words, one can show that the optimal risk-sensitive
estimate asymptotically converges in the mean square
sense to a suboptimal risk-sensitive estimate with any
arbitrary Gaussian initial condition assumption.
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4. Risk-sensitive estimation for non-Gaussian
initial conditions

In this section, we present the risk-sensitive es-
timation results for non-Gaussian initial conditions.
We derive an expression for the optimal risk-sensitive
estimate which is �nite-dimensional and a sum of two
terms, where the second term shows an explicit depen-
dence on the initial condition, and the �rst term, unlike
the case of conditional mean estimation [21,18], also
depends on the parameters of the distribution of the
initial state vector. However, it is shown that under
some reasonable conditions, the second term decays
exponentially and the �rst term approaches the corre-
sponding term for Gaussian initial conditions. These
results are derived following the derivation in [4,
Section 6.1].
Consider the signal model (1). Let x0 have a den-

sity function �0(x0) which is non-Gaussian. We as-
sume without loss of generality [23], that �0 has zero
mean. An argument similar to Remark 3.8 can be used
to justify this. Other assumptions on �0 will be intro-
duced later. Consider also the risk-sensitive cost given
by (5) and (3). Below, we de�ne the risk-sensitive in-
formation state in a slightly modi�ed way than it has
been de�ned in [10] or equivalently in discrete-time,
in [13].

De�nition 4.1. De�ne the unnormalized conditional
measure qt(x; �) where

qt(x; �) dx = �E
[
�t exp

(
�
∫ t

0
l(xs; x̂s) ds

)

× I(xt ∈ dx) |Yt ; x0 = �
]
; q0(x; �) = �(x − �):

(23)

Remark 4.1. Note that, we have de�ned the unnor-
malized measure above conditioned on the initial state
x0 = � and hence it is function of �. It can also be
interpreted as the fundamental solution of the mod-
i�ed Zakai equation (given below) satis�ed by the
risk-sensitive information state qt(x) de�ned in [9,11].
They are related by the following:

qt(x) =
∫
Rn
qt(x; �)�0(�) d�: (24)

It trivially follows from the above de�nition that the
optimal risk-sensitive estimate is given by

x̂t∈ argmin
�

∫
Rn

∫
Rn
qt(x; �) exp(�l̃(x; �))�0(�)dxd�:

(25)

It is also obvious from the above De�nition 4.1 that
the information state achieves an expression similar to
that for the information state with known initial state
vector. It is also known from results on risk-sensitive
information states [5,10] that for a linear Gaussian sys-
tems with known initial state vector, the risk-sensitive
information state achieves a Gaussian form. The proof
usually follows from the fact that the Gaussian expres-
sion satis�es a modi�ed Zakai equation (given below)
and that the solution is unique provided some regu-
larity conditions are imposed on �0(�) (for similar
proofs in the minimum variance case, see [4]).

The fundamental solution of the risk-sensitive infor-
mation state satis�es the following stochastic partial
di�erential equation [11] which is a modi�ed version
of the Zakai equation

dqt(x; �) = (12 Tr(D
2qt(x; �)�w)− Fqt(x; �)

− (Fx)∗Dqt(x; �) + �l(x; x̂t)qt(x; �) dt
+qt(x; �)(Htx)∗dyt; q0(x; �)=�(x − �):

(26)

The proof can be found in [4] or [5].
We now state the following lemma which gives the

solution to the above equation.

Lemma 4.1. The risk-sensitive information state
de�ned as the unnormalized conditional measure in
De�nition 4:1 for the linear time-invariant system
(1) is given by

qt(x; �)= st(�)exp(−1
2 (x−mt(�))∗�−1

t (x−mt(�)));

q0(x; �) = �(x − �);
(27)

where �t satis�es the Riccati di�erential equation
(9); mt(�) is given by the following equations:

mt(�) = �NGt + �t�; m0(�) = �;

d�NGt = (F + ��t)�NGt dt − ��tx̂NGt dt

+�tH∗(dyt − H�NGt dt); �NG0 = 0; (28)

where �t is given by (11). Also; st(�) (ignoring the
terms that do not depend on � or do not contain a
random di�erential term since they do not a�ect the
results due to a subsequent normalization) is given by

st(�) = 
t exp
[
−1
2
�∗Lt�+ �∗�NGt

]
;


t=exp
(∫ t

0
(H�NGs )∗dys− 12

∫ t

0
(H�NGs )∗(H�NGs )

)
;
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0 = 1;

Lt =
∫ t

0
�∗
s (H

∗H − �I)�s dt; L0 = 0;

d�NGt =�∗
t (H

∗ dyt − H∗H�NGt dt

+�(�NGt − x̂NGt ) dt); �NG0 = 0: (29)

Proof. First of all, the Gaussian structure of the infor-
mation state given by (27) follows by showing that it
satis�es the modi�ed Zakai equation (26). Following
the approach in [4], it can be shown that the solution
is unique.
In view of the fact we are considering a linear

Gaussian system with exponential of quadratic cost,
the mean of the information state (as a function of
�) naturally assumes an a�ne structure like that
given in (28) (this approach is similar to that in [4]).
�NGt ; �NGt ; x̂NGt bear the superscript NG to denote that
we are dealing with non-Gaussian initial conditions.
From here onwards, much of the proof is application

of Ito’s rule and tedious algebra. We outline the proof
below.
One can start with an unnormalized Gaussian struc-

ture like (27) for qt(x; �) and substitute in (26) to
obtain the RDE for �t , and the SDE for mt(�). Al-
ternatively, one can verify that (27) along with (28),
(9), (11) and (29), satisfy (26).
The expression for st(�) as given by (29) is derived

following a similar approach in [4]. Here, we apply
Ito’s rule and collect terms that are linear or quadratic
functions of � or contain random di�erential terms.
The rest of the terms are ignored because they do
not contribute to a �nal solution due to a subsequent
normalization.
The details of the proof involve tedious algebra

and not given here to maintain the readability of the
paper.

Remark 4.2. Note that the above expression for
qt(x; �) is an unnormalized Gaussian density. Note
also that the normalization constant and the mean are
functions of �.

Before presenting the result for the optimal
risk-sensitive state estimate for non-Gaussian initial
conditions, let us introduce the following notations.

Notation 4.1.

Mt = Lt − ��∗
t (I − ��t)−1�t;

Dt(N ) =

∫
Rn � exp[− 1

2�
∗Mt�+ �∗N ]�0(�) d�∫

Rn exp[− 1
2�

∗Mt�+ �∗N ]�0(�) d�
;

NNGt = �NGt − ��∗
t (I − ��t)−1�tDt(NNGt ): (30)

Remark 4.3. Note the following things about the
above notations. It has been assumed that � is small
enough such that (I − ��t)¿ 0. NNGt is a stochastic
process and is de�ned in an implicit fashion. The
existence of NNGt follows (in the sense that a solution
to the above implicit equation in Notation 4:1 exists)
from its relation with x̂NGt given in (32) and from the
assumed existence of �NGt and �NGt as solutions to the
stochastic di�erential equations given in Lemma 4.1
and that of x̂NGt as in Assumption 3.1.

We will introduce formal assumptions on �0(:) be-
low, but for the time being we assume that the denom-
inator in Dt(NNGt ) is well-de�ned. Also, note that Mt
might not be positive-de�nite ∀t.
It is obvious thatNNGt is a {Yt}-adapted process and
��t =exp[− (1=2)x∗0Mtx0 + x∗0NNGt ] =

∫
Rn exp[− (1=2)

�∗Mt� + �∗NNGt ]�0(�) d� is {Yt ∨ �{x0}}-adapted.
Using this notation, we can re-write Dt(NNGt ) as

Dt(NNGt ) = Ex0 [x0 ��t |Yt]; (31)

where Ex0 denotes expectation with respect to �0(x0).
Note also that Ex0 [ ��t] = 1; ∀t.
In other words, one can think of Dt(NNGt ) as the

conditional expectation of x0 under a di�erent proba-
bility measure P̃ such that dP̃=dP= ��t . Now, we make
the following assumptions that lead to the well-de�ned
property and boundedness of Dt(NNGt ) in the mean
square sense.

Assumption 4.1. � is chosen small enough such that
H∗H − �I ¿ 0.

Remark 4.4. Note that this restriction is not neces-
sary but in conjunction with the following assump-
tions, su�cient to prove the asymptotic optimality
of the risk-sensitive estimates for non-Gaussian ini-
tial conditions. Also, � is a design parameter and the
well-de�ned property of the risk-sensitive �lter heav-
ily depends on � being small enough. Note that the
theory of Section 3 does not change in view of the
above assumption although Assumption 3.2 becomes
unnecessary since from the theory of Kalman �ltering
Riccati equations, it becomes a fact.
The other implication of this assumption is that on

the behaviour of Lt and Mt . In the scalar case, it is
easy to notice the following. Obviously, from (29), it
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is clear that Lt¿0; ∀t with L0=0 and L∞¡∞, where
L∞ is the steady-state solution for the equation for Lt
in (29). Now, if we look at the equation for Mt in
(30), it is easy to deduce thatM0=−� andM∞=L∞.
Obviously, in some intermediate time period, Mt ¡ 0.
Although, we are only investigating solutions as t →
∞, we need to make sure that the risk-sensitive �lter
does not become unstable for some time t ¡∞. We
now make the following formal assumptions.

Assumption 4.2. There exists a 0¡Mx¡∞ such
that E[|x0|4]¡Mx.

Assumption 4.3. �0(:) has such boundedness proper-
ties that ��t is well-de�ned for Mt ¡ 0.

Assumption 4.4. There exists a Md¿ 0 and 0¡�d
¡�1 for some 0¡�1¡ ��1 such that ��t is a
{Yt ∨ �{x0}}-adapted process where E[ ��

4
t ]6Md

exp(4�dt).

Remark 4.5. Note that Assumptions 4.2 and 4.4
together imply that E|Dt(NNGt )|26MN exp(2�dt);
∀t ∈ [0;∞). To see this, note that |Dt(NNGt )|26
Ex0 [|x0|2 ��

2
t |Yt] from Jensen’s inequality. Hence

E|Dt(NNGt )|26E[|x0|2 ��2t ]6
√
E[|x0|4]

√
E[ ��

4
t ] where

the last step follows from Schwartz’s inequality.
Now, using Assumptions 4.2 and 4.4, it follows
that E|Dt(NNGt )|26MN exp(2�dt); ∀t ∈ [0;∞) where
MN ¿ 0 is a constant. One can possibly look for a
su�cient condition by imposing regularity properties
on �0(:) and boundedness properties on the process
NNGt such that Assumption 4.4 is satis�ed. But due to
the complicated nature of the process NNGt we post-
pone such investigation for the time being. However,
since this assumption on the growth of E|Dt(NNGt )|2
is still allowed to be exponential with a slow enough
growth, we consider it to be not too restrictive.

With the above de�nitions and assumptions hold-
ing, we present the following theorem.

Theorem 4.1. Consider the signal model (1) with
x0∼�0(x0). Consider also the risk-sensitive esti-
mation problem de�ned by (2) and (3). Then; the
risk-sensitive estimate for non-Gaussian initial con-
ditions x̂NGt is given by the following equation:

x̂NGt = �NGt + �tDt(NNGt ); x̂NG0 = 0: (32)

Proof. The proof is straightforward once we note that
we can substitute the expression for qt(x; �) from (27)
with (28) and (29) holding, in (25). Completion of
squares and integrating over the Gaussian density with
respect to x leave us with the integration over � which
we cannot perform since we do not have an expres-
sion for �0(�). From the nature of the convex cost
that goes to in�nity as |x̂NGt | goes to in�nity, it is ob-
vious that there exists a unique in�mum which can be
obtained by putting the derivative of the expression
on the right-hand side of (25) to zero. The rest of the
proof is just algebra and not shown here.

Remark 4.6. It is well known that as �→ 0, one
recovers the minimum variance estimation problem.
One can verify that by substituting �=0 in the above
equations, one can obtain the results for conditional
mean estimation for linear Gaussian systems with
non-Gaussian initial conditions as given in [18].

It is also noteworthy that the optimal risk-sensitive
estimate is expressed in terms of a �nite number of
statistics �NGt ; NNGt ; �t ; �t andMt . The di�erence with
the minimum variance case (the results of [18]) lies
in the fact that NNGt is given by an implicit equa-
tion (30) which makes the computation more di�cult.
However, one can easily see that putting �=0 would
recover the minimum variance estimation results (as
mentioned above) and such problems with implicit
equations will disappear. Also, in the case of Gaussian
initial conditions, one can obtain an explicit solution
for Dt(NNGt ) which can be substituted back in (32) to
obtain the SDE (6).

4.1. Asymptotic optimality of risk-sensitive �lters
for non-Gaussian initial conditions

In this section, we present the results on the
mean square asymptotic convergence of the optimal
risk-sensitive estimate to the suboptimal risk-sensitive
estimate with a Gaussian initial condition assumption
with zero mean and zero covariance (de�ned as �t in
Section 3, (8)).
The following theorem summarizes the result of this

section.

Theorem 4.2. Consider the signal model (1) where
x0∼�0(x0); �0 being non-Gaussian. Consider also
the risk-sensitive estimation problem given by (2)
and (3). Suppose Assumptions 4:3 and 4:4 hold. Then
the optimal risk-sensitive estimate given by (32)
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asymptotically converges to the suboptimal risk-
sensitive estimate given by (8) and (9) in the mean
square sense; that is;

lim
t→∞ E|xNGt − �t |2 → 0: (33)

Proof. Note that from Remark 4.5, we have
E|Dt(NNGt )|26MN exp(2�dt); ∀t ∈ [0;∞).
Using Minkowski’s inequality, one can write

E|x̂NGt −�t |26{
√
E|x̂NGt −�NGt |2 +

√
E|�NGt −�t |2}2:

(34)

Note from (28) and (32) that one can write

d�NGt = (F − �tH∗H)�NGt dt − ��t�tDt(NNGt ) dt

+�tH∗ dyt: (35)

Comparing this with (8), we have

d(�NGt − �t) = (F − �tH∗H)(�NGt − �t) dt
−��t�tDt(NNGt ) dt (36)

which immediately gives us

E|�NGt − �t |2

6�2E
∣∣∣∣
∫ t

0
	t	−1

s �s�sDs(N
NG
s ) ds

∣∣∣∣
2

6�2E
∣∣∣∣
∫ t

0
‖	t	−1

s ‖‖�s‖‖�s‖|Ds(NNGs )| ds
∣∣∣∣
2

6�2M�;�e t exp(−2�et)[1− exp[− 2(� − �e)t]]
6�2M�;�e t exp(−2�et); (37)

where 0¡�e=�1−�d and we have used (15), (13),
the fact that �t is bounded (from Assumption 3.2)
∀t, and Jensen’s inequality. M�;�e ¿ 0 is a constant
independent of t. We have also arbitrarily taken � −
�e = �
¿ 0. If �
¡ 0, one could obtain the following
expression for the above bound:

E|�NGt − �t |26�2M̃ �;�e t exp(−2�t); (38)

where M̃ �;�e ¿ 0 is a constant independent of t. Note
that �; �1 can be chosen such that �
 6=0.
Also, from (13), we have

E|x̂NGt − �NGt |26M 2
2 exp(−2�et): (39)

Going back to (34), it is obvious from (37)–(39) that
t → ∞, we have
lim
t→∞ E|x̂NGt − �t |2 → 0: (40)

Corollary 4.1. Consider the signal model (1) where
x0 ∼ �0(x0); �0 being non-Gaussian. Consider also

the risk-sensitive estimation problem given by (2) and
(3). Suppose Assumptions 4:3 and 4:4 hold. Then the
optimal risk-sensitive estimate given by (32) asymp-
totically converges to the suboptimal risk-sensitive
estimate given by (21) and (22) in the mean square
sense; that is;

lim
t→∞ E|xNGt − �Rt |2 → 0: (41)

Proof. It follows easily from Remark 3.9.

5. Conclusion

In this paper, we have addressed the problem of
risk-sensitive estimation with non-Gaussian initial
conditions. We present the risk-sensitive �ltering re-
sults for linear Gaussian systems with Gaussian initial
conditions and show that a suboptimal risk-sensitive
�lter with zero initial covariance (the extension to
any arbitrary initial covariance is possible as long
as it results in a stabilizing solution of the corre-
sponding algebraic Riccati equation) asymptotically
approaches the optimal risk-sensitive �lter with the
true initial covariance in the mean square sense. Next,
we derive the expressions for a conditional measure
which we call as the risk-sensitive information state
and those for the optimal risk-sensitive estimate for
non-Gaussian initial conditions. We show that the op-
timal risk-sensitive estimate can be expressed in terms
of a �nite number of statistics. Lastly, we show that
the suboptimal risk-sensitive estimate with zero initial
covariance (or any arbitrary Gaussian initial condi-
tions that satisfy the constraint mentioned above)
asymptotically approaches the optimal risk-sensitive
estimate with non-Gaussian initial conditions in the
mean square sense under certain conditions. Fi-
nally, one can recover the corresponding conditional
mean (or minimum variance) estimation results for
non-Gaussian initial conditions by letting �→ 0.
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