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Complexity Reduction in Fixed-Lag Smoothing for
Hidden Markov Models

Louis Shue and Subhrakanti Deylember, IEEE

Abstract—in this paper, we investigate approximate smoothing traffic modeling in communication networks [8], and many
schemes for a class of hidden Markov models (HMMs), namely, other biological and physical systems where dynamics of
HMMs with underlying Markov chains that are nearly completely .y isinje rates are involved. Currently, investigations are un-

decomposable. The objective is to obtain substantial computa- d to d | . h d tracki lgorith f
tional savings. Our algorithm can not only be used to obtain ehway 10 Ceveiop Image-ennanced tracking aigorithms 1o

aggregate smoothed estimates but can be used also to obtaifligh-resolution radar applications with a large number of tar-
systematically approximate full-order smoothed estimates with gets where NCDMCs are useful. While most previous work on

computational savings and rigorous performance guarantees, NCDMCs concentrated on fully observed systems, very little

unlike many of the aggregation methods proposed earlier. work had been done (prior to [4]) on reduced-complexity state
Index Terms—Hidden Markov model, nearly completely de- estimation for partially observed NCDMCs (or in other words,
composable, reduced-complexity, slow—fast decomposition, stattHMMs with underlying NCDMCs). Since, in many of the

aggregation. above applications, the underlying NCDMCs are only observed

through noisy measurements, reduced-complexity filtering

l. INTRODUCTION and smoothing results for such partially observed NCDMCs

are indispensable. In this paper, we propose an approximate
IDDEN Markov models (HMMs) areextremelyusefulf(_)rsmoothing algorithm for partially observed NCDMCs that

modeling nonlinear physical phenomena. Although ONYjtilizes this hierarchical structure and provides estimates to

nally_applied in speech recognition applications [1], signal P'%e conditional smoothed state probabilities but with a reduced
cessing methpds_ based on HMMS have been succes.sfully er of computations compared with if exact smoothing was
plied in equalization of communication channels [2], tlme-s(j%-

: s . . b arried out.
ries applications such as in econometrics and seismic stu IeRICDMCs have been extensively studied in [5], which consid-
[3], biological sighal processing, and many more areas. Mq ’

) o d NCDMC:s (for a two-level hierarchy) with transition prob-
of these methods heavily depend on generic signal process.’ﬂﬂity matrices of the formP = I - A+ ¢ B, wheren denotes

techniques such as state and parameter estimation algorithmé‘total number of states, and 0 is a small perturbation pa-
It is well known that “filtering” and “smoothing” are the two ... Herel,, is the(n >< n) identity matrix, and

most important techniques for state estimation. In this paper,

we address the problem of smoothing for a class of HMMs with Anp 0 - 0
underlying Markov chains that are “nearly completely decom- 0 Ay - 0
posable.” The results presented in this paper are an extension of A= 0 0 0

the filtering results presented in [4].

Nearly completely decomposable Markov chains (NCDMCs)
are Markov chains with a readily identifiable hierarchical strugyhere 4;; € R™ X" Vi, S;ni = n, and O denotes zero
ture of two or more levels. Although, in various applicationsmatrices of appropriate dimensions. Note that+ A is also
NCDMCs consist of a large number of states, the states @fy-stochastic, and rows of and B sum to 0. We also make
NCDMCs can be easily grouped together in what we shafle following assumption.
term “super-states” [4], with strong interactions (i.e., high Assumption 1.1:P andI, + A;;, Vi are irreducible.
probability of transition) within these super-states and weak Typically, » is much larger thanV, and thus, ife = 0,
interactions between any two such super-states (i.e., smBab chain decomposes infé separate noninteracting Markov
probability of transition). In [5], applications of NCDMCs werechains. For smal, the states can be clustered iffogroups
studied in queuing and computer systems. Further applicatiGiigh that there is strong interaction between the states in a given
can be found in production planning of manufacturing systerggoup but weak interaction between the groups. Following [4],
[6], variable bit-rate video coding [7], multiple time-scaleve will term the N groups the “super-states.” We denote the

state of the full Markov chain a&;, € {1, 2, ..., n}, and the

0 0 - Ayn
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This weak coupling is crucial in obtaining computational sawcation constraints, as well. For example, in an environment
ings in many estimation and control algorithms for Markoviawhere multiple sensors are sending information, it might not
systems with underlying NCDMCs. be possible to send fine information due to bit-rate constraints,
Previous research on NCDMCs has mostly concentrated amd hence, it might just be practical to send coarser information
obtaining approximations to the steady-state distributions (&.g., information about the macro states). This may also be
these chains. Various approaches have been put forth to dedfeuse in hierarchical control systems, where a controller
from P an aggregate version of smaller dimension, resultirej one of the top levels of the hierarchy may not want fine
in schemes ofO(¢) [5] approximation or even the exactinformation since it may only want to control transitions from
distribution using stochastic complementation methods [9]ne macro-state to another (e.g., the controller may want to
An iterative scheme to obtain approximations of (potentiallRnow that a failure has occurred and not what particular kind
arbitrary accuracy that avoids possible numerical ill-condof failure it is). It was demonstrated in [4] that substantial
tioning was given in [10]. There have been several other studesmputational savings can be obtained in calculating the
that contributed to the development of decomposition-aggraggregate filtered estimates (approximate) via a decoupling
gation methods for obtaining reduced-order approximatiossheme for this class of HMMs. It was shown that one can
for uncontrolled [11], as well as controlled Markov chainsbtainO(c?) approximation to the aggregate filtered estimates
[12], [13]. A singular perturbation interpretation to Courtoiswith substantial savings. It was also seen that some aggregation
aggregation is also given in [13]. The singular perturbatiamethods (including Courtois’ method) may be adapted to
approach to study aggregation of finite-state Markov chains halstain comparable results as far as aggregate filtered estimates
also been studied in [14]-[16]. In [10], the aggregation meth@ie concerned. However, the algorithm proposed in [4] can be
developed is also used to obtain aggregation of the polioged to obtainD(e?) approximation to the full-order filtered
iteration method in infinite-horizon optimal control of suctstate estimates, whereas none of the aggregation methods can
Markov chains. In summary, these works developed variobe adapted to achieve that. The computational savings in calcu-
aggregation/decomposition schemes to obtain approximatidating approximate full-order estimates are also substantial if
to steady-state distributions and hierarchical aggregation the large-scale NCDMC has superstates with small individual
optimal control policies for such Markov chains. The problerdimensions. All the results of [4] are also valid for a state-to-ob-
of the infinite horizon average cost control problem for suckervation transition probability matrix that is a polynomiakin
Markov chains was also addressed in [17] and [18]. It waerturbation of the “slow” block-structured transition matrix.
shown that the optimal solution can be approximated by &fowever, obtaining reduced-order computations for the state
optimal solution to the so-callddnit Markov control problem estimates for a generél matrix is still an unsolved problem.
for a sufficiently smalle. Algorithms were also provided to Inthis paper, we present reduced-complexity smoothing algo-
achieve these control strategies. rithms for such partially observed NCDMCs. Following similar
Very few studies exist, however, on partially observetbchniques in [4], we do the following.
NCDMCs. The state estimation of HMMs where the under-
lying Markov chain is an NCDMC was firssystematically
investigated in [4], although some related studies can be found
in [19] and, more recently, in [20]. In [4], apart from the
structure inherent in NCDMCs, an additional assumption was
made on the observation probabilities. This assumption was
that the observation proba_bilities re_ﬂect the bloc_k structure same0(¢2) approximation, as indicated originally for the
of the Markov states. That is, for a given observation symbol, filtering results in [4]).
the state-to-observation transition probability is constant for 3) We perform comparative studies regarding computational

arlll states within the same super.stati. To'statebforn;ally, let savings obtained in calculating full-order and aggregate
the state-to-measurement mapping be given by the mea- . thed estimates.

1) We provide a systematic method to obtain @fe?)
approximation to aggregate and full-order conditional
smoothed probabilities.

2) We show that using aggregation methods of [5] and [10],
one can obtain comparable approximations to the aggre-
gate estimates (in fact, Courtois’ method results in the

surement matrixC, wherec;; = Pr(Yy, = i|Xi = j), S ]

i€{l,2, ..., M}andj € {1, 2, ..., n}, andY; denotes the The novelty of our contribution lies in the following.

discrete observation at tinie Following [4], we also make the 1) Our method provides systematiavay to obtainO(e?)

following assumption o/’ to be used in this paper. approximations to the full-order (not just aggregate)
Assumption 1.2:¢;; = ¢, Vj € 51, Vi. smoothed estimates, whereas no aggregation method can

We make the following additional but standard assumption  be adapted to achieve this.
on C since otherwise, the measurements contain very little in- 2) Even though the aggregation methods of [5] and [10] can
formation of the Markov states. be adapted to achieve comparable (and in some cases
Assumption 1.3:min;; ¢;; > ¢ > 0. better) approximations to the aggregate smoothed esti-
The applicability of such block-structured observation mates, they can becorad hocin certain cases, e.g., when
probability (as required by Assumption 1.2) matrices not only  the state-to-observation transition probability matrix is a
lies in modeling of management systems (where top levels small perturbation of the block-structured matrix (as dis-
of management are only interested in macro-behavior rather cussed previously).
than micro-behavior) but in real engineering applications like 3) Unlike the filtering results of [4], the computational sav-
distributed control environments, particularly with communi- ings obtained in calculating the full-order approximate
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smoothed estimates are quite substantial compared withere! € {(1, 1), (1, 2), ..., (»n, n)}. The recursion for this
exact calculations. probability vector is (see also [22])
4) In a special case when the individual sub-Markov chains
identified by the super states (when= 0) are indepen- 1
dent and identically distributed (in this case, the state-to- ~ Mjx+1jx+1 = T I e PCy;
observation transition probability matrix has no restric- et

tion on itself), one can obtai®(e®) approximations to - LH]. s (ln @ P) (I, @ Oy, ) (1)

the full-order and aggregate smoothed estimates. Notice L1

that no aggregation method can be adapted to achieve this. )

This result is not explicitly included here but follows im-Where Cv.,, = diagcni), where Y3, = m, and
mediately from similar filtering results in [4]. This obser-* L2, Zpyr = Hi:kl’gpcykﬂl"z is a scalar

vation is also a clear indication that our algorithm prorormalizing constant that ensur®s_; II; xy1jx4+1(i) = 1.
vides asystematiavay of exploiting the system structure By definition, theith entry of the smoothed probability vector
in obtaining computational savings while providing rig{l;|;+a attime; with lag A for the unaugmented HMM s just
orous performance bounds on the order of these approx-

imations. . .
. . , , 11j1;4a(0) = Pr(X; = i[¥Vjqa)
In Section II, we describe the aggregate smoothing algorithm N
followed by the approximate scheme in Section Ill. We illus- _ Pr(X: —i Xoon =2V
trate the performance of the smoothing algorithm by some sim- ; BNy =1 Kjea Vi+a)

ulations and comparative studies in Section IV. Finally, some
concluding remarks are presented in Section V. Hence, the smoothed probability vectdy;; A for the unaug-
mented HMM can be evaluated by summing appropriate terms
in the filtered probability vector for the augmented model
Il. AGGREGATESMOOTHED ESTIMATES

A. Exact Smoothing Equations b 00

To construct an HMM fixed-lag smoother, we proceed Hitira =1 jeaiea 8 0' 10
similarly to [21] (which extends Kalman filtering results to "
smoothing results) by constructing an augmented signal model, =11 jyap+alln @ 1n)
consisting of the original Markov chain and a stateof which 1
the smoothed estimate is sought after. A filtered estimate of the =7 1L ;i; (I, © P) (I, ® Cy, ., )
augmented model at time(>5) will then contain within it a J+A
filtered estimate of the stat§;. as well as something equivalent (I, ®P) (In ® CYHA) (I, ®1,)
to a smoothed estimate of the original model at time 1

Definition 2.1: For eachk > j, let 2, = Z;; = =7 I 15 (I @ Ujgaj4aly) 2
[X; Xi] be an augmented state vector consisting of the J.g+A

states of the original Markov chain at a fixed timieand a
variable timek.

From Definition 2.1, it can be seen thdj, can only assume
the values (1, 1), (1,2), ..., (1, n), (2, 1), ..., (n, n). It Ujy1,j4a = PCy,  PCy,_,---PCy,_ ,.
follows (see [22] for details) then that the transition probability
matrix for such a Markov chain B = I,,® P, where® denotes We have also used the prope(t} @ B)(C @ D) = (AC) @
Kronecker product. We will now argue that the output proce$$D)-
Y;. of the original HMM can also be regarded as the output Remark 2.1:Although (2) has been obtained from an
process of an HMM with stat&;, for & > j. That is, suppose n2-state augmented system, by straightforward algebraic ma-
that the output process associated withis the same as before nipulations, we can rewrite it in a more compact form involving
and, consequently, th&tr(Y;, = /|Z;) = Pr(Y;, = ¢|X,); Products of(n x n) matrices. That is, each component of the
this means that the corresponding observation métfor the 11;);+a can be written in terms of the corresponding filtered

whereZ; ;1 A is a normalizing constant, and

augmented Markov chain&=[C C --- C]=1,®C, estimate at time as
wherel,, denotes a column vector of lengghwith all entries
equal to 1.

1
Wjjra = ——diagll;)Ujt1, j+aln.

In the subsequent discussions, we will use the shortBand A

to denote{ Yo, Y1, ..., Y3 }. Denote the 1 x n?) filtered prob-
ability vector for 2. asll; .., with each component being
B. Aggregate HMM Smoother

Let us consider, as in [10], the nonsingular transformation
I (1) = Pr(2y, = 1|) I'=[W, W]suchthatl, =[W, W][;!], whereW, €
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R™*Y and theith diagonal blocks iV, € R*<(=N), v, ¢ where¢'}", ), n{')",, denote the unnormalized variables
RY*" andV, € R N)x» gre given as follows: for eachL J.
2)
1y, 0 - 0
0o 1, 0 0 1 2 n n
W, = . 02 0 (3a) [C,( k41 77,( ;3+1 CJ( k41 771( 13+1 . CJ( k)+1 §k?+1:|
L o 0 1., 1 |:C(l)u Wu - o@u@u o u }
i Z gkl T k+1 Sik+1 Tkl - Gk+1 k41
y 0.0
Wi = ; (3b) @)
L ng—l
V(z) 1 0 - 0] (3c) where it is easy to shgw th(gz;flfﬂ of (1) can be also
. expressed a&x1 = > i) ¢ pq1ln.
Vol = [=1pm1 In—a]. (3d)  step2: Ateachk = j + A, whereA denotes the smoothing

lag, the full-order smoothed probability vector is computed by
We note that the aggregate fixed-lag smoothed state estlm%t&%mmg the contribution from eacti;

can be represented as

Gli+a = U 40aW1 @ s
[C“) RPN I S I . A}
where CJ|J+A c RlxN, and le]-f—A(i) _ Pr(Xj c 73+ 7+ Jj+ 7+ 73+ 5,3+
SilVia) = Xies, Pr(Xj = £Vja). “(In ® Lsn) ®)
We will now indicate the steps to obtain the aggre- )
gate smoothed estimates using the transformation matridd¥erel., = [Ly 0 --- OJ(eR™T), andll; () =
(3a)—(3d). Pr(X; = i|Vjta).

Step 1: Denote the product dfl; 4, with the ith diagonal Step 3: Thg aggregate smoothed probability vector is then
block of I, @ [W, W] as[g(z (Z) ) 1, with C(Z) RLX N computed using (4). We then have

and (7) e RYX(»=N) \where eac () is
. Uk [Gli+a Mig+al =14 (W1 Wa]. 9)
¢ = [Pr(X; =4, Xy € S1)) Pr(X; =1, Xy, € So| Vi)

Remark 2.2: Similar to Remark 2.1, (6) and (7) can also be
. Pr(X =i, Xx € Sy

Yi)]-  written as

We will now rewrite (1) in terms ofC(k and 77 ¢u o (u

J,k+1 77] k—+1
1=1,2 ..., n. Thatis @) )

C. u S u

ak+1 k41

I sg1jprr (In @ [W1 W2])

C(ﬂ)u (n)u

1 Vi
= TH 1L g <In @[Wy W;] [{@}) k1 Tkt
C(l) 77(1)
(In®P) (In®CYk+1) (In®[W1 WQ]) g,k
C(Q) na | v
or _ j {v; } PGy, (Wi W] (10)
1 2 2 n .
|:C§ k41 771( 13-1-1 Cj( k)+1 J( k)+1 . Cj( k41 771(,13-1-1} n) )
W (@ () () G T
1 1 2 n
[C Gk Mo G k} where
A1, Vi PC [W W. ] (5) (4) 1 (i)u (7)'11,
T Vet T e L T ) |:CJ k1 7, k+1} = Zs |:CJ k1 "0, k+1}
Note that this recursion can also be written in two steps: Vi=12...,n
1)
In [4], it has been shown that such calculations (for a fiked
|:C(1k)u1 (llzul <=(2k)u1 (2k)u1 ) C(?ul (f;}ul} can be performed approximately by decoupldjﬁgl from 77( 2
e st Tk The subsequent calculations (whether for aggregate orfull-order
[C(l) (1) 5(2) '2)‘ C( 77(n)} smoothed estimates) require a reduced number of computations
K ke Tk [as they only require recursive computatlons§§)f)k+1, i =
1% 1,2, ..., n] and the estimates are 6f(<?) in approximation.
' <I" ® [V } POy [W1 W ]> ©)  We will show a similar development in the next section.
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[ll. A PPROXIMATE O(¢?) AGGREGATE SMOOTHER the purpose of the original objective of this work. Under the

In this section, we will adopt the decoupling transformatio}‘]n"corm boundedness assumption by, it is a common prac-

technique as used in [4] to obtain approximate aggregate algg n smgular perturbauon literature [23] to expahd as a
full-order smoothed state estimates. power series of: Ly, = Ly(0) + cLy(1) + - -, whereLy(0)

As indicated in (10), for fixed and at eaclt, the computa- is the solution to (16) whea = 0. O_ne can iteraFiver compu'_[e_
tion of | C(Z (Z) ) Jinvolves only products offn x ) matrices. L(0), Ly(1), etc., and truncate this power series at some finite
J

We will iow recaII some results from [4] that are directly appI|power ofe to obtain a desired order of accuracy foy.

cablei in the present situation. Denote the transformed variab eg— he f|rst steé)tén ?Srctjgrntg“g:tﬁ:g rfiﬁg\:;'r\]’e fa%rppj;%té?n:sfor
as[¢(") 7] given by g fact

sumptlon 1 2, théth diagonal element idl¥ is;; if Yiy1 = j

i ; ; s [In Ly andC’ = 0. Similarly, all the elements of thi¢h diagonal block

[C;,;z %(;3] = [CJ(;Z 77,(;1] [ (J)\ Ink]\’:| (11) in A’g, C% are scaled by;; if Y41 = j. Due to this simple
scaling property(A") L A% can be written as a time-invariant

where it is trivial to demonstrate that matrix Gy € RN *(—N) One can now rewrite (16) as
—1 —1
Iy Ly _ In L Ly = Ak Lkék — G+ eGrat Lo=0 (17)
[ 0 In—N:| = [ 0 In—N:|' (12) + ( 1) 2 +

hereGk 1= (Ak)_l(Lka—BkLk 1+LkaLk 1—Bk).
Nx(n—N) + 1 k2 1~k+1 T e Mkt 2
Here {L; € R™~ } is assumed to be (for the time be'ng)ﬁs mentioned above, it is a usual practice in singular perturba-

a sequence of uniformly bounded time-varying matrices to 8n literature to express the solution to (17)fas= L(0) +
solved for. More rigorous statements will be made regardmgthg (o), whereLk( ) can again be written (under the uniform

uniform boundedness df;. later in this section. oundedness assumption) as a power seriesltrwas shown
Now, to simplify the notation, let us introduce the shorthan [4] that L, (0) satisfies the following recursion:

A Ak v PCy, . [W, W. 13 ) ok

Fra e e R (W1 W2l (13)  Lypi(0) = (Al) Li(0)C% — Gy, Lo(0)=0. (18)

It was also shown in [4] that ds — oo, L;,(0) — L(0), where
L(0) = VI AW, (Vo AW,) ™1 (noting thatV, AW, is invertible
[10]). Since we are mainly interested in the solution to (17) as

whereA11 = Al + eBY, AY, = Ak + B, A = CF + eDF
and A%, = Ck + <D}, and the |nd|V|duaI terms are

Pk _ k — oo, we can obtain a)(¢?) approximation tal; by re-
=N+ A0, W, Br=WNB0y, W (143) placingL;, with L(0) —|—ch(1)(. It)vvas shown in [4] how one can
=Vi(ln + A)Cy,,  Wa, BN = ViBCy, W2 (14b) obtain reduced-complexitg(<?) filtered state estimates using
o this approximation td.;.
=Volln + A)Cy,, . W1, Dr =V2BCy,, W1 (14c) It would be appropriate here to make some comments about
= VoI, + A)Cy,,, Wa, D =V,BCy, Wa. (14d) the uniform boundedness df;. as a solution to (17). Denote

by ||.||2 the Frobenius norm for a matrix (note that this is a ma-
Using (11)—(13) [and writing only thérow of (10) for sim- trix norm for a square matrix). Note that the uniform bound-

plicity], we have the following recursion: edness orl;, demands thal, € D 2 L |L)]2 < (1 +
) © cL)||[L(0)[|2}, where|[Ly(c)lla < eL|[L(0)l2, and|[Zx[[2 <
[Cj ka1 ﬁj k-l—l] (1 + eL)||L(0)||2, Yk. It was shown that under some suffi-
TIe —L cient conditions (which essentially indicate thahould be suf-
Z [C(Z) ﬁﬁ] { 6\ I k} ficiently small), one can guarantee thiat € D. For more de-
k1 _ n N tails on these sufficient conditions and a rigorous proof of this
Afy AR (Iy  Lin result, see [4].
’ Ak Ak, L.~ One can similarly show from (17) (under the uniform bound-
edness assumption dn,) that the recursion fak (1) is as fol-
L 70 o lows:
= [ 7% ows
Zk+l ik i,k .
Ak — L, Ak 0 Liy1(1) = (A’f> Li(1)C5 + Qi (19)
. { } (15)
Al A5y Ly + A5,

whereQ;, = (A% (L(0)D5+L(0) Dk L(0)— BFL(0)— BY).
whereL; satisfies For a remark on the uniform boundednesd.gf1), see [4].
It will be clear presently that in order to reduce the number
(Afl - LkA’gl) Liy1 = L AL, — A%, Ly=0. (16) of computations with a®(¢?) approximation to the smoothed
state estimates, we only need to consider solvingZipfl).
Note that one can solve fdt; recursively using (16), pro- Higher order approximations td; do not result in compu-
vided (A¥, — Ly A% )~ exists for allk. However, this method tational reductions. Later in this paper, we discuss how using
results in substantial computational requirements and defeats~ L(0) + ¢L; (1) lets us obtain reduction in computations.
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TABLE |
COMPARISON OFNUMBER OF COMPUTATIONS FOREACH SMOOTHING SCHEME
Additions Multiplications + Divisions”

Full-state: Exact An’(n—-1)+nN -1 And+n

Decoupling scheme | (A —1)N?(N —1)+nN%2—1 | (A~ 1)N® +nN?+ N
Aggregate: Exact An*(n—1) +nN -1 An®+ N

Decoupling scheme | (A —1)N3(N —=1) +nN2—1 | (A-1)N3 +nN2+ N

Courtois’ method | AN2(N —1) + (N2 —1) AN+ N

First, however, notrce that, from (15) one can rewrite the dexists a large enough but frnrtlra) such thatvk > ko, an
coupled recursion for; i, 1=1,2,...,nas O(€?) approximation toC o 77] k is given byC(i and 7 77] k,
respectively, via (21)w = 1,2, ...,n. Furthermore for

@ 1 _q — i i i
=@ ( (A21Lk+1 +A22) (20) J > ko — A, anO(€?) apprOX|mat|on to the exact fixed-lag

Tkt = smoothed estimatél;; ;. (which is denoted asl;);, ) is

(4) i) 20) ~(i
It is easy to show that under the following assumption (ASIVEN via (8) Wity s 71; 4 o TePIaced Y50 07155y s
: —(4) . - - respectrverVL =1,2, ..., n. Similarly, fOfJ > ko — A, an
sumption 3.1)77; 3 — 0, Vi ask — oco. For sufficient condi .
tions under whrch this assumption holds, see [4]. O(€?) approximation to the exact aggregate smoothed estimate

Cj1j+a IS given byll; ;AW
Assumption 3.1:The evo(lzut|onrk+1 o 7k(A21L"+fX—Z42A2,2 Jlljzinally, we note tjrltjat the aggregate smoothed estimates can
[namely, the recursion fcﬂj: x In (15)], wherez, € R also be obtained by using Courtoi¥’x /N aggregate matrix and
is exponentially stab!e the aggregate observation probability matrix of §iZex V. The
The rate at whrchﬁ » — Olis determined by the fast eigen- subsequent smoothed estimate can be obtained by substituting
values of A% L1 + A22 and how close they are to the origin.

It follows from Assumption 3.1 that there exists a large enough P* =1y +¢ [V1 — VlAWQ(VQAWg)_%] BW; (22a)
but finite ko such that fork > ko, |ﬁ§zi| is of O(e?). Setting

ag —
@.(f C,(Z;u 0 = (”) for k < ky, consider the following O =Gk = (PrTe = mlXi € 5,)) (220)
approximate recursrons far > ko: for P andC, respectively, into (1) and (2) with other appropriate
‘ ‘ changes in dimensions. Following [4], it can be shown that this
Cn L =¢ (fl’fl —~ L(O)fl’;l) aggregation technique results in the saife?) approximations
to the exact aggregate smoothed estimates. In fact, one can use
10) 1 (i Z 5 (Du the aggregation technique of [10] to obtain aggregate smoothed
Cikgr = CJ k+1 b+l = Z SN estimates, which happens to provide a slightly better approxi-
‘ =t mation. It is also worth noting that the aggregate smoothed es-
J(,Zi+1 5}7%“ (L(0) + €Ly 41(1)). (21) timates obtained through using these aggregation techniques of

[5] or [10] require fewer computations than using the method
It was shown in [4] how these recursions resultite?) ap-  suggested in Theorem 3.1 (see also Table I).
proximations to the exact recursions given by (7). Before we However, we emphasize the facts that 1) we cannot obtain
summarize our results in the following theorem (Theorem 3.Ikduced-complexitfull-order smoothed estimates using any of

we need to make one further assumption. these aggregation techniques, and 2) we cannot easily extend
Assumption 3.2: is sufficiently small such that/Z;, = these aggregation ideas to the case where the state to observa-
(1/Z3) + O(?) uniformly in k. tion transition probability matrix’' is a small perturbation of the

Remark 3.1:Note that Assumption 3.2 guarantees that th#lock-structured” form, as specified by Assumption 1.2. In this
normalization procedure does not alter the order of approximaase, it was observed in [4] that some of the aggregation tech-
tion of the unnormalized variables. nigues may becomed hoc It is also worth noting that our algo-

Without further ado, we present the main result of this papdathm provides asystematienethod of obtaining reduced-order
in the following theorem. The proof is not included here simplgomputations to aggregate as well as full-order smoothed es-
because it is identical to that of a similar theorem (Theorem ftijnates. It was shown in [4] that in a special case where the
in [4]. It also follows easily from the previous discussions. Notsub-Markov chains given by,,, + A;; are independent and
that in the statement of the theorem, it is implicitly assumed thiglentically distributed (i.i.d.), our method can be used to obtain
there is a uniformly bounded solution to (17), i.eLx}, £ >  O(¢®) approximations to the aggregate and full-order smoothed
0 is a sequence of uniformly bounded matrices. The sufficieestimates, whereas none of the aggregation techniques of [5] or
conditions for this uniform boundedness to hold are stated [it0] can be adapted to achieve this.

[4] and are not repeated here in the statement of the followingWe now indicate the savings in computations when the de-
theorem. coupling transformation is used with the assumption that the

Theorem 3.1:Consider a hidden Markov model with thematrices in (13) can be precomputed and stored in memory due

system matriced”?, C' as given in Section |. Suppose that
Y 9 pp IWe have only indicated the number of divisions required in principle for

Assumptions .1-1* 1.2, _1-3, 3;1’ and 3.2 hold. Consider thgrmahzatron in practice, more divisions are necessary to prevent numerical
exact smoothing recursions given by (6) and (7). Then, thangerflows in the calculations.
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TABLE I
COMPARISON OF EXACT (FULL-ORDER) SMOOTHING
WITHDECOUPLING SCHEME

to the finite discrete nature of the observation process. The com-
parison of the savings in computations at egclor a given
smoothing lagA are given in Table I. Note that while for aggre-

gate smoothed estimates, an algorithm adapted from Courtois’ Average approximation error
method require fewer computations, for full-order smoothed es- ¢ | Bxact Smoothing | Decoupling Scheme
; i i ianifi ion i ) 0.001 | 1.22759636430736 | 1.22759762653319
tlmat_es, our algonthm provides a 5|gn|f|cant reduct|0n_ in com 0005 | 1 2220150582132 | 1293122070098
putatlona_l requirements compared with exact calculations. The 0.01 | 1.23981392134711 | 1.23081602582461
aggregation methods (including Courtois’ method), of course, 0.02 | 1.26983658072958 | 1.26983627705158
cannot be adapted to compute full-order smoothed estimates. 06015 ig;gg?g‘l’iggiﬁ; i-gggggigﬁgfﬁg‘;
In the next section, we provide a comparative simulation : ' :

study involving our algorithm and algorithms adapted from the

aggregation techniques in [5] and [10]. We will use the same example as in [4], showndnB, C,

and L(0) at the bottom of the page.

The difference between exact and approximate smoothing
using our decoupling scheme is shown in Table Il. A com-

In this section, we will compare the exact full-order angarison of the approximate methods is tabulated in Table III.
aggregate smoothed estimates with those obtained using buis seen that as far as aggregate smoothed estimates are
decoupling scheme, as well as commenting on the resuttncerned, our decoupling method results in the same per-
obtainable from the aggregation schemes of [10] and [5]. Tiemance as a method adapted from Courtois’ aggregation
results were obtained using 20 000 data points, averaged owaycedure. TheD(¢?) approximation can be clearly seen in
20 sets, with a fixed smoothing lag of 50. This smoothingig. 1. However, the aggregation matrix of Aldhaheri/Khalil is
lag was chosen by noting that there was no significant irseen to consistently outperform our method by small amounts.
provement in smoothing performance when the lag exceedddvertheless, we reiterate that our algorithm isyatematic
this value. The aim is to illustrate the claim 6f(¢?) ap- method for computing aggregate conditional densities with
proximation that was made in Section IIl. The error criteriseeduced-order computations. While other aggregation methods
used is(1/7T) kT:_Ol g k+a — 1| (which is an estimate can be adapted to achieve comparable approximations to the
of E|Ilyjx+a — x| @sT — oc), wherell, denotes the state aggregate smoothed estimates, this fact, along with the order
vector at timek; for the comparison of the various approxi-of approximation achievable((<?) for an adapted version
mate schemed]; is replaced by the approximate smoothedf Courtois’ method] has not been established anywhere else.
probability vectors. Furthermore, our method offers the provision of computing the

IV. SIMULATIONS

r—0.35 025 01 0 0 0 0 0 7
0.15 —065 05 0 0 0 0 0
055 015 —07 O 0 0 0 0
Ao 0 0 0 -03 03 0 0 0
0 0 0 0.3 —-0.3 0 0 0
0 0 0 0 0 —04 025 0.15
0 0 0 0 0 0.3 —-042 0.12
L 0 0 0 0 0 0.15 035 —0.5
r0.l  0.15 —=1.0 0.6 0.05 0 0.05  0.05 7
0 01 -09 0.5 0.05  0.05 0.1 0.1
0.01 0.01 -04 0.2 0.05  0.05 0.04 0.04
g |002 042 001 001 —061 002 01 0.025
045 0.01 04 -1.0 001 0.1 0.01  0.02
0.01 0.05 001 0.01 005 001 -—015 0.01
0.03 0.01 003 0.04 0.01 001 0.01 -0.14
L0.01 0.05 0.01 001 005 —0.16 0.01 0.02 J
[0.25 0.25 0.25 04 04 0.57 0.57 0.57
C=1032 032 032 05 05 016 0.16 0.16
043 043 043 0.1 0.1 027 027 027
[—0.25 —025 0 0 0
L(0) = 0 0 -0.5 0 0
0 0 0 —0.4048 —0.2121
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TABLE I [4]
AVERAGE APPROXIMATION ERROR OFVARIOUS AGGREGATE SMOOTHING
SCHEMES RELATIVE TO EXACT AGGREGATE SMOOTHING
[8]
Average approximation error
€ Decoupling Scheme | Adapted Courtois | Adapted Aldhaheri/Khalil [6]
0.001 | 0.00000094826370 | 0.00000094826370 | 0.00000070769290
0.005 | 0.00002408049681 0.00002408049681 | 0.00002002193453
0.01 | 0.00009652988268 | 0.00009652988268 | 0.00007453286536 [7]
0.02 | 0.00034936827430 | 0.00034936827430 | 0.00027410254254
0.05 | 0.00165916284703 | 0.00165916284703 | 0.00129521052786
0.1 | 0.00467331907768 | 0.00467331907768 | 0.00351863089563 (8l
" [l
x 10
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Fig. 1. Aggregate smoothing via decoupling relative to the exact aggregatg 7]
smoothing.

full-order estimates, whereas the aggregation methods cann%?]
be extended to achieve such full-order computations. It was
also shown in [4] that for a special class of these HMMs, wher®]
the underlying NCDMC is i.i.d [i.e.({,, + A;;) has identical
rows for eachi], then one can obtai(¢®) to the aggregate [20]
filtered estimates with large computational savings using our
method, whereas none of the aggregation methods discussgé;
here can be adapted to achieve such savings. Such results also
hold for smoothing. We do not include any simulation results??!
here, but for similar filtering results, see [4].

(23]

V. CONCLUSIONS

In this paper, we propose an algorithm for obtaining approx-
imate smoothed state estimates for a class of HMMs with (pos-
sibly large-scale) underlying NCDMCs. These approximations
are of orderO(¢?), and they result in substantial computational
savings.
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