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We present reduced-complexity nonlinear filtering algorithms

for image-based tracking of maneuvering targets. In image-based

target tracking, the mode of the target is observed as a Markov

modulated Poisson process (MMPP) and the aim is to compute

optimal estimates of the target’s state. We present a reduced

complexity algorithm in two steps. First, a gauge transformation

is used to reexpress the filtering equations in a form that is

computationally more efficient for time discretization than

naive discretization of the filtering equations. Second, a spatial

aggregation algorithm with guaranteed performance bounds is

presented for the time-discretized filters. A numerical example

illustrating the performance of the resulting reduced-complexity

filtering algorithms for a switching turn-rate model is presented.
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I. INTRODUCTION

There is significant motivation to develop
reduced-complexity filtering algorithms (with explicit
performance bounds) for tracking maneuvering
targets. Maneuvering target estimation is an important
problem in target tracking due to the uncertainty in
maneuvers of the target. In a hostile environment a
target will try to avoid being tracked by maneuvering
in such a way so that its motion is difficult to follow.
The idea behind image-based and image-enhanced
tracking [1–3] is to use two-dimensional imagery
to obtain information about the mode of the
target (e.g., oorientation information) apart from
conventional measurements. Simulation studies in
[1–3] demonstrate that this modal information can
lead to marked improvements in the target tracking
performance.

As is widely done [1–3], we assume the mode
of the target with time is modeled as a finite state
Markov chain and the target’s trajectory is modeled as
a jump Markov linear system. For further motivation
on the use of finite state Markov chains and jump
Markov linear systems for modelling a maneuvering
target, see the classic books of [4, 5]. The image
sensor processor response to the modal information
is blurred due to the range of the target, weather
conditions, etc. Finally, the blurred images are
processed by an imager which generates a marked
Poisson process according to the noisy state of the
Markov chain. In summary the image-based target
tracking model involves estimating the state of a
jump Markov linear system when the underlying
mode (finite state Markov chain) is observed via
a multivariate Markov modulated Poisson process
(MMPP) [6].

It is well known that if noisy measurements of
the target’s trajectory were available (rather than
noisy modal information as considered here), then
estimating the trajectory of the target (jump Markov
linear system) is an NP hard problem (requires ST

computational cost for S modes and T data points).
There are numerous suboptimal algorithms including
particle filters [7] and the interacting multiple
model (IMM) algorithm [4]. However, here we
focus on the image-based tracking problem where
optimal state estimates can be computed with linear
complexity in T. In the image-based tracking problem
considered here, estimating the target’s mode and
coordinates involves the following two filtering
algorithms.

1) The optimal (minimum mean square
error (MMSE)) estimate of the orientation is
computed by an MMPP filter (which is essentially a
continuous-time hidden Markov model (HMM) filter).

2) The trajectory of the target (modeled as a
jump Markov linear system) given the noisy modal
measurements is estimated using an image-based
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filter. This is a finite dimensional filter (i.e. given by
an ordinary differential equation driven by a Poisson
observation process) which requires estimates from
the MMPP filter [1].
The main contributions of this work are to

present reduced complexity temporal and spatial
approximations to the above MMPP and image-based
filters. The computational cost of the image-based
tracking filters is O(S2T). The time discretization and
spatial aggregation proposed here reduce this O(S2T)
complexity when S and T are large as follows.
1) Temporal Discretization: We present a

computationally efficient time discretization of
MMPP filter and the optimal image-based filter. In
particular, we use a gauge transformation to convert
the filtering equations to deterministic differential
equations with random coefficients. Such “robust”
transformations have been widely used in stochastic
calculus and continuous-time HMM filtering [8].
A major advantage of our approach is that the
discretization interval of the resulting filters can be
much larger than that required by a standard Euler
first order discretization of the filter. This leads to
substantial computational savings in the numerical
implementation of the MMPP and image-based filters.
We present explicit upper bounds on the discretization
interval for the two filters.
2) Spatial Aggregation: The computation

complexity of the time discretized MMPP and
image-based filters is a major issue when the state
space is large. This happens for example when
there are several modes or a large number of targets
each with a finite number of maneuver types. We
present a novel algebraic methodology (similarity
transformation) for reducing the complexity of both
filters. Under the natural assumption that the target’s
dynamics are similar when the target’s modes are
similar, the underlying Markov chain has a nearly
completely decomposable structure [9, 10]. With
² > 0 denoting a perturbation parameter signifying the
weak interactions between dissimilar target modes,
our novel similarity transformation decouples the
components of the MMPP filter and image-based
filters resulting in low-complexity filtering algorithms
with provable O(²) accuracy for the modal filter
and O(²2) accuracy for the image filter. In order to
prove the existence of the similarity transformation
we demonstrate the existence of solutions to certain
nonlinear matrix difference equations. The decoupling
transformations are a generalization of the results in
[11].
Typically, the evolution of the target’s mode can

be modeled as a nearly completely decomposable
Markov chain (NCDMC) if there are several modes
with each mode having a large number of finer
states (either for higher resolution or for modelling
parametric uncertainty), or when there are several
independent targets with diagonally dominant

transition probability matrices for the evolution of
their modes.

The methodology proposed here is sufficiently
general to apply to other problems requiring
reduced-complexity HMM filtering and estimation of
the state of a jump Markov linear system given noisy
modal information (e.g., Poisson observations).

II. SIGNAL MODEL

All processes are defined on the probability space
(­, ,P).

Target Model: Let Xt, t 0 be a continuous-time
S state Markov chain defined on the state space
e1,e2, : : : ,eS where ei RS is the unit vector
with 1 in the ith position. (This choice of state
space simplifies our subsequent notation). Let the
infinitesimal generator or transition rate matrix be
denoted by A where S

j=1 aij = 0, i 1,2, : : : ,S .
Define P(Xt = i) = p

i
t, i 1,2, : : : ,S . The probability

distribution pt = (p
1
t p

2
t : : :p

S
t ) satisfies the forward

equation dpt=dt = A pt where denotes the transpose
operation. The process Xt denotes the mode or
regime of operation of the target and drives the jump
linear system for the target dynamics as

dst = c(Xt)stdt+Rdwt: (1)

Here st RL denotes the coordinates of the target
and the matrices c(ei), i= 1, : : : ,S are each L L
matrices. R denotes an arbitrary known matrix.
E s0 is assumed known and wt denotes a Wiener
process which is independent of Xt . (If E s0 is not
known, it can be estimated via an associated stochastic
optimization problem (see [2])).

Image Sensor: The image sensor uses
two-dimensional imagery to obtain orientation
information of the target. (For example, [3] considers
the profile of a T-62 tank with three different
orientations.) The output of the image sensor is an
S-variate MMPP as outlined below (see [3, 12] for
excellent expositions). The image sensor is modeled
in two steps. First, the appearance of an image frame
depends on the mode dependent rates ¸(i), i = 1, : : : ,S.
Second, the image sensor processor generates an
output statement ½t e1, : : : ,eS . Because of the
blurring of the image due to range of the target,
weather conditions, etc., the output statement ½t is
not necessarily the same as the true target mode
Xt. This error is modeled probabilistically in terms
of the S S discernibility matrix D = (dij), where
dij = P(½t = ei Xt = ej), 1 i,j S.

As a result the output of the imager is an S-variate
MMPP Nt = (N

(1)
t N(2)t : : :N(S)t ) as follows:

dN(i)t = Xt,g
(i) dt+dm(i)t , i= 1,2, : : : ,S: (2)

Here N(i)t denotes the number of events with mark
i that occur during the interval [0, t], and g(i) =
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(g(i)1 g(i)2 : : :g
(i)
S ) = ¸

(i)[di1 : : :diS] , i = 1, : : : ,S is the
vector of intensities of the ith component of the
process Nt. In (2), , denotes the scalar product
in RS and m(i)t is an t Poisson martingale where t

denotes the sigma algebra ¾(Xs,Ns; s t). Denote
the observation history as (i)

t = ¾(N(i)s : s t) and

t =
S
i=1

(i)
t (i.e., t is the sigma algebra generated

by (i)
t , i = 1, : : : ,S).
The following somewhat technical assumption,

which essentially states that the jumps of the Markov
chain and Poisson process cannot occur at exactly
the same time instant, is widely assumed [3] and
is necessary for deriving the filters presented here.
The assumption can be relaxed as in [1], however,
the resulting filters then need careful accounting of
the coquadratic variation of Xt and the individual
processes N (i)t .

Assumption 1 We assume that Xt,N
(1)
t ,N (2)t , : : : ,

N (S)t do not have simultaneous jumps, i.e., [X,N (i)]t =
0, i 1,2, : : : ,S where [Y,Z]t denotes the optional
coquadratic variation of the process Y,Z. Also, assume
that [N (i),N (j)]t = 0, i,j 1,2, : : : ,S , i= j.

A. Example. Switching Turn Rate Model

In addition to the image-based tracking problem
outlined above, the switching turn rate model
described in [13] serves as another motivation for the
spatio-temporal reduced-complexity filters proposed
here.
Consider tracking an agile maneuvering target in

two dimensions. Denote the state vector s = [x _x y _y]
with x and y denoting the x,y Cartesian coordinates of
the horizontal plane.
A target moving with constant speed can

be described by the continuous-time stochastic
differential equation (1) with

c(Xt) =

0 1 0 0

0 0 0 !(Xt)

0 0 0 1

0 !(Xt) 0 0

, R =

0 0

1 0

0 0

0 1

:

(3)
There are two accelerations modeled above, an
omni-directional (white) acceleration described by the
vector Wiener process wt, and the structured maneuver
acceleration represented by the turn rate processes
!(Xt) which switches between a finite number of
possible turn rates.
The image sensors captures a sequence of images

of the target from which orientation information can
be obtained through image processing. However, we
do not deal directly with orientation of the target but
with turn rate. We rely on the strong relationship
between orientation and turn rate to allow the
transformation from the orientation estimates to the

turn rate estimates. For example, the roll angle is
intimately related to the magnitude of a turn and thus
estimates of the target roll angle provides information
for classification of the target turn rate into one of the
prespecified bins.

III. IMAGE-BASED AND MODAL FILTERS AND
TIME-DISCRETIZATION

Here we present the optimal filtering equations
for the image-based and modal filters. Then a gauge
transformation is used to transformed into a “robust
form” and discretized for numerical implementation.
An event-based discretization procedure and hybrid
implementation is given in Section IIIB which is
computationally efficient.

A. Preliminaries

Results regarding the estimation of the mode Xt
given the observation history t were derived in [14]
and later generalized in [1]. Here, we briefly state
the Zakai form (unnormalized filtered density) for
computing the optimal mode estimate E Xt t and
optimal target trajectory E st t , see [1] for details.

Define the measure P̄ and the process n(i)t such that

dP

dP̄ t
= ¤t =

S

i=1 0 r t

g(i),Xr ( N (i)r )

exp
t

0
[ g(i),Xr 1]dr (4)

n(i)t =N
(i)
t t: (5)

Then the following results hold.
1) ¤t is a (P̄, t) martingale. and satisfies ¤t =

1+ S
i=1

t
0¤t( g

(i),Xr 1)dn(i)r [14, p. 171].
2) A straightforward invocation of Girsanov’s

theorem [14, Theorem T2, p. 166] yields that under
P̄, each of the S components of Nt are independent
unit-intensity Poisson processes.

3) Let Ē denote the expectation operator under
P̄. Let Át be an t adapted process. Define the
unnormalized density qt = Ē ¤t Á,Xt t —note
qt RN with nonnegative elements. Then an abstract
version of Bayes’ theorem states [15, p. 243] that

E Á,Xt t =
Ē ¤t Á,Xt t

Ē ¤t t

=
Á,qt
1Sqt

:

Notation. Define the S S diagonal matrix B(i),
i = 1, : : : ,S and (LS) (LS) matrix C, respectively, as

B(i) = diag[g(i)], C =

C11 : : : C1L
...

. . .
...

CL1 : : : CLL

where Cij = diag[cij(e1), : : : ,cij(eS)]
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and cij(el) denotes the i,j element of c(el) defined in
(1).
Below we give the Zakai filtering equations for

estimating the target mode Xt and the target state st.
As shown in [1] to estimate the target state st one
first needs to construct the filtered estimate of st Xt
where denotes the tensor product. Accordingly,
define the LS dimensional process

rt = Ē ¤t(st Xt) t :

THEOREM 1 (Zakai equations and estimates for
mode and state) The unnormalized filtered densities
for the target mode and state are given by the
following equations called the modal and image filter,
respectively:
Modal Filter:

qt = q0 +
t

0
A q¿d¿ +

S

i=1

(B(i) I)q¿dn
(i)
¿ : (6)

Image Filter:

rt = r0 +
t

0
Cr¿d¿ +

t

0
(IL A )r¿d¿

+
t

0

S

i=1

(IL (B(i) I))r¿dn
(i)
¿ (7)

E st t =
Ē ¤tsT t

Ē ¤t t

=
1
1 qt

diag 1S , : : : ,1S
L times

rt:

(8)

Note that the above integrals involving dn(i)¿
are Steiltjes integrals. Recall dn(i)t = dN

(i)
t dt and

dN (i)t = 1 if an event with mark i occurs at time t, and
is zero otherwise. The proof of the above theorem
appears in [1, sec. 5.2]. The second equality in (8)
follows because Ē ¤tst t = Ē

S
i=1¤tstXt(i) =

diag 1S , : : : ,1S rt (where the diagonal matrix is of
dimension L LS) and Ē ¤t = Ē

S
i=1¤tXt(i) =

1Sqt.

Remark. The modal filter (6) and image filter (7)
can be implemented exactly. Let ¿k,k = 1,2, : : : denote
the event times of Nt . Then (6) can be written as

qt = q0 +
t

0
A

S

i=1

(B(i) I) qsds

+
S

i=1

(B(i) I)
¿k<t

q¿k : (9)

This leads to the following exact implementation: For
¿k t < ¿k+1,

qt = exp A

S

i=1

(B I) (t ¿k) q¿k : (10)

That is, qt evolves deterministically between Poisson
events. At the event time t = ¿k+1, update q¿k+1 as

q¿k+1 = q¿k+1 +
S

i=1

(B I)q¿k+1 :

However, computing the matrix exponential over
the inter-arrival time ¿k+1 ¿k requires O(S

3)
computations at each ¿k which can be expensive for
large S. Similarly, an exact implementation of the
image filter requires O(S3L3) computations at each
¿k.

An obvious approximation is to precompute and
store the matrix exponentials for several possible
time intervals (over a uniform grid of possible time
intervals). Then one can approximate the matrix
exponential of ¿k+1 ¿k by the precomputed matrix
exponential corresponding to the time interval in
the grid that is closest to ¿k+1 ¿k. However, for
large state spaces and a wide range of Poisson rates
g(i), unless a very fine grid is used (which incurs
significant memory overheads), the approximation can
be quite inaccurate.

In contrast, the gauge transformed filters and
their hybrid implementation presented in this section
permit several possible implementations that can
yield significant savings in memory and computation
overheads. For example, the matrix exponentials
can be precomputed over a coarse grid and the
precomputed matrix exponential corresponding to
the time interval in the grid that is closest to the
inter-arrival time chosen. Then the gauge transformed
filter can be run from the grid time point to the arrival
time. The sampling time calculations in Theorem 3
give upper bounds on how coarse the time grid can
be while still ensuring that the normalized filtered
estimate densities are nonnegative.

B. Gauge Transformation and Time-Discretization

The aim of this section is to transform the Poisson
driven stochastic differential equations (6), (7) into
linear ordinary differential equations (ODEs) with
random coefficients. This is exploited in two ways.
1) It permits the use of standard time discretization
techniques for ODEs and computationally efficient
numerical implementation. 2) The form of the
resulting time-discretized filters are similar to a
discrete-time HMM filter. This allows us in Section
IV to use spatial aggregation methods developed in
[11] which results in reduced-complexity filters.

For i= 1, : : : ,S define

¡ (i)t = (B(i))N
(i)
t exp( (B(i) I)t), ¡t =

S

i=1

¡ (i)t :

(11)
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Define the gauge transformed processes q̄t and r̄t as

q̄t = ¡
1

t qt, r̄t = (IL ¡t)
1rt: (12)

Note that since ¡t is an exponential matrix, its
inverse is guaranteed to exist. The following
theorem gives ODEs for the dynamics of gauge
transformed processes q̄t and r̄t. The final discretized
implementation of the resulting filters is given in (19)
and (20). These recursions do not require computing
matrix exponentials or inverses.

THEOREM 2 q̄t and r̄t satisfy the linear ODEs

dq̄t
dt
= ¡ 1

t A ¡tq̄t, q̄0 = q0 (13)

dr̄t
dt
= (IL ¡t)

1(IL A +C)(IL ¡t)r̄t, r̄0 = r0:

(14)

Remark. The term “robust” has widely been
used to describe the filtering equations (13) in the
case when the observation process was the Markov
chain corrupted by Brownian motion [16, 17]. In
that case, [18] has proved that because q̄t satisfies an
ODE, it has the robustness property of being Lipschitz
continuous (in terms of the sup norm) with respect to
the observation trajectory. We use the term robust in
the context that the equations are ODEs.

PROOF We prove (14). The proof of (13) is identical
and hence omitted. Define ¡̄t = IL ¡t and ¡̄

(i)
t =

IL ¡ (i)t . Suppose r̃t = ¡̄tr̄t. Then

dr̃t = (d¡̄t)r̄t+ ¡̄t
dr̄t
dt
dt: (15)

Let us compute d¡̄t. Because ¡t =
S
i=1¡

(i)
t , it follows

from the product rule of differentiation that

d¡̄t =
S

i=1

d¡̄ (i)t

S

j=1j=i

¡̄ (j)t : (16)

But because ¡̄ (i)t = IL ¡ (i)t it follows that

d¡̄ (i)t = IL [(B(i) I)¡ (i)t (dN
(i)
t dt)]

= (IL (B(i) I))(IL ¡ (i)t )(dN
(i)
t dt):

Substituting into (16) yields

d¡̄t =
S

i=1

¡̄t(IL (B(i) I))(dN (i)t dt): (17)

Finally substituting (17) into (15) yields

dr̃t = Cr̃tdt+ (IL A )r̃tdt+
S

i=1

(IL (B(i) I))r̃tdn
(i)
t :

Therefore r̃t is a solution of (7). Solutions of (7)
which are continuous on the right with limits on

the left are unique [14, chap. VI], hence the result
follows.

Discretization Interval for Gauge Transformed
Filters: We now consider time discretization of
the above gauge transformed filters (13) and (14).
Consider a regular time partition 0 = t0 < t1 < <
tn 1 < tn < with constant time step ¢= tn tn 1.
Define the discrete-time observation probability
diagonal matrix

Btn+1 = diag[btn+1(1), : : : ,btn+1(S)]
¢
=¡tn+1¡

1
tn
: (18)

Note that Btn+1 is precomputable since

Btn+1 =
S

i=1

[(B(i))(N
(i)
tk+1

N (i)tk
) exp( (B(i) I)¢)]

and for sufficiently fine discretization N (i)tk+1 N (i)tk is
either 0 or 1.

A first order (Euler) explicit discretization of (13)
yields

q̄tn+1 = q̄tn +¢¡
1

tn
A ¡tn q̄tn :

Multiplying both sides by ¡tn+1 yields the discrete-time
gauge transformed mode filter

qtn+1 = Btn+1(I+A ¢)qtn : (19)

Similarly, a first order explicit discretization of (14)
followed by multiplying both sides by (IL ¡t)
yields the discrete-time gauge transformed image
filter

rtn+1 = (IL Btn+1)[IL (IS +A ¢) +C¢]rtn : (20)

Note that for all n, qtn+1 should be an S
dimensional vector with nonnegative elements.
Similarly, consider rt in (14). If r̄0 > 0 (element wise)
then from (14), r̄t 0 for all t. This is easily seen
since the right-hand side (RHS) of (14) is 0 when
rt = 0, meaning that 0 is an absorbing point and hence
the components of rt can never go negative. Our aim
is to determine an upper bound for the size of the
time-discretization step ¢ in (19) and (20) to ensure
nonnegativity of the discretized processes qtn in (19)
and rtn in (20).

THEOREM 3 To ensure nonnegativity of the elements
of the discretized gauge transformed modal filter qtn in
(19) requires the sampling period ¢ to satisfy

¢ ¢
gauge
mode

¢
=

1
maxj 1,:::,S ajj

: (21)

To ensure nonnegativity of the elements of the
discretized gauge transformed image filter rtn in (20)
requires ¢ to satisfy

¢ ¢
gauge
image

¢
=

1
maxm ajj + cmm

where j =mmodS:

(22)
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PROOF Using (19) we thus require for any fixed
j 1, : : : ,S that

qtn+1(j) = btn+1(j)
S

i=1

(±ij +¢aij)qtn(i) 0: (23)

Define the normalized filtered estimate q̂tn =
qtn=(1Sqtn). We can then normalize the above
inequality by dividing both sides by 1Sqtn =

S
i=1 qtn(i)

which then reads

¢

S

i=1

q̂tn(i)aijbtn+1(j) + q̂tn(j)btn+1(j) 0:

Since ajj < 0 (because A is a generator matrix), the
left-hand size of the above inequality is minimized
when q̂tn = ej . With this choice of q̂tn , the condition
q̂tn+1(j) 0 requires ¢ 1= ajj . Thus the maximum
possible discretization interval to ensure nonnegativity
of q̂tn+1(j) and hence qtn+1(j), for all j 1, : : : ,S
satisfies (21).
Note that (20) is of the form rtn+1 = B̄tn+1(ILS+

(Ā+C)¢)rtn where

B̄tn+1 = diag(b̄tn+1(1), : : : , b̄tn+1(LS))
¢
=IL Btn+1

and Ā= IL A with elements ālm, l,m = 1, : : : ,LS.
Then similar to the above argument for qtn , define the
normalized estimate r̂tn = rtn=

LS
l=1 rtn(l). We have for

each m = 1, : : : ,LS that r̂tn+1(m) 0 implies that

¢

LS

l=1

(ālm+ clm)r̂tn(l) + r̂tn(m) 0: (24)

The left-hand side of the above inequality is
minimized when r̂tn(m) = 1. With this choice we
require

¢(āmm+ cmm) 1

There are two possible cases as follows. 1) If
(āmm+ cmm)> 0 then any choice of ¢> 0 suffices.
2) If (āmm+ cmm) < 0 or equivalently cmm < āmm
then ¢ 1= āmm+ cmm . Given that Ā= IL A, it
follows that āmm = ajj where j =mmodS. Taking the
minimum over all m 1, : : : ,LS yields the upper
bound (22) for ¢.

Discretization Interval for Zakai Filters: Here
we consider the Euler discretization of the Zakai
(nonrobust) equations (6) and (7). In the interval
tn < t tn+1,

qtn+1 = qtn +
tn+1

tn

A qsds+
tn+1

tn

S

i=1

(B(i) I)qsdn
(i)
s :

(25)

First order discretization and normalization with
q̂tn = qtn=(1 qtn) yields

q̂tn+1 (j) = q̂tn (j)+
S

j=1

¢aij q̂tn (i)

+
S

i=1

(g(i)j 1)q̂tn(j)(¢N
(i)
t ¢), tn < t tn+1

where ¢N (i)t = 1 if a Poisson event occurs at time t
and 0 otherwise. Again considering the case q̂tn = ej , it
follows that qtn+1(j) 0 for j = 1, : : : ,S requires

¢ ¢Zakaimode
¢
= min
j 1,:::,S

1+ S
i=1(g

(i)
j 1)¢N (i)t

S
i=1(g

(i)
j 1)+ ajj

(26)

providing S
i=1(g

(i)
j 1)> ajj .

Consider now the Zakai equation of the image
filter (7). Using similar steps to the above it follows
that rtn+1(m) 0 for all m = 1, : : : ,LS requires

¢ ¢Zakaiimage
¢
= min
m 1,:::,LS

1+ S
i=1(g

(i)
j 1)¢N (i)t

S
i=1(g

(i)
j 1) (ajj + cmm)

j =mmodS (27)

providing that S
i=1(g

(i)
j 1) > (ajj + cmm) for j

1, : : : ,S and m 1, : : : ,LS .
Comparison and Event Driven Discretization:

Comparing (21) with (26) or (22) with (27)
shows that ¢ for the gauge transformed filters are
independent of the Poisson rates.

Consider the case when ¢N(i)t = 0, i.e., no event
has occurred at time ti t < ti+1. Assuming ajj +
cmm < 0 and g

(i)
j > 1, then comparing the sampling

intervals (21) with (26), and (22) with (27), yields

¢gauge
mode =

1
maxj ajj

> ¢Zakai
mode =

1

maxj
S

i=1(g
(i)
j 1)+ ajj

¢gauge
image =

1
maxm ajj + cmm

> ¢Zakai
image

=
1

maxm
S

i=1(g
(i)
j 1)+ ajj + cmm

:

These strict inequalities show that the gauge
transformed mode and image filters will tolerate
coarser time discretization than the Euler discretization
of the standard Zakai filters. The coarser partition for
the gauge transformed filters means that the number
of computations can be reduced while still maintaining
the inequalities (23) and (24). This feature can be
exploited to devise an event driven discretization for
the gauge transformed filters driven by Nt as follows.
Discretize the filters over the irregular time partition
0 = t0 < t1 < tk < defined as follows: tk+1 =
tk +¢tk where ¢tk =min[¢, t tk] and t denotes the
first Poisson event after time tk. Here ¢ is typically
chosen close to (but less than) ¢gaugemode or ¢

gauge
image. The
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resulting gauge transformed filters are computationally
cheaper than the discretized Zakai equations. We can
compare the complexity of the filters as follows.
Computational Complexity of Event Driven

Discretization of Filters:
Exact implementation: First, consider an

event-driven discretization of the exact implementation
of the modal filter (9). Let N¢ denote the number
of Poisson events that occur in a time interval ¢.
Let ḡ denote the expected number of events per unit
time. Then clearly ḡ = S

i=1 g
(i) p where p denotes

the steady state distribution of Xt, i.e., p satisfies
p A= 0, p 1S = 1. If no event occurs in a period ¢,
then this filter requires S2 computations since (10) is
a deterministic update and the matrix exponential in
(10) over the interval ¢ can be precomputed. If N¢
1 events occur in the period ¢ and we update the
filter N¢ times, this costs N¢S

3 computations because
the matrix exponential (see discussion below (9))
needs to be evaluated over a random time interval.
Hence the expected complexity in the interval ¢ of
the exact optimal filter is

S2P(N¢ = 0)+ S
3

k=1

kP(N¢ = k) S2 + ḡ¢S3:

For a sample size of length T, there are T=¢
segments, hence the average complexity is

S2T=¢+ S3ḡT:

Gauge transformed filters: Using a similar
argument, if an event driven discretization is
used for the gauge transformed modal filter, the
complexity is upper bounded by S2T=¢+ S2ḡT.
The complexity of the image-based filters can be
computed similarly—simply replace S by LS in the
above complexity expressions.
Hybrid implementation: The above complexity

calculations show that the following hybrid
discretization implementation is possible: 1) If no
event occurs in the interval ¢, i.e., N¢ = 0, then use
the exact implementation. 2) If N¢ 1, then use the
gauge transformed filters. The average complexity of
this hybrid scheme is identical to that of the gauge
transformed filter—however, the discretization error
is considerably reduced since no approximation is
carried out when N¢ = 0.

IV. REDUCED SPATIAL COMPLEXITY IMAGE AND
MODAL FILTERS

Having demonstrated the computational efficiency
of the hybrid time-discretization scheme for the
image and modal filters in Section III, in this
section we describe spatial aggregation methods
to further decrease the computational complexity
of these filters. During intervals when N¢ = 0, and
the exact implementation of the filters are used, it

is straightforward to reduce the dimension of the
matrix exponential and the vector qt by aggregation
since the evolution is deterministic. As shown in
[19] spatial aggregation methods can be used to
obtain reduced-complexity implementation of (10)
with arbitrarily accurate approximations. Hence
the key issue addressed in this section is the spatial
aggregation of the gauge transformed filters.

Throughout, we work with the time-discretized
gauge transformed filters (19) and (20). We impose
the following nearly decomposable structure on the
transition probability matrix of the underlying Markov
chain Xt: A= Ā+ ²Q where Ā has a block diagonal
structure

Ā=

Ā11 0 0

0 Ā22 0

0 0

0 0 ĀMM

(28)

where Āii Rsi si , i, i si = S, ² > 0 is a small
perturbation parameter, and Q RS S . Āii, i are also
infinitesimal generators and B̄ has zero row-sums.
Denote the state partitions as 1 = (e1,e2, : : : ,es1 ),

2 = (es1+1,es1+2, : : : ,es1+s2 ), and so on. We call the
“superstates” 1, 2, etc, as macro-states. We assume
that A and the individual infinitesimal generators Aii,
i represent irreducible Markov chains. The above
structure of A implies that the Markov chain Xt has a
two time-scale structure—it spends most of its time
jumping between states in a particular macro-state,
and only rarely jumps between macro-states.

We exploit a transformation method
proposed in [19, 11] followed by the decoupling
transformation used in [11] to obtain approximate
reduced-complexity computations for the target
trajectory (state) and modal (state of the underlying
Markov chain) estimates. It is shown that for the
case where the underlying Markov chain is nearly
completely decomposable (with a sufficiently
small weak coupling parameter ²), one can obtain
O(²) approximations to the MMPP and O(²2)
approximations to the image-based filters when the
Poisson arrival rates and the target dynamics are
the same for all the constituent states within a given
macro-state but are different from one macro-state to
another. This leads to the following assumption (as in
[11]).

Assumption 2 The intensities of the Poisson
arrival process and the target dynamics are only
different from one macro-state to another but are
identical for all constituent states within a given
macro-state. In other words, gl = ḡm, Xt = el
m. Similarly, cij(el) = c̄ij(em) Xt = el m, i,j
1,2, : : : ,L , m 1,2, : : : ,M .
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Notice that Assumption 2 also guarantees that the
elements of Btn+1 are identical within each macro-state.

REMARK 1 Note that Assumption 2 helps in
obtaining substantial reductions in computations for
the MMPP modal as well as the target trajectory
estimates. It also follows immediately that small
perturbations (polynomial in ²2) in the arrival rates
and target dynamics do not change the results of
this paper, i.e., the reduced-complexity MMPP and
image-based filtering algorithms can still be applied
to this mildly generalized observation dynamics.
However, Assumption 2 can be lifted altogether and
one can obtain reduced-complexity algorithms for
very general observation processes (see [20] for
details), at the expense of reduced-computational
savings.

Now, rewrite (19), (20) by using ®tn+1 = qtn+1 ,
¯tn+1 = rtn+1 , as

®tn+1 = ®tn(IS +A¢)Btn+1 (29)

¯tn+1 = ¯tn[IL (IS +A¢) +C ¢](IL Btn+1): (30)

In the following discussion, we denote the
corresponding normalized measures for ®tn+1 ,¯tn+1
as ®̂tn+1 ,

ˆ̄
tn+1
. In the next two subsections, we

describe how one can obtain reduced-complexity
computations for ®̂tn+1 and

ˆ̄
tn+1
. These computations

are of O(M2) instead of O(S2) as required by the exact
computations. Since typically, M S, this implies a
large savings in computations. These computations
result in an O(²) approximation to ®̂tn and O(²

2)

approximation to ˆ̄tn .

A. Examples

In this section, we consider two examples where
the Poisson arrival process and the target dynamics
are modulated by underlying nearly completely
decomposable irreducible Markov chains. These
chains have several macro-states with each macro-state
having numerous states (for finer resolution and/or
parametric uncertainty), whereas the Poisson arrival
rates and the target dynamics are identical for all
states within the same macro-state but can be different
from one macro-state to another. Of course, one can
consider small perturbations of such rates and target
dynamics in our current framework. The first example
considers only one target whereas the second example
examines how our method can be applied to the case
of multiple independent targets.
Single Target: Assume that the target dynamics

are given by (1) where c(Xt) assumes the switching
turn rate model (3). Assume that the turn rate has
S = 361 possible values: !(Xt) ¼+ n¼=180,
n= 0,1, : : : ,360 . Depending on the resolution of
the imager and subsequent processing, the turn rate

could be quantized to a much smaller set of possible
values, say M = 21 possible values ¼+ n¼=10,
n= 0,1, : : : ,20 . Due to the underlying physics of
the target model, the target will switch between these
aggregated 20 states much less frequently than than
between a small subset of the 360 possible values.
Hence a nearly completely decomposable Markov
chain with transition probability matrix A= Ā+ ²Q
(see (28)) is a natural model for this example.

The imager output is an S-variate MMPP with
the underlying irreducible NCDMC having S states
with M macro-states, where the ith macro-state has
si number of states such that i si = S. The imager
output is described by (2). Typically the response of
the imager would be similar for all the states within a
macro-state. In our example, the Poisson arrival rates
g(i), i = 1,2, : : : ,S satisfy Assumption 2. However, our
algorithm can be readily applied to the case where
the Poisson arrival rates are within O(²2) for all states
within a given macro-state and are substantially
different from one macro-state to another (see Remark
1). Thus one can use the reduced-complexity image
filtering and target trajectory algorithms (to be
developed in the following section). We present
simulation studies involving a single target example
(with a univariate Poisson process for simplicity) in
Section V.

Multiple Independent Targets: Consider the
case of having MT independent targets where the
jth target, (j = 1,2, : : : ,MT), evolves according to a
jump linear system modulated by a nearly completely
decomposable irreducible Markov chain Xjt . Assume
these MT Markov chains are statistically independent.
Assume that all the targets have coordinate state
spaces of dimension L, but note that the underlying
Markov chains may have different states and hence
possibly different number of macro-states, with the
jth chain evolving according to the transition matrix
Aj . In this case, one can write the combined target
dynamics as

ds1t

ds2t
...

dsMTt

=

c(X1t ) 0 0

0 c(X2t ) 0

...
. . .

...

0 0 c(XMTt )

s1t

s2t
...

sMTt

dt

+RT

dw1t

dw2t
...

dwMTt

(31)

where the superscripts 1,2, : : : ,MT refer to the
corresponding targets and RT is an LMT LMT
dimensional matrix. Note that the vector process
(X1t ,X

2
t , : : : ,X

MT
t ) is merely a Markov chain with

transition probability matrix A1 A2 AMT (see
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[21] for a proof) where denotes the Kronecker sum
operator, defined for two matrices A Rn n, B Rm m

as
A B = (Im A) + (B In) (32)

where denotes Kronecker product.
The imager output is the sum of the Markov

modulated Poisson arrival processes (for each
dimension of the multivariate process). That is, the
imager output is given (for each l = 1,2, : : : ,S)

dN (l)t =
MT

j=1

N(l)t (j) =
MT

j=1

X(j)t ,g
(l,j) dt+ dm(l,j)t

where N (l)t (j) denotes the arrival process for the jth
target and lth dimension of the multivariate Poisson
process and g(l,j) is the vector of intensities of the
lth component of the process N (l)t (j) (driven by the
Markov chain X(j)t ). The combined superimposed
arrival process MT

j=1N
(l)
t (j) is also an MMPP with an

intensity vector g(i)(1) g(i)(2) g(i)(MT) (see
[21] for a proof), where g(i)(j) is the corresponding
intensity vector for the jth target.
The corresponding gauge transformed discretized

MMPP and image filter equations can be obtained by
appropriately modifying (19), (20) with substitution of
Btn+1 ,A,C by their corresponding large dimensional
counterparts. It can be shown that the large
dimensional state transition probability matrix A1

A2 AMT is also nearly completely decomposable
if every Aj , j 1,2, : : : ,MT is nearly completely
decomposable. In order to show this, one needs to
prove the property that Ai Aj is nearly completely
decomposable if both Ai,Aj are nearly completely
decomposable. This follows fairly easily from the
definition of Kronecker sum (32). The number of
macro-states in the Kronecker sum can be seen to
be the minimum of the number of macro-states in
the individual matrices. One can then repeatedly
apply this result to prove the nearly completely
decomposable property for the sum A1 A2 : : :
AMT . The fact that the individual blocks in the block
diagonal part of this sum are irreducible generator
matrices follows directly from the assumption that the
individual matrices Aj have this property.
With the assumption that the individual target

dynamics and Poisson arrival rates satisfies
Assumption 2, the combined target dynamics and the
superimposed Poisson arrival process also satisfies
this assumption. Therefore, the reduced-complexity
MMPP filtering and image filtering results of the
following section can be applied to the case of
multiple independent targets. Since the combined
multitarget has a large dimensional underlying Markov
chain, the substantial savings to be obtained by
using our reduced-complexity estimation algorithms
make the significance of our algorithm even more
compelling.

REMARK 2 Note that the Assumption 2 only
simplifies the computations of the reduced-complexity
modal and trajectory estimates by resulting in
substantial reduction in computation. The multiple
independent target tracking problem (with or without
this assumption) is not a completely decomposable
problem because of the fact that the observation
equation involves the superposition of the various
individual MMPPs. While Assumption 2 helps in
reducing computational complexity, it certainly does
not imply that by making this assumption, we are
only interested in obtaining target level estimation.
In the case of a single target, we are able to obtain
state estimates at the macro-state and micro-state
level. In the case of multiple independent targets also,
we are able to obtain estimates of the macro-states
(superstates) and micro-states for each target. Note
also that as pointed out in Remark 1, this assumption
can be lifted and reduced-complexity algorithms can
be obtained for general observation equations, but
with less computational savings (see [20]).

B. Reduced-Complexity Modal Estimation for MMPP
Filter

Denote [³n´n] = ®tn[W1W2] where W1 RS M is
given by

W1 =

1s1 0 0 0

0 1s2
0 0

0 1sM

:

Similarly, W2 RS (S M) is a block diagonal matrix
with the ith diagonal block W(i)

2 Rsi si 1 is given by

W(i)
2 =

0 : : : 0

Isi 1
:

Note that for these choices [W1 W2] is nonsingular and
has an inverse V1 V2 where V1,V2 are also simple
matrices independent of the system parameters.
Notice an obvious fact that ³n RM is the aggregate
version of the unnormalized measure ®tn . Also,
similar relationships can be established between the
normalized measures ³̂n, ˆ́n with ®̂tn . It is easy to show

that ®̂tn = ³̂nV1 + ˆ́nV2.
Also, define

Ãn1 = V1(I+ Ā¢)Btn+1W1, Q̃n1 = V1(Q¢)Btn+1W1

Ãn2 = V1(I+ Ā¢)Btn+1W2, Q̃n2 = V1(Q¢)Btn+1W2

C̃n1 = V2(I+ Ā¢)Btn+1W1, D̃n1 = V2(Q¢)Btn+1W1

C̃n2 = V2(I+ Ā¢)Btn+1W2, D̃n2 = V2(Q¢)Btn+1W2:

In fact, under Assumption 2, one can show that
Cn1 = 0, n. Using these definitions and notations, one
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can then write the recursion (29) in terms of [³n ´n]
and then decouple ´n from ³n by using the following
decoupling transformation:

[³̄n ¯́
n] = [³n ´n]

IM Jn

0 IS M

(33)

where (see [11] for more details)

[Ãn1 + ²(Q̃
n
1 JnD̃

n
1)]Jn+1 = Jn(C̃

n
2 + ²D̃

n
2) (Ãn2 + ²Q̃

n
2)

(34)

where for a sufficiently small ², one can show that
Jn is a sequence of uniformly bounded matrices (see
[11] for a proof). Thus one can expand Jn in terms
of a power series of ², i.e., Jn = Jn(0)+ ²Jn(1)+ .
One can also show that Jn(0) J(0) as n where
J(0) = V1ĀW2(V2ĀW2)

1. Finally, one can write O(²2)
approximations for ³̂n, ˆ́n (hence ®̂n) as a result of this
decoupling.
Note that the approximations are written with

a ˜ sign, that is, an approximation for normalized
measures like ³̂n is written as ³̃n, whereas the
corresponding approximation for an unnormalized
measure like ³n is written as ³̃

u
n where the superscript

u stands for “unnormalized.” We now present
our main result regarding the reduced-complexity
O(²) computations for the time-discretized gauge
transformed filter ®tn+1 .

THEOREM 4 Consider the MMPP described by (2)
where the modulating Markov chain has a nearly
completely decomposable structure A= Ā+ ²Q and the
transition probability matrices A, Āii are irreducible i.
Suppose Assumption 2 holds. Then, for a sufficiently
small ², there exists a large enough but finite n0
such that for n n0, an O(²) approximation for the
discretized approximate filter (29), denoted by ®̃tn can
be described by the following recursions:

³̃un+1 = ³̃n[Ã
n
1 + ²(Q̃

n
1 J(0)D̃n1)], ³̃n0 1 = ³̂n0 1

(35)
³̃n+1 =

1

[³̃un+11M ]
³̃un+1

˜́
n = ³̃nJ(0), ˜́

n0 1 = ˆ́
n0 1 (36)

®̃tn = ³̃nV1 + ˜́nV2, ®̃tn0 1
= ®̂tn0 1

: (37)

PROOF For a similar proof, and various other
inequalities that determine the range of a sufficiently
small ², see [11].

REMARK 3 Notice that in the above approximations,
one can actually obtain an O(²2) approximation to ³n
(or ³̂n) but an O(²) approximation to ˆ́n and hence
an O(²) approximation to ®̂tn . One can obtain an
O(²2) approximation to ˆ́n and hence ®̂tn at a slightly
higher computational cost. For the above recursions,
notice that the computational cost is O(M2) per time

instant (as opposed to O(S2) per time instant for exact
computations).

C. Reduced-Complexity Estimation for Target
Trajectory

For the purpose of this section define

[»(1)n Â(1)n : : :»
(L)
n Â(L)n ] = ¯tn(IL [W1 W2]):

(38)
One can then use a generalized decoupling
transformation to define

[»̄(1)n Â̄(1)n : : : »̄
(L)
n Â̄(L)n ] = [»

(1)
n Â(1)n : : :»

(L)
n Â(L)n ]

IS J̄1n

0 IS M

0 0

0
IS J̄2n

0 IS M

0

0 0

0 0
IS J̄Ln

0 IS M

:

(39)
Rewriting the recursion (30) in terms of the

decoupled variables, one gets

[»̄(1)n+1 Â̄(1)n+1 : : : »̄
(L)
n+1 Â̄(L)n+1] = [»̄

(1)
n Â̄(1)n : : : »̄

(L)
n Â̄(L)n ]

T11n+1 T12n+1 T1Ln+1

T21n+1 T22n+1 T2Ln+1

TL1n+1 TL2n+1 TLLn+1

(40)

where

Tiin+1 =
IS J̄ in

0 IS M

V1

V2
(IS +A¢+¢Cii)

Btn+1 [W1 W2]
IS J̄ in+1

0 IS M

Tijn+1 =
IS J̄ in

0 IS M

V1

V2
¢Cji

Btn+1 [W1 W2]
IS J̄jn+1

0 IS M

, i = j

(41)

and after denoting Giin+1 =¢CiiBtn+1 , G
ij
n+1 =¢CjiBtn+1 ,

J̄ in , i = 1,2, : : : ,L satisfy the following recursive
equations (under Assumption 2):

[V1(IS +A¢)Btn+1W1 +V1G
ii
n+1W1]J̄

i
n+1

= J̄ in[V2(IS +A¢)Btn+1W2

+V2G
ii
n+1W2 +V2(IS +A¢)Btn+1W1J̄

i
n+1]

V1(IS +A¢)Btn+1W2

(V1G
ij
n+1W1)J̄

j
n+1 = J̄

i
n(V2G

ij
n+1W2):

(42)
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Under Assumption 2, one can show that the first
order approximations to J̄ in , i = 1,2, : : : ,L (i.e., when
²= 0) denoted by J̄ in(0) J(0), i as n (this
result is similar to that in the previous subsection and
the case presented in [11]). Hence, for a sufficiently
small ², using analyticity arguments, Jin , i can
be shown to be sequences of uniformly bounded
sequences of matrices which can be approximated
by J(0) for a sufficiently large n. Note that in [11],
we provide explicit inequalities to obtain ranges for
² to prove a similar uniform boundedness result. In
this paper, we refrain from obtaining such results
for two reasons: 1) these inequalities are quite
complicated, and 2) solving them to obtain the desired
range of ² can be quite cumbersome as well. Some
simulation results are presented to illustrate that
one can indeed use this approximation in practice
to obtain reduced-complexity computations for the
image-based filter recursions (30). In fact, one can
obtain O(²2) recursions to the normalized measures
»̂(1)n , »̂

(2)
n , : : : , »̂

(L)
n and hence the normalized measure ˆ̄tn

for a sufficiently large n. This result is summarized in
the following theorem. The proof is analogous to that
of Theorem 4 and is omitted.

THEOREM 5 Consider the target model given by (1)
and the MMPP given by (2) with an underlying Markov
chain that is nearly completely decomposable with
A= Ā+ ²Q where A, Āii, i = 1,2, : : : ,M satisfy the
irreducibility conditions. Suppose also that Assumption
2 holds. Then there exists a sufficiently large integer
n1 > 0 such that for n n1, one can obtain O(²

2)
approximations to the normalized measures »̂(i)n and ˆ̄tn
(and hence to the gauge transformed discretized target
trajectory estimator r̂tn) using the following approximate
computations denoted by »̃(i)n ,

˜̄
n which are given by (for

n n1) (with the unnormalized estimates denoted with
a ²) (i,j = 1,2, : : : ,L)

²»(i)n+1 = »̃
(i)
n (V1[(IS + Ā¢)Btn+1 +G

ii
n+1]W1

+ ²(Q1n J(0)D1n)) +
j=i

»̃jn(V1G
ji
n+1W1)

»̃(i)n+1 =
²»(i)n+1=(³̃

u
n+11M)

˜̄
n+1 = [»̃

(1)
n+1 : : : »̃

(L)
n+1](IL 1M ):

(43)

REMARK 4 Note that the order of approximation for
˜̄
n is O(²

2) as opposed to an O(²) approximation to
the MMPP filter as described in Theorem 4.

V. NUMERICAL EXAMPLES

In this section, we present numerical examples to
illustrate the performance of our reduced-complexity
mode estimation and image enhanced target trajectory
estimation schemes.

These simulations are carried out with the
following choice of parameters for the signal model
described in Section II. Throughout we consider a
uni-variate MMPP observation process. The MMPP
process was simulated using the thinning algorithm,
see [22, p. 77]. The filters implemented are the
time-discretized gauge transformed modal filter (19)
and gauge transformed image filter (20).

We simulated an underlying NCDMC with a
generator matrix A= Ā+ ²Q̄ where

Ā=

0:7 0:45 0:25 0 0 0 0 0

0:2 0:45 0:25 0 0 0 0 0

0:24 0:35 0:59 0 0 0 0 0

0 0 0 0:8 0:8 0 0 0

0 0 0 0:6 0:6 0 0 0

0 0 0 0 0 0:9 0:75 0:15

0 0 0 0 0 0:2 0:45 0:25

0 0 0 0 0 0:55 0:15 0:70

(44)
Q̄ =

0:1 0:1 1:0 0:6 0:05 0:05 0:05 0:05

0:05 0:05 0:9 0:5 0:05 0:05 0:1 0:1

0:01 0:01 0:4 0:2 0:05 0:05 0:04 0:04

0:02 0:42 0:01 0:01 0:61 0:025 0:1 0:025

0:45 0:01 0:4 1:0 0:01 0:1 0:01 0:02

0:01 0:05 0:01 0:01 0:05 0:01 0:15 0:01

0:03 0:01 0:03 0:04 0:01 0:01 0:01 0:14

0:01 0:05 0:01 0:01 0:05 0:16 0:01 0:02

:

Clearly, for this example, S = 8, M = 3. The Markov
modulated Poisson arrival rates are given by

g = (10 10 10 50 50 110 110 110)

where we have chosen g(1) = g(2) = g(3), g(4) = g(5)
and g(6) = g(7) = g(8). Similarly, the target trajectory
is approximated by an Euler discretization of (1) by

s(k) = s(k 1)+¢C(Xk)s(k 1)+Rwk (45)

where s(k)
¢
=(x _x y _y) R4 which is also known as

the switching turn rate model of a maneuvering target
in two dimensions x,y. The sampling time interval
¢ is taken to be 0:001 s, wk is a zero mean white
Gaussian sequence with covariance Q = ¾2I2. The
matrix R is given by

R =

0:5¢2 0

¢ 0

0 0:5¢2

0 ¢

:
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Fig. 1. Low-complexity image-enhanced target trajectory estimation, ¾2 = 0:01.

Here wk models an omni-directional acceleration
process whereas

C(1) = C(2) = C(3) =

0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0

describe a constant velocity process for the modes
1,2,3. Similarly C(4) = C(5) and C(6) = C(7) = C(8)
describe two different turn rate processes with

C(4) =

0 1 0 0

0 0 0 !1

0 0 0 1

0 !1 0 0

and

C(6) =

0 1 0 0

0 0 0 !2

0 0 0 1

0 !2 0 0

with !1 = ¼=3 rad/s and !2 = ¼=3 rad/s. The
simulations are carried out with a 10000 point Markov
chain (i.e., over a period of 10 s). The results are
averaged over 10 simulation trials.
Table I shows the average approximation error

between the exact aggregate modal filter »k and the
reduced-order approximate aggregate modal filter »̃k

measured as 1=T T
k=1 »k »̃k

2 against various

TABLE I
Average Approximation Error in Low-Complexity Aggregate

Modal Filtering

² Average approximation error in aggregate modal filtering

0:001 1:0594 10 6

0:005 1:042 10 5

0:01 4:204 10 5

0:05 1:554 10 4

0:1 6:6468 10 4

0:15 1:3 10 3

TABLE II
Average Relative Error in Low-Complexity Image-Enhanced

Filtering

² Average relative error in image enhanced filtering

0:001 2:3929 10 10

0:005 4:361 10 9

0:01 1:097 10 7

0:05 4:387 10 7

0:1 2:8 10 6

0:15 3:2872 10 5

values of ² between 0:001 and 0:15. Similarly, Table II
shows the average relative approximation error in
image-enhanced trajectory estimation between the
exact filter and the reduced-order filter.

Figures 1 and 2 show snapshots of the true
trajectory (solid line), the estimated trajectory
(the “dash-dotted” line) according to the exact
image-enhanced filter and the estimated trajectory
(the “dashed” line) according to the reduced-order
image enhanced filter, for ¾2 = 0:01 and ¾2 = 0:1,
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Fig. 2. Low-complexity image-enhanced target trajectory estimation, ¾2 = 0:1.

Fig. 3. Mean square fractional error in target position estimates for x and y coordinates, ¾2 = 0:01.

respectively (with ²= 0:1). The estimated paths plotted
in Fig. 1 and 2 are computed by averaging over 20
independent trials with the same fixed true trajectory.
It is clear that the filters perform quite well with the
exact filter and the reduced-order filter being almost
indistinguishable. Note that although here we assume
the “block”-structured measurement dynamics (g and

C matrices being dependent only on the macro-state
of the Markov chain), small perturbations of such
dynamics will result in similar performances of the
reduced-order filters (as commented on in Remark 1).
As might be expected, in numerical studies (not
presented here) we found that as the variance ¾2 of
wk in (45) is increased, the performance of the filters
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are degraded, resulting in larger mean square tracking
errors.
Unlike the Kalman filtering case, it is not possible

to explicitly compute a “variance ellipse” for the
MMPP (modal) filter and image-based filter. Thus in
Fig. 3, we plot the estimated mean square fractional
error of the target position estimates in x and y
coordinates over 8200 discrete-time samples (8:2 s in
real time) averaged over 2000 trials, for ²= 0:1. The
mean square fractional error is defined as

E 1
˜̄i
k

si(k)

2

, si(k) = 0

where si(k) and ˜̄ik denote the ith component of the
vectors s(k) and ˜̄k defined in (45) (43), respectively,
i= 1,3 for the x and y coordinates, respectively.
As can be seen from Fig. 3, the estimated mean

square fractional error is quite small, implying that the
reduced-complexity filters perform satisfactorily.

VI. CONCLUSIONS AND EXTENSIONS

We have presented numerically efficient temporal
discretization and spatial aggregation methods for
the filters arising in image-based target tracking.
The temporal discretization was achieved by using
a gauge transformation. The spatial aggregation was
achieved by using an algebraic transformation that
decouples the components of the filters, leading
to provable performance bounds. In future work it
would be worthwhile to extend the spatial aggregation
procedure to more general observation processes.
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