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Reduced-Complexity Estimation for Large-Scale
Hidden Markov Models
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Abstract—In this paper, we address the problem of re-
duced-complexity estimation of general large-scale hidden
Markov models (HMMs) with underlying nearly completely de-
composable discrete-time Markov chains and finite-state outputs.
An algorithm is presented that computes ( ) (where is the re-
lated weak coupling parameter) approximations to the aggregate
and full-order filtered estimates with substantial computational
savings. These savings are shown to be quite large when the chains
have blocks with small individual dimensions. Some simulation
studies are presented to demonstrate the performance of the
algorithm.

Index Terms—Computational complexity, hidden Markov
models, Markov chains, nearly completely decomposable, state
estimation.

I. INTRODUCTION

REDUCING computational complexity in optimal estima-
tion and control of large-scale Markov chains has been

a topic of substantial interest [1]–[4]. A class of such Markov
chains is also known as “nearly completely decomposable
Markov chains.” These Markov chains are usually large
scale and show strong interactions within groups and weak
interactions between the groups. These chains are usually
characterized by transition probability matrices that can be
expressed as , where is a block
diagonal matrix with the individual blocks being stochastic
matrices, the number of blocks being . These blocks are also
termed as “superstates” (as in [15]). Typically, , where

is the total number of states in the chain. The parameter
is small and acts as the a weak coupling parameter that

makes the chain “nearly” completely decomposable (the chain
is completely decomposable if ). Applications of such
Markov chains to economic modeling, queueing networks,
and computer systems have been reported in early works
such as [5] and [6]. Other applications can also be found in
manufacturing systems operating with machines of varying
speed [7], communication networks with variable bit rate
video traffic [8], etc. In [1], [2], [9], and [10], the authors
focus on obtaining reduced-complexity computation of the
stationary distribution of such Markov chains using various
aggregation-decomposition methods. The singular perturbation
approach to aggregation of finite-state Markov chains has

Manuscript received February 20, 2003; revised July 4, 2003. The associate
editor coordinating the review of this manuscript and approving it for publica-
tion was Prof. Tulay Adali.

The authors are with the Department of Electrical and Electronic En-
gineering, University of Melbourne, Parkville, 3010, Australia (e-mail:
sdey@ee.mu.oz.au).

Digital Object Identifier 10.1109/TSP.2004.826171

been studied in [11]–[13], among others. Much of this work
concentrated on obtaining reduced-complexity controllers for
these Markov chains, very little attention was paid to the case
of partially observed nearly completely decomposable Markov
chains. Only [3] and, more recently, [4] and [14] address this
problem. In [14], weak convergence results for hybrid filtering
problems involving nearly completely decomposable hidden
Markov chains are presented. The research reported in [3]
and [4] partially address the case of reduced-complexity state
estimation from imperfect observations but does not provide a
systematic way of obtaining reduced-order computations of the
filtered estimates that exploits the near-complete decompos-
ability of the Markov chain to arrive at substantial guaranteed
computational savings with rigorous performance bounds. The
trade-off between accuracy and computational complexity in
state estimation of hidden nearly completely decomposable
Markov chains is also not explored in [3] or [4].

Computational complexity for filtering of hidden Markov
models (HMMs) with underlying nearly completely decom-
posable Markov chains was first addressed in our own work
[15] and the following paper [16], where algorithms were
presented for approximations to the aggregate and
full-order state estimates requiring computations per
discrete time instant, as opposed to computations
for the optimal estimates. These results were proven using
ergodicity assumptions on the HMMs and for sufficiently small
. However, a restriction was imposed on the state-to-output

observation probability matrices in that they were assumed to
have a “block” structure. This implied that the output transi-
tions only depended on the superstates but did not distinguish
among the states belonging to the same superstate. It was
shown in [15] how this assumption allowed us to obtain a
nice decoupling transformation that is uniformly bounded and
results in approximations to the aggregate and full-order
filtered estimates and smoothed estimates [16]. It is perhaps
not surprising that this special structure of the state-to-output
transition matrix allows one to obtain approximation,
whereas generally speaking, one would expect to obtain
approximations. Mathematically, this structure helps us to solve
for the decoupling transformation that satisfies a nonlinear
matrix equation, using iterative approximation techniques
(see [15]). These iterative techniques are easily implemented
because the nonlinear term in the equation is weighted only by
the weak coupling parameter , due to the special structure on
the state-to-output transition matrix. It is also clear that under
any small perturbation (which is of any polynomial order in )
applied to the state-to-output transition matrix with the special
block structure, the methods presented in [15] can be applied
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as well, but not to any general state-to-output transition matrix
that does not have a block structure or a nearly block structure.

In this paper, we lift this restriction on the state-to-output tran-
sition probability matrix and allow it to be any general transition
probability matrix with all positive elements. We concentrate
on a discrete-time irreducible nearly completely decomposable
Markov chain with finite-state outputs. We provide a system-
atic way for obtaining reduced-complexity filtered estimates for
these HMMs with a prescribed degree of accuracy. The contri-
bution of this work lies in

1) presenting an algorithm that computes guaranteed
approximations to the aggregate and full-order filtered
estimates for a general hidden Markov model with fi-
nite-state outputs;

2) showing that these approximations can be calculated with
substantial computational savings when the chain has su-
perstates that have small individual dimensions;

3) demonstrating through simulation studies the effective-
ness of the algorithm.

The main assumptions that are used involve ergodicity assump-
tions on the hidden Markov model and that is sufficiently
small. We should also point out that these results have impor-
tant implications for reduced-complexity estimation for HMMs
with continuous-valued outputs as well. However, extensions of
some of the rigorous analysis to the continuous-valued output
case are still incomplete and part of our ongoing research.

The rest of the paper is organized as follows. Section II details
the signal model that we are interested in and the corresponding
technical assumptions. Section III presents the basics on condi-
tional probability-based state estimation for HMMs with a trans-
formation technique that allows recursive calculations of aggre-
gate as well as full-order state estimates and makes the reduc-
tion of complexity possible. Section IV presents the main tech-
nical assumptions and results on reduced-complexity ap-
proximate filtering. Section V presents some simulation studies
that demonstrate the performance of our algorithm. Section VI
presents some concluding remarks.

II. SIGNAL MODEL

A discrete-time nearly completely decomposable Markov
chain in a probability space comprising states
is characterized by a transition probability matrix

(1)

where is the identity matrix of order , and is block
diagonal with

where is a small pertur-
bation parameter, and . It is clear that there are
blocks in the Markov chain, within each of which the dynamics
is fast, and every so often, the chain leaves one block to visit

another. Since is small, the rate at which these interblock tran-
sitions occur is slow. For all is row-stochastic, and
so is . Obviously, the row-sums of and are zero. Just as
in [15], we make the following natural, key assumption.

Assumption 2.1: The matrices and are irre-
ducible.

Remark 1: Notice that the above Assumption 2.1 guarantees
the existence of a unique stationary distribution of and

. There is one difference, however, that should be noted:
While the stationary distribution of depends on , those of

do not.
The states of the Markov chain are observed through another

stochastic process (observation or measurement process) .
For the analytical development of the paper, we assume that
belongs to a discrete set of finite cardinality. More specifically,

, and
. Such a signal model (irrespective

of whether the underlying Markov chain is nearly completely
decomposable or not) is also known as an HMM. Note also
that , that is, the observation probability matrix

is column-stochastic. We assume that .
It was shown in [15] that reduced-order computations

[ at each discrete time instant] for the filtered state
estimate (for extension of these results to smoothing, see
[16]) can be obtained with approximation when the
state-to-output transition matrix has a special structure,
namely, . Since, typically, , these
computational savings are substantial. In this paper, we remove
this restriction on .

In what follows, we will show that even with no restrictions
on , one can obtain approximations to the filtered esti-
mates with substantial computational reductions when the in-
dividual block sizes are not too large. As
an example, one will obtain substantial reduction in computa-
tional complexity if instead of

. A table consisting of exact
numbers of multiplications, additions, and divisions per discrete
time instant will be provided later to compare the computational
complexity of exact state estimation and the approximate state
estimation.

As in [15], we term the blocks as “superstates.” No-
tice that the probability (or conditional probability) of the
Markov chain belonging to a particular superstate is the
sum of probabilities (or conditional probabilities) of the
chain belonging to its constituent states. We denote the th
superstate by . Without loss of generality,

,
etc. We also term (like in [15]) the filtered estimate vector with
th element being as the aggregate filtered

estimate . Here, is the complete filtration
generated by the algebra .

III. STATE ESTIMATION OF HMMS

It is well known that the conditional filtered state estimate for
an HMM is defined in the following way:

(2)
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where is the complete filtration generated by the algebra

. Defining the row vector
, one can obtain the following recursion [17]:

(3)

where diag if , and
is the normalization factor (with

being the -length column vector of all 1-s), and is the row
vector representing the initial distribution of .

Note that the aggregate filtered state estimate is given by

(4)

Obviously, the row vector de-
notes the aggregate filtered state estimates and can be repre-
sented by

(5)

where is given by

Following the same techniques as in [10] (also used in [15]),
another matrix is chosen such that the trans-
formation is nonsingular. Let . In

addition, let , where obviously, , and

. As in [15], which is motivated to make fur-
ther computations simple, we choose the th diagonal block in

, namely, , to be

(6)

For this choice, the th diagonal blocks of turn out to be

(7)

Here, .
Now, rewrite (3) as

(8)

where
, and they are given by the following

equations:

(9)

Clearly, (8) can be carried out in two steps ( ):

Step 1) Calculate the unnormalized quantities
according to the following recursion:

(10)

where .
Step 2) Normalize by the normalization factor

. Note also that

(11)

As observed in [15], we are reminded again that for the above
choices of , the matrices and are
block diagonal matrices for all ; more specifically, is diag-
onal, is block diagonal with the th block being a row vector
of size is block diagonal with the th block being
a column vector of size , and is block diagonal with
the th block being a square matrix of size .
In addition, since the matrices and depend only
on , which is finitely valued, one can essentially precom-
pute the matrices and for each possible value
of and store them in a lookup table. During the filtering
operations, as and when we get a specific observation, we can
obtain the corresponding matrices by table lookup.

IV. APPROXIMATE REDUCED-ORDER FILTERS

In this section, we are concerned with obtaining reduced-
complexity aggregate and full-order filters with a prescribed de-
gree of accuracy when is “sufficiently” small. Although the
techniques used in this section are similar to that of [15], the re-
sults are substantially different due to the absence of a special
structure on the state-to-output transition probability matrix ,
as assumed in [15].

Following the approach in [15], we use a standard decoupling
technique to obtain the transformed variables that are
given by

(12)

This also implies that

(13)

Note that one can relate the unnormalized versions of ,
which is denoted by , respectively, by the same decou-

Authorized licensed use limited to: Maynooth University Library. Downloaded on May 10,2021 at 15:26:13 UTC from IEEE Xplore.  Restrictions apply. 



DEY AND MAREELS: REDUCED-COMPLEXITY ESTIMATION FOR LARGE-SCALE HIDDEN MARKOV MODELS 1245

pling transformation (since the normalization factor is the
same):

(14)

Here, is assumed to be a sequence of uni-
formly bounded time-varying matrices to be solved for. Using
this, together with (8), one can obtain the following recursion in
the transformed variables:

(15)

where was chosen such that the upper right-hand element of
the right-hand side of (15) is zero, or

(16)

Note that one can recursively solve for from the above equa-
tion, provided is invertible for every . This in-
volves multiplications of matrices that are not necessarily sparse
at each and requires a large number of computations. A well-
known technique [18] is to exploit the fact that is a small
positive number and truncate a power series expansion of
in at some finite power. However, this approximation is only
valid if is uniformly bounded.

In [15], the uniform boundedness of was shown using
the irreducibility condition stated in Assumption (2.1) and the
special structure assumed on (see [15] for details) and a
number of inequalities that were jointly sufficient to guarantee
that is sufficiently small. The proof in [15] crucially depended
on the special structure of , which implied that the nonlinear
term in (16) was of .

Due to the generalized nature of in the current work, we
do not have this convenience. We proceed along a different path
to establish the boundedness of for a sufficiently small .
We first make an assumption that guarantees the existence of
a uniformly bounded , which is the solution to (16) when

. Then, we argue that since , as a solution of (16), is
a continuous function of in a small neighborhood of
will also be uniformly bounded for a sufficiently small .

Notice that satisfies the following recursion (see also
(9)):

(17)

The difference with [15] is that in the current situation.
Observing that is diagonal and nonsingular, one can rewrite
(17) as the following:

(18)

Below, we use the vec notation associated with a matrix
, which is defined as

vec ...

where denotes the th column of the matrix .
We also use the notation to denote the Kronecker
product of two matrices. Using the notations vec

vec and
vec , (18) can

be rewritten as

(19)

Clearly, repeating this recursion, one can write

(20)

where , and
.

Let us now introduce the following notations. We denote by
the vector norm and by the corresponding

induced maximum absolute row sum matrix norm.
In what follows, we will be looking for sufficient con-

ditions such that belongs to a compact set

vec . Notice also that using
the special structures of and the fact that

can only take finitely many values, one can
easily obtain the following over bounds such that if

, then
.

Denote . Denote as the stationary
distribution of such that

, where is the th component of the
stationary distribution of such that . Denote the
expectation taken with respect to the stationary distribution
as .

We now make the following assumptions, which are easy to
verify and are sufficient to guarantee the uniform boundedness
of .

Assumption 4.1:

(21)

Remark 2: Note that a similar set of assumptions was made
(Assumptions 4.1 and 4.2) in [15] to obtain the uniform bound-
edness of for a sufficiently small . These two assumptions
played a crucial role in guaranteeing the uniform boundedness
of due to the special structure of the matrix, where the
observation probabilities only depended on the superstates and
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were identical for all the states in the same superstate (for each
observation). Since, in the current work, we do not assume such
a special structure on , we cannot prove a uniform bounded-
ness of directly but make Assumption 4.1, which guaran-
tees the uniform boundedness of . Later, an additional As-
sumption 4.2 is made to prove that for sufficiently small ,
one can show the boundedness of using continuity argu-
ments.

Observe that Assumption 4.1 guarantees that a such that
(see [15]

for more details). Using this result, we now state the following
Lemma.

Lemma 4.1: Suppose Assumption 4.1 holds. Suppose also
that there exists an such that

(22)

where is a finite number, and
recall that . Then, there exists a
uniformly bounded solution to (18) such that

.
Proof: Since the proof of this Lemma is similar to part

of the proof of [15, Lemma 4.1], we provide an outline of the
proof here. Recall that Assumption 4.1 implies that a such
that , and
recall as well that , where

.
Now, if one considers (20) after taking the norm of

both sides, one gets

Defining , one can then

use the above-mentioned bounds on and
to obtain

The proof now follows immediately from (22) for .
For , the result is obvious.

Now that we have identified a reasonable condition under
which the uniform boundedness of holds, we argue that

, as a solution of (16), is a continuous function of in a small
neighborhood of , and therefore, it will also be uniformly
bounded for a sufficiently small . This can be shown easily if
the following assumption holds.

Assumption 4.2: , and there exists a positive real
number such that

(23)

where there exist positive real numbers such
that

and

, where denotes a suitable matrix
norm.

Notice that due to the finite number of discrete outputs
and the uniform boundedness of easily guarantee the ex-
istence of . The fact that satisfies the
following recursive equation [easily derivable from (18)]

(24)

implies that Assumption 4.2 guarantees the uniform bounded-
ness of such that . This
allows us to use as an approximation to .

In addition, just as in [15], we make the following assump-
tion, which has been justified in [15] and is seen to be satisfied
through simulation studies.

Assumption 4.3: The evolution ,
where , has an exponentially stable solution.

Note that Assumption 4.3 guarantees that asymp-
totically (using (15)). The rate of this decay is determined by
the eigenvalues of and how close they are to
the origin. This also implies that there is a finite integer such
that for is .

Using the above results [(14) and an unnormalized version of
(15)], one can now write approximations (for a sufficiently
large ) to the unnormalized estimates as

(25)

We also assume that is small enough such that the normaliza-
tion procedure [division by in (15)] does not affect the
order of approximation of the unnormalized quantity, that is,

for some , where .
The above discussion may be summarized in the form of

the following theorem, establishing our main result on reduced-
order approximations to the filtered estimates :

Theorem 1: Suppose Assumptions 2.1, 4.1, 4.2, and 4.3 hold.
In addition, suppose there exists an such that the in-
equality (22) holds. Then, there exists a large enough but finite

such that for , an approximation for de-
noted by (and the unnormalized version by ) can be
obtained recursively by the following two steps:

(26)

Similarly, an approximation for (for ) is given
by

(27)
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TABLE I
TABLE OF NUMBER OF COMPUTATIONS PER TIME INSTANT FOR EXACT AND

APPROXIMATE O(�) AGGREGATE FILTERING

Similarly, an approximation to (the full-order normal-
ized filtered estimate) is given by

(28)

We now provide Table I, which compares the numbers of ad-
ditions, multiplications, and divisions per discrete time instant
in computing the exact aggregate filtered estimates and the
corresponding approximation ( , as given by Theorem 1).

It is clear that there will be substantial savings in computa-
tions when the Markov chain has a reasonable number of super-
states of small individual dimensions. For example, for
with , we have the number of additions,
multiplications, and divisions for the exact aggregate filtering as
39999, 40000, and 40, respectively. The corresponding numbers
for approximate aggregate filtering are 3999, 8960, and 80, re-
spectively. Similar computational savings can be demonstrated
for full-order filtering as well.

V. SIMULATION STUDIES

In this section, we present some simulation studies to demon-
strate the performance of our reduced-complexity filter. The
performance measures used are average approximation error in
aggregate filtering and full-order filtering. The average aggre-
gate filtering error is given by , which (from er-
godicity assumptions) is estimated by the average approxima-
tion error . Similarly, the av-
erage full-order approximation error is given by ,
which in turn is estimated by .

For our simulations, the choice for is 100 000. We also av-
erage our results over ten simulations.

As in [15], we perform our simulations with an eight-state
nearly completely decomposable Markov

chain with a transition probability matrix specified by (29),
shown at the bottom of the page. The discrete observation (or
measurement) set contains three possible outputs where the
state-to-observation probability matrix is given by

Clearly, the choice for , and here is the same as
in [15] and is not repeated here.

Remark 3: Note that in this example, does not have any
special structure as in [15]. The only restriction on is that
all elements are positive. Therefore, the results of this paper
are applicable to a very general class of state to observation
probability matrices.

It was shown in [15] that the various aggregation methods
that exist in the literature such as Courtois’ method and Khalil’s
method [10] can be extended to obtain ad hoc approximate ag-
gregate filters that often result in inexplicably large approxima-
tion errors, especially in the case of a matrix, which cannot
be readily aggregated unlike a block-structured , as in [15].
Therefore, here, we show no comparisons with other aggrega-
tion methods for our approximate aggregate filter. Note also that
the full-order approximate filtering scheme is unique to our ap-
proach and cannot be obtained by extending any of the aggre-
gation methods.

The nature of the approximation errors is illustrated in
Table II, which shows the average approximation error for both
the approximate aggregate filter and the full-order approximate
filter, as obtained by our approach for various values of ranging
from 0.001 to 0.1.

Various numerical issues that can arise here in implementing
our algorithm regarding stability of or how large can

(29)
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TABLE II
TABLE OF AVERAGE APPROXIMATION ERROR IN AGGREGATE AND

FULL-ORDER FILTERING

be, etc., will not be specifically addressed in this work as the
corresponding discussions are very similar to those in [15]. One
note should be added that if, for a particular cannot be
computed due to the matrix being singular,
one should discard that observation and reinitialize the algo-
rithm. We know that due to the exponential forgetting property
of HMM filters (see [19]) that such interruptions will not have
a significant effect in the asymptotic performance of the algo-
rithm.

VI. CONCLUSION

In this paper, we addressed the problem of reduced-com-
plexity state estimation for hidden Markov models with nearly
completely decomposable Markov chains. This research
addresses the problem for a general state to output transition
matrix structure rather than the special structure studied earlier
in [15]. It is shown that under natural irreducibility assumptions
on the underlying Markov chain and for a sufficiently small ,
one can obtain approximations to the aggregate as well
as the full-order filter with reduced-complexity computations.
The computational savings are substantial when the underlying
Markov chain has blocks with small individual dimensions.
Exact computational complexity of our algorithm is provided,
along with some simulation studies demonstrating the perfor-
mance guarantee on the accuracy of the algorithm. In addition,
one can apply our algorithm to obtain reduced-complexity
filtered estimates for HMMs with continuous-range (real
valued) outputs as well. In fact, simulations demonstrate that
the algorithm works quite well in this case, but many of the
rigorous proofs (such as for Lemma 4.1) need to be carefully
worked out. This is part of our ongoing work.
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