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Outage Capacity and Optimal Power Allocation for
Multiple Time-Scale Parallel Fading Channels
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Abstract— In this paper, we address the optimal power alloca-
tion problem for minimizing capacity outage probability in mul-
tiple time-scale parallel fading channels. Extending ideas from
[1], we derive the optimal power allocation scheme for parallel
fading channels with fast Rayleigh fading, as a function of the
slow fading gains. Numerical results are presented to demonstrate
the outage performance of this scheme for lognormal slow fading
on two parallel channels.

Index Terms— Fading channels, multiple time-scale, optimiza-
tion, outage capacity, power control.

I. INTRODUCTION

DETERMINING the information theoretic capacity of
fading wireless channels has been an important area

of research over the past decade. Various notions of capac-
ity for single-user fading channels include ergodic capacity
[2], delay-limited capacity [3] and capacity versus outage
probability [4], [5]. If the transmitter has the channel state
information (CSI), then transmit power could be controlled
as a function of the channel to maximize the capacity. The
paper [2] (see also [6]) looked at the problem of maximizing
ergodic capacity subject to an average power constraint, and
showed that the optimal power control law was waterfilling
on the inverse of the channel gain (more power is allocated
when the channel gain is high, than when the channel gain is
low). Another problem that suggests itself is to design power
allocation policies that minimize outage probability on a given
fading channel. This problem (amongst others) was addressed
in [5] where it was shown that the best power allocation
scheme was to use no transmit power if the channel gain
falls below a threshold and to use channel inversion above
the threshold (more power is allocated when the channel gain
is low, than when the channel gain is high).

The power allocation policies resulting from maximizing er-
godic capacity and from minimizing the probability of outage
are very different and represent two ends of the spectrum. To
bridge this gap, an optimal power and rate allocation problem
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was considered in [7] where long term average capacity is
optimized with respect to a deterministic power allocation
policy subject to a constraint on outage along with the standard
average power constraint. This additional outage constraint
was motivated by the idea that in an integrated network,
non-real time applications will benefit from maximizing the
ergodic capacity and at the same time, real time applications
(such as voice and video) will benefit from a Quality of
Service (QoS) guarantee on the maximum outage probability.
The optimal power allocation for this problem was shown to
be a mixture of channel inversion and water-filling allocation.
Extensions of this problem to parallel fading channels with
random power allocation policies (to include discrete fading
distributions) have been considered in [8]. The results of [7]
were generalized to a class of fading channels in [1] where
the channels have a two-time scale nature. The slow variation
in these fading channel is due to distance based attenuation
and shadow fading and the resulting slow fading channel gain
is assumed to be known at both transmitter and receiver. The
fast fading gain (resulting from local mobility and multipath
fading) is assumed to be known at the receiver but unknown
at the transmitter, however the transmitter does have access to
the statistics of the fast fading distribution, which is restricted
to the Rayleigh distribution in [1].

While the results of [1] are restricted to single fading
channels only, it is important to extend these results to obtain
optimal power allocation in two time-scale parallel fading
channels. The generic notion of parallel channels represents
various different wireless transmission technologies such as
multi-antenna, multi-carrier such as OFDM, MC-CDMA etc
and various other diversity based transmission schemes many
of which will form the basis of next generation wireless
communication technologies. In order to achieve these results,
a necessary step is to obtain optimal power allocation policies
for outage probability minimization in two-time scale parallel
fading channels. Indeed, this is the focus of this paper.

In this paper, under the usual long codeword assumption
(as in [7]), we adopt the concept of a block-ergodic capacity
(BEC) defined in [1] for fast Rayleigh fading and define
the corresponding BEC for two-time scale parallel fading
channels. We then define outage probability as the probability
that this BEC falls below a minimum basic rate. We derive the
optimal power allocation scheme that minimizes this outage
probability subject to an average long term power constraint
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as a function of the slow fading gains of the parallel channels.
The resulting power allocation policies for the various chan-
nels are given as a set of simultaneous nonlinear equations that
can be solved numerically. We then present some simulation
results for the case of two parallel (with lognormal slow
fading and fast Rayleigh fading). The results demonstrate the
superior outage probability performance of the optimal power
allocation scheme compared to a constant power transmission
scheme.

II. CHANNEL MODEL AND OUTAGE CAPACITY

The concept of a block-fading Gaussian channel (BF-
AWGN) was introduced in [4]. Essentially it refers to a a
wireless propagation environment where the channel state over
a block of possibly N symbols remains constant but varies
from one block to another according to some random process.
This idea was generalized to an M -block BF-AWGN channel
in [5], where a codeword spans M blocks of N symbols
each. This M -block channel model can be used to describe a
multicarrier system with M parallel subchannels where the M
channel gains are known at the transmitter before transmission.
We consider a two-time scale version of this M -block BF-
AWGN channel in the current paper.

By two-time scale fading we mean that the channel gain
can be expressed as the product of a slowly-varying com-
ponent and a quickly-varying component. The slowly-varying
component is random but is constant over a block of length N
symbols (the block length is much shorter than the coherence
time of the slowly-varying channel gain). The quickly-varying
component is random and varies considerably over a block of
length of N symbols (the block length is much larger than the
coherence time of the quickly-varying channel gain).

We consider M parallel blocks of N symbols to constitute
a frame. We will work in the limit of large block length
N , but assume the number of parallel channels M is finite.
A codeword consists of all MN symbols within one frame:
codewords do not span multiple frames.

Within a frame we can write the n-th received symbol in
block m

ym(n) =
√

gmfm(n)bm(n) + zm(n)

where gm is a slow-fading gain, fm(n) is a fast-fading gain,
bm(n) is a channel input symbol and zm(n) is the channel
noise. The additive noise terms are assumed to be independent
and identically distributed Gaussian random variables with
mean zero and variance one. The fast-fading gains are as-
sumed to be independent across blocks with identical marginal
distributions following an exponential distribution (Rayleigh
fading) with mean one. Within a block we assume that the
process {fm(n)}∞n=0 is ergodic. The slow-fading gains are in-
dependent of the fast-fading gains and are constant within each
block. The vector random process formed by considering the
M slow-fading gains as they vary from one frame to the next
is assumed to be ergodic with stationary first-order cumulative
distribution function Q(g) where g = [g0, g1, · · · , gM−1]T .

We assume that the slow-fading gains are known to both
the transmitter and the receiver, while the fast-fading gains are
known to the receiver but not to the transmitter. This allows

for the possibility of varying the transmit power as a function
of the slow-fading gain vector g. The transmit power is
represented by the vector p = [p0(g), p1(g), · · · , pM−1(g)]T .

With these preliminaries we can now define (under the
assumption that the block lengths are large) a vector channel
version of the block-ergodic capacity (BEC) introduced in [1]:

Rb(g,p) = E

[
1

2M

M−1∑
m=0

log (1 + gmfpm(g)) | g
]

(1)

where, without loss of generality, the average power of the
background white noise has been taken to be unity and f
denotes the independent across the blocks and identically
exponentially distributed (with mean one) fast fading process.
The conditional expectation E denotes the expectation over
the distribution of the fast fading process f , given g.

This now leads to the following definitions of Outage
Capacity and Outage probability:
Outage capacity: The outage capacity is defined as the max-
imum achievable BEC over M fading blocks, denoted by
Cb

ε (Pav) where

Cb
ε (Pav) = max

p
r, subject to P (Rb(g,p) < r) ≤ ε,

E[
1
M

M−1∑
m=0

pm(g)] ≤ Pav, pm(g) ≥ 0, ∀m (2)

The outage probability for a given BEC r0 is defined as

O(p) = P (Rb(g,p) < r0) (3)

Recalling that the fast fading process f is exponentially
distributed with mean unity over all blocks, one can easily
show that

Rb(g,p) =
1

2M

M−1∑
m=0

exmE1(xm) (4)

where xm = 1
pm(g)gm

and E1(x) =
∫∞

x
e−s

s ds.
Given a vector x = (x1 x2 . . . xM ), we denote the arithmetic
mean 1

M

∑M
i=1 xm by < x >. We also assume (without loss

of generality) that g0 ≥ g1 ≥ . . . ≥ gM−1. In the following
the notation log will denote the natural logarithm.

III. POWER CONTROL FOR MINIMIZING OUTAGE

PROBABILITY

In this section, we are primarily concerned with the
following optimization problem:
Problem P1: Given r0, minimize P (Rb(g,p) < r0) over
the choice of power allocation functions p subject to
E[< p >] ≤ Pav, p ≥ 0.

Remark 1: Note that the above problem is the multiple
time-scale fading analog of the outage probability minimiza-
tion problem with a long-term power constraint considered in
[5] for a single time-scale fading situation.
As in [5], in order to solve P1, we first concern ourselves with
the following problem:
Problem P2: Minimize < p > subject to Rb(g,p) ≥ r0,
p ≥ 0.
The solution to Problem P2 is given by the following Lemma:
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Lemma 3.1: Suppose g0 ≥ g1 ≥ . . . ≥ gM−1. Then the
m-th component of the optimal power allocation for Problem
P2 is given by

p∗m(g) =
{

λ1(g)(1 − x∗
mex∗

mE1(x∗
m)) if gm > 1

λ1(g)

0 otherwise
(5)

where x∗
m = 1

gmp∗
m(g) and

λ1(g) =

∑μ−1
m=0

1
gmx∗

m
2∑μ−1

m=0
1

x∗
m
− 2Mr0

(6)

and μ is the unique integer such that gm > 1
λ1(g) , ∀m < μ

and gm ≤ 1
λ1(g) , ∀m ≥ μ.

Proof: First note that the optimization problem P2 is
a convex optimization problem since the objective function
is linear in p and the constraint is convex (follows from (4)
and the fact that Rb(g,p) is a concave function of p (can be
shown easily from the Dominated Convergence Theorem (see
[1])).

This allows us to use the standard Lagrangian based func-
tion (for some λ > 0)

L(p, λ) =
1
M

[
M−1∑
m=0

(pm−λ

2
exmE1(xm))], xm =

1
gmpm

(7)

Taking the partial derivative with respect to pm, one can
then show that

∂L

∂pm
= [1 − λ1(g)gmxm (1 − xmexmE1(xm))] (8)

where λ1(g) = λ
2 .

It is then straightforward to show that the power allocation
given by Lemma 3.1 satisfies the Kuhn-Tucker optimality
conditions (see [9], page 74 for details). To solve for λ1(g),
note that the constraint in Problem P2 has to be satisfied with
equality. To prove this, assume Rb(g,p) > r0. Then, one can
decrease any of the positive powers such that the constraint
is met with equality, and in the process reducing the value of
the objective function. Thus, at the optimal solution, we must
have Rb(g,p) = r0.

The only thing remaining to show is that there exists
a unique μ such that gm > 1

λ1(g) , ∀m < μ and gm ≤
1

λ1(g) , ∀m ≥ μ. The proof of this is slightly tedious. Therefore
it is relegated to the Appendix.
Computation of optimal power: The elements of the optimal
power vector: p∗m(g), m = 0, 1, . . . , M − 1 satisfy a set of
simultaneous nonlinear equations given by (5), (6). One has
to resort to numerical methods to compute the optimal power
vector. Note that one can rewrite (5) as

1
gmλ1(g)

= x∗
m(1 − x∗

mex∗
mE1(x∗

m)),

p∗m(g) =
{ 1

gmx∗
m

, if gm > 1
λ1(g)

0 otherwise
(9)

We used an iterative method by repeatedly applying (6) and
(9) (note that for a given λ1(g) there is a unique solution to
x∗

m from (9)) with suitable initial values for x∗
m and λ1(g)

until a prespecified relative accuracy was reached. We ran
this algorithm via a MATLAB7 code on an Intel Pentium M

755 (2.0 GHz) processor. On an average, it took only 1.5364
seconds to calculate the optimal power allocation for M = 64
channels with a final relative accuracy (in Rb(g,p)) of the
order of 10−5. It was also seen to be remarkably fast in
computing the optimal power allocation for even larger values
of M .

In order to proceed, we present another result that is similar
to its counterpart in [5].

Denote the vector (p∗0(g) p∗1(g) . . . p∗M−1(g)) by p∗.
Lemma 3.2: The optimal power allocation function

p∗m(g), m = 0, 1, . . . , M − 1 (as defined in Lemma 3.1
above) is a continuous function of g. In addition, 〈p∗〉 is a
nonincreasing function of gm, m = 0, 1, . . . , M − 1, in fact
the following is true; for all p∗j (g), j = 0, 1, . . . , M − 1:

∂〈p∗〉
∂gj

= − 1
M

p∗j (g)
gj

(10)

.
Proof: The proof of the first statement is similar to that

of [5] and is excluded. The proof of the second statement
is a direct consequence of the fact

∑μ−1
i=0 ex∗

i E1(x∗
i ) =

2Mr0, x∗
i = 1

gip∗
i (g) and is given in the Appendix.

Remark 2: Note that if there is no transmission on the j-
th channel, that is, p∗j (g) = 0, then the average sum-power
over all channels is a constant as a function of gj , that is, the
derivative in (10) is equal to zero.

Remark 3: Notice that the optimal power policy here is
a function of the slow fading gain g, which is assumed to
be known exactly at the transmitter. While this is a more
preferable option than tracking the fast fading gain, in practice,
one has to estimate g by averaging the fast fading process.
Error in this estimation process can give rise to inaccuracies in
the values of g used to compute the optimal power allocations,
thus contributing to sub-optimal performance. Given that g
is the slowly varying gain, we can assume that it can be
estimated fairly accurately, in which case the performance
of the power allocation algorithm will be close to optimal.
A rigorous analysis taking into account the statistics of the
estimation error process is, however, beyond the scope of this
paper.
Example: We provide an example here to demonstrate the
power profiles for M = 2, where g0 = 1 is kept fixed and g1

is increased and g1 is varied between 0.0001 to g0 = 1. r0 is
taken to be 1 bit per symbol.

For this case, Fig. 1 illustrates the optimal power allocation
functions p∗0, p∗1 and the average power sum p∗

0+p∗
1

2 as a
function of g1. Note that the powers are expressed in units of
the noise variance (assuming the noise variance is one unit).
It is clearly visible that p∗1 remains zero (no transmission)
until g1 attains a threshold and then transmissions are on at
both channels M = 1, 2. As g1 approaches g0, p∗1 approaches
p∗0. A similar graph can be obtained by keeping g1 fixed and
varying g0. It is also seen that the average power sum p∗

0+p∗
1

2
is a nonincreasing function of g1.

As in [5], we define the following regions:

R(s) = {g ∈ IRM
+ : 〈p∗〉 < s},

R̄(s) = {g ∈ IRM
+ : 〈p∗〉 ≤ s} (11)
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Fig. 1. Plot of optimal power allocation versus the slow fading gain g1

(M = 2, g0 = 1).
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Fig. 2. Plot of P(s∗) versus s∗ (M = 2).

and the boundary surface of B(s) of R̄(s) as the set of points
g such that 〈p∗〉 = s. We also define the two average power
sums P(s) and P̄(s) as (recall that the cdf of g is given by
Q(g))

P(s) =
∫
R(s)

〈p∗〉dQ(g), P̄(s) =
∫
R̄(s)

〈p∗〉dQ(g) (12)

Finally the threshold s∗ and weight w∗ are defined as

s∗ = sup{s : P(s) < Pav}, w∗ =
Pav − P(s∗)
P̄(s∗) − P(s∗)

(13)

With Lemmas 3.1 and 3.2 and the previous definitions ((11)-
(13)), we can now state the main result of this paper:

Theorem 1: Problem P1 is solved by the following power
allocation scheme:

popt =
{

p∗, if g ∈ R(s∗)
0, if g /∈ R̄(s∗) (14)

while if g ∈ B(s∗), popt = p∗ with probability w∗ and popt =
0 with probability 1 − w∗.
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Fig. 3. Plot of outage probability versus average SNR (M = 2).

Proof: The proof requires an intermediate functional
optimization result (see Lemma 3 (pp. 1474) in [5])) that ex-
plains the reason for the randomization in the power allocation
scheme if g ∈ B(s∗). The rest of the proof is similar to the
proof of the main result (Proposition 4) in [5] and is excluded
for lack of space.

Remark 4: Note that if the cdf Q(g) is continuous, then
there is no need for randomization as the probability that
g ∈ B(s∗) is zero. Randomization is needed when the cdf
is discontinuous and has discrete point masses. The minimum
outage probability for a general Q(g) is given by 1−w∗P (g ∈
B(s∗)) − P (g ∈ R(s∗)).

Remark 5: Note that the single channel case (M = 1) was
dealt with in [1] separately, and the same result can also be
obtained as a special case of Theorem 1.

IV. SIMULATION STUDIES

In this section, we present some simulation studies con-
ducted with a M = 2 block-fading channels with fast
Rayleigh fading. The slow fading gains g0, g1 are distributed
with independent lognormal distributions (standard for shadow
fading), such that log g0 is distributed with mean 0 and
variance σg0 = 3dB, and log g1 is distributed with mean 0
and standard deviation σg1 = 1dB. The fast fading gains for
both channels are independently exponentially distributed with
mean 1 (Rayleigh fading). The minimum basic rate is taken
to be r0 = 1 bit/sec/Hz. The average signal-to-noise ratio
(SNR) Pav is varied between 1 dB and 8 dB. The following
results were obtained through Monte Carlo simulations over
100000 realizations of the slow fading gains and averaged over
5 random sets.

Fig 2 shows how P(s∗) varies with s∗. This graph can be
used to obtain the optimal threshold s∗ for a given Pav . Note
that for continuous probability distribution functions of the
slow fading gains, P(s∗) = Pav .

Fig. 3 shows the outage probability achieved by the optimal
power allocation and compares it with that achieved by con-
stant power allocation (Pav/2 in both channels all the time).
Clearly, the constant power allocation performs very poorly.
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With the optimal power allocation, an outage probability of
0.01 is achieved at an average power of approximately 7.6
dB.

APPENDIX I
PROOF OF EXISTENCE AND UNIQUENESS OF μ IN LEMMA

3.1

Recall that μ =
∣∣∣{m : gm > 1

λ1(g)}
∣∣∣ where λ1(g) is given

by (6). Following similar techniques in [5], we define

ν(μ) =

∣∣∣∣∣{m : gm >

∑μ−1
m=0

1
x∗

m
− 2Mr0∑μ−1

m=0
1

gmx∗
m

2

}
∣∣∣∣∣

where |.| of a set indicates the number of elements in that set.
We now need to show that there exists a unique integer

solution to the equation ν(μ) = μ. Before we begin, recall
that by definition, 1 ≤ ν(μ) ≤ M . Now define

δ(μ) =

∑μ−1
m=0

1
x∗

m
− 2Mr0∑μ−1

m=0
1

gmx∗
m

2

It can be shown (after some algebra) that

(δ(μ + 1) − δ(μ))

(
μ−1∑
m=0

1
gmx∗

m
2

)

=
1
x∗

μ

[
1 − δ(μ + 1)p∗μ(g)

]
(15)

It is trivial to see that δ(1) < 1
p∗
0(g) . Now if one assumes that

δ(μ) < 1
p∗

µ−1(g) , after some more algebraic manipulation, one

can show that δ(μ + 1) < 1
p∗

µ(g) . It follows by induction then

that for any μ ∈ {0, 2, . . . , M − 1} that δ(μ + 1) < 1
p∗

µ(g) .
Using this with (15), one obtains δ(μ + 1) > δ(μ). By

definition, ν(μ) = |{m : gm > δ(μ)}|. Since g0 ≥ g1 ≥ . . . ≥
gM−1, we obtain (using the above facts) ν(μ + 1) ≤ ν(μ).
Combining this with the fact that 1 ≤ ν(μ) ≤ M , it follows
that ν(μ) = μ has a unique solution.

Proof of (10):
From Lemma 3.1, we know that

μ−1∑
i=0

ex∗
i E1(x∗

i ) = 2Mr0

Differentiating both sides w.r.t gj for j = 1, 2, . . . , M −1, we
have (after some rearranging)

∑
i

(
1
x∗

i

∂x∗
i

∂gj

)
(1 − x∗

i e
x∗

i E1(x∗
i )) = 0

Using (5), one can then write
∑

i p∗i (g)∂ log x∗
i

∂gj
= 0. Using the

fact log x∗
i = − log gi− log p∗i (g), one then has the following:

∂ log x∗
i

∂gj
=

{
− 1

gi
− 1

p∗
i (g)

∂p∗
i (g)

∂gi
if j = i

1
p∗

i (g)
∂p∗

i (g)
∂gj

if j �= i
(16)

Substituting the above result in
∑

i p∗i (g)∂ log x∗
i

∂gj
= 0, one

obtains
∂p∗j (g)

∂gj
+
∑
i�=j

∂p∗i (g)
∂gj

= −p∗j (g)
gj

(10) now follows immediately.
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