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Data Rate Theorem for Stabilization Over
Time-Varying Feedback Channels
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Abstract—A data rate theorem for stabilization of a linear, dis-
crete-time, dynamical system with arbitrarily large disturbances,
over a rate-limited, time-varying communication channel is pre-
sented. Necessary and sufficient conditions for stabilization are de-
rived, their implications and relationships with related results in
the literature are discussed. The proof techniques rely on both in-
formation-theoretic and control-theoretic tools.

Index Terms—Control under communication constraints, en-
tropy, quantized control, source coding.

I. INTRODUCTION

I N modern control theory, the data rate theorem refers to
the smallest feedback data rate above which an unstable dy-

namical system can be stabilized. In its scalar form, it states that
a discrete linear plant of unstable mode can be stabilized
if and only if the data rate over the (noise free) digital feed-
back link satisfies the inequality bits per sample,
where is called the intrinsic entropy rate of the
plant. From its first appearance, this result has been generalized
to different notions of stability and system models, and has also
been extended to multi-dimensional systems [1], [3], [5], [13],
[16], [21], [24]. The survey papers [2] and [17] give an histor-
ical and technical account of the various formulations.

In many engineering applications, the aim is to control one or
more dynamical systems using multiple sensors and actuators
communicating over digital links. In this framework, the data
rate theorem represents a point of contact where the theories
of control and communication converge, as it relates the speed
of the dynamics of the plant to the information rate of the com-
munication channel. From an information-theoretic perspective,
the existence of a critical positive rate below which there does
not exist any quantization and control scheme able to stabilize
an unstable plant is reminiscent of Shannon’s source coding the-
orem [20]. Stated informally, this says that if one wants to com-
municate with a fixed-length code over a noise free channel the
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Fig. 1. Feedback loop model. The (encoded) estimated state � is quantized
and sent to a decoder over a wireless digital link that supports error-free trans-
mission of � bits per discrete unit time.

output of a finite-valued stationary ergodic source process with
entropy rate , then the number of bits that must be used to
represent the source sequence with arbitrarily small error proba-
bility is at least . In other words, Shannon’s entropy rate,
representing the amount of uncertainty of the source, poses a
fundamental limit on the communication rate. Similarly, the in-
trinsic entropy rate of an unstable linear dynam-
ical system, representing the growth of the state space spanned
by the open loop system, poses a fundamental limit on the min-
imum data rate that must be available over the feedback loop to
guarantee stability.

In this paper, we are concerned with the formulation of
the data rate theorem over time-varying feedback channels. A
motivating example is given by sensors and actuators commu-
nicating over a wireless channel for which the quality of the
communication link varies over time because of random fading
in the received signal. In the case of digital communication,
this can reflect in a time variation of the rate supported by
the wireless channel. However, if the channel variations are
slow enough, transmitter and receiver can estimate the quality
of the link by sending a training sequence, and can adapt the
communication scheme to the channel’s condition. We ask the
following question: is it possible to design a communication
scheme that changes dynamically according to the channel’s
condition and, at the same time, is guaranteed to stabilize the
system?

To answer the above question, we assume the following
model. The communication channel, at any given time ,
allows transmission of bits without error, where fluc-
tuates randomly over time. remains constant in blocks of

consecutive channel uses and then varies according to an
independent and identically distributed (i.i.d.) process across
blocks. Furthermore, both encoder and decoder have causal
knowledge of the rate supported by the communication link,
see Fig. 1. We remark that such channel state information (CSI)
can be obtained through feedback from the receiver to the
transmitter if the fading variation is slow enough.
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The model above includes the erasure channel as a special
case, by allowing the rate process to have only a value ,
or zero if an erasure occurs. In this case, CSI at the transmitter
can be simply obtained through one bit feedback that notifies
the sender of erasures.

The model, however, does not capture the possibility of
having other decoding errors beside erasures. Rather than
addressing general channels with noise, our aim here is to
obtain crisp results in a simple setting which can be used to
understand the basic trade-offs between the intrinsic entropy
rate of the system, the available rate on the communication
channel, and the additional randomness due to the changing
conditions of the environment. In this framework, our work
directly relates to the ones in [9], [13], [16], [19], [21] and we
describe this relationship in more detail next, while we refer
the reader interested in more general channels with noise to the
work of Sahai and Mitter [18], as well as to the works in [14],
[15], [22], [23].

In an influential paper, Tatikonda and Mitter [21] have studied
a model similar to ours in which the rate is fixed and system
disturbances are bounded. Nair and Evans [16] addressed the
case in which the rate is still fixed, but disturbances can have an
unbounded support (Gaussian disturbances are a special case of
this). Finally, Martins, Dahleh, and Elia [13] considered the case
of a scalar system with state feedback, random time-varying rate
and bounded disturbances, and they provided necessary and suf-
ficient conditions for th moment stability. In this work, we
allow both the system disturbances to have unbounded support
and the rate to vary randomly. Furthermore, the encoder has ac-
cess to output feedback rather than to state feedback and we
also consider the multi-dimensional case. This formulation re-
quires the use of an adaptive quantizer, as this must be capable
of tracking the state when atypically large disturbances affect
the system and must dynamically adapt to the rate that is instan-
taneously supported by the channel. Naturally, our results can
recover the ones mentioned in the above papers.

We also want to spend a few words on a different approach
that has been used in the literature to model control over time-
varying channels. This has a network-theoretic flavor rather than
the information-theoretic one described above. In this case, the
channel uncertainty is modeled using random packet dropouts.
Packets are considered as single entities, each carrying the es-
timated state, that can be lost independently, with some prob-
ability. Furthermore, channel state information is in this case
modeled as packet acknowledgement at the transmitter. An ex-
tensive survey of different works following this approach ap-
pears in [11] and we refer the reader to this work for references.
The network-theoretic equivalent of the data rate theorem is the
proof of existence of a critical dropout probability above which
the closed loop system cannot be stabilized, see for example [7],
[9], [12], [19].

Our present paper reveals an important link between the
network-theoretic, packet-loss model described above, and the
information-theoretic approach. From an information-theoretic
perspective, the packet loss model corresponds to an erasure
channel in which the rate is infinity, with probability
and zero with probability . This is because a single packet,
representing the state of the system which is a real quantity, can

carry an infinite amount of information, as a real number can
have arbitrarily many bits within its binary expansion. Now,
if we apply our results to an erasure channel, where the rate
is with probability and zero with probability , in
the high data rate limit this channel can be seen as
communicating real numbers with random i.i.d. erasures, and
in this case we obtain a necessary and sufficient condition for
stabilization that is the same as the one in [9], obtained under
the network theoretic model, with Bernoulli packet dropouts,
acknowledgement of packet reception, and Gaussian system
disturbances.

The rest of the paper is organized as follows. The main con-
tributions are informally summarized and discussed next. Sec-
tion III formally defines the problem. Section IV is devoted to
the proof of the necessary and sufficient conditions for stabiliz-
ability in the scalar case. These are shown via the entropy-power
inequality (necessary) and the construction of an adaptive, vari-
able length encoder (sufficiency). Section V is devoted to the
more complex multi-dimensional case, for which necessary and
sufficient conditions are shown to be tight in some special cases.

II. OVERVIEW OF THE RESULTS

In the scalar case, we prove that a necessary and sufficient
condition to stabilize a linear system of unstable mode
in the second moment sense over a digital link of time-varying
limited rate as described above, is

(1)

where is the length of the block during which the rate on the
digital link remains constant, and the rates ’s are i.i.d. across
blocks and distributed as a random variable .

The condition above is amenable to the following intuitive
interpretation. If no information is sent over the link during a
transmission block, the estimation error at the decoder about the
state of the system grows by . The information sent by the
encoder can reduce this error by at most , where is the
total rate supported by the channel in a given block. However,
if averaging over the fluctuation of the rate exceeds ,
then the information sent over the channel cannot compensate
(on average) the dynamics of the system and it is not possible to
stabilize the plant. Notice that if the rate is fixed over time and
equal to a constant , then the condition in (1) reduces to the
well known inequality .

Finally, it is also easy to see that when communicating over
an erasure channel for which with probability
and with probability , then for the necessary and
sufficient condition for stabilization in (1) reduces to

which is the same critical loss probability derived in [9] for
systems with Gaussian (i.e. unbounded-support) disturbances
under the network-theoretic model.

The proof of the result in (1) is based on an information-the-
oretic argument based on the entropy-power inequality (neces-
sary condition), and on an explicit construction of an adaptive
quantizer and coder-decoder pair (sufficient condition). In the
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latter case, the main challenge is to design a quantizer that adapts
dynamically to the exogenous rate process and can handle atyp-
ically large disturbances. The construction of the coder-decoder
pair is similar to the one by Nair and Evans [16]. There are,
however, some key differences vis-à-vis in the way the stabi-
lizing scheme is constructed. In [16], time is divided into cy-
cles of fixed duration, and system state observations are quan-
tized using a fixed number of bits, which are transmitted over
the digital link for the duration of a cycle. Thus, communica-
tion between coder and decoder occurs at a fixed transmission
rate. In our case, the total number of bits available in a cycle of
fixed duration is random and it is not known a priori, as the rate
process is known only causally at the coder and the decoder. As
a consequence, the choice of an appropriate quantization rate
is not immediate. Our solution consists in dividing time into
cycles of fixed duration, but quantizing the state observations
using a random number of bits, which depends on the realiza-
tion of the rate process. The fact that future realizations of the
rate process are not known in advance is not a problem, since
the quantizer we use is successively refinable, and can dynam-
ically adapt to the rate that is instantaneously supported by the
digital link. Hence, our scheme performs as if the future real-
izations of the rate process were known in advance at the coder
and decoder. An alternative approach consists of quantizing the
observations using a fixed number of quantization points, but al-
lowing cycles to have variable duration. A scheme based on this
approach is outlined in Section V-D. Finally, we remark that, as
in related works in the literature [13], [16], [21], the construction
provided in this paper relies on the crucial assumption that the
coder and decoder can agree on the initial values of the internal
states through an a priori iterative communication process.

The extension of the analysis to multi-dimensional linear sys-
tems entails the difficulty of the rate allocation to the different
unstable modes. In this case, we derive necessary conditions for
second moment stabilizability, which define a region with a spe-
cial polymatroid structure. When the rate is fixed and equal to a
constant , the necessary conditions reduce to

where are the open loop eigenvalues (raised to their
corresponding algebraic multiplicities). Again, this recovers the
well known data rate theorem for vector systems with determin-
istic rate [16], [21]. Finally, as in the scalar case, in the high data
rate limit over an erasure channel, we also recover the necessary
condition on the critical dropout probability of [9].

Finally, we provide a general coder-decoder construction for
vector systems and show that this is optimal in some limiting
cases. For some specific rate distributions, however, it is pos-
sible to design more efficient schemes. This latter point is shown
by considering stabilization over a binary erasure channel, for
which a better scheme is proposed.

III. PROBLEM FORMULATION

In the sequel, the following notation is used: vectors are
written in bold-faced type and sequences are denoted
as ; expectation with respect to the random variable

is written as , the differential entropy of a continuous
random vector as and the entropy of
a discrete random vector as ; the set
of non-negative integers as , the positive integers as , and
the rational numbers as ; finally, the cardinality of a finite set

is denoted as .
Consider the partially-observed, discrete-time state-space un-

stable stochastic linear system

(2)

where is the state process, is the con-
trol input, process disturbance, the measurement
and measurement noise are random vectors in . Suppose

is uniquely composed by unstable modes (having magnitude
greater or equal to unity). No Gaussian assumptions are made on
the initial condition and the disturbances, but the following
is assumed to hold:

A0. is reachable and observable.
A1. , and are mutually independent for all

.
A2. such that , and have uniformly
bounded th absolute moments over .
A3. . Thus, such that

for all and .
Suppose that coder and decoder are connected by a

time-varying digital link, see Fig. 1. The transmission rate
supported by the digital link is assumed constant over blocks
of channel uses but changes independently from block
to block according to a given probability distribution. For-
mally, at time the digital link is an identity map on
an alphabet ; denotes the transmission
rate supported by the digital link, and coincides with if
and only if . At time

, coder and decoder
know , while the realization of the rate process in future
blocks, , is unknown to them. The are i.i.d.
random variables distributed as , where is an integer-valued
random variable taking values on . We denote by
the minimum value in the set .

This definition of the rate process is motivated by commu-
nication over wireless channels. In fact, the rate supported by
a block fading wireless channel can be modeled as a random
variable, since this is a function of the (random) channel gain
that attenuates the transmitted signal. The block fading model
captures a fading scenario where the fading channel state re-
mains invariant over a block of time but changes from block
to block. If the fading variation is slow enough, feedback from
the receiver to the transmitter can be used to acquire channel
state information. If the channel state information is known,
then the rate supported by the channel is also known at both
transmitter and receiver. Finally, the rate can be modeled as an
i.i.d. random process across the channel blocks if we assume
that block lengths are similar to coherence time intervals (length
of time over which the channel’s statistical properties do not
change) of the channel. For example, the i.i.d. assumption is
valid for a slow frequency hopped time division multiple access
channel.
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Example 3.1: We call erasure channel a digital link where
with probability and with probability , for

some nonnegative integer and . If , we call the
channel binary erasure channel.

Each transmitted symbol can depend on all past and present
measurements, the present channel state and the past symbols

where is the coder mapping at time . The control se-
quence, on the other hand, can depend on all past and present
channel symbols

where is the controller mapping at time .
We want to construct a coder-decoder pair which stabilizes

the plant in the mean square sense

(3)

using the finite data rate provided by the time-varying digital
feedback link.

IV. SCALAR SYSTEMS

In this section it is assumed that the plant in (2) is scalar and
has a representation of the following type:

(4)

where , so that the system is unstable. The result for the
scalar case is now stated:

Theorem 4.1: Under assumptions A0.–A3. above, necessary
and sufficient condition for stabilizing the plant (4) in the mean
square sense (3) is that

(5)

where is the length of the channel block with the same rate.

A. Necessity

In order to prove the statement, we find a lower bound for
the second moment of the state, and show that (5) is a necessary
condition for this lower bound to be finite. We focus on the times

with , i.e. on the beginning of each channel block.
Let , denote the symbols sent over
the noiseless channel until the end of the th channel block. By
iteration of (4), we have

Let be the conditional
entropy power of conditioned on the event ,

averaged over all possible . The second moment of is
lower bounded by

where the inequality follows from the maximum entropy the-
orem [4, Theorem 9.4.1]. It follows that a necessary condition
for (3) to hold is that . We now complete the
proof by showing that this necessary condition is violated when-
ever (5) does not hold. We make use of the following technical
lemma (proved in the Appendix A),

Lemma 4.2: For all non-negative random variables , the
following inequality holds:

First, we show that evolves according to a recursive equa-
tion. Using standard properties of entropy [4] (translation in-
variance, conditional version of entropy power inequality), and
assumptions A1. and A3., it follows that:

wherein the second inequality follows from assumption
A3. above, i.e. . The constant is defined as

. Finally, the last inequality
follows from Lemma 4.2 and the fact that is independent of

and . Thus, using the fact that the rate process is i.i.d.,
we have

Therefore, implies that .

B. Sufficiency

We first describe the adaptive quantizer that is at the base of
the constructive scheme. A fundamental property of this quan-
tizer is then stated as a lemma, whose proof appears in [16].

1) Quantizer: The quantizer partitions the real line into non-
uniform regions, and a parameter determines the speed
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at which the quantizer range increases. The quantizer gener-
ates , , quantization intervals labeled from left to right
by . Let ,

and . If the quantization inter-
vals are generated by

• partitioning the set [ 1, 1] into intervals of equal
length,

• partitioning the sets , into
intervals of equal length, .

The two open sets and are respec-
tively the leftmost and rightmost intervals of the quantizer. Let

• be half-length of interval for
, be equal to when

and equal to when .
• be midpoint of interval for

, be equal to when and
equal to when .

A property of this construction is that for the quan-
tization intervals can be generated recursively starting
from . In fact, for any integer the quantizer intervals
for are formed by partitioning each bounded interval

into two uniform subintervals, and
partitioning the semi-infinite interval
into two intervals and

and, similarly, partitioning
the semi-infinite interval into
two intervals and

.
Given a real-valued random variable , if its realization
is in for some , then the quan-

tizer approximates with . The quantization error is
not uniform over , but is bounded by for all

. A fundamental property of the quantizer
is that the average quantization error diminishes like the inverse
square of the number of levels, . More precisely, if the

th moment of is bounded for some , then an
upper bound of the second moment of the estimation error
decays as . The higher moment of is useful to bound the
estimation error (using Chebyshev’s inequality) when lies in
one of the two open intervals and .

Let be any random variable, define the functional

(6)

The functional is an upper bound to the second mo-
ment of

(7)

Define the conditional version of given a random vari-
able as . The funda-
mental property of the quantizer described above is given by
the following result:

Lemma 4.3: [16, Lemma 5.2] Let and and be
random variables with for some , and

. If , then for any the quantization errors
satisfy

where is the index of the quantizer level
, and is a constant greater than 2 determined only

by and .
Next, the coder and decoder are described.
2) Coder: The first stage of the encoding process consists

of computing the linear minimum variance estimator of the
plant state based on the previous measurements and control
sequences. The filter process satisfies a recursive equation of
the same form as (4), namely

(8)

where is the product of the innovation
and the appropriate optimal gain . The th moment of

can be shown to be bounded, under assumption A2., for any
finite . From the orthogonality principle the stability of is
equivalent to that of . The output of the filter (or a function
of it) must be transmitted using the finite number of bits sup-
ported on the digital channel. Coder and decoder share a state
estimator based uniquely on the symbols sent over the digital
link. Since is available both at the coder and decoder, while
the minimum variance estimator is available at the coder only,
the encoder uses the quantizer described in the previous section
to encode the error between and . The error is scaled by an
appropriate coefficient and then recursively encoded using the
quantizer in Section IV-B-1. An accurate approximation of the
error is obtained by transmitting the quantization index across
many channel blocks. The fact that the random rate available at
future times is not known in advance is not a problem, as the
quantizer is successively refinable and can dynamically adapt
to the rate that is instantaneously supported by the channel. By
transmitting for a large enough number of blocks, the error be-
tween the two estimators can be kept bounded.

Define the coder error at time as . Times
are divided into cycles , , of

integer duration , . Notice that each cycle consists of
channel blocks.
At time , just before the start of the th cycle, the

coder sets the quantization rate equal to , i.e. the rate in
the first channel block in the th cycle, and computes

where is a scaling factor updated at the beginning of each
cycle. This factor is used to scale close to the origin,
where the quantizer provides better estimates. The index
of the quantization level is converted into a string of bits
and transmitted using the channel uses of the th channel
block. Denote by the quantization interval labeled
by . After the first transmissions in the cycle, coder and
decoder agree on the fact that . The
remaining transmissions in the cycle are devoted to
reducing the size of the uncertainty interval .

At time , the rate supported during
the next channel block becomes known at both coder and
decoder. Thus, coder and decoder divide up
into sub-intervals in the manner described above
(uniform partitions of bounded intervals and exponential par-
tition of semi-infinite intervals), sequentially generating the
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partitions of the quantizer
.

Then, the coder sends to the decoder the index of the sub-in-
terval containing . At the end of the second channel
block in the cycle, coder and decoder agree on the fact that

.
Continue this process until the end of the th channel block.

After receiving the last sequence of bits, the decoder computes
the final uncertainty interval , corresponding to
the uncertainty set formed by the quantizer , where
the random variable

indicates the cumulative number of bits sent in the th cycle.
Before the beginning of the th cycle, the coder updates

the state estimator as follows:

(9)

where

(10)

and . is the certainty-equivalent control coefficient
such that . Finally, the scaling coefficient is
updated as follows:

(11)

with and where is a uniform bound for the
-moment of

(12)

3) Decoder: At time coder and decoder are syn-
chronized and have common knowledge of the state estimator

. During times , the decoder sends
to the plant a certainty-equivalent control signal

(13)

where is updated as in (10). At the end of the each channel
block in the th cycle, the decoder receives estimates of the
states in the way described above.

At time , once computed the de-
coder updates the estimator using (9). Synchronism
between coder and decoder is ensured by the fact that the initial
value is set equal to zero at both coder and decoder, and by
the fact that the digital link is noiseless.

4) Analysis: In this section it is shown that the coder-decoder
pair described above ensures that the second moment of is
bounded if (5) is satisfied.

The analysis is developed in three steps. First, we show that
is bounded for all times , , i.e. the beginning of

each cycle. Next, the analysis is extended to all . Finally,
the stability of for all is shown to imply that (and
so ) is bounded.

First we show that the coder error is bounded in the mean
square sense for all times , . Instead of looking
at , it is more convenient to consider the functional

defined in (6), with and . Thus, let

Equation (7) implies that . Therefore, it suffices to
show that .

Substituting (13) into (8), and iterating over the duration of a
cycle, we have

(14)
where is defined in (12). Subtracting (9) from (14), we have

Notice that, by assumption A2., the th moment of
is bounded for any finite . Next, is used to de-
rive an expression for . From the inequality

, we obtain

with . Dividing by , taking expectations and using
(11), we have

(15)

Next, observe that

(16)

Summing (15) and (16), using and the defini-
tion of , we have

���� � � ����

� ����
��������� ���������

���

��	� �
��
� � ��	� �
��

�

�� �������� � �� ���������
����
��

� ��	� �
���
�

����������� �

�

���
������� � �� �

��������
���

����

�

��

where the second inequality follows from Lemma (4.3), and
the last equality uses the fact that the rate process is i.i.d. and
that and are independent of
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because of the causality constraint. Therefore, evolves ac-
cording to the following recursive equation:

It follows that if , then by making suffi-
ciently large we can ensure that the coefficient of is strictly
less than 1. Thus we have established that remains bounded
in the limit of going to infinity and therefore .
Hence, from (7) it follows that .

Next, for any the triangle inequality im-
plies , so the
error is bounded for all . Finally, by rewriting (8) as

, the fact that and are
bounded and that ensures that for all

.

V. VECTOR SYSTEMS

In this section, we consider the case of multi-dimensional un-
stable linear systems. A necessary condition for stabilizability
is derived using an information-theoretic approach. It is proved
that the stabilizability region is contained inside a polytope with
a polymatroid structure. A sub-optimal coder-decoder construc-
tion is provided and its optimality is shown in some limiting
cases. The main difficulty in stabilizing a multi-dimensional
system over time-varying channels consists of allocating opti-
mally the bits to each unstable sub-system. The scheme pro-
posed can be applied to any rate distribution. For some specific
rate distributions, however, it is possible to design more effi-
cient schemes. We illustrate this point at the end of this section,
studying the specific problem of stabilization over a binary era-
sure channel, for which a better scheme is proposed.

A. Real Jordan Form

As usual, it is convenient to put into real Jordan canonical
form [10] so as to decouple its dynamical modes. Denote the
system matrix in real Jordan canonical form as . The matrices
and are related via a similarity matrix such that

. Let be the distinct unstable eigenvalues (if
is non-real, we exclude from this list the complex conjugates
) of , and let be the algebraic multiplicity of each .

The real Jordan canonical form then has the block diagonal
structure , where the block

and , with

if
otherwise.

As is uniquely composed by unstable systems, we have that
. Let denote the index set of

unstable systems. Then, the dynamical system equation can be
written as

(17)

with , and where each sub-
system evolves according to

As the states of (17) and (2) are related through the trans-
formation matrix , in the following we will assume that the
system evolves according to (17).

B. Necessity

Theorem 5.1: Under assumptions A0.–A3. above, necessary
condition for stabilizability of the system in (17) in the mean
square sense (3) is that satisfy,
for all and

(18)

wherein , and if , and
otherwise.

The following example highlights the special geometric
structure of the region defined by (18):

Example 5.1: Consider a two-mode system with two distinct
eigenvalues , where is complex and has dimen-
sionality (so ) while is real and has
dimensionality . Suppose that the digital channel
in the feedback link is an erasure channel. Computing the
bounds in (18) we obtain the following necessary conditions on

for stabilizability:

(19)

In general, these three bounds define a pentagon in the
domain. In Fig. 2 the boundaries of this

pentagon are plotted as dashed lines in the case ,
and . In some limiting cases, however, the pentagon
reduces to a square or a triangle. On the one hand, in the limit of

going to infinity the third constraint in (19) becomes inactive
and the pentagonal region reduces to the square determined by
the first two inequalities. On the other hand, in the limit of
going to zero the only active constraint is the third inequality,
and the region determined by (19) is triangular.

Proof: Consider the system in (17). Notice that each block
has an invariant real subspace of dimension , for any

. Consider the subspace formed by taking
the product of any of the invariant real subspaces for each real
Jordan block. The total dimension of is ,
for some . Denote by

the index set of the components of belonging to
.
Suppose that a genie helps the decoder by stabilizing all the

unstable states that are not in . Thus, stack the remaining un-
stable subsystem states to construct a new state

where is some transformation matrix. Observe that
evolves as follows:

Authorized licensed use limited to: Maynooth University Library. Downloaded on May 10,2021 at 16:21:53 UTC from IEEE Xplore.  Restrictions apply. 



250 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 54, NO. 2, FEBRUARY 2009

Fig. 2. Stabilizability region for the system described in Example 5.2.

In order to prove the statement, we find a lower bound for
, and show that (18) is a necessary condition for the

lower bound to be finite. As in Theorem 4.1, the lower bound is
given by .

Proceeding as in Theorem 4.1, one can derive a recursive for-
mula for of the form

for some constant . Therefore,
implies

that .
The region determined in Theorem 5.1 has a special

combinatorial structure. The polytope (18) is defined by
the set function ,

. It is shown in the following propo-
sition, proved in the Appendix, that this set function defines a
polymatroid.

Proposition 5.2: The polytope defined by (18) is a poly-
matroid.

Remarks:
1) When the rate process is constant, the constraints in (18)

reduce to the well known condition [16], [21]

and the stabilizability is contained in the region in
the positive orthant strictly inside the hyperplane

.
2) Notice that the right hand side of (18) can be rewritten as

as . Thus, in the limit of going to infinity, (18)
reduce to

(20)

and the stabilizability region is determined uniquely by
. The intuitive justification of this latter fact is that the

digital link supports the same rate for an arbitrarily long
time interval, so stability has to be guaranteed under the
worst possible rate. In the limit, stabilization is not possible
for those channels where (e.g. erasure channels).

3) In an erasure channel, for a fixed , as goes to infinity the
stabilizability reduces to the n-dimensional cube described
by

(21)

In other words, the system in (17) cannot be stabilized if
the erasure probability is such that

In the case , this is the same condition derived in [9]
in the context of the LQG problem with erasures.

C. Sufficiency

We now present a sufficient condition for mean-square stabi-
lizability of the multi-dimensional system (17). The scheme is
based on the adaptive quantizer introduced in Section IV-B-1.
We introduce a rate allocation vector which indicates what
fraction of the available rate is allocated to each unstable
sub-system.

Theorem 5.3: Under assumptions A0.–A3. above, sufficient
condition for stabilizability of the system in (17) in the mean
square sense (3) is that are in-
side the convex hull of the region determined by

(22)

for some rate allocation vector
satisfying

(23)

Suppose that transmission of bits per channel use is sup-
ported on the digital link in a given block. The rate allocation
vector indicates what fraction of the total bits trans-
mitted in a block is allocated to each sub-system. All modes
in the th sub-system are quantized using bits. Con-
dition (23) requires that is an integer number for all

, and that the total number of bits used in each block should
not exceed . Such conditions define finitely many rate alloca-
tion vectors, and for each allocation vector (22) defines a cube in
the space of . By using a time-sharing
protocol among different rate allocation vectors it is possible to
stabilize those points inside the convex hull of the union of such
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cubes. Before looking at the proof of the Theorem, consider the
following Example:

Example 5.2: Consider the system in Example 5.1 and as-
sume that and . Under this channel model, (23) de-
fines four allocations vectors, namely ,

. For each allocation vector, (22) defines a cube
in the space of , and the stability region de-
fined by Theorem 5.3 is the convex hull of the union of such
cubes. Fig. 2 shows the boundaries of the achievable stabiliz-
ability region in the case : vertexes of the cube defined
by (22) are represented as dots, while the solid lines show the
convex hull of the union of such cubes. Notice that the outer
bounds defined by (19) are achieved in three points, two of
which lie on the two axis and correspond to the case where only
one of the two sub-systems is unstable. In these cases the op-
timal rate allocation consists of allocating all the available bits
to the unstable mode. The third optimal point corresponds to
the case where the two eigenvalues have the same magnitude,
i.e. , and the optimal allocation in this case is to allo-
cate one bit to each unstable mode. We will see that a protocol
that time-shares among these three points is optimal in the limit

.
Proof: The proof is divided into two parts. First it is shown

that the linear dynamical system in (17) is stabilizable if (22)
holds for some rate allocation vector satisfying (23).
Second it is shown that, by using a time-sharing protocol, all
the points in the convex hull can be stabilized.

The coder computes a minimum variance estimator for
the th component of the th unstable mode,
and . Similarly, coder and decoder compute an estimator

. Define as the error between these
two estimators at time . Let the stacked vector of unstable sub-
systems errors be .

Suppose that coder and decoder agree, ahead of time, on some
rate allocation satisfying (23). As in the case of a scalar
system, divide times into cycles of integer duration ,

. Let

denote the number of bits allocated to the transmis-
sion of during the th channel block. By (23),

.
Therefore, at time , the coder computes, for all

and for all

The scaling factor is updated at the beginning of each cycle
as follows:

where the random variable

indicates the cumulative number of bits allocated to the
th sub-system during the th cycle, and where

and is a uniform bound on the -moment of
, . After the first block

in the cycle, the decoder identifies an uncertainty interval
for each unstable sub-system. The remaining

transmissions in the cycle are devoted to reducing
the size of the uncertainty interval. After receiving the last

bits, the decoder can compute the final uncertainty

interval , corresponding to the uncertainty

set formed by the quantizer . For each unstable

subsystem, the decoder sends to the plant a certainty-equivalent
control signal as in (13).

Let . Proceeding along the same lines as
in the scalar case, it can be shown that evolves according to
the following recursive equation:

Hence, if (22) is satisfied, by choosing a sufficiently large, the
coefficient of can be made strictly less than 1. Therefore, the
recursion above is stable and yields uniformly bounded . The
same argument used for the scalar case applies sic et simpliciter
and it is now straightforward to show that the system is second
moment stable.

It remains to show that, by time-sharing, all the points in the
convex hull can be stabilized. Since the union of finite cubes in

is a connected compact set, by the Fenchel-Eggleston the-
orem [8, Theorem 18] each point in its convex closure can be
represented as a convex combination of at most points in the
union, and thus each point is in the convex closure of the union
of no more than cubes in (22). Given rate allocation vectors

, , satisfying (23), and any such
that , it suffices to construct a scheme that stabi-
lizes all modes inside the region

(24)
Divide times into cycles of duration , in such a way

that for . During a fraction of the cycle
allocate bits utilizing rate allocation vector . Repeating
the analysis above, it can be proved that the crucial recursion for

evolves as follows:

If (24) holds, we can choose large enough to make the recur-
sion stable. Therefore, (24) are sufficient conditions for stabiliz-
ability.

Remarks:
1) If for all , then the rate allocation

is optimal when
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. In fact, from (22) sufficient condition for
stabilizability is that

On the other hand, this condition is also necessary, as we
can see from (18) by letting for all . For
example, in Example 5.2 we have that , so the
rate allocation is optimal (See Fig. 2).

2) The scheme in Theorem 5.3 is optimal in the limit of
going to infinity, and the optimal coding scheme consists
of a time-sharing protocol among the rate allocations

for all , where are the canon-
ical basis vectors of .

3) In an erasure channel, for a fixed , as goes to infinity
the proposed achievable scheme is asymptotically optimal.
The stabilizability region is given by the cube (21), and
the optimal coding scheme consists of time-sharing among
the rate distributions for all and the
allocation given in Remark 1., i.e. .

4) When the rate process is constant, Nair and Evans [16]
showed that the necessary and sufficient conditions co-
incide. Once again, the optimal coding scheme consists
of a time-sharing protocol among the rate distributions

for all .
5) A more general scheme is easily derived by allowing the

rates allocated to each component of the same sub-system
to be different. For ease of exposition, in Theorem 5.3 we
assumed these rates to be equal.

D. Binary Erasure Channel

The stabilizing scheme proposed in the previous section pro-
vides an achievability result for stabilization over time-varying
channels, and is optimal is some limiting cases. However, the
scheme is not optimal in general. In this section, we improve the
stabilizability region defined by Theorem 5.3 in the specific case
of stabilization over a binary erasure channel. Before stating
the result, we outline the main difference between the coding
scheme used in this section and the construction in Theorem 5.3.
In Theorem 5.3 time is divided into slots of fixed duration, and
system state observations are quantized using a random number
of bits dependent on the realization of the rate process. In this
section, instead, we present a coder/decoder construction which
is based on an alternative approach: state observations are quan-
tized using a fixed number of bits per unstable mode; in turn,
these are transmitted to the decoder over a random number of
discrete time units which depends on the realization of the rate
process. Based on this approach, it is possible to enlarge the
set of feasible rate allocation vectors and, as a consequence, the
stabilizability region. In this section, the following simplifying
assumptions are made:

A4. The decoder has access to state feedback, i.e. in (2) we
have that and for all .
A5. such that uniformly in ,
and .
A6. The feedback digital link is a binary erasure channel,
and the block length is .

We have the following proposition:

Fig. 3. Stabilizability region for the system described in Example 5.3.

Proposition 5.4: Under assumptions A0.–A6. above, suffi-
cient condition for stabilizability of the system in (2) in the mean
square sense (3) is that are inside
the convex region determined by

(25)

for some rate allocation vector such that

(26)

Comparing (23) and (26), notice that while in Theorem 5.3 only
a finite number of rate allocation vectors satisfy (23), the region
defined by Proposition 5.4 is given by the union of a countable
number of -dimensional cubes, each of which is defined by
(25) for some rate allocation vector satisfying (26). We also no-
tice that the stabilizability region defined by Proposition 5.4 is
convex, so a time-sharing protocol among different rate alloca-
tion policies is not required.

Example 5.3: Consider a system with two distinct modes of
dimensionality one, having unstable real eigenvalues and ,
respectively. Fig. 3 shows the achievable stabilizability region
under this channel model, assuming . The boundaries
of the region defined by Proposition 5.4 are represented as a
solid curve, and each point on this curve is obtained by (25) for
some choice of the rate allocation vector. The region in Theorem
5.3 is delimited by a dotted line, which represents the convex
combination of two points (bold dots), obtained by (23) with

and . Finally, the necessary condi-
tions derived in Theorem 5.1 define a pentagon that is delimited
by a dashed line. The region in Proposition 5.4 is optimal at the
intersections with the two axis and at one point on the bisectrix

.
Proof: Fix an satisfying (26) and such

that for all . A renewal process deter-
mines the times at which the encoder quantizes the state obser-
vations. The random interarrival times of this renewal process
are denoted by the sequence , such that

for all .
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The stability in the mean square sense of the system in (2)
is proved by showing that for each unstable sub-system ,

and , there exists a mean square stable
sequence such that , for all .

We define recursively as follows:

(27)

where if and if
. At the random time , the encoder partitions the interval

into uniform intervals, and computes
as the center of the interval containing . By construc-

tion, the approximation error satisfies

(28)

The time required for transmission of the cumulative bits
describing the quantized source symbols from coder to decoder
is denoted by the interarrival time . We define

as the time of the th ‘success’ in the Bernoulli
process ; for any , we have that ,
and has negative binomial distribution with parameters and

. The interarrival times are independent non-negative
random variables, identically distributed as .

At time , upon reception of the binary source
symbols the decoder computes the control signal

(29)

Making use of (27), (28) and (29), we have the following chain
of inequalities

(30)

From (30) and proceeding by induction, it follows that

, for all . Next, we show that (25) is a sufficient

condition for the sequence to be mean square stable,

i.e. , for all and .
From (27) and the triangle inequality, it follows that:

(31)

wherein as for all
. By writing explicitly the expectations in (25), we

obtain that

(32)

Making use of (32) simple algebra shows that

(33)
From (33) it follows that the recursive formula in (31) is
stable. Therefore, (25) is a sufficient condition to ensure

.
Finally, the convexity of the region described by (25) follows

from Jensen’s inequality applied to the concave function
.

VI. CONCLUSION

Motivated by control problems over time-varying channels,
we considered mean square stabilizability of a discrete-time,
linear system with a noise free time-varying digital communi-
cation link. Process and observation disturbances were allowed
to occur over an unbounded support. Necessary conditions
were derived employing information-theoretic techniques,
while a stabilization scheme based on an adaptive successively
refinable quantizer was constructed. In the scalar case, this
scheme was shown to be optimal. Furthermore, we have shown
that in the vector case the necessary condition for stabilization
has an interesting polymatroid structure, and have proposed a
stabilization scheme that is optimal in some limiting regimes.
An additional contribution is that we bridged the informa-
tion-theoretic results of stabilization over rate limited channels,
with the corresponding network-theoretic ones on critical
dropout probabilities in systems with unbounded disturbances.
We have done so by recovering the latter results as a special
case of our analysis.

APPENDIX

A. Proof of Lemma 4.2

Proof: First, observe that the following chain of inequali-
ties holds:

(34)

where with discrete denotes .
The last inequality follows from the fact that, given , the car-
dinality of is , and where the last
equality follows from the fact that is a
Markov chain. Then
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where the first inequality follows from the fact that condi-
tioning reduces the entropy; the second inequality follows from
Jensen’s inequality; finally, (34) implies the third inequality.

B. Proof of Proposition 5.2

Proof: Let and

.
Following the definition in [6], in order for the polytope

to be a polymatroid, we need to show the following properties:
1) : this is immediate from the definition of .
2) if : this follows from the fact that

if .
3) : this can be proved

as follows. Note that is a function only of , i.e.
. W.l.o.g., assume that

. Let and note that this is never negative.
Further note that .
The desired property is then that

for all integers . Now, from the
fundamental theorem of calculus and

such that
and . Thus proving the desired
inequality is equivalent to proving that for
all . On the other hand, this inequality follows
from the concavity of the function for .
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