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Abstract—This paper is concerned with dynamic quantizer design for
state estimation of hidden Markov models (HMM) using multiple sensors
under a sum power constraint at the sensor transmitters. The sensor nodes
communicate with a fusion center over temporally correlated flat fading
channels modelled by finite state Markov chains. Motivated by energy lim-
itations in sensor nodes, we develop optimal quantizers by minimizing the
long term average of the mean square estimation error with a constraint
on the long term average of total transmission power across the sensors.
Instead of introducing a cost function as a weighted sum of our two ob-
jectives, we propose a constrained Markov decision formulation as an av-
erage cost problem and employ a linear programming technique to obtain
the optimal policy for the constrained problem. Our experimental results
assert that the constrained approach is quite efficient in terms of computa-
tional complexity and memory requirements for our average cost problem
and leads to the same optimal deterministic policies and optimal cost as the
unconstrained approach under an irreducibility assumption on the under-
lying Markov chain and some mild regularity assumptions on the sensor
measurement noise processes. We illustrate via numerical studies the per-
formance results for the dynamic quantization scheme. We also study the
effect of varying degrees of channel and measurement noise on the perfor-
mance of the proposed scheme.

Index Terms—Hidden Markov models, linear programming, Markov de-
cision process, power control, state estimation.

I. INTRODUCTION

Due to recent advances in very large scale integration (VLSI) and
wireless technology, miniature sensor nodes, deployed over a wide
area, have been employed in a wide variety of applications ranging
from security applications, military and civil surveillance, target
tracking, environmental and health monitoring and control tasks, to
name a few. Motivated by limited battery power and communica-
tion capability of sensor nodes, estimation at the fusion center may
only rely on the set of quantized (e.g., binary) observations. One
can achieve additional energy/bandwidth savings by employing a
censoring scheme [1] whereby only the sensors with informative
observations are allowed to transmit to the fusion center while others
with uninformative observations stay inactive. In this paper, we do
not consider any censoring schemes, we focus our attention to a
dynamic binary quantization approach and we present an algorithm
for optimal quantizer design for state estimation of hidden Markov
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models (HMMs) under an average total transmission power constraint
across the sensors.

To date, extensive research have been reported in context of dis-
tributed estimation of state/parameter of dynamical systems. In [2]
(single sensor) and [3] (multiple sensors), a heuristic criterion based
on mutual information between the state and the sensor measurement
sequences was numerically maximized to obtain near-optimal quan-
tizer thresholds for state estimation of a hidden binary Markov chain.
Moreover, recent works [4], [5] have employed a stochastic control
approach in order to design optimal quantizers for general HMMs.
While these results do not take into account other constraints such as
channel noise and fading in wireless sensor systems, a more recent
study [6] extends these works by considering a more realistic case of
additive channel noise and wireless channel fading. This work has been
further extended in [7] which considers a minimization of a tradeoff
between the long term average of mean square estimation error and
expected total power consumption using an unconstrained Markov
decision process (MDP) formulation.! In [7] the constrained problem
is transformed into a Lagrangian? problem which is then solved using
a dynamic programming approach. Typical of most dynamic program-
ming based algorithms, this approach is computationally demanding
particularly for Markov chains with large state spaces and networks
with a large numbers of sensors.

As an alternative approach to the problem considered in [7], in this
paper, we address the issue of optimizing3 quantizer design at each
sensor node, including the quantization threshold and the transmission
power, subject to a fixed total transmission power (across all sensors)
constraint in order to minimize the state estimation error at the fusion
center using a constrained approach. In particular, we propose a con-
strained Markov decision process formulation* for distributed state es-
timation of an underlying finite state discrete time Markov chain mea-
sured via multiple sensors in noise. We show how one can use linear-
programming (LP) based techniques to find optimal policies for the
quantization thresholds and transmit powers, for the constrained MDP
(CMDP) problem. Comparing to the unconstrained scheme in [7], the
benefit of our constrained approach is that it is more efficient both in
terms of number of computations and memory requirements. In gen-
eral, linear programming can be applied in problems with large number
of variables. Moreover, in certain cases, the LP approach could also
result in deterministic policies which have the advantage of lower im-
plementation complexity than randomized policies. It is shown based
on our experimental results that this is achieved under some mild as-
sumptions on the measurement noise at the sensors and a standard ir-
reducibility assumption on the underlying Markov chain. We assume
that the number of required sensors is fixed, determined by the intended
quality for the estimation error. One should note however that in cases

IFor a formulation using unconstrained MDP approach see also [8] for a dy-
namic power control problem in cellular CDMA systems.

2The Lagrangian is the combination of the original cost (i.e., mean square
estimation error) to be minimized and the total power constraint weighted by
some constant called Lagrange multiplier or tradeoff parameter.

31t is worth mentioning that, for numerical tractability, we later consider an
optimization problem which is a variant of the original quantization problem
in which the range space for the quantization threshold is restricted to a finite
subset R of the set of real values R.

“4For constrained MDP formulations, see also [9] and [10] for dynamic re-
source allocation problems.
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Fig. 1. Distributed setup for state estimation of an underlying dynamical process represented by a discrete time finite state Markov chain.

where a large scale sensor system is needed, our algorithms are still
useful in situations where the fusion center plays the role of a powerful
mobile agent which traverses the sensor network and at each dwell it
interacts only with a few sensors.>

It is assumed that the optimal quantizer thresholds and power levels
are determined at the fusion center (equipped with perfect channel
information for all sensors) and communicated back to the sensors
via noiseless feedback channels (of negligible delay) to be used for
transmission of quantized measurements in the next time slot. In prac-
tice, under a channel reciprocity assumption (e.g., with a time-division
duplex protocol), channel estimation can be carried out at the fusion
center by periodically sending out pilot tones to the sensors with high
power, so that the sensors can compute the channel gains and send them
back to the fusion center as an overhead during data transmission. We
do not consider power consumption incurred due to channel estimation
in our analysis. This is justified by the fact that the fusion center usu-
ally has access to a replenishable power supply and the average power
consumed by the sensors in communication of overhead information to
the fusion center is constant and does not affect the quality of the es-
timation error at the fusion centre. Thus, given an average total power
budget, one can easily subtract away the overhead average power cost
at the sensors and then consider the leftover power budget as the new
average total power budget across the sensors for transmission of quan-
tized measurements for state estimation.

The paper is organized as follows. In Section II, we present the
problem formulation of state estimation of a hidden Markov model
using quantized measurements from multiple sensors with an average
sum power constraint across the sensors. In Section III, we formulate
the constrained optimization problem using a constrained approach for
the presented model. We characterize the solutions to the constrained
problem using a linear programming technique in order to find the op-
timal cost and also the optimal policies which determine the optimal
quantization thresholds and power levels. We also evaluate the optimal
error/power tradeoff curve as a way to designate the optimal value of
one of the two criteria while the other one is determined to be less
than or equal to some value of interest. Some comments on compu-
tational complexity of the constrained MDP approach as compared to

SThis architecture for large low power sensor networks called SEnsor Net-
works with Mobile Agents (SENMA) has been proposed in [11].

the unconstrained approach of [7] are also provided. The simulation
results are given in Section IV followed by some concluding remarks
in Section V.

II. PROBLEM STATEMENT

A. System Model

In this section, we present the problem formulation for state estima-
tion of an underlying dynamical system modeled by a discrete time
Markov chain. The state measurements are obtained from a sensor
system consisting of M sensors. We consider a typical structure for
a sensor system depicted in Fig. 1 in which we assume that the chan-
nels from the sensors to the fusion center are mutually independent
error-prone bandlimited flat fading channels. For the dynamical process
represented by a stationary ergodic Markov chain {X¢,¢ > 1} with
state space X = {s1,---, sn}, the transition probability matrix is
given by Py = [p}], where pi5 = Pr(Xip = s;|X¢ = s4),
1 <4, j < n. The state variable X; is related to the measurements by
Y: = 1X: 4+ Vi, where Yy = [Yig,---, Yare] T, 1 = [1,---, 1]7,
and V; = [Vi4,+++,Vaur]” is an ii.d. additive noise sequence with
joint probability density function fv .

We consider a threshold-based binary quantization® as our
quantization scheme in which the sequence {r:;,t > 1}
{(ri,6,--+,7am¢),t > 1} represents the sequence of quanti-
zation parameters. Let the quantized data at time ¢ be denoted
by Y/ Yy, J’,fht]l . Each sensor transmits its quan-
tized output to the fusion center over a discrete time flat fading
channel. Let C; = (Ci¢,- -, CMJ)T be the sensors’ channel state
vector at time t. We assume that the sequence of channel states
{Cm,i,t > 1} is a stationary ergodic Markov chain with state space

C = {ec1,---, ¢} and transition probability matrix”? Pg = [p}}],

6We refer to regular quantizers (convex quantization region) in which one may
take any two distinct binary symbols @ and a- such that the events {Y5,, : <
P} and {Y,, 0 > 7., .} are equivalent to {Y,? , = a1} and {Y] , = a»}
respectively. There are other possible forms of binary quantization, however,
our objective here is to find the optimal quantization thresholds and transmit
power levels for the given quantization scheme rather than finding the optimal
quantization scheme.

TTo simplify our subsequent analysis, we assume that py > O0foralll <4,
7 < k.
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where pi} = Pr(Cmut1 = ¢j|Cmy = ), 1 < 4,5 <k,
1 < m < M. Each channel state ¢;, 1 < ¢ < k may represent a value
of the channel gain. In the estimation problem, the channel states of
different sensors are assumed to be known at the fusion centre, but not
at the sensor nodes—which is consistent with the notion of channel
state information at the receiver (CSIR), a requirement that is standard
in the wireless communications community. Denote the mth sensor’s
transmission power at time ¢ by pm,¢. Let pr = (D1, . DMt)
and define the sequence {p:,t > 1} = {(p1,+ -, pre),t > 1}
Henceforth p: will be called the power level parameter. Transmission
powers for all sensors are chosen from the same set of available power
levels P = {p1,---,pe}, which is chosen to be a set of finitely many
discrete power levels. This is motivated by the fact that in real appli-
cations, the feedback channel from the fusion center to the sensors
have only limited bandwidth and hence a finite bit rate, thus being
capable of feeding back the index of a finite size power codebook
only. The received symbol at the fusion center (from the mth sensor)
after decoding is denoted by Y,,];t. Let th = [YI{ oo ,Y:{}j g

Y,,J;t is described by the following channel transition probability
Pr(Yn{i =a;|Y,], = ai.Cm = ¢.pm, = p)i= ¢/} (c,p), where
i,j € {1,2}, ¢ € C,p € P, and a1, az denote the symbols for a
binary-quantized measurement.

We assume that the sensors use binary phase shift keying (BPSK)
to transmit their binary quantized measurements over orthogonal addi-
tive white Gaussian noise channels. The resulting input-output transi-
tion matrix is denoted by Q™ (¢,p) = [¢[} (¢, p)] conditioned on the
channel state ¢ € C and power level p € P. The off-diagonal entries in
Q™ (c, p) are called crossover probabilities. Let r denote the path loss
exponent of the wireless channel, and d,,, be the distance between the
mth sensor and the fusion centre. Also, define ;" as the signal-to-noise
ratio (SNR) of the received signal at the fusion center from the mth
sensor at time ¢. Then, ;" = g,‘,‘)n’tpm,t /o2, where o2 is the variance
of the additive white Gaussian channel noise v, ¢, and ¢ ¢, pm .+ are
the channel gain and transmission power respectively. We can then ex-
press the crossover probability after detection at the fusion center as
() = Q(Var ") = J Joar (1/v2m)e™ /D dt with
« being a constant. For more details on how to compute these crossover
probabilities, see [7].

For each pair of sequences r = {r;,t > 1} and p = {p+,t > 1},
the long term average of the mean square error in state estimation is
given by

"
1 ~

J = limsup — E|X: — X7 1

(r,p) 1;n:;lpTZ | X+ | (D

t=1

where the state estimate X; is a Borel measurable function of the se-
quence {Y { , Cy, 1 < t}. Note that the expectation in (1) is with respect
to all sources of randomness, namely, the state X, the additive obser-
vation noise, the channel state, and channel noise. The objective of this
paper is to solve the dynamic quantization optimization problem at the
fusion center by obtaining the optimal sequences r and p such that the
mean square estimation error .JJ (r, p) is minimized constrained on the
long term average of total power consumption across all the sensors.
These optimal values of r¢, p: are then fed back to the sensors to be
used for transmission at the next time step. This optimization problem
can be formulated as

"
. 1

min J(r,p), subject to: lim sup —= Z EQ(pt) < Puve  (2)

r,p T—o0 T

t=1

where P, is the maximum allowable per-stage sum power, and Q(p:)
is a power consumption cost function defined as Q(p: = v) :=
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Z,A;{:l vmoand v = [v1,++,om]", v € P is the value for the
transmission power vector to be used at the next time step. Notice that
the fusion center can not find the optimal quantization scheme using
the optimization problem (2) by directly minimizing the cost function
J(r,p). This is because it does not have exact knowledge on X due to
the problem being a partially observed MDP problem. Therefore, in the
following, we define the information state #,, which can be computed
at the fusion center using a recursive formula, and then in Section III
we restate the definition of the cost function .J(r, p) based on the in-
formation state, which essentially converts the partially observed MDP
to a fully observed MDP in terms of the information state space. De-
fine the information state vector 8; = [f1 ¢, +++,0, ;" , where 8; ; =
Pr(X, =s)|Dy),i € {1,---,n},t > 1andD, := D(Y/,C,1 < 1)
is the o-algebra generated by the fusion center observations up to time
t. The recursion for the information state #; is given by

p(cilei—_q _
9t(1‘tﬁpt)=%‘1’(51, .- 'asnartaptvy{fact) P,
t

1 .
:=—A(rupuyf,0z) 0.1 3
U

where Py is the transition matrix of {X:}, vi and vy are
normalizing factors such that [|f:]]x = 1, and p(ci|ce—1) is
the product of M channel transition probabilities defined as
[J(Ct = ct|thl = thl) = H;,\;zjzl [77:”]'7” in which Cm,t—1 = Cipy»
Cmt = cj,, fOrim, jm € {1,---.k}. ¥ is a diagonal matrix with th
diagonal entry called state-to-observation probability being defined as
Vi(si,re. Py c) = Pr(Y] = y]|X¢ = si,00,Ce = o pe).8
It is obvious that the state space for the information state # can be
defined as the simplex 79 = {2 € R%}[||€2]|: = 1} C R™. See [7] for
further details on deriving the recursion (3) for the information state.

For numerical tractability, we discretize the continuum information
state § using the discretization procedure presented in [4]. We choose a
step size 1/N and approximate the continuum information state 8 € 7
by discretized values ¥ € 7, where 7 C 7y is the state space of
the discretized information state. Note that after discretization, we still
have that ||¢||; = 1, V¥ € 7. Also, in further analysis for numerical
tractability, we restrict® the range space for the variable r to a finite
set R™ of discrete values in R . For notational and computational
simplicity, the same finite subset R C R is employed for optimizing
each entry r,, ; in r. Note that the optimal choice of the set R is a key
factor in further minimizing the optimal value of the state estimation
error. More on how to optimize the set R can be found later at the end
of the next section.

III. OPTIMAL QUANTIZATION

A. Constrained MDP Formulation

As discussed earlier, in [7], we solved an unconstrained MDP for-
mulation of the constrained optimization problem (2) using a weighted
combination of the two cost functions involving the average estimation
error and the average sum power across the sensors. This unconstrained
version was solved using a relative value iteration algorithm—see [7]
for further details. Motivated by the need to reduce computational com-
plexity, in this section, we formulate a variation (due to the restriction
of the quantizer threshold space to a finite discrete set) of the con-
strained optimization problem (2) as a constrained expected average
cost MDP problem in which the state estimation error is minimized sub-
ject to a constraint on the average total power consumption per time step

8See [7] for details on deriving the state-to-observation probabilities.

9The restriction to a finite set is by no means less appealing, in fact, without
such an assumption on the set of thresholds (and also on the set of power levels),
the wireless feedback channels from the fusion center to the sensors must have
infinite capacity.
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across the sensors. In order to proceed, assume that the quantization and
power level parameters (r¢, p:) at each time instance t are specified
by a stationary randomized Markov policy #* = {u, p,---} which
specifies a probability distribution g, (s,c) (r,p) on the action space
A = RM x PM and determines the probability of applying action
(r,p) when the system occupies the state (7, C). In fact, a determin-
istic policy pq which specifies the action (rs, p:) = pa(i—1, Ci—1)
as a function of the discretized information state 1#;_1 and the channel
state C;_1 may be considered as a special case of a randomized policy
in which the probability distribution on the set of actions is degenerate
[12]. We restrict our attention to Markov policies while seeking op-
timal policies, because for each distribution of the initial state (9°, ¢®)
and any history-dependent policy, there exists a Markov policy with
the same expected average cost (cf. [12, Theorem 8.1.2]). For brevity,
henceforth, > may be referred to as .

We now present the following optimization problem which can be
solved to obtain the optimal stationary policy ;™ for minimizing the
average estimation error subject to the average sum power constraint.
The constrained optimization problem can be expressed as

T
min J(p) := limsup lIE“ Z & (P (p(P4-1,Ciz1))) |
K r—oo T t=1

¥ =9°,Cy = c°]
subject to :

T

y . 1 )

J(p) = h;ﬂ sup TEH {Z Q (pe = w01, thl)) |
— t=1

’191 = ’ﬂO,CO = CO] S Pavg (4)

where ¢(6;) is the conditional estimation error cost defined as E[| X, —
XiPID] = S0 [si = 30 556,0)%0i.0. Also, (9°, ¢°) is the initial
condition, ¥, is assumed to be independent of the action (r, p) and the
initial action (r{, p1) is determined independent of the policy p. The
optimization problem (4) is, indeed, an average cost constrained MDP
problem with finite state space S = 7 x C* and finite action space
A = RM x PM with (9, C), and (r, p) being the state and action
respectively.

It has been established!0 in [12] that for finite state and finite ac-
tion unichain models, given any policy, there exists a stationary ran-
domized policy with the same limiting average state-action frequency.
The limiting average state-action frequency corresponding to a policy
is defined as the steady state probability that the system occupies state
(¥, C) and action (r, p) is applied under that policy. In fact, it is a prob-
ability measure over the set of state-action pairs and it has the property
that both of the long-run expected average costs J(z) and J° () cor-
responding to the policy 1 can be expressed as the expectation of the
immediate costs ¢(.) and Q(.) with respect to this measure.

We now present an LP formulation which is equivalent to the con-
strained problem (4) with a finite set of decision variables ¢ and a fi-
nite set of constraints. The constrained optimization problem (4) can
be related to the following equivalent dual linear programming (LP)
problem

min £(0):= Y Y ¢ (v erp) W c.rp)
¢ y/.c rerM
pePM

subject to :

>3 Qe p)(d.c,r,p) < Pavs

yf,c rerRM
pepPM

10¢f. [12, Theorem 8.9.4].
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Y ocwdrp =Y Y picle)

rerRM y/,crerM
pepPM pepPM

X HA(I‘,p, yf,c’)ﬁH] 0,c,r,p),V(@,c)eS

Y D tWerp) =1

yfererM
pePM

£(W,e,r,p) >0, V(J,c)e S V(rp) e A (5)

It has been established in [12] that every feasible solution to the dual
LP problem (5) corresponds to a randomized stationary policy in the
constrained MDP problem (4). Furthermore, it has been shown that
the dual variable (¥, ¢, r, p) equals the limiting average state-action
frequency. However, the dual LP problem is feasible if and only if
there is a stationary optimal policy as the solution to the constrained
problem. The optimal randomized policy " can be determined using
the optimal basic feasible solution £* to the LP problem (5). The fol-
lowing theorem establishes the existence of solutions to the constrained
unichain average cost MDP problem (4).

Theorem 3.1: Suppose there exists a solution {* to the dual LP
problem. Then there exists an optimal stationary randomized policy p*
for the constrained MDP problem, where p* satisfies

£ (V,c,r,p)
r'erM 5*(0* C, I", pl)

plePM

>

9p*(9,c) (I', p) = Z

it S ¢Wer.p)>0 ©
rerRM
p'ePM

where ¢,+(9,c)(r,p) denotes the probability that randomized
policy pu* takes action (r,p) when the system is in the state
(9,c). Otherwise, q,«(v,.c)(r,p) takes an arbitrary value if
S werm £(9,c,r',p’) = 0. This means that in this case, an

p'eP M
action which transfers the MDP to the recurrent class of states, defined

as {(,c) €ES: Y ,erm (0’ O p) > 0}, is chosen. O
pMS
Remark: This thggrem is essentially an adaptation of the standard

existence theorem for optimal policies for the constrained unichain av-
erage cost MDPs. (cf. [12, Theorem 8.9.6 ]). The gain X of the optimal
policy p*, which is the value of the optimal average estimation error
subject to a constraint on the average sum power, is computed as the
value of LP objective function £ evaluated at the optimal feasible so-
lution £*, that is, A = L(&").
We introduce the following assumption:
Al Foranyr € RV, p € PV, y! € {a1,a2}",and c € C",
the matrix A(r, p, ¥/, ¢) is non-singular and strictly positive.!!
O
Under assumption A1), all stationary policies have a single recurrent
class and no transient states. This means that the transition probability
matrix of every stationary policy is irreducible. In fact, under assump-
tion A1), basic feasible solutions to the dual LP problem (5) correspond
to deterministic stationary policies.!2 This is because, under assump-
tion A1), the discretized constrained optimization problem (4) forms
a recurrent (or ergodic) MDP for stationary policies. Therefore, based
on Theorem 3.1 and under assumption A1), one can conclude that for

!Notice that A1) holds under very mild conditions for the noise. For the
example of two sensors (M = 2), A1) holds for non-singular and positive P »
and any i.i.d. noise sequence {V; : ¢ > 1} such that for any €2 > 0, each of the
fourevents {V; € X_ao X X_o},{V: € X_g XX}, {V: € XaxX_a},
and {V, € Xqo X X}, fort > 1 has strictly positive probability, where
X_o = (—o0,—Q] and Xq = [, o). This criterion is obviously satisfied
for any two dimensional non-degenerate Gaussian noise distribution.

12¢f, [12, Corollary 8.8.3].
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a given value of P,v; = P°, there exists a bounded optimal basic fea-
sible solution to the LP problem (5) which corresponds to a determin-
istic stationary policy p* that is average optimal.!3 Define the expected
long-term average estimation error with the optimal policy p* as

T
—u* . 1 *
E" =limsup T Z E" [¢ (9¢(re,pr))]

T—oc =1
and similarly the expected long-term average sum power as
* 1

P" =limsup —
s th

T—oco

*«

E" [Qp)]

M) =

1

where again the initial action (r1, p1) is independent of the policy 1.
It is clear that E" is the minimum average estimation error s*uch that
the average power P" is less than P°. Define E*(P°) = E" , where
E*(P) is defined as the minimum average estimation error such that
the average power is less than P. E*(P) can be referred to as the op-
timal error/power curve. This curve is optimal in that no quantization
scheme can result in a error/power point below this curve. By varying
Pavg, we can find the optimal policy ;™ and the corresponding average
error E'* for each value which is a point on the optimal error/power
curve.

Now we briefly provide some details on the computational com-
plexity of the unconstrained approach of [7] and the CMDP approach
presented in this paper. Let |.| denote the cardinality of a set. The
number of operations required per iteration in order to obtain a solu-
tion to the problem using the LP method is of order O(mn), where
m = |S| + 2 = |S| (when || is large) is the number of constraints
in the LP problem (5), and n = [S| x |A| + 1 = |S| x |A] is
the number of decision and slack variables.!4 In the unconstrained ap-
proach, the number of operations per iteration needed to find the op-
timal policy and optimal cost using relative value iteration algorithm is
O(|S)* x | A]* 4+ 2|S]). Note that the relative value iteration needs at
least 100 iterations in order to converge to the optimal cost with a rea-
sonable accuracy whereas the LP method converges within less than
20 iterations. This certifies the fact that LP approach is computation-
ally superior to the unconstrained approach particularly for large state
and action spaces.

Optimal design of the set R: The optimal solution z* to the con-
strained problem (4) determines the optimal value of the quantiza-
tion thresholds r from the finite set R’ . Therefore, choosing the set
R ={p1,---,pa}, optimally rather than arbitrarily, plays a major role
in improving the performance of the dynamic quantization system. In
order to obtain the optimal set R* for a given value P.y; = P° of the
sum power upper bound, we may consider the dynamic quantization
system as a scalar-valued map function F : RY — Ry in which we
have A = F(n; P°), where X is the gain of e-optimal!5 policy found
from the solution to the LP problem (5) for a given set of quantization
thresholds 7. Here, 7 may be viewed as a vector in R?, where d is the
cardinality of the set 7R. We have that the measurements of the objective
function JF are available at any value of the parameter . However, no
direct measurements (with or without noise) of the gradient of F(.) are

13¢f. [12, Corollary 8.8.4].

14Note that only one slack variable is required which is the one for the power
constraint inequality.

I5that is, for an € > 0, a policy s« with the property that A\#¢ (9°, ¢°) 4 € >
A#(9°,c°), for all (¥°,¢°) € S and all randomized history-depen-
dent policies p. Here, for a policy g, A* is referred to as the gain of
policy p and it denotes the limsup average estimation error defined by
Ae(9°.e) = limsup, . (1/T) S EX[6(0,(Cior.p)ld =
1¥°,Cy = c°] constrained on the long term average sum power defined by
limsup,._, _(1/T) T E*[Q(p:) Y1 = ¥°,Co = c°]< Payg.
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assumed available. Therefore, the method we apply is a gradient-free
stochastic optimization algorithm called adaptive stochastic approxi-
mation (ASP) studied in [13]. Further specific implementation details
can be found in [13]. Moreover, the strong asymptotic convergence re-
sults for this algorithm has been established in [13]. See also [7] for
details on the implementation of this stochastic optimization algorithm
for the unconstrained Lagrangian based version of the problem (4).

IV. SIMULATION STUDIES

In this section, we present some numerical examples illustrating the
tradeoff between the average estimation error and the average total
power consumption achieved by the proposed dynamic quantization
algorithm. The simulations are performed under various fading sta-
tistics, wireless channel noise, and measurement noise of the sensors.
Throughout the following experiments, some of the parameters are as-
sumed fixed unless otherwise mentioned: the step size 1/N in dis-
cretization of the information state 6 is chosen 1/N = 0.02; «, the
path loss exponent of the wireless channel, is considered x = 2 for the
deployment of the sensors in an open rural area; and the constant coef-
ficient o for computing crossover probabilities is taken to be a = 2.

The experiments are performed for both constrained and un-
constrained approaches. The results for the unconstrained scheme
proposed in [7] are obtained using a relative value iteration algorithm
which determines the optimal deterministic policies and the corre-
sponding optimal costs. On the other hand, linear programming (LP) is
employed to find optimal policies for the constrained model. The op-
timal solution £* to the LP problem (5) is obtained using interior-point
methods. Then, using Theorem 3.1, we relate basic feasible solutions
of the dual LP problem to stationary randomized policies for the
constrained MDP problem. It was evident from the experiments that,
under assumption A1), the set of states in the recurrent class where
optimal randomized policy is applied is the null set. Consequently
both the constrained and the unconstrained approaches result in the
same optimal deterministic policy and the same optimal cost. Our
simulations demonstrated that the highest relative difference between
the optimal cost obtained from LP and the one from relative value
iteration is 10™%. In general, the benefit of using the unconstrained
approach lies in the fact that it results in deterministic policies which
involve less complexity in implementation than randomized policies.
Whereas, in the context of the dynamic quantization problem, this
benefit has been also achieved by our constrained MDP approach
under assumption Al). Moreover, our experimental results assert
that the LP approach is more efficient with regard to computational
complexity and it is faster than the relative value iteration approach.
Furthermore, the LP approach is also more suitable to problems
where there are several constraints, since each additional constraint
increments the rank of the basis matrix in the dual LP problem only by
one. Therefore, in the context of the dynamic quantization for optimal
estimation problem, one may prefer the constrained MDP approach to
the unconstrained scheme in other cases, for example, when there are
individual average power constraints for each sensor rather than only
one average sum power constraint for all the sensors.

A. State Estimation of a Two-State Markov Chain

In this section, we examine state estimation of a two-state Markov
chain {X,,¢ > 1} using two sensors. The sensors are located
at different distances from the fusion center with distance vector
d = [90.0,165.0]7, where the distance figures are given in meters. For
the Markov chain { X, }, the state space is X' = {s1 = 1.1, s, = 3.2}

0.78 0.22
0.44 0.56] '
The measurement noise of the sensors are assumed to be independent
and normally distributed with zero mean and variances o = [0.45, 0.3]7.

and the transition probability matrix is givenby Py =
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Optimal Error/Power Curve
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Fig. 2. Optimal error/power curves for different values of the measurement
noise variance.

The wireless flat fading channels from the sensors to the fusion center
are assumed to be independent and each channel is modeled by a two
state Markov chain with state space C = {c1, co }. We consider asym-
metric channels for the two sensors, that is, the channels have different
fading statistics given by the following transition probability matrices

- 0.62 0.38] = 0.8 0.2
P = {0'52 0.48}’ ¢ = {0'3 0.7} . The‘channel states ¢1 and
c2 represent the corresponding channel gains g7 = 2 x 107'° and

g3 = 4 x 107! respectively. The noise power of the wireless channel
for every sensoris o2 = 2 x 107 *® W . The action space of the power
level parameter for every sensor is considered as P = {45.25,5},
where the power levels are given in mW. It is worth mentioning that
the chosen power levels are typical values, and the devised algorithm
can be applied for any technology-specific values of power levels.

In order to study the effect of the measurement noise variance o>
on the optimal error/power curve E*(P), we found the long term av-
erage of both state estimation error and sum power (i.e., £ and P"
respectively) by generating a sample path!¢ using Monte Carlo sim-
ulations for the e-optimal policy p* found from the optimal solution
to the LP problem. Fig. 2 illustrates the optimal error/power curves
E*(P) for various values of measurement noise variance in the range
of 0.05 < ¢} < 0.5. For different values of long run per-stage sum
power upper bound Py, along every error/power curve E* ( P), the op-
timal set of quantization thresholds R™ with cardinality ¢ = 4 has been
found using the gradient-free stochastic optimization method ASP.

In Fig. 2, for the same average power, a trend of consistent decrease
of the estimation error with the decrease of the measurement noise vari-
ance can be observed. Moreover, in order to achieve the same estima-
tion error, larger transmission powers are needed at the sensor nodes
for higher values of the measurement noise. This is due to the fact that
higher power level results in higher received SNR at the fusion center
which then leads to a lower crossover probability that compensates for
the highly noisy sensors’ observations.

Similarly, Fig. 3 demonstrates the influence of noise power of the
wireless channel on the optimal error/power curve. It can be seen in
Fig. 3 that the increase in the channel noise power increases the esti-
mation error for the same value of power level. The reason is because
higher channel noise gives lower SNR at the fusion center and thus

16For further description about generating sample paths see [7].
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Fig. 3. Optimal error/power curves for different channel noise variances.

higher crossover probability which leads to more uncertainty in the
state estimate X;(f;). In order to achieve the same estimation error,
the effect of a high channel noise can be directly compensated also
by using a higher transmit power level than the one required in a low
channel noise condition.

V. CONCLUSION AND DIRECTIONS FOR FURTHER RESEARCH

In this paper, we have analyzed optimal quantization and power allo-
cation in an HMM state estimation problem to optimize average estima-
tion error constrained on average sum power consumption. We formu-
lated the problem as a constrained Markov decision process problem.
In the constrained approach, a linear programming technique has been
employed to find optimal policies of the constrained unichain model.
In this work, we considered the wireless channel from each sensor to
the fusion center as a time-varying flat fading channel which is mod-
eled by independent ergodic finite state Markov chains. Under some
mild assumptions on the measurement noise of the sensors, the dis-
cretized version of the optimization problem forms a recurrent MDP
for stationary policies. The solution to the discretized problem provides
optimal quantization thresholds and power levels. The effect of the
channel noise and the measurement noise on the optimal error/power
curve is shown by simulation results. In order to improve the perfor-
mance of the optimal quantization system, we employed a gradient-free
stochastic optimization technique to determine the optimal set of quan-
tization thresholds.

Finally, we indicate some future directions as extensions of this
study. However, it is worth mentioning that these open issues may not
be necessarily addressed using the same tools and methods presented
in this manuscript. One can consider the problem of finding the optimal
number of sensors required to achieve some specified estimation error
and power consumption budget. Moreover, in this context, one can
study the asymptotic behavior of the estimation error as the number of
sensors grows. Furthermore, in this paper, we assumed that the fusion
center has a perfect feedback channel to the sensors. However, models
which relax this assumption also need to be considered. One can
also address similar issues in scenarios that extend beyond the model
studied in this pape(r, in particular, to distributed tracking problems
where the underlying model is a jump Markov linear system rather
than just a finite state Markov chain.
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A Fast Robust Recursive Least-Squares Algorithm

Leonardo Rey Vega, Herndn Rey, Jacob Benesty, and Sara Tressens

Abstract—We present a fast robust recursive least-squares (FRRLS)
algorithm based on a recently introduced new framework for designing
robust adaptive filters. The algorithm is the result of minimizing a cost
function subject to a time-dependent constraint on the norm of the filter
update. Although the characteristics of the exact solution to this problem
are known, there is no closed-form solution in general. However, the
approximate solution we propose is very close to the optimal one. We also
present some theoretical results regarding the asymptotic behavior of the
algorithm. The FRRLS is then tested in different environments for system
identification and acoustic echo cancellation applications.

Index Terms—Acoustic echo cancellation, impulsive noise, recursive
least-squares algorithm, robust filtering, system identification.

I. INTRODUCTION

The recursive least-squares algorithm has the ability to solve the
least-squares estimation problem recursively. Through its link with
Kalman estimation [1], it can lead to the optimal estimate in the
mean-square error sense. However, this is based on the assumption
that the error signal e;, which is by definition the difference between
the system and model filter outputs, is Gaussian. In real-world environ-
ments, this assumption can be false. Perturbations such as background
and impulsive noise can deteriorate the performance of many adap-
tive filters under a system identification setup. In echo cancellation,
double-talk situations can also be viewed as impulsive noise sources.
The performance of the RLS can be significantly deteriorated in these
cases.

Several algorithms have been proposed attempting to overcome this
issue [2]—[5]. In this work, we use a recently introduced new framework
for the construction of robust adaptive filters [6] in order to design a ro-
bust RLS algorithm. Throughout this correspondence, the term robust
will be used as “slightly sensitive to large perturbations (outliers)”.

Particularly, we use a universal cost function introduced in [7] that
preserves the system estimate from the effect of impulsive noise (or
double talk) through the memory factor in the classical RLS cost func-
tion. Then, we propose to optimize this function subject to a constraint
on the norm of the adaptive filter update. However, the exact solution
to this problem has no closed form. Therefore, we propose an approxi-
mate solution to the problem. This solution is actually very close to the
optimal one.
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