Blind Equalization of IIR Channels using Hidden Markov Models

Vikram Krishnamurthy, Subhrakanti Dey, James P LeBlanc

Cooperative Research Center for Robust and Adaptive Systems, Department of Systems Engineering, Research School of Physical Sciences and Engineering, Australian National University, Canberra ACT 0200, Australia

III. SIMULATION STUDIES

Abstract — A computationally inexpensive suboptimal blind equalization algorithm is presented for noisy IIR channels. It is based on combining a recursive Hidden Markov Model (HMM) estimator with a relaxed SPR (strictly positive real) Extended Least Squares (ELS) scheme. Simulation studies show that the algorithm yields satisfactory results.

I. SIGNAL MODEL

The observations y_k , k = 1, 2, ..., T are obtained as

$$y_{k} = \frac{s_{k}}{C(z^{-1})} + w_{k}, \quad w_{k} \sim N(0, \sigma_{w}^{2})$$
(1)

where w_k is zero mean white Gaussian noise (WGN) with variance σ_w^2 .

 $C(z^{-1}) = 1 - \sum_{i=1}^{p} c_i z^{-i}$ (where z^{-1} is the delay operator) denotes the unknown IIR channel. We assume that $C(z^{-1})$ is stable, i.e., it has all its zeros outside the unit circle.

 s_k denotes a N-state discrete-time homogeneous first-order Markov chain. Consequently, the state s_k at time k is one of N known state levels $q = (q_1 \ q_2 \dots q_N)'$. The transition probability matrix is $A = (a_{ij})$ where $a_{ij} = P(s_{i+1} = q_j|s_i = q_i)$. Of course $a_{ij} \ge 0$, $\sum_{j=1}^{N} a_{ij} = 1$, for each *i*. We assume that s_k is irreducible.

II. Algorithm Description

Our algorithm is termed the HMM-ELS Blind Equalization Algorithm. It combines a relaxed SPR ELS scheme [2] and recursive HMM estimator [1] resulting in a suboptimal computationally efficient recursive (on-line) scheme [3].

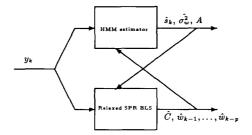


Figure 1: HMM-ELS Blind Equalization Algorithm

As shown in Fig.1, the HMM-ELS algorithm combines these two steps as follows:

1. At time k, the recursive HMM estimator yields estimate of the state of s_k , noise variance σ_w^2 and transition probabilities A.

2. The relaxed SPR ELS estimator gives on-line estimates of the channel parameters c_i and w_{k-i} , $i \in \{1, 2, ..., p\}$, denoted by $\hat{c}_i^{(k)}$ and \hat{w}_{k-i} respectively.

0 - 7803-2015-8/94/\$4.00 ©1994 IEEE

- 354 -

Extensive simulation studies show that HMM-ELS yields excellent estimates even in low SNR [3]. It has been also shown in [3] that HMM-ELS performs better than Constant Modulus Algorithm (CMA). Here, we consider a jump time varying IIR(4) channel with coefficients

$$C = \begin{cases} (-0.5 - 0.4 \ 0.3 \ 0.2)' & 1 \le k \le 10000\\ (1.0 - 0.9 \ 0.7 - 0.36)' & 10000 < k \le 50000 \end{cases}$$
(2)

The input the channel is a two state markov chain with $a_{11} = a_{22} = 0.9$, $q_1 = -q_2 = 1$. Also $\sigma_w = 0.6$. Figure 2 shows how the HMM-ELS algorithm tracks the channel coefficients with a forgetting factor of $\lambda = 0.995$.

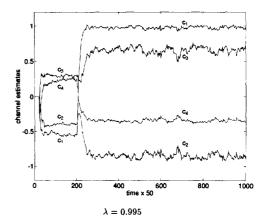


Figure 2: Equalization of "jump" time-varying channel

References

- V. Krishnamurthy, J.B. Moore, On-line Estimation of Hidden Markov Model Parameters based on the Kullback-Leibler Information Measure, IEEE Trans on Signal Processing, Vol. 41, No. 8, pp. 2557-2573, August, 1993.
- [2] J.B. Moore, et.al, Identication/Prediction algorithms for AR-MAX models with relaxed positive real conditions, Int. Journal of Adaptive Control and Signal Processing, pp.49-67, 1990.
- [3] V. Krishnamurthy, S. Dey and J P LeBlanc, Blind Equisation of IIR Channels using Hidden Markov Models and Extended Least Squares, submitted to IEEE Trans on Signal Processing.