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Abstract 

Hidden Markov models have proved suitable for many in­

teresting applications which can be modelled using some 
unobservable finite state Markov process, influencing mea­

sured signals. This can be used to describe bursty telecom­

munications traffic, or the faults in a complicated systems, 
for modelling the activity in neurons, for modelling speech 
patterns, etc. In all these applications, one has to estimate 
the unobservable underlying state of the Markov process, 
using the observed signals. Optimal recursive filters are 
well known for this estimation problem. Recently risk 

sensitive filters for the same problem have also been ob­
tained. An important question in studying the quality of 

such filters is the rate at which arbitrarily assigned initial 
conditions are forgotten. In this paper we show that the 

effect of initial conditions on these filters dies out geomet­

rically fast under very reasonable observability assump­
tions. The proof is given in the simplest case of finite state 
space and of a finite, quantised, observations spacc. How­
ever the method can be extended to more general models 
by continuity arguments. 

1 Introduction 

Estimation of the state sequence of a finite-state Markov 
chain observed under memoryless noise, given the obser­

vations, is known as the standard hidden Markov model 
(HMM) estimation problem. The filters used in practi­
cal applications to achieve this task will have to work in 
real time, in a recursive way. In [6] the optimal filter - in 
the sense of minimum mean squared error, is derived and 
shown to be of a recursive form, consisting of a state tran­
sition update and a measurement update for the conditional 
distribution of the state of the hidden Markov model. The 
conditional distribution of the state at time k + 1 depends 
on the conditional distribution of the state at time k and on 
the new observation at time k + 1. To start this filter, one 
must make an initial guess at time O. One important prop­
erty of a good filter is that the effect of this initial guess 
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dies out geometrically fast. This insures that a mistake in 
the initial guess will not make the filter give wrong results 
forever. Intuitively this also guarantees that the effect of 
round-off errors, outliers, or any other causes of failure 

of the filter at a small number of points in time, will not 

corrupt the estimation results forever. The proof of this 

geometric convergence property is the goal of this paper. 

In this paper, we do not try to solve this problem in its 
general form. Rather we try to give a very simple, in fact, 
trivial, proof of this property for the optimal filter for the 
ca�e where the state space is finite, and the measurements 
are quantised as elements of a finite set. First of all we note 

that the conditional distributions form a Markov process 

(Kunita [4]). Moreover this Markov process is irreducible 
in a certain sense, provided the hidden Markov process is 

irreducible and the observations are informative, i.e. no 
two states generate the same probability over the set of 

observations. Next we show that the update of the condi­
tional distribution of the state at time k to the conditional 
distribution of the state at time k + 1 is just a multiplication 
by the transition operator, a matrix which has all eigen­
values strictly inside the unit circle, except for a singlc 
eigenvalue 1. The eigenvalue 1 simply expresses the fact 

that the conditional distribution is a vector of tcrms sum­

ming to 1 before and after the update. Within the subset 
of normalised vectors, the state update is actually a strict 
contraction. Finally the conditional probability of the state 
at time k + 1, given the observed signal up to time k is 
updated by using the new measurement YH1' We show 

that on the average this update operator is a contraction 
operator. 

A new class of robust filters known as risk-sensitive filters 
has been developed in [9] [71. In [71, it has been developed 
for hidden Markov models with continuous-range obser­

vation space. In this paper, we derive the risk-sensitive 
filter for hidden Markov models with finite-discrete obser­
vation space. Stability results are also derived for these 
filters. Also, smoothing filters for HMM show the same 
exponential forgetting. In each of these cases one assumes 
that the correct parameters of thc hidden Markov model 
are known, and used in the design of the filter. The meth-
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ods to prove the result can also be applied to filters when 
these parameters are not known, but are replaced by some 
a priori estimate or where they are estimated on-line. Then 
the conditional distribution is no longer a Markov process. 
However one can show that the hidden Markov state, the 
conditional distribution ( and in the case of an adaptive 
estimator the parameter estimate) together form a Markov 
process which is geometrically ergodic under certain rea­
sonable conditions. 

In the next section of this paper we introduce the model, 
and the optimal filter, in detaiL In section 3 we prove 
the geometric convergence. In section 4, we derive the 
risk-sensitive recursive estimates and the optimizing risk­
sensitive filter for hidden Markov models with finite­
discrete states and finite-discrete observations. We also 
present the ergodicity results for these recursive estimates. 

2 Hidden Markov model 

Consider a first-order homogeneous finite-state Markov 
process X k with state space S x, and transition matrix 
A defined on a probability space (Q, F, P). Also de-

fine Ff � u(Xo,···, Xk) and the corresponding com­
plete filtration {Fd. Without loss of generality we 
can take N=ffSx and denote the N elements of Sx by 
en =(0 ... 0 1 O . . .  0)', the unit vectors in RN. The ele­
ments of the transition matrix 

represent the probability of reaching the state ei at time 
k + 1 given that the state at time k is ej. Of course, 

aij > 0 and 2:�1 aij=l, Vj E {I, . . . ,N}. This leads 
to the following simple representation of the process Xk ( 
sce [ 1 1],  [ 12], [6]): 

( 1)  

whereE(Vk+1 I Fk) =O,i.e. VJ;is a(P,Fk)-martingale 
increment sequence. The linear form of (l) is simply a 
result of the special structure of the space S x: on the 
set {O, I} all functions are linear functions. To keep the 
derivation simple in the next section we assumc that the 
Markov process Xk with transition matrix A is aperiodic 

and irreducible ( see e.g. Meyn and Tweedie [5]) 
At each time instant k a signal Yk is observed. This obser­
vation takes values in the finite space 
Sy = {fl, 12, .. . , fM} where without loss of general­
ity the values fm can be represented as a unit vcctor (all 
components 0 except for a single I) in RM. Below we will 
abuse notation and sometimes write Yk =m whcn we mean 
Yk= 1m. The value of the random variable Yk depends on 
the state Xk and on a noise term Wk. This dependence 
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can be expressed as follows 

(2) 

where W" forms an independent increment sequence, and 
the elements of the matrix C are defined as the conditional 
probabilities 

It is obvious that Cmn > 0, and 2:;;;=1 Cmn = 1. 
Define {Yk} to be the complete filtration generated by 
u(Yo, .. . , Yk) and Hh} to be the complete filtration gen-

erated by g2 � u(Xo, .. . , Xk, Yo, ... , Yk-l). It is easy 
to see thatE[Y" I XkJ =CXk and hence E[Wk I gkJ =0, 
so that Wk is a (P, g,,) - martingale increment. In order 
to calculate the conditional expectation E(f(Xk) I Y/c) 
for any function I, we need the N -vector 'Pk represent­
ing the conditional distribution of the state X k given the 
observations Yo, Y1, ... , Yk: 

(3) 

It is known ( see e.g. Elliott et at. [6]) that these con­
ditional distributions can be calculated recursively, i.e. 
PHI=F(A.pk. YHI) for a well defined function F. 
This recursive transformation consists of two steps. The 
function F transforms the conditional probability A.'Pk of 
XHI given the observations up to time k, into the condi­
tional probability of the same state X Ie + I given observa­
tions up to time k + 1. This measurement update is given 
explicitly by: 

(4) 

Note that this measurement update consists of a linear 
transformation CYk+l'n.q (n) (the numerator of (4)), fol­
lowed by a normalisation, expressed by the denominator. 

The second step of the recursive transformation calculates 
the conditional distribution of XHI from the conditional 
distribution of X/c, given the same set of observations 
Yo, Yl, ... , Y". This is simply a multiplication by the 
transition matrix A. Since A is a stochastic matrix the 
updated probability PHI is automatically normalised, if 
fh is normalised to one. This step is therefore a linear 
transformation. 

We assume now that the elements of the matrices A 
and C are known. Then Kunita [4] has shown that 
the stochastic process Pic is a Markov process, with as 
state space the subset of RN of normalised vectors: 
Sp={q E RN, 2:�=1 q(n) =1}. The transition probabil­
ities for Pk can be written down explicitly, since there 
are only M possible values in the continuous space RN 
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which PHI can take. given a value of Pk. These M values 
correspond to the M values which YHI can take. 

(5) 

with probability P(Yk+l=/m 1 Pk) =(C.A·Pk) (m);::; 
En,1 Cmn .an/Pk (l). 
The initial condition for the recursive filter is given by 
the initial value Po of this Markov process. The question 
whether the filter forgets initial conditions geometrically 
fast is thus equivalent to the question whether Pk is a 
geometrically ergodic Markov process. 

Clearly the state space Sp cannot be completcly ergodic. 
Let the conditional distribution after a measurement up­
date be such that we are ( almost) ccrtain that the state is 
en. After the next state update this becomes A.en=A,n. 
the n-th column of A. W hatever the initial distribution Po, 
after one step the state Pk will be inside the convex hull 
coCA) =U:::n AnA,n 1 En An;::;l}. All states Pk outside 
this convex hull are transient, and physically not meaning­
ful. Hence it makes sense to limit the state space Sp to 
its subset F (coCA) ) , the set of points reachable form a 
vector inside coCA) after one measurement update step. 
This reduced state space will be assumed from now on. 

3 Geometrk ergodicity of the estima­

tor 

Before checking thl� geometric crgodicity of the Markov 
process fib we first have to see whether the process is 
irreducible. Since the state space is continuous, it can­
not be irreducible in the sense of reaching any state from 
any other state, with positive probability. However con­
sider any open subset 0 within the reduced state space 
Sp, and any initial state Po. When all the columns of 
C are different, there exists a finite k and a sequence of 
observations Yo, Y1, • • .  , Yk which occurs with non-zero 
probability, such that Pk is in the open set O. This is 
called forward accessibility in [5], or strong irreducibility 
[2]. Since the state space Sp is compact, this forward ac­
cessibility essentially guarantees ergodicity of the Markov 
process fh. Howev,er as explained in the introduction we 
need that the estimate only depends the most recent obser­
vations Yo, Yl, ... , Yk in order to obtain a good filter. To 
prove this we need to show geometrically fast forgetting. 

Remark 1 Even if A is not irreducible, the Markov pro­
cess Pk may have distributions converging to an equilib­
rium distribution independent of the initial distribution. 

Consider as an example the case where A=I, i.e. the 
underlying state remains constant. We are then actually 
using the HMM filter as an identifier. It is known that the 
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estimate converges w.p. 1 to the correct state as soon as 
the columns of C are all different. 

Consider now the effect of the state transition step. The 
multiplication of the intermediate probability P (X k I 
Yo, YI , ... , Yk, Yk+\) by the matrix A has as effect that 
the probability is coming closer towards the equilibrium 
distribution ?r=.4.?r of the Markov process Xk. The eigen­
value I of the matrix A has as left eigenvector the vector 
with all 1 's, as right eigenvector the equilibrium distri­
bution. This insures that the sum of the elements of the 
distribution is always normalised (sums to 1). All the other 
eigenvalues are strictly less than 1 in absolute valuc by thc 
Frobenius theorem [3] for positive matrices. Hence within 
Sp the distance bctween two distributions I A.p - A.ji I 
after a state transition update is strictly less than the dis­
tance I p - fi I between the vectors before the update. This 
state transition update is a strict contraction operator. 

Consider now the measurement update step F (Yk, q) . 
We have to show that the distance between two ( con­
ditional ) distributions gets reduced, on the average, by 
this transformation. Given the conditional distribution q 
the distribution of the observations YHI is P (YH1= 1m 1 
q) =L�;::;I L�l Cmn-Qneq(£) = (C.A.q) (m). This is 
exactly the normalising factor in the denominator of the 
measurement update equation. However, it is still difficult 
to calculate ElF (Yk +J , p) -F (YH],]i) 1 and compare 
it to 1 P - j5 I, because two different normalising fac­
tors are involved. What can be calculated is the change 
in normed distance when ij;::;q + oq, i.e. the effect of a 
small perturbation. To obtain this difference calculate the 
average Jacobian with respect to q of the transformation 
F(Yk+l, q), and take the average over all possible values 
of Yk+l> given q. This derivation leads to the following 
expression for the (i, j) -th element: 

�[ • C ,' _ Cmi.cmj.q(i)] � cmz,uzJ � 
m L.. l cm/·q (l) 

In matrix form this gives an identity matrix minus a com­
plicated matrix. 

To get some insight in the conditions for this matrix to be 
contracting, take first the case of a hidden Markov model 
with only two unobservable states Sx={ q, e2}, and two 
signal values ( M =2). Then the normalised conditional 
distribution can be written as fik;::; (pic (1) , 1 - Pk ( 1) ) I. 

Hcnce the state space for the Markov process of condi­
tional distributions can be reduced to a subset of the in­
terval [0, 1]. Both the state transition update and the 
measurement update can be reduced to one-dimensional 
recursions, and the Jacobian to be calculated reduces to 
a simple derivative ( rewriting F as a function of Pk (1 ) 
only). The derivative is explicitly calculated as 
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where il= 1 �� (YHI, Pk (1) ) I. This is always less than 1 
as soon as the observability condition CI I fCI2 is satisfied. 
This condition is evidently necessary since otherwise the 
observations would carry no information whatsoever about 
the unobserved state. 

In the case with N =2 and M 2: 2 we find a similar ex­
pression for the magnitude of the contraction, involving a 
product of all the difference Cml - CH. In fact whenever 
N =2 we can give a necessary and sufficient condition for 
exponential stability of the HMM filter. This condition 
states Bitmead and Boel [1] that 

E[log.\2(A) .1 �� (YHI,Pk(1)) I] < 0 (6) 

where.\2 C A) is the second largest eigenvalue of A (strictly 
less than 1). Of course this condition is not easily veri­
fiable since it is in general very difficult to evaluate the 
expectation. For N > 2 there is no such necessary and 
sufficient condition, because the Jacobian of the transfor­
mation F, even reduced to a subspace of dimension N - 1, 
is a matrix. The derivation of (6) depends strongly on the 
commutativity of the different update steps. 

However it is still possible to obtain geometric ergodicity 
of Pk by simply showing that is a contraction ( not nec­
essarily strict) ( see e.g. BougeroZ [2]). It suffices e.g. 
to calculate the eigenvalues of E (Il.f.f), and prove that 
there is at most a simple eigenvalue 1, while all the other 
eigenValues are strictly less than 1. Simple observability 
conditions on G guaranteeing this property will be a topic 
of further research. The rate of forgetting initial conditions 
( or any other past data) is then at least as fast as ).2 (A). 
This may however be a pessimistic estimate. 

4 Risk-sensitive filtering for hidden 

Markov models 

4.1 Problem Definition 

Consider the signal model defined by (1) and (2). Our 
problem objective is to find an estimate Xl; of X"" where 
X k E JRN, such that the following criterion is satisfied, 

Xk=argminJk(O, Jk(O = E [(I exp«(I'I'o,k CO ) IYk] 
(ERN 

Vk=O, I, . . . (7) 

where G ( > 0) is the risk-sensitive parameter and 
A - I , %,kCO ='I'O,k- 1 + 2(Xk-O Qk(Xk-O, Qk 2: 0 Vk 

where 

A 6 1  n A I A 
'I'm n = - �(Xi - Xi) Qi(Xi - Xi)' , 2� 

i=m 

(8) 
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Remark 2 In [7], it has been considered that X", E Sx. 
To avoid a technical problem which will be explained in 
the next section, we assume here that Xk E JRN. 

4.2 Change of Measure and Reformulated 
Cost Index 

Define Yl={Yk,!i), where Yk=(Y1, ... , YkM) such that 
for each k E 1N, exactly one component is equal to 1, 
the remainder being O. Define a new measure P where 
{Yk}, k E 1N is a sequence of i. i.d random variables and 

P(yj=l) =� k M 
. Let Ck=GXk and 4=(q, Ii). Also define 

M 

Ak= II (M cO Y�, Ak=m=oA/ 
;=1 

If we set the Radon-Nikodym derivative �� kh =AJo, then 
underP, 

Using a version of Bayes' Theorem, we have 

E[Oex (O'I' «()) IY] =
ETAkGex!'C(I'I'o,k(O) IYI;] p 0,1; I; E [Ak IYk] 

(9) 
Hence, we work under P where the modified problem 
objective is to determine Xk ( E JRN) such that 

Xk=argminE'[Akeexp(Il%,k«()) IYk] ( 10) 
(ERN 

4.3 Recursive estimates 

Definition 3 Define the measure a k (j) to be the unnor­
malised information state such that 

a" (j) =E' [11.,,-III exp(Il'i'o,k-l) (XI;, ej) IYk-l] 
(1 1) 

Remark 4 Note that a k (j) can be interpreted as an infor­
mation state of an augmented plant where the state includes 
the actual state of the system and part of the risk-sensitive 
cost. For details, see [8]. 

Lemma 5 The information state a k = (a k (1) , ... , 

al; (N) ) ' obeys the/allowing recursion 

(12) 
where 
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Proof The proof can be carried out in the same way as it 
has been done for continuous-range observations in [7]. 0 

Remark 6 Note hl�re that the information state filter is 
linear and finite-dimensional. 

Note 7 Normalization: 
Define the normalized recursive estimates by a k+ I. It can 
be easily shown that 

A A1)�B�ak 
cx+-k I I:�IMCt(Yk)exp(�(ei-Xk)'Qk(ei-Xd)lh(i) 

(13) 

Theorem 8 The optimizing estimate Xk is given by 

N M 
Xk argmin2:II(M4)Y� 

eERN j=1 i=1 

X exp (�(ej - 0' Qk (ej - 0 ) (¥k (j)(14) 

Proof Again, the proof is exactly similar to that one given 
in [7] and hence not given here. 0 

Remark 9 It should be obvious from the convex nature 
of the expression on the R.H.S of (14) that Xk exists and 
is unique. 

4.4 Geometrk ergodicity of the recursive 
risk-sensitive filter for a 2-state M-output 
symbolHMM 

From the results derived in the previous section, we see 
that the normalized risk-sensitive estimates for a 2-stateM­
output symbol HMM are given by the following recursion 

(15) 

where ak=(ak(O 1 - ak(1)' and Fk(Yk,ak) is a 
nonlinear vector function given by 

Pk(Yk"h) = 

L�=l Ci(Yk) e:xp (�(ei - Xk)' Qk (e; -Xk) ) lh (i) 
xdiag {CI (Yk) exp (�(el -Xk)' Qk (el - Xk) ) , 
C2 (Yk) exp (�(C2 -Xk)' Qk (q - Xk) )} ,h (16) 
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This recursion can be broken into 2 steps of transforma­
tion, a nonlinear mapping followed by a linear mapping. 
In section 3, the linear transformation has already been 

shown to be a strict contraction due to the fact that A is a 
transition probability matrix. Hence, we just deal with the 
nonlinear transformation and derive the condition under 
which it will be a contraction in an averaging sense. 

Theorem 10 The necessary and sufficient condition for 
the nonlinear mapping Fk : ]RM x ]R2 -+ ]R2 to be a 
contraction Vk E IN in an averaging sense is given by 

M 
2: Igm(aA;(l) ,(}) I < M, Vk (17) 
m=1 

where 

and 

gm (akO) , (}) = [Cml exp(O'� (0 ) ak (1) 
+ cm2exp(0'�(2» 0- ak(1) ]-2 

X Cml Cm2 exp(O'% (1) + 0'% (2) ) 
[1 + (}ak(1) (1- al;(1» X 

{(e2-ed'Qka:�kl) IYk,&k(I)}] 

Proof The proof is omitted here but can be found in [13]. 
o 

Remark 11 It is obvious from (14) is that Xk is a func­
tion of t'h ( 1), although the functional relationship is not 
explicitly known. This prevents us from obtaining any 
further simplification of the condition (17) given above. 
We assume that for a given Yk, Xk;;L(ak(l) ) where 

L E Cl (R). We also assume I /1&1) I . () < 00. Qk Yk jO'k 1 

It is for this reason that we chose Xk E ]RN, rather than 
Xk E £, as mentioned before. 

Corollary 12 A sufficient condition for the nonlinear 
mapping Fk :]RM xJR2 -+ R2 tobe acontractionVk E IN 
in an averaging sense is 

Igm(aA;(I),(})I < I, Vm E {l, ... ,M} (18) 
where (J 1=0. 

Proof The proof is immediate from Theorem 10. 0 

Remark 13 It should be noted here, that for (J=O, when the 
risk-neutral filter for HMMs is obtained, (see [7]) this suf­
ficient condition implies observability and hence is much 
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stricter than the observability condition obtained in Sec­
tion 3. In fact, this condition might not be satisfied for all 
values of ih (1) E (0, 1), for a given a set of parameters 
A,e. 

Remark 14 It should be also noted that for 8 fa, none of 
the conditions in Theorem 10 or Corollary 12 implies ob­
servability. In fact, even if Cml =Cm2, 'rim E {I, ... , M}, 
the conditions (17) and ( 18) can be satisfied provided 

I ee2 - e])' Qk a!�kl) IYk,uk (I) I < l (e, (h (1) ) 

Note that observability is not a necessary condition for thc 
geometric ergodicity of the recursive estimates in neither 
the risk-neutral nor the risk-sensitive case. But, it is correct 
to observe that observability is not a necessary condition 
for the nonlinear mapping Fk : �M x ]R2 ----> ]R2 to be a 
contraction, as opposed to the case of risk-neutral HMM 
filters in Section 3. 

Remark 15 Risk -sensitive filters for hidden Markov mod­
els with N =2 and a continuous-range observation space 
RP have been derived in [7]. The general condition for 
the corresponding nonlinear mapping to be a contraction 
can be similarly derived where the derivation involves an 
integration over the range of the observation process rather 
than a summation as in ( 17). 

Also, it is not difficult to see that a necessary and sufficient 
condition similar to (6) can be obtained for the exponential 
stability of the recursive risk-sensitive estimates. How­
ever, the most fundamental ohservation that can be made 
from the above results is that for sufficiently large values 
of 8, Igm CCh (1) , B) I can be;:::: 1) 'rim and hence none of 
the conditions (17) and (18) would be satisfied. In other 
words, the risk-sensitive filter may become unstable, i.e., 
a small change in the initial conditions may result in an in­
stability of the risk-sensitive filter. This restriction on 8 has 
been also observed in [9] [10] for the case of risk-sensitive 
filters for linear Gauss-Markov models. It has been seen 
that sufficiently large values of B may make a certain ma­
trix negative definite, resulting in the non-existence of the 
solution of a certain Riccatti equation. Simulation studies 
for risk-sensitive filters for HMMs with continuous-range 
ohs:ervations [7] have also shown that risk-sensitive filters 

lose their rohustness against uncertain noise environments 
for sufficiently large values of B. However, there is yet no 
general theory of choosing B before starting the estima­
tion process such that the stahility of risk-sensitive filters 
would be guaranteed throughout. 
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