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Abstract 

We consider a class of hybrid filtering problems in 
discrete-time. The main feature is that  the system 
is modulated by a Markov chain. Our main effort is 
to reduce the complexity of the underlying problems. 
Consider the case that the Markov chain has a large 
state space. Then the solut,ion of the probleni relies on 
solving a large iiumber of filtering equations. By using 
the hierarchical structure of the system. we show that 
a reduced syst,em of filaering equations can be obtained 
by aggregating the st,ates of each recurrent class into 
one stabe. Extensions to inclusion of transient states 
and nonstationary cases are also t.reated. 

I<w WORDS. Markov chain, filtering, near complete 
decoinposahilit,;. .weak convergence. 

1 Introduction 

\Ve consider hybrid filtering problems in discrete time. 
By hybrid filters, we mean such filters inodulat.ed by a 
discrete-time Markov chain. CIany.problems in target 
tracking, speech recognit.ion. telecommunicat,ion, and 
manufacturing require solutions of filrering problenis 
involve a hidden X a r k o r  chain. Taking thi- J into con- 
sideration, we assume that the system under consid- 
eration is influenced hy a hiddeli Markov chain with 
finite st.ate space in addition to the usual raildoin sys- 
tem disturbances and observation noise, Since we often 
have to face complex and to be largescale syslems, al- 
though the srate space of the \larko\r chaiii is finite. 
i t  inevitablg- contains a large iiuinber of states. Iii !his 
paper, our focus is on reduction of coinplexit,+- of such 
filtering problems involving large-scale hidden Markov 
chains. 

Recentlg, linear systems with coefficients driven by a 
hidden Markov chaiii was considered i n  [20]. Discrete- 
time systems were studied in [I, 6 .  11 .  281 among oth- 
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ers. In [34], Zliang studied hybrid filters in coutinu- 
ous time and treated problems involving non-Gaussian 
noise. Our study is motivated by these Iecent devel- 
opments and stems from the needs of treating hybrid 
SyStenlS. 

In (251: Simon and h d o  pointed out that  various large- 
scale systems have hierarchical structures with different 
rates of various. These states are also naturally decom- 
posable into different layers or hierarchy. The  inherent 
hierarchy allows one to  take advant,age and to  organize 
and reorganize the systems accordingly. Based on the 
decomposition and aggregation, Courtois dealt with 
the so-called nearly completely decomposable Markov 
chain models [7]. Recently. Dey derived reduced- 
complexity filtering results for hidden Markov models. 
in which the underlying Markov chains are nearly con-  
plet.ely decomposable 191. Such Slarkov suuctures have 
numerous applications in queueing and computer sys- 
tems [TI, multiple time-scale heterogeneous traffic mod- 
elling (e.g.. variable bit rate video traffic 1261). manu- 
facturing systenls. operations research and many other 
hiological and physical systems where a multiple t,iine- 
scale or hierarchical behaviour is involved. Taking the 
approaches of [ I ]  and [9] as our point of depart,ure. to 
reduce the complexity of t,he underlj-ing problem. we in- 
troduce a small parameter 6 > 0 into the system. Noae 
that, the small paramet.er is used to reflect the high con- 
trast of the tramition rates of t,he Markov chain. For 
the subsequent, asyinpt,ot,ic analysis, to obtain desired 
rmults, it. is necessary t o  send E i 0, which can serve 
as a guideline for various applications and for approx- 
i n d o n  and heuristics. In real applications, hoiTever. 
E might be a fixed coiistaiit and only the relative or- 
der of magnitude of this parameter matters. In our 
setup: we also consider a nearly completely decompos- 
able Markovian model, in which the hidden Markov 
chain has a large stare space. The  transition proha- 
bilitp matrix is a sum of a completely decomposable 
transition mat,rix and a generator of a continuous-time 
Markov chain. Following our systematic studies on sin- 
gularly perturbed Markov chains in bath conainuous 
ainie and discret,e time [14, 30, 31. 32, 353, we inves- 
t,igate the asymptotic properties of the filtering p r o b  
lein by meails of weak convergence met.hods. IVe will 
deinonsnate that a limit filtering problem can be de- 
rived in which the underlying Markov chain is replaced 
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by an averaged chain and the system coefficients are av- 
eraged out with respect to the stationary measures of 
each ergodic class. The reduction of complexity is more 
transparent when the transition matrix of the Markov 
chain consists of only one ergodic class. In this case, 
the limit filtering problem becomes a standard Kalman 
filter free of Markovian jump process. 

The rest of the paper is arranged as follows. Section 2 
presents the formulation of the problem and a number 
of preliminary results that are t o  be used in our study. 
Section 3 presents the main theorems. Section 4 gives 
remarks and a few extensions. The verbatim proofs 
and numerical results can be found in [29]. 

A word of the notation is in order. In what follows, we 
use I< to denote a generic positive constant, urhich may 
take different values for different usage. For z E R'' "' 
with some positive integers e, and C2, z' denotes its 
transpose. For a suitable function f ,  fc and f z z  denote 
its first-order and second-order partial derivatives with 
respect to x. 

2 Problem Formulation 

Let E > 0 be a small parameter and {a:} be a (aime) 
homogeueous singularly perturbed Markov chain in dis- 
crete time with a finite state space M having m ele- 
ments and a transition matrix 

P ' = P + E Q ,  (1) 

where Pis an m x m transit,ion matrix and Q = (U,() is 
a generator of a continuous-time homogeneous Markov 
chain. i.e., q,e >_ 0 for L # C and 

Suppose that for some T > 0 and 0 5 n 5 [Z ' /E ]  
(where 1.1 denotes the largest integer part of I). .e:, E 
R' is the state t o  be estimated, y; is the correspond- 
ing observation, A(L) ,  C (L ) .  U ~ ( L ) ,  and u.(L) are u,ell 
defined for each L E M (i.e.. they axe finite for each 
L E M ) .  With initial data  to and yo, ahe hybrid fil- 
tering problem is concerned with the following linear 
system of equations: 

q,t = 0 for each L .  

(2) 
= 2: + &A(a;)x:, i- Jiu&:)w", 

= $.+ €C(a;)x:, +&."(a;).., 

where {U"} and {U"} are the system disturbance and 
the observation noise, respectively. For ease of pre- 
sentation, in what follows, we will suppress the floor- 
function notation 1.J and write it as 0 < n _< TIE 
throughout. The use of the fi in the noise ternis 
stems from the central limit scaling. Precise condi- 
t.ions on the noises will be provided 1at.er. In what 
follows. we will show that as E + 0, the above filter- 
ing problem has a limit. The limit filtering problem is 

still modulated by a Markov chain. However, the total 
number of states of the limit Markov chain is equal to 
the number of recurrent groups or clusters 1 .  .4s men- 
tioned before, typically I << m and by considering this 
limit filtering problem. substantial comput,ational sav- 
ings can be obtained. .4lthough (2) is a discrete-time 
filtering problem, the limit under appropriate scaling 
is a continuous-the hybrid filtering problem. In the 
rest of the paper, our main effort is devoted to deriving 
the limit filtering problem. For solution of continuous- 
time hybrid filtering problems involving jump Markov 
processes, see [5. 8, 10, 11, 201; see also (271 and the 
references therein for discrete time results. 

In view of (I), the transition probabilities of ai are 
dominated by F. The structure of P is thus important. 
Since a:, is a finit,e-state Markov chain, the Markov 
chain corresponding to the transition matrix P either 
consists of all recurrent states or it includes transient 
states in addition to recurrent states (see [13]). We 
first consider t,he case of inclusion of recurrent states 
only. Later me will discuss a generalization to the case 
where trans$ states are also included. Suppose that 
the matrix P is given by 

I 

( '.. ,. (3) 
- - - 
P = d i a g ( P ' ,  .... Pi)= 

where each Pi E IRm'Ym' is itself a transition ma- 
trix and >=:= mi = m. Here and henceforth. by 
diag(Z'. . . . , Z ). we mean a diagonal block matrix 
with matrix entries 2' through Zl of appropriate di- 
mensions. It clear that  for sufficient,ly small E > 0. 
P' is close to P ,  so Pc is a nearly completely decompos- 
able transition mat,rix (see PI). Not,e t,hat typically for 
large scale Markovian systems. I << n and therein lies 
the motivation for reducing computational complexity. 
Concerning the Markov chain, we assume the following 
condition. 

t 

(AI) The ttansi?ion probability matrix of the Markov 
chain a:, is given by (1) with P specified in ( 3 ) ;  
and the srate space of the Markov chain is 

M = MI u .U? n . . I u .U, 

= 1.11,. . . , SI,,,,} U, .  .U  ( 5 1 1 , .  . . 1  SIm,}. 

(4) 
For each i = 1 , .  . . , I .  .Mi = {s;~, . . . , si,,,,} is 
the state,space-corresponding t o  t.he transition 
matrix I" and P' is irreducible and aperiodic. 

(A2) E(xol' < w and E(yol? < 00. For each L E M :  
A ( L ) .  C(L),  uw( i ) ,  and uV( i )  arefinit,e: u",(i)u;,(L) 
and U,,(L)U;(L) are positive definibe matrices. 

(A3) The sequeiices (to"} and { E . }  are independent 
of {of,} and are independent of each ot,her. The 
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{ w e ]  and {U"] are stationary martingale differ- 
ence sequences (with zero mean) such that 

Elu,mk = I ,  E u , , ~ ;  = I .  

< m, and 

~lu,1 '+" < lyi for some A > o 

3 Main Results 

3.1 Preliminary Results 
Note that the probability vector 

p:, = ( P ( e i  = s a ) )  E Et'"" 

satisfies 
Pk+l = P',P'. P i  = PO (5) 

such that po is the initial probability distribution. By 
[ill), the result in [31] yields the following lemma. 

Lemma 3.1. Suppose that condition (41) hold. Then 
the following assertions hold: 

(1) Let v i  the stationary distribution corresponding 
to the transition matrir Pi for each i = 1. .  . . : I .  
Then f o r  some 0 < X < 1, 

I 

pi = B(t)diag(v'. . . . , U ' )  + O b  + A n ) ;  ( 6 )  

whcr-e B ( t )  = ( & ( t ) ,  . . . ,&( l ) )  E R"' (wzth t = 
~ n )  satisfies 

_-  - O(t)Q, S, (O)  = X b U , , ,  dt 

with 
- 
Q = diag(v'. . . . , v')Q?. 

U =diag(l,, , . . . ,  I,,), 
I (7)  

whei-e Ut denotes an !-dimensional column t'ector 
with all entries being 1. 

( 2 )  With n 5 TIE> the n-step transitiota probability 
matrir (P')" satisfies 

(P')" = @ ( t )  + 0 ( E  + A n ) ,  (8) 

where 

@(t )  = ?O[t)diag(v', . , U ' )  

dO(t) (9) 
-- - O(t)-Q, @ ( O )  = I dt 

(3) A S E  +O: 3[.) coni'erges w.eaklyt~(L(.)~ which is 
a continuous-time Market' chain with state space 

A = [l, .  , / ]  and generator a gtt'en by (7). 
Aforeouer, for the occupation measures defined by 

&, i j  = E x [ I { e : = s , , l  - U j I { e ; E M , ] ] l  i 

k=O 

for <=I ,.. . ,  / , j= l ,  . . . ,  mi, 

the following mean square estimates hold 

For 0 5 n 5 T / E .  define the interpolations z'(.) and 
J ( . )  as 

r'( t)  = 2:. y ' ( t )  = & ,  t E [ne, n a +  E ) .  (11) 

where r; and y; are given in (2). Then z'(.) and 
J ( . )  E D'[O.T], which is the space of El-valued func- 
tions that are right continuous, have left limits, en- 
dowed wit.11 the Skorohod topology 112. p.  1221. Using 
weak convergence met.liods. w e  will show that the in- 
terpolated processes converge weakly t,o .(.) and y(.). 
which satisfy continnouctinie hybrid Iialniaii filaeriiig 
equations. Followiiig the approach of weak convergence 
methods [12, 151. we first show that the sequences of 
interests are tight, and then we characterize the limit 
processes by using niartingale averaging techniques. 

Owing to the assuinpt.ion on the system and ohserna- 
tion noise and \/s scaling, the'follorving lemma, known 
as the funct,ional central limit theorem or Donsker's in- 
variance theorem. holds. It,s proof is standard; see for 
example. 112. Theorem 3.1. p. 3511. 

Leimna 3.2. Set 

{ I C - >  f / c - - l  

j=0 j=0 
w' ( t )  = \/s x U, and c , ' ( t )  = J; u j .  (12) 

Under (.k3)> U'(.) and U'(.) conoerge weakly to ston- 
dard r-dimensional Brownian motions U$(.) and u(.). 
respectinely. 

In the analysis to follow. we need the a priori bounds 
on { z i ]  and [ y i ] ;  which are presented in the form of 
t,he following Lemma. The proof is provided in the 
appendix. 

Lemma 3.3. Suppose that conditions [.41)-(.43) hold 
For [z:] and [yk] defined z n  (2) .  we haw thefollouing 
bounds 
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3.2 Weak Convergence 
To proceed, let Tn be the a-algebra generated by 
{a;, w j ,  uj : j 5 n)  and E, be the conditional expec- 
tation w.r.t. 3"; let 3; be the u-algebra generated by 
{a'(s),w'(s),c'(s) : s 5 t )  and E: be the conditional 
expectation w.r.t. 4. We are to derive the tightness 
of {z'(.)} and {ye(.)]. This is a compactness result, 
which is established by verifying a tightness criterion; 
the proof is in the appendix. 

Theorem 3.4. Suppose that (A1)-(A3) hold. Then 
I.'(.)} and{$(.)) are tight inD'[O,T]: whereD'[O,T] 
is the space of E'-t'alued functions that are right con- 
tinuous and haw left limits. endowed with the Skorohod 
topology. 

Theorem 3.5. Assume the conditions of Theo- 
rem 3.4. Then z'(.) and ye(.) converge weakly to r ( . )  
and y(.). respectitely. suck that z(.) and y(.) are solu- 
tions of the f ik r ing  equafions 

d r  = ~ ( E ( t ) ) r d t  + Tw(Z(t))dw., 

dy = c (Z( t ) ) rd t  + a,(Z(t))da, 

where IC(.) and u ( . )  are the independent r-dimensional 
standard Brownian motions gioen by Lemma 3.2> 

(14) 

m, m. 

v$!(s, j ) ,  B(i) = 
j=1 j=1 

- 
A(i) = vjB(sij) .  for each i E A. 

(15) 
andfor  each i E R ,  Fw(i) andTv(i)  satisfy 

'The reduction of complexity is particularly pronounced 
if the transition matrix (3) consists of only one ergodic 
class (i.e., P in (3) consists of only one block). That  
is, P' = P + EQ such that P is irreducible and aperi- 
odic. It. is easily seen that for sufficiently sniall E > 0, 
P' is also irreducible. Consider t.he f ik r ing  problem 
(2). Similar to the previous case define E ' ( . )  and $(.) 
as the piecewise constant interpolations of x i  and &, 
respectively. Replace x(.) and F w ( . )  by 

m m 
4 
A = z i l ( j ) v j ,  and e@,)' = x U j u x , ( j ) u L , ( j ) ,  

j=1 j=1 

(17) 
with U = ( ~ 1 , .  . . , vm) denoting the staaionary distrib- 
ution of P.  Similarly replace c(.) and by C and e, respectively. The weak convergence of ( . ec ( . ) ,  $(.)) 

4 

will still be obtained. The proofs are similar to the pre- 
vious case. In fact, it is readily seen that Lemma 3.3 
and Theorem 3.4 continue t o  hold. Lemma 3.1 still 
holds with obvious modifications and (10) (in Lemma 
3.1) is changed to 

Using this mean square estimate and similar arguments 
as before, we can show that Theorem 3.5 continues to 
hold. I t  is interesting to note that t,he limit filaering 
problem becomes a standard Iialman filter. in which 
the jump process effect has been completely averaged 
out. We state this as the following result. 

Corollary 3.6. Let us consider problem (2)  such that 
P is irreducible and aperiodic. Then ( r ' ( . ) , $ ( . ) )  con- 
oeiges weakly to (z(.),y(.)) that is the solution of the 
filtering problem 

-4 
d x ( t )  = A z(t)dt + < d U ( t ) ,  

4 (18) 
dy(t) = C r(t)dt + % d c ( l ) .  

4 Further Remarks 

Our main motivation stems from the effort of reduction 
of comp1esit.y. Regarding (2).  note t,hat the time hori- 
zon we are working with is 0 5 n 5 J T / E ] .  As pointed 
out in [23], if we h a t  the discretetime case directly, 
it can be reduced t.o an m~TICl-dimensional recursive 
syst,em of equations. where In is the total number of 
states of t.he Markov chain. For us. In i s  a fairly large 
number. .4s a result, the amount of computat,ion be- 
comes pract,ically un-trackable. One cannot complete 
she computation in polynomial time. By weak con- 
vergence met,hods. we have obtained a reduced or limit 
sysdein of filtering equations. This limit system of equa- 
tions allows us to find nearly optimal filtering, and the 
limit syst.eni has reduced comp1esit.y. In particular. if 
t,he transit,ion matrix P given in (1) is irreducible. the 
limit becomes a Kalnian filter (see Proposition 3.6). 

For cont.inuous-time Kalman filter problems with 
Markovian switching. it has been recognized (see [5, 10, 
201) t.hat in general the problem is an infinite dimen- 
sional one just as in nonlinear filter case [19]. Never- 
theless, Bjork [5] proved that a finite-dimensional filt,er 
exists for a linear hybrid syst.eni if and only the o b  
servation is independent of the stat,e variable. For t.he 
filtering problem considered in t.his paper, t.his requires 
t,he observation process in the limit problem being inde- 
pendent of sfate. Corresponding to such a requirement. 
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we can consider 

= 2; +€A(a:)r;  +&u,(a;)w,. 
(19) 

y:+1 = y:, + q a : )  + VGU"C,. 
Similar to the derivation of Theorem 3.5. we obtain the 
limit filtering equations 

d r  = x ( Z ( f ) ) z d t  + T u ( Z ( t ) ) d u J l  

d y  = c ( Z ( t ) ) d t  + u,dv. 
(20) 

systems. Suppose that Q(t )  is given by 

Note that the calculation of (19) leads to recursive fil- 
ters of dimension mLTIsJ, whereas (20) yields a solution 
of finite-diniensional filtering problem. 

In the previous sections. we have been maid)- con- 
cerned a i th  discretetime filtering problems in which 
the Markov chain cont.ains only recurrent states. Ex- 
tensions to Markov chain including transient states can 
be considered. Let the transition probability be of the 
form (1). In lieu of (3) ,  suppose the transition matrix 
P in (1) is given by 

We can carry out the analysis similar to the recurrent- 
chain case. 

Time-inhomogeneous Markov chains can be considered 
In lieu of (l),. assume t,liat rhe transition probability 
matrix is nonstat,ionary given by 

- 
P ' ( E ~ )  = P ( E ~ )  + E Q ( E ~ )  

where P ( e n )  is the dominating part of the transition 
matris. In this case. we can carry out the analysis as 
in the previous case although the details and notation 
are more involved. 

There is a cont.inuous-time analogue of the hybrid fil- 
tering problems. In lieu of ( 2 ) .  for t E [O,  TI1 consider 

d r ' ( t )  = A ( a c ( t ) ) r c ( t ) d f  + u U , ( d ( t ) ) d w ,  

d y C ( t )  = C ( a ' ( t ) ) z ' ( t ) d t  +uu(as(t))dz.. 

I 

(22) 

where w(.)  and U(.) are independent standard Brown- 
ian motions, and where a'(.) is a cominuous-time sin- 
gularly perturbed Markov chain with finite d a t e  space 
M and with generator 

where both Q ( t )  and act) are generators Weak coii- 
vergence analysis can be carried out to obtain linnt 

For each i E {l, . . . ,  I) ,  let @.(t) = B(t)@,,,, Q.(t) = 
B(t)Q,,,, where B(1) is an lRm*Xm* matrix-valued 
function, and a,: E lRm.xm* and Q.,c E IRm*""'* 
are constant matrices. It is readily seen that B ( t )  is 
invertible for each t E [O. TI and for each i, 

is a time-independent vector. We can then obt,ain the 
limit filtering problem. 

The posible extensions mentioned above together with 
t,heir developments can be found in [29]. We omit their 
det,ails here. 

In this paper. it  has been demonstrated that the for- 
mulation of hybrid syst,em is natural. I t  is conceivable. 
such hybrid systems will play more and more important 
roles i n  alie future. 
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