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Abstract

We consider a class of hybrid filtering problems in
discrete-time. The main feature is that the system
is modulated by a Markov chain. Qur main effort is
to reduce the complexity of the underlying problems.
Consider the case that the Markov chain has a large
state space. Then the solution of the problem relies on
solving a large number of filtering equations. By using
the hierarchical structure of the system, we show that
a reduced system of filtering equations can be abtained
by aggregating the states of each recurrent class into
one state. Extensions to inclusion of transient states
and nonstationary cases are also treated.

KeY worDs. Markov chain, filtering, near complete
decomposability, weak convergence.

1 Introduction

We consider hybrid filtering problems in discrete time.
By hybrid filters, we mean such filiers modulated by a
discrete-time Markov chain. Many. problems in target
tracking, speech recognition, telecommunication, and
manufacturing tequire solutions of filtering problems
involve a Lidden Markov chain. Taking this inte con-
sideration, we assume that the system under consid-
eration is influenced by a hidden Markov chain with
finite state space in addition to the usual random sys-
tem disturbances and observation noise, Since we often
have to face complex and to be large-scale systems, al-
though the state space of the Markov chain is finite,
1t inevitably contains a large number of states, In this
paper, our focus is on reduction of complexity of such
filtering problems involving large-scale hidden Markov
chains.

Recently, linear systems with coefficients driven by a
hidden Markov chain was considered in [20]. Discrete-
time systems were studied in [1, 6, 11, 28] among oth-
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ers. In [34], Zhang studied bybrid filters in continu-
ous time and treated problems involving non-Gaussian
noise. Qur study is motivated by these recent devel-
opments and stems from the needs of treating hybrid
systems.

In [25], Simnon and Ando pointed cut that various large-
scale systeris have hierarchical structures with different
rates of varicus. These states are also naturally decom-
posable into different layers or hierarchy. The inherent
hierarchy allows one to take advantage and to organize
and reorganize the systems accordingly. Based on the
decomposition and aggregation, Courtois dealt with
the so-called nearly completely decomposable Markov
chain models {7]. Recently, Dey derived reduced-
complexity filtering results for hidden Markov models,
in which the underlying Markov chains are nearly com-
pletely decomposable [9]). Such Markov structures have
numergus applications in queueing and cornputer sys-
tems [7], multiple time-scale heterogeneous traffic mod-
elling {e.g., variable bit rate video traffic |26}, manu-
facturing systems, operations research and many other
biclogical and physical systems where a multiple time-
scale or hierarchical behaviour is involved. Taking the
approaches of {7] and [9] as our peint of departure, o
reduce the complexity of the underlying problem, we in-
troduce a small parameter ¢ > 0 into the system. Note
that the small parameter is used to reflect the high con-
trast of the transition rates of the Markov chain. For
the subsequent asymptotic analysis, to obtain desired
results, it is necessary 1o send ¢ — 0, which can serve
as a guideline for various applications and for approx-
imation and heuristics. In real applications, however,
£ might be a fixed constant and only the relative or-
der of magnitude of this parameter matters. In our
setup, we also consider a nearly completely decompos-
able Markovian model, in which the hidden Markov
chain has a large state space. The transition proba-
bility matrix is a sum of a completely decomposable
transition matrix and a generator of a centinuous-time
Markov chain. Following our systematic studies on sin-
gularly perturbed Markov chains in both continuous
time and discrete time [14, 30, 31, 32, 35], we inves-
tigate the asymptotic properties of the filtering prob-
lem by means of weak convergence methods. We will
demonstrate that a limit filtering problem can be de-
rived in which the underlying Markov chain is replaced
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by an averaged chain and the system coefficients are av-
eraged out with respect to the stationary measures of
each ergodic class. The reduction of complexity is more
transparent when the transition matrix of the Markov
chain consists of only one ergodic class. In this case,
the limit filtering problem becomes a standard Kalman
filter free of Markovian jump process.

The rest of the paper Is arranged as follows. Section 2
presents the formulation of the problem and a number
of preliminary results that are to be used in our study.
Section 3 presents the main theorems. Section 4 gives
remarks and a few extensions. The verbatim proofs
and numerical results can be found in [29].

A word of the notation is in order. In what follows, we
use K 1o denote a generic positive constant, which may
take different values for different usage. For z € R %42
with some positive integers ¢, and £», z’ denotes its
transpose. For a suitable function f, f. and f:, denote
its first-order and second-order partial derivatives with
Tespect to x.

2 Problem Formulation

Let £ > 0 be 2 small parameter and {af} be a (time)
homogeneous singularly perturbed Markov chain in dis-
crete time with a finite state space A4 having m ele-
ments and a transition matrix

P =P+eq, (1)

where P is an m x m transition matrix and @ = (g.¢) is

a generator of a continuous-time homogeneous Markov
chain,ie., ¢t > 0for e # £ and 3, q,0 = 0 for each .

Suppose that for some T > 0 and 0 < n < {T/e]
(where {z] denotes the largest integer part of z}, 25, €
IR’ is the state to be estimated, y, is the correspond-
ing observation, A{1), C(1). ow(e), and oy (2) are well
defined for each + € M (ie., they are finite for each
¢ € M). With initial data zp and ygo, the hybrid fil-
tering problem is concerned with the following linear
system of equations:

51 = 25+ eA{ag )af, + Veou(af Jun,

2
Voo = 15+ €Clo8)sh +VEr(alom,
where {wn} and {vn} are the system disturbance and
the observation noise, respectively. For ease of pre-
sentation, in what follows, we will suppress the floor-
function notation |-| and write it as 0 < n < T/¢
throughout. The use of the /¢ in the noise terms
stems from the central limit scaling. Precise condi-
tions on the noises will be provided later. In what
follows, we will show that as £ — 0, the above filter-
ing problem has a limit. The limit filtering problem is

stil modulated by a Markov chain. However, the total
number of states of the limit Markov chain is equal to
the number of recurrent groups or clusters {. As men-
tioned before, typically { < m and by considering this
limit filtering problem, substantial computational sav-
ings can be obtained. Alihough (2} is a discrete-time
filtering problem, the limit under appropriate scaling
is a continuous-time hybrid filtering problem. In the
rest of the paper, our main effort is devoted to deriving
the limit filtering problem. For solution of continucus-
time hybrid filtering problems involving jump Markov
processes, see [5, 8, 10, 11, 20}; see also [27] and the
references therein for discrete time results.

In view of (1), the transition probabilities of aj, are
dominated by P. The structure of P is thus important,
Since af is a finite-state Markov chain, the Markov
chain corresponding to the transition matrix P either
consists of ]l recurrent states or it includes transient
states in addition to recutrent states (see [13]). We
first consider the case of inclusion of recurrent states
only. Later we will discuss a generalization to the case
where transient states are also included. Suppose that
the matrix P is given by
Pl
P = diag(P!,.... P = . . {3)
P

where each P' € IR™*™ is itself a transition ma-
trix and Zi:& m; = m. Here and henceforth, by
diag{Z',...,Z'), we mean a diagonal block matrix
with magrix entries Z! through Z' of appropriate di-
mensions. It is clear that for sufficiently small £ > §,
P¢ is close to P, sc P*® is a nearly completely decompos-
able transition matrix {see [7]). Note that typically for
large scale Markovian systems, ! < ri2 and therein lies
the motivation for reducing computational complexity.
Concerning the Markov chain, we assurne the following
condition.

{A1) The transition probability matrix of the Markov
chain of, is given by (1) with P specified in (3},
and the state space of the Markov chain is

M= MiUMaO UM,

= {811, 81my YU ---U LS, .0, Sim, )
{4)
For each ¢ = 1,...,d, M; = {si1,....8m,} is
the state space corresponding to the transition
matrix P’ and P/ is irreducible and aperiodic.

(A2} Elzol® < oo and Elyl® < oo. For each ¢ € M,
A1), C(t}, 0w (t), and o4(¢) are finite; oy (1)a), (2)
and &, {:)o;(¢) are positive definite matrices.

{A3) The sequences {wn} and {v,} are independent
of {af} and are independent of each other. The
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{wn} and {v,} are statiopary martingale differ-
ence sequences (with zero mean) such that

Fugu, =1, Evavl, =1,
E|uw, [>T < o0, and

Elua|**® < o0 for some A > 0.

3 Main Results

3.1 Preliminary Results
Note that the probability vector

vy = (P(aj, = s;5)) e RI*™

satisfies
(5)

such that pg is the initial probability distribution. By
(A1), the result in [31] yields the following lemma.

Pryt =00 P° Po=po

Lemma 3.1. Suppose that condition (Al) hold. Then
the following assertions hold:

(1) Let v' the stationery distribution corresponding
to the transition matriz P; for each i =1,...,L
Then for some § < A < 1,

i = 0(t)diag(v’, ..., v/} + Ole + A7), (6)

where 8(t) = (61(t),...,6/(1)) € R (witht =
£n) satisfies

d6(t)

dt

6(t}Q. 4i(0)

i
zglm,,

with
Q = diag(v!, .., ur)Qi

Q= g
I =diag{Zpm,...., Im, ),

where #; denotes an f-dimensional column vector
with all entries being 1.

(2} With n < T/e, the n-step transition prebability
matriz {P*)" salisfies
(P =0(t)+ Alc + A7), (8)
where
@{t) = 16(t)diag(v!, .. .. 1}) o)
doft —
O _ o3, o) =1.
dt
(3) Ase = 0. &°(-) converges weakly to v(-), which is

a continuous-time Markov chain with state space
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M = {1,...,1} and generator Q given by (7).
Moreover, for the occupation measures defined by

n
O:a,ij =£ Z[I{Q;=$|j} - ”}I{QIEM;}]J
k=0

1,,.A,m,',

for i=1,...01 j

the following mean square estimates hold

& P
n,:7

sup  E|o
0dn<T /e

|2 = Ofe). (10)

For 0 < n < T/e, define the interpolations z¢(-) and

¥ () as

() ==z}, ¥ ()

2
= Yns

t € [ne,ne+ ¢). (11)
where z, and g, are given in (2). Then #°(') and
¥ () € D7[0,T], which is the space of R"-valued func-
tions that are right continuous, have left limits, en-
dowed with the Skorohod topology [12, p. 122]. Using
weak convergence methods, we will show that the in-
terpolated processes converge weakly to #{') and y{),
which satisfy continuous-time hybrid Kalman filtering
equations. Following the approach of weak convergence
methods [12, 15]. we first show that the sequences of
interests are tight, and then we characterize the limit
processes by using marsingale averaging techniques.

Owing to the assumption on the system and observa-
tion noise and /% scaling, the following lemma, known
as the functional central limit theorem or Donsker’s in-
variance theorem, holds. Its proof is standard; see for
example, {12, Theorem 3.1, p. 351].

Lemma 3.2, Sef

t/e—1 tfe—1

wt(#) = /e Z w; and v (1) = /¢ Z v;. {12)
J=0 Jj=0

Under {A3), w*(-) ond v*() converge weakly to stan-

dard r-dimensional Brownian motions w(-) and v(),
respectively.

In the analysis to follow, we need the @ prior: bounds
on {zf} and {y5}, which are presented in the form of
the following Lemma. The proof is provided in the
appendix.

Lemma 3.3. Suppose that conditions (A1)-(A3) hold.
For {z5} and {45} defined in (2). we have the following
botnds:

[ < .

(13)

sup  Ely;,
0<n<T /e

sup Eleh? < oc, ond
0<n<T/e



3.2 Weak Convergence

To proceed, let F,, be the o-algebra generated by
{of,wj,v; 15 £ n} and E, be the conditional expec-
tation w.r.t. Jyn; let Ff be the s-algebra generated by
{af(s), w(s),v*(s) : 5 <t} and E be the conditional
expectation w.r.t. Ff. We are to derive the tightness
of {°(-)} and {y*(-)}. This is a compactness result,
which is established by verifying a tightness criterion,;
the proof is in the appendix.

Theorem 3.4. Suppose that (A1)-(A3) hold. Then
{=£()} and {y°{-)} are tight :n D™, T, where D7[0,T)
is the space of R" -valued functions that are right con-
tinuous and have left limits, endowed with the Skorohod

topology.

Theorem 3.5. Assume the conditions of Theo-
rem 3.4. Then 2°() and y* (-) converge weakly to z(')
and y(), respectively. such that x{:) and y{-) are solu-
tions of the filtering equations

dz = A(@(?))zdt + 7, (a(t))duw,
dy = (@) edt + 7, (a(t))de,

(14)

where w(-) and v{-} are the independent r-dimensional
standard Brownian molions given by Lemma 3.2,

A(i) = Zlu;.ﬁl(s,-j). Bli) = Zv‘;B(s,J} for cachi €
j=1 =1
i i (1)
and for each i € M, Ty, (7) and 7, (1) satisfy
Tl () = Y viow(si)ou (sis),
i=1 (16)

7 (i)7, (1) = Z viou(sij)al(sij).
i=1

The reduction of complexity is particalarly pronounced
if the transition matrix (3) consists of only one ergodic
class (i.e., P in (3) consists of only one block). That
is, P = P + Q@ such that P is irreducible and aperi-
odic. It is easily seen that for sufficiently small ¢ > 0,
P7* is also irreducible. Consider the filtering problem
{2). Similar to the previous case define x°(-} and ¥ ()
as the piecewise constant interpolations of xf and yf,
respectively. Replace A(:) and @y (-) by

m

m
ST AGw;, and FELY = Y viouli)el i),
j=1

j=1

(17)
with v = (¥,...,n) denoting the stationary distrib-
ution of P. Similarly replace C(-) and 7, () by €’ and

@3, respectively. The weak convergence of {z*{-},* ("))

A

M,

will still be obtained. The proofs are similar to the pre-
vious case. In fact, it is readily seen that Lemma 3.3
and Theorem 3.4 continue to hold. Lemma 3.1 still
holds with obvicus modifications and (16)) {(in Lemma
3.1) 1s changed to

n 2
sup E [f;‘ [I{a:=j} - yj]] = 0(g).

0<n<Te =

Using this mean square estimate and similar arguments
as before, we can show that Theorem 3.5 continues to
hold. It is interesting to note that the limit filtering
problem becomes a standard Kalman filter, in which
the jump process effect has been completely averaged
out. We state this as the following result.

Corollary 3.6. Let us consider problem {2} such that
P is irreducible and aperiodic. Then (z°(-), ¥ (-}) con-
verges weakly to (x(-), y(-)) that is the solution of the
filtering problem

dz(t) = A n{t)dt + 7o du(t),
—a _0 (18)
dy(t) = C z{t)dt + 7,dv(1).

4 Further Remarks

Our main motivation stems from the effort of reduction
of complexity. Regarding (2), note that the time hori-
zon we are working with is 0 < n < |T/e]. As pointed
out in [23], if we treat the discrete-time case directly,
it can be reduced to an m!T/¢)-dimensional recursive
system of equations, where m is the total number of
states of the Markov chain. For us, m is a fairly large
number. As a result, the amount of computation be-
comes practically un-trackable. One cannot complete
the computation in polynomial time. By weak con-
vergence methods, we have obtained a reduced or limit
system of filtering equations. This limit system of equa-
tions allows us to find nearly optimal filtering, and the
limit system has reduced complexity. In particular, if
the transition matrix P given in (1} is irreducible, the
limit becomes a Kalman filter (see Proposition 3.6).

For continuous-time Kalman filter problems with
Markovian switching, it has been recognized (see [3, 10,
20]) that in general the problem is an infinite dimen-
sional one just as in nonlinear filter case {19]. Never-
theless, Bjork (5] proved that a finite-dimensional filter
exists for a linear hybrid svstem if and only the ob-
servation is independent of the state variable. For the
filteting problern considered in this paper, this requires
the observation process in the limit problem being inde-
pendent of state. Corresponding to such a requirement,
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we can constder

) +\/_0'w(
Yyt = ¥ +eClal) + VEoyua.

T =2, +ed(a

n)tm: (19)

Similar to the derivation of Theorem 3.5, we obtain the
limit filtering equations

dr = A(@(t))zdt + T (@(1))duws,

_ (20)
dy = C{a(t))dt + o, dv.
Note that the calculation of {19) leads to recursive fil-
ters of dimension ml7/<) | whereas (20) yields a sclution
of finite-dimensional filtering problem.

In the previous sections, we have been mainly con-
cerned with discrete-time filtering problems in which
the Markov chain contains only recurrent states. Ex-
tensions to Markov chain including transient states can
be considered. Let the transition prebability be of the
form (1). In lieu of (3}, suppose the transition matrix
P in (1) is given by

Pl

Il

5 @1)
B BB

We can carry out the analysis similar to the recurrent-
chain case.

Time-inhomogeneous Markov chains can be considered.
In lieu of (1),. assume that the transition probability
makrix is nonstationary given by

P(en) + £Q(en),

where P(en) is the dominating part of the transition
matrix. In this case, we can carry out the analysis as
in the previous case although the details and notation
are more involved.

PF(en)

There is a continuous-time analogue of the hybrid fil-
tering problems. In lieu of (2), for ¢ € [0, T, consider

dz* (1)
dy* (t)

Ala® (1))t (1)dt + oule®(t))dw,

(22)
Cla® (1)e (t)dt + o (o (1)) dr, :
where w(-) and »(') are independent standard Brown-
ian motions, and where a®(-) is a continuous-time sin-
gularly perturbed Markov chain with finite state space
M and with generator

C:‘( .5
Q1) = —= + Q). (23)
where both é(t) and @(t) are generators. Weak con-
vergence analysis can be carried out to obtain limit
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systems. Suppose that é(t) is given by

Q (1)
Oit) = . 24
Q(t) ) G (24)
Q) QL) Q1)
For each i € {1,...,1}, let Qi) = B(t)@: ., Q.(t) =

B(f)Q, s, where B(t) is an IR™* ™ matrix-valued
function, and Q ¢ € BR™X™ and Q*c € R™ "™
are constant matrices. It is readily seen that B{t) is
invertible for each £ € [0, 7] and for each 7,

(tjéi (t)]lm,. = _Q—l H

def ""
x(t) : - m, = a;

(25)

is a time-independent vector. We can then obtain the

limit filtering problem.

The posible extensions mentioned above together with
their developments can be found in [29]. We omit their
details here.

In this paper, it has been demonstrated that the for-
mulation of hybrid system is natural. It is conceivable,
such hybrid systems will play more and more important
roles in the future.
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